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Abstract

Amonetary model of heterogeneous households is constructed which deals in

a tractable way with the distribution of money balances across the population.

Only some households are on the receiving end of a money injection from the

central bank, and this in general produces price dispersion across markets.

This price dispersion generates uninsured consumption risk which is important

in determining the effects of money growth, optimal policy, and the effects of

money growth shocks. The optimal money growth rate can be very close to

zero, and the welfare cost of small inflations can be very large. Small money

shocks can have important sectoral effects with small effects on aggregates,

while large money shocks can have proportionately large effects on aggregates.
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1. INTRODUCTION

The purpose of this paper is to construct a tractable model that takes seriously the

idea that the distributional effects of monetary policy are important for macroeco-

nomic activity. We explore the qualitative and quantitative implications of this model

for the effects of monetary policy on prices, output, consumption, and employment.

Models with distributional effects of monetary policy are certainly not new. The

first models of this type were the limited participation models constructed by Gross-

man and Weiss (1983) and Rotemberg (1984), in which there are always some eco-

nomic agents who are not participating in financial markets and will not receive the

first-round effects of an open market operation. In a limited participation model, a

monetary injection by the central bank causes a redistribution of wealth which will

in general cause short run changes in asset prices, employment, output, and the dis-

tribution of consumption across the population. The subsequent literature has to

a large extent focussed on asset pricing implications, particularly Lucas (1990), Al-

varez and Atkeson (1997), and Alvarez, Atkeson, and Kehoe (2002), in models that,

for tractability, finesse some of the potentially interesting distributional implications

of monetary policy.

Recent research in monetary theory is aimed at developing models of monetary

economies that capture heterogeneity and the distribution of wealth in a manner that

is tractable for analytical and quantitative work. One approach is to use a quasi-

linear utility function as in Lagos and Wright (2005), an approach that, under some

circumstances, will lead to the result that economic agents optimally redistribute

money balances uniformly among themselves whenever they have the opportunity.

Another approach is to use a representative household with many agents, as in Shi

(1997), in which (also see Lucas 1990) there can be redistributions of wealth within

the household during the period, but these distribution effects do not persist. Work
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by Williamson (2005) and Shi (2004) uses the quasi-linear-utility and representative-

household approaches, respectively, to study some implications of limited participa-

tion for optimal monetary policy, interest rates, and output. Other related work is

Head and Shi (2003) and Chiu (2004).

In the model constructed in this paper, the existence of many-agent households

aids in allowing us to deal with the distribution of wealth in a tractable way, but

there is sufficient heterogeneity among households to permit some novel implications

for monetary policy. There is only one asset, fiat money, and the central bank in-

tervenes by making money transfers to households. These transfers are received by

some households, and not by others. A key feature of the model is that, in each pe-

riod, exchange occurs between members of households who received the transfer and

members of households who do not. That is, households are spatially separated, and

each period the agents from a household who purchase goods are dispersed to other

locations. In this way, a money injection by the central bank diffuses through the

economy over time, and in the limit there will be no distributional effect of monetary

policy.

In equilibrium, prices are in general different across locations. Since individual

agents are uncertain about where they will be buying goods, and there are no markets

on which to insure this risk, if there is dispersion in prices then this is an important

source of uncertainty for the household. With constant money growth, there will in

general be permanent price dispersion. From the point of view of the policymaker,

there are two key distortions. The first is the standard monetary distortion - because

agents discount the future, with constant prices they will tend to hold too little real

money balances, and this distortion can be corrected through a deflation that gives

money an appropriately high real rate of return. The second is the relative price

distortion - in the model, if the money supply is growing or shrinking then price

dispersion exists and agents face consumption risk. The second distortion can be
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corrected if the money supply is constant, which implies constant prices in the model.

The optimal money growth rate is therefore negative, but at the optimum the nominal

interest rate is greater than zero. That is, a Friedman rule is not optimal here. This

is a key result, as the Friedman rule is probably the most ubiquitous of properties

of monetary models. Some numerical experiments show that there are circumstances

where the optimal money growth rate is very close to zero, so that the welfare loss

from having a constant money supply is extremely small. The welfare loss from a

moderate inflation depends on parameter values, but we show examples of moderate

inflations that yield welfare costs of inflation that are an order of magnitude higher

than those typically found in the literature, even with levels of risk aversion that are

moderate.

To illustrate the dynamic effects of central bank money injections, we study a sto-

chastic version of the model. Even i.i.d. money shocks yield persistent effects on

output, employment, and the nominal interest rate. This persistence depends criti-

cally on parameters governing the speed of diffusion of money through the economy

and the degree of financial connnectedness. Numerical examples show that monetary

shocks can be quantitatively important, particularly for the distribution of consump-

tion across the population and for the determination of the nominal interest rate.

In Section 2 we construct the model, while in Sections 3 and 4 we study the effects

of constant money growth and stochastic money growth, respectively. Section 5 is a

conclusion.

2. THE MODEL

There is a continuum of islands with unit mass indexed by i ∈ [0, 1]. Each island

has a double infinity of locations indexed by j = −∞, ...,−1, 0, 1, ...,∞. At each loca-

tion there is an infinitely-lived household, consisting of a producer and a continuum

of consumers, with the continuum of consumers having unit mass. Consumers are
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indexed by k ∈ [0, 1]. The preferences of a household at location j on island i are

given by

E0

∞X
t=0

βt
∙Z 1

0

u(cijt (k))dλ(k)− v(nijt )

¸
, (1)

where t indexes time, 0 < β < 1, cijt (k) is the consumption of consumer k who is

a member of the household living at location j on island i, nijt is the labor supply

of the producer who is a member of the household living at location j on island i,

and λ(·) denotes the measure of consumers in the household. Assume that u(·) is

twice continuously differentiable and strictly concave, with u0(0) =∞. Also suppose

that v(·) is twice continuously differentiable and strictly convex, with v0(0) = 0 and

v0(∞) =∞. The producer can supply an unlimited quantity of labor, and each unit

of labor supplied yields one unit of the perishable consumption good.

There is a fraction α of connected islands, where 0 < α < 1. At the beginning

of the period, the household at location j on island i has mij
t units of divisible fiat

money. All of the households on connected islands then receive an identical money

transfer Υt from the central bank. Households on islands that are not connected never

receive transfers. After receiving transfers, each consumer in the household receives

a location shock. There is a probability π that a consumer stays on the same island,

and a probability 1 − π that the consumer is randomly relocated to another island.

We will assume that each consumer acts to maximize his or her own consumption.

The location shock of an individual consumer is unobservable to the other members

of the household, as is the consumer’s consumption quantity. Also assume that the

household is not able to keep records from period to period on observable actions by

consumers.1

On each island there is an absence-of-double-coincidence problem. That is, con-

sumers from a household j desire the consumption good produced by household j+1.

1If we allow record-keeping by the household, then intertemporal incentives could potentially be

used to induce truthful reporting of location shocks to the household.
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The same applies to consumers who change islands. That is, a consumer from location

j on his or her home island desires the consumption goods produced by the producer

at location j + 1 at the island to which he or she is relocated.

After receiving their location shocks, consumers are allocated money by the house-

hold, and they then go shopping at other locations. While consumers shop for goods,

producers remain at home and sell goods to consumers arriving from other locations.

When consumers purchase consumption goods, these goods must be consumed on the

spot, and the consumers then return to their home locations. Thus, the household’s

consumers cannot share risk by returning to their home location and pooling their

consumption goods, even if they wished to do so. Communication among locations

and record-keeping are limited, so that consumption goods must be purchased with

money. Thus, consumers face cash-in-advance constraints.

The key features of the model are that goods must be purchased with money,

that money injections and withdrawals by the central bank will alter the distribution

of money balances across the population, and consumption goods cannot be moved

between locations.

3. CONSTANT MONEY GROWTH

In this section, we will first characterize an equilibrium where the money stock

grows at a constant rate. Then, we determine the effects of changes in the money

growth rate on employment, output, consumption and prices across locations. Next,

we will draw some general conclusions about the optimal money growth rate, followed

by some numerical examples.

Consumers from a given household who find themselves at different locations will in

general face different prices for consumption goods. In the equilibria we study, prices

will be identical on all connected islands and on all unconnected islands. Then, let p1t

(p2t) denote the price of goods in terms of money on connected (unconnected) islands.
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If the household could observe where consumers were to be located when it makes

its decision about how to distribute household money balances among consumers, it

would in general want to give different agents different money allocations. However,

since each consumer wishes to maximize his or her own consumption, and because

there is no record-keeping which might permit intertemporal incentive schemes, each

consumer will report the location shock to the household that implies the largest

money allocation. It is therefore optimal for the household to allocate the same

quantity of money to each consumer, as any randomness in money allocations must

reduce the expected utility of the household.

A household on a connected island hasm1t units of money balances at the beginning

of period t, and receives a nominal transfer Υt.We will also suppose that households

on connected islands can trade at the beginning of the period on a bond market. Each

bond sells for qt units of money in period t and is a claim to one unit of money in period

t + 1. Households on unconnected islands do not have access to a communications

technology that allows them to trade bonds. Further, bonds cannot be traded for

goods as it is costless to produce counterfeit bonds that are indistinguishable from

genuine bonds to the agents selling goods.

Letting m̂1t denote the quantity of money allocated by the a household on a con-

nected island to each consumer, and let bt denote the nominal bonds acquired by the

household that mature in period t. Then, the household faces the cash-in-advance

constraint

qtbt+1 + m̂1t ≤ m1t +Υt + bt (2)

When relocation shocks are realized for a household on a connected island, 1−(1−α)π

consumers in the household go to connected islands, with each consuming c11t goods

which are purchased at the price p1t. As well, (1− α)π consumers go to unconnected

islands and consume c12t goods purchased at the price p2t. As each consumer wishes
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to consume as much as possible, we have

p1tc
11
t = p2tc

12
t = m̂1t (3)

The producer remains at the home location, supplying n1t units of labor to produce

n1t consumption goods, which are then sold at the price p1t. The household enters

period t+ 1 with m1,t+1 units of money. The household’s budget constraint is then

qtbt+1 + m̂1t +m1,t+1 = p1tn1t +m1t +Υt + bt. (4)

Similarly, a household on a unconnected island begins period t with m2t units of

money, and allocates m̂2t units of money to each consumer in the household. Given

that a household on an unconnected island does not have access to the bond market

and receives no transfer from the government, its cash-in-advance constraint is

m̂2t ≤ m2t. (5)

After receiving location shocks, απ consumers from the household each arrive at

connected islands and consume c21t consumption goods each, while 1−απ consumers

travel to unconnected islands, with each consuming c22t . Each consumer spends his

or her entire money allocation from the household, so that

p1tc
21
t = p2tc

22
t = m̂2t (6)

For a household on a unconnected island, the budget constraint is

m̂2t +m2,t+1 = p2tn2t +m2t, (7)

or money balances allocated to the household’s consumers plus end-of-period money

balances equals total receipts from sales of goods plus beginning-of-period money

balances.

8



From (1) and (??)-(7), the first-order conditions for an optimum for connected and

unconnected households, respectively, give

−v0(n1t) + β

½
p1t[1− (1− α)π]u0(c11t+1)

p1,t+1
+

p1t(1− α)πu0(c12t+1)

p2,t+1

¾
= 0, (8)

−v0(n2t) + β

½
p2tαπu

0(c21t+1)

p1,t+1
+

p2t(1− απ)u0(c22t+1)

p2,t+1

¾
= 0. (9)

That is, each household supplies labor each period to produce consumption goods,

which it sells for money. The money is then spent in the following period for con-

sumption goods at connected and unconnected islands. Thus, in equations (8) and

(9) at the optimum each household equates the current marginal disutility of labor

with the discounted expectation of the gross real rate of return on money weighted

by the marginal utility of consumption in the forthcoming period.

The bond price qt is determined, from (1) and (??)-(7) and the first-order conditions

for an optimum by

−qt
©
[1− (1− α)π]u0(c11t ) + (1− α)πu0(c12t+1)

ª
+β

⎧⎨⎩
p1t[1−(1−α)π]u0(c11t+1)

p1,t+1

+
p1t(1−α)πu0(c12t+1)

p2,t+1

⎫⎬⎭ = 0. (10)

In all of the equilibria we examine, the cash-in-advance constraints (2) and (5) hold

with equality. As well, in the symmetric equilibria that we study, we will have bt = 0

for all t. Then, since each household always spends all of its money on consumption

goods, the path for the money stock at each location is exogenous. In period t, letM1t

denote the supply of money per household on each connected island after the transfer

from the central bank, and letM2t denote the supply of money per household on each

unconnected island. At a location on a connected island, during period t there will

be a total of 1 − (1 − α)π agents who will arrive from connected islands, and each

these agents will spend M1t units of money in exchange for goods, while (1 − α)π

agents will arrive from unconnected islands and will spend M2t units of money each.

Similarly, at a location on an unconnected island, 1−απ agents will arrive from other
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unconnected islands, with each of these agents spending M2t units of money, and

M1t units of money will be spent by each of the απ agents arriving from connected

islands. Therefore, the stocks of money per household at connected and unconnected

locations evolve according to

M1,t+1 = [1− (1− α)π]M1t + (1− α)πM2t +Υt+1, (11)

M2,t+1 = απM1t + (1− απ)M2t. (12)

Note that π will govern how quickly a money injection by the central bank becomes

diffused through the economy. If π = 1, in which case all consumers are relocated

to another island, then from (11) and (12) the same quantity of money is spent in

all locations in each period, so that diffusion occurs in one period. If π = 0 then

M2t = M20 for all t and M1t is governed entirely by the history of central bank

transfers and does not depend on α.

The remaining equilibrium conditions are

p1tn1t = [1− (1− α)π]M1t + (1− α)πM2t, (13)

p2tn2t = απM1t + (1− απ)M2t, (14)

or money demand equals money supply on connected and unconnected islands, re-

spectively. Then, substituting in (8) and (9) for consumption and prices using (2),

(3), (5), and (6) (with equality for (2) and (5)), (13), and (14), we get

− v0(n1t)n1t
[1− (1− α)π]M1t + (1− α)πM2t

+β

⎧⎪⎪⎨⎪⎪⎩
[1−(1−α)π]u0

µ
n1,t+1

M1,t+1
[1−(1−α)π]M1,t+1+(1−α)πM2,t+1

¶
n1,t+1

[1−(1−α)π]M1,t+1+(1−α)πM2,t+1

+
(1−α)πu0

µ
n2,t+1

M1,t+1
απM1,t+1+(1−απ)M2,t+1

¶
n2,t+1

απM1,t+1+(1−απ)M2,t+1

⎫⎪⎪⎬⎪⎪⎭ = 0, (15)

10



− v0(n2t)n2t
απM1t + (1− απ)M2t

+ β

⎧⎪⎪⎨⎪⎪⎩
απu0

µ
n1,t+1

M2,t+1
[1−(1−α)π]M1,t+1+(1−α)πM2,t+1

¶
n1,t+1

[1−(1−α)π]M1,t+1+(1−α)πM2,t+1

+
(1−απ)u0

µ
n2,t+1

M2,t+1
απM1,t+1+(1−απ)M2,t+1

¶
n2,t+1

απM1,t+1+(1−απ)M2,t+1

⎫⎪⎪⎬⎪⎪⎭ = 0.

(16)

An equilibrium is then a sequence {n1t, n2t}∞t=0 that solves (15) and (16) for t =

0, 1, 2, ..., with {M1t,M2t}∞t=0 determined by (11) and (12), given M10, M20, and

{Υt}∞t=0. Then equilibrium prices can be determined from (13) and (14), and con-

sumption quantities are determined by

c11t = n1t
M1t

[1− (1− α)π]M1t + (1− α)πM2t
, (17)

c12t = n2t
M1t

απM1t + (1− απ)M2t
, (18)

c22t = n2t
M2t

απM1t + (1− απ)M2t
, (19)

c21t = n1t
M2t

[1− (1− α)π]M1t + (1− α)πM2t
. (20)

As well, substituting in a similar manner in the bond-pricing equation (10), we get

−
qt
©
[1− (1− α)π]u0(c11t ) + (1− α)πu0(c12t+1)

ª
n1t

[1− (1− α)π]M1t + (1− α)πM2t

+β

⎧⎪⎪⎨⎪⎪⎩
[1−(1−α)π]u0

µ
n1,t+1

M1,t+1
[1−(1−α)π]M1,t+1+(1−α)πM2,t+1

¶
n1,t+1

[1−(1−α)π]M1,t+1+(1−α)πM2,t+1

+
(1−α)πu0

µ
n2,t+1

M1,t+1
απM1,t+1+(1−απ)M2,t+1

¶
n2,t+1

απM1,t+1+(1−απ)M2,t+1

⎫⎪⎪⎬⎪⎪⎭ = 0 (21)

Money Growth

Since the distribution of money balances across islands matters in this model, not

every monetary policy rule with a constant growth rate for the aggregate money stock

will yield an equilibrium that is straightforward to analyze. From (15) and (16) a

money growth policy that will yield an equilibrium where nit is constant for all t, for

i = 1, 2, is one where Mit grows at a constant gross rate µ for each i = 1, 2. Given

11



this policy, if we define δ to be the ratio of the per-capita money stocks on connected

and unconnected islands; that is

δ ≡ M1t

M2t
, (22)

then clearly, δ must be constant for all t. Therefore, from (11) and (12), and again

assuming binding cash-in-advance constraints, we must have

δ =
M1,t+1

M2,t+1
=

µM1t

απM1t + (1− απ)M2t
,

which then requires

δ =
µ− 1 + απ

απ
. (23)

That is, to implement a monetary policy where the aggregate money stock and per-

capita money stocks in all locations grow at the same gross rate µ, the monetary

authority must set the transfer in period 0 so that the ratio of per-capita money

stocks on connected and unconnected islands conforms to (23), and then transfers

are made in each succeeding period so that the money stock on connected islands

grows at the gross rate µ. Thus, if the money supply growth rate is positive (µ > 1)

then from (23) there will be a higher quantity of money per capita at each date on

connected islands than on unconnected islands, and vice-versa if µ < 1.

Given this constant money growth policy, there exists an equilibrium where labor

supply, output, and consumption for each type of consumer are constant for all time

in each location. Letting n1 and n2 denote labor supply by a household on a connected

and unconnected island, respectively then, from (15), (16), (22), and (23), n1 and n2

are determined by

−v0(n1)n1 + β

⎧⎨⎩ [1− (1− α)π]u0
h
n1

µ−1+απ
(µ−1)[1−(1−α)π]+απ

i
n1
µ

+(1− α)πu0
h
n2

µ−1+απ
απµ

i
n2
µ

h
[1−(1−α)π](µ−1)+απ

απµ

i
⎫⎬⎭ = 0, (24)

−v0(n2)n2 + β

⎧⎨⎩ (1− απ)u0
³
n2

1
µ

´
n2
µ

+απu0
h
n1

απ
(µ−1)[1−(1−α)π]+απ

i
n1
µ

h
απµ

(µ−1)[1−(1−α)π]+απ

i
⎫⎬⎭ = 0, (25)
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and from (17)-(20), (22), and (23), ( consumption allocations are

c11t = n1
µ− 1 + απ

(µ− 1) [1− (1− α)π] + απ
, (26)

c12t = n2
µ− 1 + απ

απµ
, (27)

c22t = n2
1

µ
, (28)

c21t = n1
απ

(µ− 1) [1− (1− α)π] + απ
. (29)

As well, from (21), (22), and (23), we have qt = q, a constant, for all t, and

q =
β

µ
. (30)

From (24)-(29), if the money supply is fixed for all t (µ = 1), which implies that

δ = 1 from (23), so that the distribution of money balances across the population is

uniform, then n1 = n2 = n∗, where n∗ is determined by

−v0(n∗) + βu0(n∗) = 0, (31)

and consumption is n∗ for all agents in each period. However if µ 6= 1 then con-

sumption will be different for consumers who purchase goods at a particular location,

depending on their home location, and consumption will also differ for consumers

from a given location depending on where they purchase goods. Thus, if the money

supply is not constant, then agents face uninsured consumption risk. A higher money

growth rate implies, from (26)-(29), that consumers from households located on con-

nected islands consume larger shares of output, and consumers from unconnected

islands consume smaller shares. As µ→∞, connected-island households consume all

output.

We can derive the effect of a change in the money growth factor µ on n1 and n2, at

least for µ = 1. That is, totally differentiating (24) and (25) and evaluating derivatives
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at µ = 1, we obtain

dn1
dµ

=
β[−v00(n∗) + βu00(n∗)]

n
− (1−α)(2−π)[n∗u00(n∗)+u0(n∗)]

α
+ βu0(n∗)

o
∇ , (32)

dn2
dµ

=

⎧⎨⎩ β(2− π)[−v00(n∗) + βu00(n∗)] [n∗u00(n∗) + u0(n∗)]

−β2απ
h
u00(n∗) + u0(n∗)

n∗

i
u0(n∗)

⎫⎬⎭
∇ , (33)

where

∇ = [−v00(n∗) + βu00(n∗)]

½
β(1− π)u00(n∗)− βπ

u0(n∗)

n∗
− v00(n∗)

¾
> 0.

In general, we cannot sign dn1
dµ
and dn2

dµ
, though dn2

dµ
< 0 if the coefficient of relative

risk aversion is less than 1 (the substitution effect of an increase in the effective real

wage dominates the income effect). A key result is that an increase in the money

growth rate when µ = 1 will reduce aggregate labor supply and output. That is, from

(32) and (33) we obtain

α
dn1
dµ
+(1−α)dn1

dµ
=

βαu0(n∗)
n
−v00(n∗) + β[1− (1− α)π]u00(n∗)− βπ(1−α)u0(n∗)

n∗

o
∇ < 0.

(34)

We get this result for the standard reason - inflation is a tax on labor supply, and

thus higher inflation tends to reduce employment and output.

Optimal Money Growth

There are two distortions that arise here. The first is a standard monetary dis-

tortion; that is, with a fixed money supply and discounting, the rate of return on

money tends to be too low and less labor is supplied than is optimal. Second, con-

sumption will differ among agents if µ 6= 1. For example, if µ > 1 then the price of

consumption goods will tend to be higher on connected than on unconnected islands,

so that consumers who purchase goods on connected islands will tend to consume less
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than those who purchase on unconnected islands. Further, if µ > 1 then consumers

from connected islands will have more money than will consumers from unconnected

islands, and so the former set of consumers will be able to purchase more goods at a

given location. The reverse is true if µ < 1. While the first distortion will induce a

benefit from deflation, the second distortion will induce costs of a non-constant money

supply. As we will show in what follows, this implies that a small amount of deflation

is optimal, but deflation at the rate of time preference (µ = β) is either infeasible or

suboptimal. These results are similar in flavor to what holds in sticky price models,

but of course prices are perfectly flexible here; the key frictions are that monetary

policy has distributional effects and goods cannot be moved across locations.

Now, suppose that we look for an optimal monetary growth rule in the class of

constant growth polices with constant δ as in (23). In the equilibrium we study, the

cash-in-advance constraints bind if and only if q ≤ 1, or, from (30), if and only if

µ ≥ β. If we weight expected utilities of households equally, then the optimal money

growth rate is the solution to the problemmaxµW (µ) subject to (24)-(29) and µ ≥ β,

where

W (µ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α[1− (1− α)π]u(c11t ) + α(1− α)πu(c12t )

+(1− α)(1− απ)u(c22t ) + (1− α)απu(c21t )

−αv(n1)− (1− α)v(n2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (35)

A non-standard restriction, which arises from the requirement that consumption be

nonnegative for all agents is, from (26)-(29),

µ > 1− απ.

This constraint implies that there are circumstances under which a Friedman rule is

not feasible. That is, if

β ≤ 1− απ, (36)

then an equilibrium does not exist when µ = β. Thus, if (36) holds, then in the class of

equilibria we examine, the only ones that exist have strictly positive nominal interest
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rates. The possibility of an infeasible Friedman rule arises because, if απ is sufficiently

small, then the taxes required to support a Friedman rule deflation would be greater

than the money balances that households on connected islands have available at the

beginning of the period.

Now, if we differentiate (35) using (26)-(29) and evaluate the derivative for µ = 1,

we obtain

W 0(1) = A+ (1− β)u0(n∗)

∙
α
dn1
dµ

+ (1− α)
dn1
dµ

¸
,

where A is the effect of a change in µ on welfare caused by the increase in consump-

tion risk arising from the redistribution of consumption goods among agents. The

remaining portion of the change in welfare is the net effect on welfare of the change in

labor supply resulting from a change in µ. It is straightforward to show that A = 0,

that is since consumption is equal across agents when µ = 1, the first-order effect of

a change in µ on consumption risk is nil. Therefore, the net effect on welfare when

µ = 1 is determined by the effect on aggregate output, which from (34) is negative.

Therefore, a small reduction in the money growth rate from zero will increase welfare.

Numerical Exercises

Solutions can be computed by using (24) and (25) to solve for n1 and n2 given

µ, and then we can solve for consumptions and welfare from (26)-(29) and (35). For

now, we use somewhat arbitrary parameter values to obtain a feel for the quantitative

results the model can deliver.

We let u(c) = c1−γ−1
1−γ , with γ > 0 and v(n) = n. To begin, let β = .99, and

α = π = .5. Figures 1-3 show results for different levels of risk aversion, since curvature

in the utility function will be critical to determining the effects of money growth,

which has important effects on consumption risk. In Figure 1, we graph welfare

relative to optimal money growth, measured in units of consumption relative to what
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is achieved with an optimal money growth rate, for different levels of the coefficient

of relative risk aversion. Note that the optimal money growth rate increases with the

coefficient of relative risk aversion, and that for a fairly moderate level of risk aversion

(CRRA = 2) a fixed money supply is very close to optimal. That is, it does not take

a high degree of risk aversion for consumption risk to become the dominant force in

determining optimal monetary policy. Higher risk aversion of course also increases

the welfare costs of deviations from the optimal money growth rate. In Figure 2 we

show the same picture as in Figure 1, but we include higher levels for the money

growth rate. With CRRA = .5, the welfare loss from a 10% per period inflation is

somewhat more than 1% of consumption, but this number increases to more than 7%

of consumption for CRRA = 3, a cost which is very large relative to what is typically

obtained in the literature. The welfare cost of inflation also depends critically on

α and π. The larger is α, the lower is the cost of inflation. Note in particular that

α = 1 gives us a standard cash-in-advance model. Since π determines the speed of

diffusion of a money injection through the economy, higher π will imply a lower cost

of inflation. Figure 3 shows how money growth affects consumption risk. Note, for

example, that for a 1% money growth rate, there is a very large difference between

the consumption of agents who move from a connected to unconnected island (c12),

and those who move from an unconnected to a connected island (c21).

In the experiments studied here, the optimal money growth rate factor is always

greater than the discount factor, that is µ > β. From (30), this implies that q < 1

and the nominal interest rate is strictly positive at the optimum. In other words, a

Friedman rule is in general suboptimal.
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4. STOCHASTIC MONEY GROWTH

The previous section tells us something about optimal monetary policy, in the class

of policies that yield the same consumption and employment allocation in each period.

We have also learned something about the costs of suboptimal money growth rates.

The purpose of this section is to study the effects of suboptimal random monetary

policy. We compute equilibria for cases where the money growth rate is random, and

study the impulse responses to money growth shocks.

Assume that the gross money growth rate µ follows a first-order Markov process,

and as before let δ denote the ratio of per capita money balances on connected islands

to per capita money balances on unconnected islands. Then, the state is described

by (µ, δ), and assuming that cash-in-advance constraints hold with equality, the law

of motion for δ is, using (11), (12), and (22),

δ0 =
α[µ0 − (1− α)π]δ + (1− α)(µ0 − 1 + απ)

α2πδ + α(1− απ)
, (37)

where primes denote variables dated t + 1. Therefore, if the household spends all of

its cash balances on consumption goods each period, then the stochastic process for δ
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is exogenous, which makes computing equilibria relatively straightforward. It is clear

from (37) that there is persistence in δ, due to the fact that it takes time for a money

shock to diffuse. The diffusion rate is governed by π. Note that, if π = 1, then (37)

gives

δ0 =
µ0 − 1 + α

α
,

in which case the distribution of money balances across the population is determined

only by the current money growth rate, and there is no persistence.

In this environment, the first-order conditions from the optimization problems of

households on connected and unconnected islands, respectively, yield

−v0(n1t) + β

Z ½
p1t[1− (1− α)π]u0(c11t+1)

p1,t+1
+

p1t(1− α)πu0(c12t+1)

p2,t+1

¾
dF (µ0;µ) = 0,

(38)

−v0(n2t) + β

Z ½
p2tαπu

0(c21t+1)

p1,t+1
+

p2t(1− απ)u0(c22t+1)

p2,t+1

¾
dF (µ0;µ) = 0, (39)

where F (µ0;µ) is the distribution of µ0 conditional on µ. Let ni(δ, µ) denote the level of

employment in state (δ, µ), where i = 1 denotes a connected island and i = 2 denotes

an unconnected island. Then, substituting in (38) and (39) using the equilibrium

conditions (13) and (14) and using (22), we get

−v0[n1(δ, µ)]n1(δ, µ)

+β

Z ⎧⎨⎩ [1− (1− α)π]u0
h

n1(δ
0,µ0)δ0

[1−(1−α)π]δ0+(1−α)π

i h
n1(δ

0,µ0){[1−(1−α)π]δ+(1−α)π}
φ1(µ

0,δ)

i
+(1− α)πu0

h
n2(δ

0,µ0)δ0

απδ0+1−απ

i h
n2(δ

0,µ0){[1−(1−α)π]δ+(1−α)π}
φ2(µ

0,δ)

i
⎫⎬⎭ dF (µ0;µ)

= 0, (40)

−v0[n2(δ, µ)]n2(δ, µ)

+β

Z ⎧⎨⎩ απu0
h

n1(δ
0,µ0)

[1−(1−α)π]δ0+(1−α)π

i h
n1(δ

0,µ0)[απδ+1−απ]
φ1(µ

0,δ)

i
+(1− απ)u0

h
n2(δ

0,µ0)
απδ0+1−απ

i h
n2(δ

0,µ0)[απδ+1−απ]
φ2(µ

0,δ)

i
⎫⎬⎭ dF (µ0;µ) = 0, (41)
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and the consumption allocations are

c11(δ, µ) =
n1(δ, µ)δ

[1− (1− α)π] δ + (1− α)π
, (42)

c12(δ, µ) =
n2(δ, µ)δ

απδ + 1− απ
, (43)

c22(δ, µ) =
n2(δ, µ)

απδ + 1− απ
, (44)

c21(δ, µ) =
n1(δ, µ)

[1− (1− α)π] δ + (1− α)π
. (45)

In (40) and (41) δ0 is determined by (37) and the functions φi(µ
0, δ) for i = 1, 2, are

defined by

φ1(µ
0, δ) ≡ 1− (1− α)π

α
{α [µ0 − (1− α)π] δ + (1− α) (µ− 1 + απ)}

+(1− α)π(απδ + 1− απ),

φ2(µ
0, δ) ≡ π {α [µ0 − (1− α)π] δ + (1− α) (µ− 1 + απ)}

+(1− απ)(απδ + 1− απ),

Similarly, the equation determining the bond price q(δ, µ) is given by

−q(δ, µ)

⎧⎨⎩ [1− (1− α)π]u0
h

n1(δ,µ)δ
[1−(1−α)π]δ+(1−α)π

i
+(1− α)πu0

h
n2(δ,µ)δ

απδ+1−απ

i
⎫⎬⎭n1(δ, µ)

+β

Z ⎧⎨⎩ [1− (1− α)π]u0
h

n1(δ
0,µ0)δ0

[1−(1−α)π]δ0+(1−α)π

i h
n1(δ

0,µ0){[1−(1−α)π]δ+(1−α)π}
φ1(µ

0,δ)

i
+(1− α)πu0

h
n2(δ

0,µ0)δ0

απδ0+1−απ

i h
n2(δ

0,µ0){[1−(1−α)π]δ+(1−α)π}
φ2(µ

0,δ)

i
⎫⎬⎭ dF (µ0;µ)

= 0, (46)

Numerical Exercises

In these experiments, we will examine the impulse responses to money growth

shocks so as to obtain some sense of the quantitative operating characteristics of the
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model. As with the constant-money-growth experiments, we use u(c) = c1−γ−1
1−γ , with

γ > 0 and v(n) = n. We set β = .99 and γ = 1.5. As well, we will look only at

examples where money growth shocks are i.i.d., as in this case there would be no

effect of a money shock on employment, output, and consumption in the special case

where there are no distribution effects (α = 1). In this case, all of the persistence in

the effects of money shocks will come from persistent effects on the distribution of

money balances across the population.

Two critical parameters in the model are α, the fraction of agents living on con-

nected islands, and π, which governs the degree of persistence in the distributional

effect of a money growth shock. We will conduct three experiments, which are de-

signed to tell us something about sensitivity to α and π. For all three experiments,

we assume a uniform grid for the money growth factor µ over the interval [1.03, 1.05],

with equal probability mass on each grid point. Thus, the mean money growth rate

is 4% per period in the experiments.2 In the experiments we suppose that the money

growth rate has been at 4% for a long period of time, and then study the impulse re-

sponses when the money growth rate increases to 5% for one period, and then returns

to 4% forever.

For the first experiment, set α = .5 and π = .3. The impulse responses are in Figures

4-6, where we show the ratios to the baseline case for employment and consumption

in Figures 4 and 5 and the difference from the baseline case for the nominal interest

rate in Figure 6. In Figure 4, note that employment rises in response to the money

growth shock on unconnected islands and decreases on connected islands, with total

employment increasing. In this experiment, the wealth effects of the money injection

dominate. Wealth increases for households on connected islands while it decreases for

agents on unconnected islands, so that the connected-island households work less and

2This guarantees that cash-in-advance constraints are always binding in each of the three exper-

iments.
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the unconnected island households work more. For all three employment quantities,

the effects are quite small. However, this is not the case for consumption quantities,

as in Figure 5 the money shock is shown to increase substantially the dispersion

in consumption across agents. The increase in consumption is particularly large for

consumers who live on a connected island and buy at a low price with a large quantity

of money on an unconnected island. Similarly, the decrease in consumption is large

for a consumer living on an unconnected island who must buy at a high price with a

low quantity of money on a connected island. In Figure 6, the money shock produces

a liquidity effect, with the increase in the money growth rate of 1% producing a

decrease of about 30 basis points in the nominal interest rate on impact. Note also

that the liquidity effect is persistent.

The decline in the nominal interest rate in response to a positive money shock

occurs due to both a Fisher effect and an effect on the real interest rate. On connected

islands, the price level will decline relative to the baseline case following the money

shock, so deflation is anticipated and the Fisher effect acts to reduce the nominal

interest rate. As well, households on connected islands expect their consumption to

be falling over time following the money shock, and so the real interest rate will also

be lower than if the money shock had not occurred.

In the second experiment, we concentrate the money injection on fewer agents, set-

ting α = .1 and π = .3. In this case, the results are shown in Figures 7-9, which should

be compared to Figures 4-6. In Figure 4, note that the employment responses are

somewhat larger, though still small, and that employment in all locations increases,

in spite of the negative effect of the increase in wealth on employment on connected

islands. This is likely due to the fact that, with α small, the increase in consumption

dispersion produced by the money shock is larger, as shown in Figure 8. As a result,

the money shock produces more consumption uncertainty for all households, and this

23



0 5 10 15
0.999

0.9995

1

1.0005

1.001

1.0015

1.002
Figure 4: alpha=.5, pie=.3

period (money shock occurs in period 1)

la
bo

r s
up

pl
y

connected

unconnected

total

Fig. 4.

0 5 10 15
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025
Figure 5: alpha=.5, pie=.3

period (money shock occurs in period 1)

co
ns

um
pt

io
n

c11

c12

c21

c22

Fig. 5.

24



0 5 10 15
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
Figure 6: alpha=.5, pie=.3

period (money shock occurs in period 1)

no
m

in
al

 in
te

re
st

 ra
te

 in
 %

Fig. 6.

appears to be producing higher labor supply for everyone, in a manner much like a

precautionary savings effect. In Figure 9, note that the liquidity effect is now larger

than before, as each household on connected islands now receives a larger money in-

jection given that we are holding constant the shock to the aggregate money growth

rate.

In the third experiment, the money growth shock is less persistent, relative to the

first experiment. The results are shown in Figures 10-12, which should be compared

to Figures 4-6. Note in Figures 10 and 11 that the impact effects of the money shock

on employment and consumption are similar, but the effects are less persistent as

money is now diffused at a higher rate through the economy. Because of this more

rapid diffusion, Figure 12 shows a larger liquidity effect on impact.
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CONCLUSION

We have constructed a model of heterogeneous households that captures some novel

distributional effects of monetary policy. In the model, some households find them-

selves on the receiving end of a money injection by the central bank, and some do

not. In general there will be price dispersion across markets generated by monetary

policy, and as a result monetary policy can produce uninsured consumption risk. This

consumption risk is important in determining optimal money growth rates and affects

the response of the economy to aggregate money shocks.

We showed that, for moderate levels of risk aversion, a constant money stock could

be very close to optimal, and the welfare cost of a small inflation could be very

large. In the experiments we conducted, money growth shocks have small effects

on aggregate employment and large effects on the dispersion in consumption. There

are potentially large and persistent liquidity effects, with the nominal interest rate

declining in response to a positive money growth shock, even when money growth

shocks are i.i.d.
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