
Bayesian Estimation of Dynamic Discrete Choice
Models∗

Susumu Imai
Concordia University and CIREQ

Neelam Jain
Northern Illinois University

and
Andrew Ching

Ohio State University

January, 2005

Abstract
We propose a new methodology for structural estimation of dynamic discrete choice

models. We combine the Dynamic Programming (DP) solution algorithm with the
Bayesian Markov Chain Monte Carlo algorithm into a single algorithm that solves the
DP problem and estimates the parameters simultaneously. As a result, the computa-
tional burden of estimating a dynamic model becomes comparable to that of a static
model. Another feature of our algorithm is that even though per solution-estimation
iteration, the number of grid points on the state variable is small, the number of ef-
fective grid points increases with the number of estimation iterations. This is how we
overcome the "Curse of Dimensionality". We simulate and estimate several versions
of a simple model of entry and exit to illustrate our methodology. We also prove that
under standard conditions, the parameters converge in probability to the true posterior
distribution, regardless of the starting values.

∗Please direct all correspondence to Susumu Imai, Department of Economics, Concordia University, 1455
de Maisonneuve Blvd. West, Montreal, QC. H3G 1M8, Canada, e-mail: simai@alcor.concordia.ca, phone:
514-848-2424-3907, or Neelam Jain,Department of Economics, Northern Illinois University, 508 Zulauf Hall,
DeKalb, IL. 60115, e-mail: njain@niu.edu, phone: (815)-753-6964

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6366687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Structural estimation of Dynamic Discrete Choice (DDC) models has become increasingly

popular in empirical economics. Examples include Keane and Wolpin (1997) in labor eco-

nomics, Erdem and Keane (1995) in marketing and Rust (1987) in empirical industrial

organization. Structural estimation is appealing for at least two reasons. First, it captures

the dynamic forward-looking behavior of individuals, which is very important in understand-

ing agents’ behavior in various settings. For example, in labor market, individuals carefully

consider future prospects when they switch occupations. Secondly, since the estimation is

based on explicit solution of a structural model, it avoids the Lucas Critique. Hence, after

the estimation, policy experiments can be relatively straightforwardly conducted by simply

changing the estimated value of “policy” parameters and simulating the model to assess the

change. However, one major obstacle in adopting the structural estimation method has been

its computational burden. This is mainly due to the following two reasons.

First, in dynamic structural estimation, the likelihood or the moment conditions are

based on the explicit solution of the dynamic model. In order to solve a dynamic model, we

need to compute the Bellman equation repeatedly until the calculated expected value func-

tion converges. Second, in solving the Dynamic Programming (DP) Problem, the Bellman

equation has to be solved at each possible point in the state space. The possible number of

points in the state space increases exponentially with the increase in the dimensionality of

the state space. This is commonly referred to as the “Curse of Dimensionality”, and makes

the estimation of the dynamic model infeasible even in a relatively simple setting.

In this paper, we propose an estimator that helps overcome the two computational dif-

ficulties of structural estimation. Our estimator is based on the Bayesian Markov Chain

Monte Carlo (MCMC) estimation algorithm, where we simulate the posterior distribution

by repeatedly drawing parameters from a Markov Chain until convergence. In contrast to the

conventional MCMC estimation approach, we combine the Bellman equation step and the

MCMC algorithm step into a single hybrid solution-estimation step, which we iterate until

convergence. The key innovation in our algorithm is that for a given state space point, we

need to solve the Bellman equation only once between each estimation step. Since evaluating

a Bellman equation once is as computationally demanding as computing a static model, the

1

computational burden of estimating a DP model is in order of magnitude comparable to that

of estimating a static model.

Furthermore, since we move the parameters according to the MCMC algorithm after each

Bellman step, we are “estimating” the model and solving for the DP problem at the same

time. This is in contrast to conventional estimation methods that “estimate” the model only

after solving the DP problem. In that sense, our estimation method is related to the algo-

rithm advocated by Aguirreagabiria and Mira (2001), where they propose either to iterate

the Bellman equation only a limited number of times before constructing the likelihood, or

to solve the DP problem “roughly” at the initial stage of the Maximum Likelihood routine

and increase the precision of the DP solution with the iteration of the Maximum Likelihood

routine. The first estimation strategy, which is not based on the full solution of the model,

cannot handle unobserved heterogeneity. This is because this estimation method essentially

recovers the value function from the observed choices of people at each point of the state

space. But if there are unobserved heterogeneities, the state space points are unobservable

in the data. In the second strategy, they still compute the solution of the DP problem,

whether exact or inexact, during each estimation step. Hence, the computational burden of

solving for the DP problem at each estimation step, although diminished, still remains. In

our algorithm, we only need to solve the Bellman equation once between each estimation

step.1

Specifically, we start with an initial guess of the expected value function (emax function).

We then evaluate the Bellman equation for each state space point, if the number of state

space points is finite, or for a subset of the state space grid points if the state space is

continuous. We then use Bayesian MCMC to update the parameter vector. We update the

emax function for a state space point by averaging with those past iterations in which the

parameter vector is “close” to the current parameter vector and the state variables are either

exactly the same as the current state variables (if the state space is finite) or close to the

1In contrast to Ackerberg (2004), where the entire DP problem needs to be solved for each parameter
simulation, in our algorithm, the Bellman equation needs to be computed only once for each parameter value.
Furthermore, there is an additional computational gain because MCMC algorithm guarantees that except
for the initial burn-in simulations, most of the parameter draws are from a distribution close to the true
posterior distribution. In Ackerberg’s case, the initial parameter simulation and therefore the DP solution
would be inefficient because at the initial stage, true parameter distribution is not known.

2

current state variables (if the state space is continuous). This method of updating the emax

function is similar to Pakes and McGuire (2001) except in the important respect that we

also include the parameter vector in determining the set of iterations over which averaging

occurs.

Our algorithm also addresses the problem of ‘the Curse of Dimensionality’. In most

DP solution exercises involving a continuous state variable, the state space grid points,

once determined, are fixed over the entire algorithm, as in Rust (1997). In our Bayesian DP

algorithm, the state space grid points do not have to be the same for each solution-estimation

iteration. In fact, by varying the state space grid points at each solution-estimation iteration,

our algorithm allows for an arbitrarily large number of state space grid points by increasing

the number of iterations. This is how our estimation method overcomes the “Curse of

Dimensionality”.

The main reason behind the computational advantage of our estimation algorithm is the

use of information obtained from past iterations. In the conventional solution-estimation

algorithm, at iteration t, most of the information gained in all past estimation iterations

remains unused, except for the iteration t − 1 likelihood and its Jacobian and Hessian in
Classical ML estimation, and MCMC transition function in Bayesian MCMC estimation.

In contrast, we extensively use the vast amount of computational results obtained in past

iterations, especially those that are helpful in solving the DP problem.

We demonstrate the performance of our algorithm by estimating a dynamic model of

firm entry and exit choice with observed and unobserved heterogeneities. The unobserved

random effects coefficients are assumed to have a continuous distribution function, and the

observed characterisitcs are assumed to be continuous as well. It is well known that for a

conventional Dynamic Programming Simulated Maximum Likelihood estimation strategy,

this setup imposes an almost prohibitive computational burden. The computational burden

is due to the fact that during each estimation step, the DP problem has to be solved for

each firm hundreds of times. Because of the observed heterogeneity, each firm has a different

parameter value, and furthermore, because the random effects term has to be integrated

out numerically via Monte-Carlo integration, for each firm, one has to simulate the random

effects parameter hundreds of times, and for each simulation, solve for the DP problem. This

3

is why most practitioners of structural estimation follow Heckman and Singer (1984) and

assume discrete distributions for random effects and only allow for discrete types as observed

characteristics.

We show that using our algorithm, the above estimation exercise becomes one that is

computationally quite similar in difficulty to the Bayesian estimation of a static discrete

choice model with random effects (see McCullogh and Rossi (1994) for details), and thus is

feasible. Indeed, the computing time for our estimation exercise (with 100 firms and 100 time

periods) is about 13 hours, similar to the time required to estimate a reasonably complicated

static random effects model. In contrast, even a single iteration of the conventional simulated

maximum likelihood estimation routine of the same model took 6 hours and 20 minutes.

In addition to the experiments, we formally prove that under very mild conditions, the dis-

tribution of parameter estimates simulated from our solution-estimation algorithm converges

to the true posterior distribution in probability as we increase the number of iterations. The

proof relies on coupling theory (see Rosenthal (1995)) in addition to the standard asymptotic

techniques such as the Law of Large Numbers.

Our algorithm shows that the Bayesian methods of estimation, suitably modified, can

be used effectively to conduct full solution based estimation of structural dynamic discrete

choice models. Thus far, application of Bayesian methods to estimate such models has

been particularly difficult. The main reason is that the solution of the DP problem, i.e.

the repeated calculation of the Bellman equation is computationally so demanding that the

MCMC, which typically involves far more iterations than the standard Maximum Likelihood

routine, becomes infeasible. One of the few examples of Bayesian estimation is Lancaster

(1997). He successfully estimates the equilibrium search model where the Bellman equation

can be transformed into an equation where all the information on optimal choice of the

individual can be summarized in the reservation wage, and hence, there is no need for

solving the value function. Another example is Geweke and Keane (1995) who estimate the

DDC model without solving the DP problem. In contrast, our paper accomplishes Bayesian

estimation based on full solution of the DP problem by simultaneously solving for the DP

problem and iterating on the MCMC algorithm. The difference turns out to be important

because the estimation algorithms that are not based on the full solution of the model can

4

only accomodate limited specification of unobserved heterogeneities.

Our estimation method not only makes Bayesian application to DDC models compu-

tationally feasible, but possibly even superior to the existing (non-Bayesian) methods, by

reducing the computational burden of estimating a dynamic model to that of estimating a

static one. Furthermore, the usually cited advantages of Bayesian estimation over classical

estimation methods apply here as well. That is, first, the conditions for the convergence of

the MCMC algorithm are in general weaker than the conditions for the global maximum of

the Maximum Likelihood (ML) estimator, as we show in this paper. Second, in MCMC,

standard errors can be derived straightforwardly as a byproduct of the estimation routine,

whereas in ML estimation, standard errors have to be computed usually either by invert-

ing the numerically calculated Information Matrix, which is valid only in a large sample

world, or by repeatedly bootstrapping and reestimating the model, which is computationally

demanding.

The organization of the paper is as follows. In Section 2, we present a general version

of the DDC model and discuss conventional estimation methods as well as our Bayesian DP

algorithm. In Section 3, we prove convergence of our algorithm under some mild conditions.

In Section 4, we present a simple model of entry and exit. In Section 5, we present the

simulation and estimation results of several experiments applied to the model of entry and

exit. Finally, in Section 6, we conclude and briefly discuss future direction of this research.

The Appendix contains all proofs.

2 The Framework

Let θ be the J dimensional parameter vector. Let S be the set of state space points and let

s be an element of S. We assume that S is finite. Let A be the set of all possible actions

and let a be an element of A. We assume A to be finite to study discrete choice models.

The value of choice a at parameter θ and state vector s is,

V(s, a, a, θ) = U(s, a, a, θ) + βE 0 [V (s0, 0, θ)] (1)

where s0 is the next period’s state variable, U is the current return function. is a vector

whose a th element a is a random shock to current returns to choice a. Finally, β is

5

the discount factor. We assume that follows a multivariate distribution F (|θ), which is
independent over time. The expectation is taken with respect to the next period’s shock 0.

We assume that the next period’s state variable s0 is a deterministic function of the current

state variable s, current action a, and parameter θ 2. That is,

s0 = s0(s, a, θ).

The value function is defined to be as follows.

V (s, , θ) = max
a∈A

V(s, a, a, θ)

We assume that the dataset for estimation includes variables which correspond to state

vector s and choice a in our model but the choice shock is not observed. That is, the

observed data is YN,T ≡
©
sdi,τ , a

d
i,τ , F

d
i,τ

ªN,T

i=1,τ=1
3, where N is the number of firms and T is the

number of time periods. Furthermore,

adi,τ = argmax
a∈A

V(sdi,τ , a, a, θ)

F d
i,τ = U(sdi,τ , a

d
i,τ , adi,τ

, θ) if
¡
sdi,τ , a

d
i,τ

¢
∈ Ψ

0 otherwise.

The current period return is observable in the data only when the pair of state and choice

variables belongs to the set Ψ. In the entry/exit problem of firms that we discuss later,

profit of a firm is only observed when the incumbent firm stays in. In this case, Ψ is a set

whose state variable is being an incumbent (and the capital stock) and the choice variable

is staying in.

Let π() be the prior distribution of θ. Furthermore, let L(YN,T |θ) be the likelihood of the
model, given the parameter θ and the value function V (., ., θ), which is the solution of the

DP problem. Then, we have the following posterior distribution function of θ.

P (θ|YN,T) ∝ π(θ)L(YN,T |θ). (2)

Let ² ≡ { i,τ}N,T
i=1,τ=1. Because ² is unobserved to the econometrician, the likelihood is an

integral over it. That is, if we define L(YN,T |², θ) to be the likelihood conditional on (², θ),
2This is a simplifying assumption for now. Later in the paper, we study random dynamics as well.
3We denote any variables with d superscript to be the data.

6

then,

L(YN,T |θ) =
Z

L(YN,T |², θ)dF²(²|θ).

The value function enters in the likelihood through choice probability, which is a component

of the likelihood. That is,

P
£
a = adi,τ |sdi,τ , V, θ

¤
= Pr

∙ba,i,τ : adi,τ = argmax
a∈A

V(sdi,τ , a,ba,i,τ , θ)¸
Below we briefly describe the conventional estimation approaches and then, the Bayesian

dynamic programming algorithm we propose.

2.1 The Maximum Likelihood Estimation

The conventional ML estimation procedure of the dynamic programming problem consists

of two main steps. First is the solution of the dynamic programming problem and the

subsequent construction of the likelihood, which is called “the inner loop” and second is the

estimation of the parameter vector, which is called “the outer loop”.

1. Dynamic Programming Step: Given parameter vector θ, we solve the Bellman

equation, given by equation 1. This typically involves several steps.

(a) First, the random choice shock, is drawn a fixed number of times, say, M , gen-

erating (m),m = 1, ...,M . At iteration 0, set initial guess of the value function to

be, for example, zero. That is, V (0)(s, (m), θ) = 0 for every s ∈ S, (m). We also let

the expected value function (Emax function) to be zero, i.e., E 0
£
V (0)(s, 0, θ)

¤
= 0

for every s ∈ S.

(b) Assume we are at iteration t of the DP algorithm. Given s ∈ S and (m), the

value of every choice a ∈ A is calculated. For the Emax function, we use the

approximated expected value function bE 0
£
V (t−1)(s0, 0, θ)

¤
computed at the pre-

vious iteration t − 1 for every s0 ∈ S. Hence, the iteration t value of choice a

is,

V(t)(s, a, (m)
a , θ) = U(s, a, (m)

a , θ) + β bE 0
£
V (t−1)(s0, 0, θ)

¤
.

7

Then, we compute the value function,

V (t)(s, (m), θ) = max
a∈A

V(t)(s, a, (m)
a , θ). (3)

The above calculation is done for every s ∈ S and (m), m = 1, ...,M .

c. The approximation for the expected value function is computed by taking the

average of value functions over simulated choice shocks as follows.

bE 0
£
V (t)(s0, 0, θ)

¤
≡ 1

M

MX
m=1

V (t)(s0, (m), θ) (4)

Steps b) and c) have to be done repeatedly for every state space point s ∈ S.

Furthermore, all three steps have to be repeated until the value function converges.

That is, for a small δ > 0,¯̄
V (t)(s, (m), θ)− V (t−1)(s, (m), θ)

¯̄
< δ

for all s ∈ S and m = 1, ..,M .

2. Likelihood Construction

The important increment of the likelihood is the choice probability P
£
a = adi,τ |sdi,τ , V, θ

¤
.

For example, suppose that the per period return function is specified as follows.

U(s, a, (m)
a , θ) = eU(s, a, θ) + (m)

a ,

where eU(s, a, θ) is the deterministic component of the per period return function. Also,
denote, eV(t)(s, a, θ) = eU(s, a, θ) + β bE 0

£
V (t−1)(s0, 0, θ)

¤
to be the deterministic component of the value of choosing action a. Then,

P
£
adi,τ |sdi,τ , V, θ

¤
= P

h
a − adi,τ

≤ eV(t)(s, adi,τ , θ)− eV(t)(s, a, θ); a 6= adi,τ |sdi,τ , V, θ
i

which becomes a multinomial probit specification when the error term is assumed to

follow a joint normal distribution.

8

3. Maximization routine

Supppose we haveK parameters to estimate. In a typical Maximum Likelihood estima-

tion routine, where one uses Newton hill climbing algorithm, at iteration t, likelihhood

is derived under the original parameter vector θ(t) and under the perturbed parameter

vector θ(t)+∆θj, j = 1, ..., K. The perturbed likelihood is used together with the orig-

inal likelihood to derive the new direction of the hill climbing algorithm. This is done

to derive the parameters for the iteration t+ 1, θ(t+1). That is, during a single ML es-

timation routine, the DP problem needs to be solved in full K+1 times. Furthermore,

often the ML estimation routine has to be repeated many times until convergence is

achieved. During a single iteration of the maximization routine, the inner loop algo-

rithm needs to be executed at least as many times as the number of parameters plus

one. Since the estimation requires many iterations of the maximization routine, the

entire algorithm is usually computationally extremely burdensome.

2.2 The conventional Bayesian MCMC estimation

A major computational issue in Bayesian estimation method is that the posterior distribu-

tion, given by equation 2, is a high-dimensional and complex function of the parameters. In-

stead of directly simulating the posterior, we adopt the Markov Chain Monte Carlo (MCMC)

strategy and construct a transition density from current parameter θ to the next iteration

parameter θ0, f (θ, θ0), which satisfies, among other more technical conditions, the following

equality.

P (θ|YN,T) =

Z
f (θ, θ0)P (θ0|YN,T) dθ

0

We simulate from the transition density the sequence of parameters
n
θ(s)
ot
s=1

, which is

known to converge to the correct posterior.

Gibbs Sampling is a popular way of implementing the MCMC strategy discussed above,

due to its simplicity. Gibbs sampling algorithm decomposes the transition density f (θ, θ0)

into small blocks, where simulation from each block is straightforward. During each MCMC

iteration, we also fill in the missing ² following the Data Augmentation strategy (See Tanner

and Wong (1987) for more details of Data Augmentation).

9

The conventional Bayesian estimation method applied to the DDC model proceeds in the

following three main steps.

Dynamic Programming Step: Given parameter vector θ(t), the Bellman equation,

given by equation 1, is iterated until convergence. This solution algorithm for the DP Step

is similar to the Maximum Likelihood algorithm discussed above.

Data Augmentation Step: Since data is generated by a discrete choice model, the

observed data is YN,T ≡
©
sdi,τ , a

d
i,τ , F

d
i,τ

ªN,T

i=1,τ=1
, and does not include the latent shock ² ≡

{ i,τ}N,T
i=1,τ=1. In order to ‘integrate out’ the latent shock, we simulate ² for the next iteration

t+1. Since the optimal choice is given as adi,τ in the data, we need to simulate ²
(t+1) subject

to the constraint that for every sample i, τ , given sdi,τ , a
d
i,τ is the optimal choice. That is,

adi,τ = argmax
a∈A

V(sdi,τ , a,b(t+1)a,i,τ , θ
(t))

where b(t+1)i,τ is the data augmented shock for sample i, τ .

Gibbs Sampling Step: Draw the new parameters θ(t+1) as follows: Suppose the first

j−1 parameters have been updated (θ1 = θ
(t+1)
1 , ..., θj−1 = θ

(t+1)
j−1) but the remaining J−j+1

parameters have not (θj = θ
(t)
j , ..., θJ = θ

(t)
J). Then, update j th parameter as follows. Let

θ(t,−j) ≡
³
θ
(t+1)
1 , ..., θ

(t+1)
j−1 , θ

(t)
j+1, ..., θ

(t)
J

´
.

Then,

θ
(t+1)
j ∼ p(t)

³
θ
(t+1)
j |θ(t,−j)

´
,

where

p
³
θ
(t+1)
j |θ(t,−j)

´
≡

π(θ(t,−j), θ
(t+1)
j)L(YT |b²(t+1), θ(t,−j), θ(t+1)j)R

π(θ(t,−j), θj)L(YT |b²(t+1), θ(t,−j), θj)dθj , (5)

and b²(t+1) is the data augmented shock. Let f ³θ(t), θ(t+1)´ be the transition function of a
Markov chain from θ(t) to θ(t+1) at iteration t. Then, given θ(t), the transition density for

the MCMC is as follows.

f
³
θ(t), θ(t+1)

´
=

JY
j=1

p
³
θ
(t+1)
j |θ(t,−j)

´
(6)

Although MCMC technique overcomes the computational burden of high dimensionality

of parameters, that of solving the DP problem still remains. Since the likelihood is a function

10

of the value function, during the estimation algorithm, the DP problem needs to be solved

and value function derived at each iteration of the MCMC algorithm. This is a similar

problem as discussed in the application of the Maximum Likelihood method.

We now present our algorithm for estimating the parameter vector θ. We call it the

Bayesian Dynamic Programming Algorithm. The key innovation of our algorithm is that

we solve the dynamic programming problem and estimate the parameters simultaneously,

rather than sequentially.

2.3 The Bayesian Dynamic Programming Estimation

Our method is similar to the conventional Bayesian algorithm in that we construct a tran-

sition density f (t) (θ, θ0), from which we simulate the sequence of parameters
n
θ(s)
ot
s=1

such

that it converges to the correct posterior. We use Gibbs Sampling strategy described above.

We also fill in the missing ² following the Data Augmentation strategy. The main differ-

ence between the Bayesian DP algorithm and the conventional algorithm is that during each

MCMC step, we do not solve the DP problem in full. In fact, during each MCMC step,

we iterate the DP algorithm only once. As a result of this, because the transition density

at iteration t depends on the value function approximation derived at iteration t, V (t), in

our algorithm, the transition density f (t) (θ, θ0) changes with each iteration. Therefore, the

invariant distribution for the transition density f (t) (θ, θ0) is,

P (t)(θ|YN,T) = π(θ)L(t)(YN,T |θ) = π(θ)L(YN,T |θ, V (t)).

That is, the transition density at iteration t satisfies the following equation.

P (t)(θ|YN,T) =

Z
f (t) (θ, θ0)P (t) (θ0|YN,T) dθ

0

We later prove that the transition density at iteration t converges to the true transition

density in probability as t→∞. That is,

f (t) (θ, θ0)→ f (θ, θ0)

for any θ, θ0 ∈ Θ. Furthermore, we prove that the parameter simulations based on the MCMC

algorithm using the above sequence of transition densities converges in probability to the

11

parameter simulation generated by the MCMC using the true transition density f (., .). In

other words, the sequence of simulated parameters of the Bayesian DP algorithm converges

to the true posterior distribution.

A key issue in solving the DP problem is the way the expected value function (or the Emax

function) is approximated. In conventional methods, this approximation is given by equation

4. In contrast, we approximate the emax function by averaging over a subset of past itera-

tions. Let Ω(t) ≡
n

(s), θ(s), V (s)
ot
s=1

be the history of shocks, parameters and value functions

up to the current iteration t4. Let V(t)(s, a, (t)
a , θ(t),Ω(t−1)) be the value of choice a and let

V (t)(s, (t), θ(t),Ω(t−1)) be the value function derived at iteration t of our solution/estimation

algorithm. Then, the value function and the approximation
∧
E
(t)

0
£
V (s0, 0, θ)|Ω(t−1)

¤
for the

expected value function E 0 [V (s0, 0, θ)] at iteration t are defined recursively as follows.

∧
E
(t)

0
£
V (s0, 0, θ)|Ω(t−1)

¤
≡

N(t)X
n=1

V (t−n)(s0, (t−n), θ(t−n) | Ω(t−n−1)) Kh(θ
(t) − θ(t−n))PN(t)

k=1 Kh(θ
(t) − θ(t−k))

, (7)

and,

V(t−n)(s, a, (t−n)
a , θ(t−n),Ω(t−n−1)) = U(s, a, (t−n)

a , θ(t−n))+β
∧
E
(t−n)
0

h
V (s0, 0, θ(t−n))|Ω(t−n−1)

i
,

V (t−n)(s, (t−n), θ(t−n) | Ω(t−n−1)) =Maxa∈AV(t−n)(s, a, (t−n)
a , θ(t−n) | Ω(t−n−1))

where Kh() is a kernel with bandwidth h > 0. That is,

Kh(z) =
1

hJ
K(

z

h
).

K is a nonnegative, continuous, bounded real function which is symmetric around zero and

integrates to one. i.e.
R
K(z)dz = 1. Furthermore, we assume that

R
zK(z)du <∞.

The approximated expected value function given by equation 5 is the weighted average

of value functions of N(t) most recent iterations. The sample size of the average, N(t),

increases with t. Futhermore, we let t − N(t) → ∞ as t → ∞. The weights are high for
the value functions at iterations with parameters close to the current parameter vector θ(t).

This is similar to the idea of Pakes and McGuire (2002), where the expected value function

4The simulated shocks (s) are those used for calculating the value function, not those used for data
augmentation.

12

is the average of the past N iterations. In their algorithm, averages are taken only over the

value functions that have the same state variable as the current state variable s. In our case,

averages are taken over the value functions that have the same state variable as the current

state variable s as well as parameters that are close to the current parameter θ(t). From now

on, to simplify the notation, we omit Ω() from the value functions and the expected value

function.

We now describe the complete Bayesian Dynamic Programming algorithm at iteration t.

Suppose that
©
(l)
ªt
l=1
,
n
θ(l)
ot
l=1
are given and for all discrete s ∈ S,

n
V (l)(s, (l), θ(l))

ot
l=1
is

also given. Then, we update the value function and the parameters as follows.

1. Bellman Equation Step: For all s ∈ S, derive
∧
E
(t)

0

h
V (s0, 0, θ(t))

i
defined above in

equation 7. Also, simulate the value function by drawing (t) to derive,

V(t)(s, a, (t)
a , θ(t)) = U(s, a, (t)

a , θ(t)) + β
∧
E
(t)

0

h
V (s0, 0, θ(t))

i
,

V (t)(s, (t), θ(t)) = max
a∈A

V(t)(s, a, (t)
a , θ(t)).

2. Data Augmentation Step: We simulate ²(t+1) subject to the constraint that for

every sample (i, τ), given sdi,τ , a
d
i,τ is the optimal choice. That is,

adi,τ = argmax
a∈A

V(t)(sdi,τ , a,b(t+1)a,i,τ , θ
(t))

where b(t+1)i,τ is the data augmented shock for sample (i, τ). This step is the same as

that of the conventional Bayesian estimation.

3. Gibbs Sampling Step: This step again is very similar to that of the conventional

Bayesian estimation. Therefore, we adopt the notation used there. Draw the new

parameters θ(t+1) as follows:

Suppose the first j − 1 parameters have been updated (θ1 = θ
(t+1)
1 , ..., θj−1 = θ

(t+1)
j−1)

but the remaining J − j + 1 parameters are not (θj = θ
(t)
j , ..., θJ = θ

(t)
J). Then, update

j th parameter as follows.

θ
(t+1)
j ∼ p(t)

³
θ
(t+1)
j |θ(t,−j)

´
,

13

where,

p(t)
³
θ
(t+1)
j |θ(t,−j)

´
≡

π(θ(t,−j), θ
(t+1)
j)L(YN,T |b²(t+1), θ(t,−j), θ(t+1)j , V (t))R

π(θ(t,−j), θj)L(YN,T |b²(t+1), θ(t,−j), θj, V (t))dθj
,

and b²(t+1) is the data augmented shock. Then, given θ(t), the transition density for the
MCMC is derived as follows.

f (t)
³
θ(t), θ(t+1)

´
=

JY
j=1

p(t)
³
θ
(t+1)
j |θ(t,−j)

´
We repeat Steps 1 to 3 until the sequence of the parameter simulations converges to a

stationary distribution. In our algorithm, in addition to the Dynamic Programming and

Bayesian methods, nonparametric kernel techniques are also used to approximate the value

function. Notice that the convergence of kernel based approximation is not based on the

large sample size of the data, but based on the number of Bayesian DP iterations.

Note that that the Bellman equation step (Step 1) is only done once during a single

estimation iteration. Hence, the Bayesian DP algorithm avoids the computational burden of

solving for the DP problem during each estimation step, which involves repeated evaluation

of the Bellman equation.

3 Theoretical Results

Next we show that under some mild assumptions, our algorithm generates a sequence of

parameters θ(1), θ(2), ... which converges in probability to the correct posterior distribution.

Assumption 1: Parameter space Θ ⊆ RJ is compact, i.e. closed and bounded in the

Euclidean space RJ .

This is a standard assumption used in proving the convergence of MCMC algorithm. See,

for example, McCullogh and Rossi (1994). It is often not necessary but simplifies the proofs.

Assumption 2: For any s ∈ S, a ∈ A, and , θ ∈ Θ, |U(s, a, a, θ)| < MU for some

MU > 0. Also, U(s, a, ., .) is a continuously differentiable function of and θ.

Assumption 3: β is known and β < 1.

Assumption 4: For any s ∈ S, and θ ∈ Θ, V (0)(s, , θ) < MI for some MI > 0.

Furthermore, V 0(s, ., .) is a continuously differentiable function of and θ.

14

Assumptions 2 and 3, and 4 jointly make V (t)(s, , θ) and hence
∧
E
(t)

0 [V (s0, 0, θ)], t = 1, ...

uniformly bounded, measurable and continuously differentiable function of θ.

Assumption 5: π(θ) is positive and bounded for any θ ∈ Θ. Similarly, for any given ²,

θ ∈ Θ and V uniformly bounded, L(YT |², θ, V) > 0 and bounded.
Assumption 6: The support of is compact.

Assumption 7: The bandwidth h is a function of N and as N → ∞, h(N) → 0 and

Nh(N)2J →∞.
Assumption 8: For any θ ∈ Θ, ba ∈ A, s ∈ S, V uniformly bounded,

P [a = ba|s, V, θ] = Pr ∙b : ba = argmax
a∈A

V(s, a,ba, θ)¸ > 0.
Assumption 9: N(t) is nondecreasing in t, increases at most by one for a unit increase

in t, and N(t)→∞. Furthermore, t−N(t)→∞. Define the sequence t(l), eN(l) as follows.
For some t > 0, define t(1) = t, and eN(1) = N(t). Let t(2) be such that t(2)−N(t(2)) = t(1).

Such t(2) exists from the assumption on N(t). Also, let eN(2) = N(t(2)). Similarly, for any

l > 2, let t(l + 1) be such that t(l + 1)−N(t(l + 1)) = t(l), and let eN(l + 1) = N(t(l + 1)).

Assume that there exists a finite constant A > 0 such that eN(l + 1) < A eN(l).
An example of a sequence that satisfies Assumption 9 is:

t(l) ≡ l(l + 1)

2
, eN(l) = l

and,

N(t) = l for t(l) ≤ t < t(l + 1).

Now, we state the theoretical results of the paper.

Theorem 1 Suppose Assumptions 1 to 9 are satisfied for V (t), π, L, and θ. Then,

the sequence of approximated value functions V (t)(s, , θ) converges in probability uniformly

over s, and θ to V (s, , θ) as t→∞. Also,
∧
E
(t)

0 [V (s0, 0, θ)] converges to E 0 [V (s0, 0, θ)] in

probability uniformly over s0 ∈ S and θ ∈ Θ.

Proof: See the Appendix.

Corollary 1: Suppose Assumptions 1 to 9 are satisfied. Then Theorem 1 implies that

f (t) (θ, θ0) converges to f (θ, θ0) in probability uniformly.

15

Proof : Recall Equations 5 and 6. Since V (t) → V in probability uniformly, by compact-

ness of Θ and support of , the result follows.

Theorem 2: Suppose Assumptions 1 to 6 are satisfied for V (t), t = 1, ..., π, L, and

θ. Suppose θ(t), t = 1, ... is a Markov chain with the transition density function f (t) which

converges to f in probability uniformly as t→∞. Then, θ(t) converges to eθ(t) in probability,
where eθ(t) is a Markov chain with transition density function f .

Proof: See the Appendix.

Corollary 2: The Markov chain with transition function f converges to the true poste-

rior.

Proof of Corollary 2: We need to show that f satisfies the minorization condition:

there exists a density function g(θ), such that g(θ) > 0 for any θ ∈ Θ and such that ,

f (θ, .) ≥ ε0g (.) (See Rosenthal (1995), or Tierney (1994) for more details). This is very

similar to the proof of Lemma 1, which is in the Appendix, and hence is omitted.

By Corollary 2, we can conclude that the distribution of the sequence of parameters

θ(t) generated by the Bayesian DP algorithm converges in probability to the true posterior

distribution.

To understand the basic logic of the proofs, suppose that the parameter θ(t) stays fixed

at a value θ∗ for all iterations t. Then, equation (5) reduces to,

bE 0 [V (s0, 0, θ∗)] =
1

N(t)

N(t)X
n=1

V (t−n)(s0, (t−n), θ∗).

Then, our algorithm boils down to a simple version of the machine learning algorithm dis-

cussed in Pakes and McGuire (2001) and Bertsekas and Tsitsiklis (1996). They approximate

the expected value function by taking the average over all past value function iterations

whose state space point is the same as the state space point s0. Bertsekas and Tsitsiklis
(1996) discuss the convergence issues and show that under some assumptions the sequence

of the value functions from the machine learning algorithm converges to the true value func-

tion almost surely. The difficulty of proofs lies in extending the logic of the convergence of

the machine learning algorithm to the framework of estimation, that is, the case where the

parameter vector moves around as well.

16

3.1 Continuous State Space

So far, we assumed a finite state space with states evolving deterministically. However,

the Bayesian DP algorithm can be applied in a straightforward manner to other settings of

dynamic discrete choice models, with minor modifications. One example is the Random grid

approximation of Rust (1997). There, given continuous state space vector s, action a and

parameter θ, the transition function from state vector s to the next period state vector s0 is
defined to be f(s0|a, s, θ). Then, to estimate the model, the Dynamic Programming part of
our algorithm can be modified as follows.

At iteration t, the value of choice a at parameter θ, state vector s, shock is defined to

be as,

V(t)(s, a, a, θ) = U(s, a, a, θ) + β
∧
Es0, 0 [V (s

0, 0, θ)] ,

where s0 is the next period state varible.
∧
Es0, 0 [V (s

0, 0, θ)] is defined to be the approximation

for the expected value function. The value function is defined to be as follows.

V (t)(s, , θ) = max
a∈A

V(t)(s, a, a, θ)

Conventionally, randomly generated state vector grid points are fixed throughout the so-

lution/estimation algorithm. If we follow this procedure, and let sm, m = 1, ...,M be the

random grids that are generated before the start of the solution/estimation algorithm, then,

given parameter θ, the expected value function approximation at iteration t of the DP solu-

tion algorithm using Rust random grids method would be,

MX
m=1

E V (t)(sm, , θ)
f (sm|a, s, θ)PM
l=1 f (sl|a, s, θ)

.

Hence, if we were to apply Rust method in our solution-estimation algorithm, the Emax

function (i.e., the expected value function)
∧
Es0, 0 [V (s

0, 0, θ)] could be approximated as fol-

lows:

∧
Es0, 0 [V (s

0, 0, θ)]

≡
MX

m=1

⎡⎣N(t)X
n=1

V (t−n)(sm,
(t−n), θ(t−n))

Kh(θ − θ(t−n))PN(t)
k=1 Kh(θ − θ(t−k))

⎤⎦ f (sm|a, s, θ)PM
l=1 f (sl|a, s, θ)

.

17

Notice that in this definition of Emax approximation, the number of grid points remains fixed

in each iteration. In contrast, in our Bayesian DP algorithm, random grids can be changed at

each solution/estimation iteration. Let s(t) be the random grid point generated at iteration

t. Here, s(τ), τ = 1, 2, ... are drawn independently from a distribution. Furthermore, let

Kh(.) be the kernel function with bandwidth h. Then, the expected value function can be

approximated as follows.

∧
Es0, 0 [V (s

0, 0, θ)]

≡
N(t)X
n=1

V (t−n)(s(t−n), (t−n), θ(t−n))
Kh(θ − θ(t−n))f

³
s(t−n)|a, s, θ(t−n)

´
PN(t)

k=1 Kh(θ − θ(t−k))f
³
s(t−k)|a, s, θ(t−k)

´
Notice that unlike Rust (1997), we do not need to fix the random grid points of the state

vector throughout the entire estimation exercise. In fact, we could draw a different state

vector for each solution/estimation iteration.

In Rust (1997), if the total number of random grids is M , then the number of com-

putations required for each Dynamic Programming iteration is M . Hence, at iteration τ ,

the number of Dynamic Programming computations that is required is Mτ . If a single DP

solution step requires τ DP iterations, and each Newton ML step requires K DP solution

steps, then, to iterate Newton ML algorithm once, we need to compute a single DP step

MτK times.

In contrast, in our Bayesian DP algorithm, at iteration t we only draw one state vector

s(t) (so that M = 1) and only compute the Bellman equation on that state vector. Further,

we solve the DP problem only once (so that τ = 1 and K = 1). Still, at iteration t, the

number of random grid points is N(t), which can be made arbitrarily large when we increase

the number of iterations. In other words, in contrast to the Rust method, the accuracy

of the Dynamic Programming computation in our algorithm automatically increases with

iterations.

Another issue that arises in application of the Rust random grid method is that Rust

(1997) assumes that the transition density function f(s0|a, s, θ) is not degenerate. That is, we
cannot use the random grid algorithm if the transition from s to s0, given a, θ is deterministic.
Similarly, it is well known that the random grid algorithm becomes inaccurate if the transition

18

density has a small variance. In these cases, several versions of polynomial based expected

value function (emax function) approximation have been used. Keane and Wolpin (1994)

approximate the emax function using polynomials of deterministic part of the value functions

for each choice and state variable. Imai and Keane (2004) use Chebychev polynomials of

state variables. It is known that in some cases, global approximation using polynomials

can be numerically unstable and exhibit “wiggling”. Here, we propose a kernel based local

interpolation approach to Emax function approximation. The main problem behind the local

approximation has been the computational burden of having a large number of grid points.

As pointed our earlier, in our solution/estimation algorithm, we can make the number of

grid points arbitrarily large by increasing the total number of iterations, even though the

number of grid points per iteration is one.

The next period state variable, s0 is assumed to be a deterministic function of s, a, and

θ. That is,

s0 = s0(s, a, θ).

Let Khs(.) be the kernel function with bandwidth hs for the state variable and Khθ(.) for

the parameter vector θ. Then,
∧
Es0, 0 [V (s

0, 0, θ)] is defined to be as follows.

∧
E 0 [V (s0, 0, θ)]

≡
N(t)X
n=1

V (t−n)(s(t−n), (t−n), θ(t−n))
Khs

¡
s0 − s(t−n)

¢
Khθ(θ − θ(t−n))PN(t)

k=1 Khs (s
0 − s(t−k))Khθ(θ − θ(t−k))

.

4 Examples

We estimate a simple dynamic discrete choice model of entry and exit, with firms in com-

petitive environment.5 The firm is either an incumbent (I) or a potential entrant (O). If

the incumbent firm chooses to stay, its per period return is,

RI,IN(Kt, t, θ) = αKt + 1t,

5For an estimation exercise based on the model, see Roberts and Tybout (1997).

19

where Kt is the capital of the firm, t = (1t, 2t) is a vector of random shocks, and θ is the

vector of parameter values. If it chooses to exit, its per period return is,

RI,OUT (Kt, t, θ) = δx + 2t,

where δx is the exit value to the firm. Similarly, if the potential entrant chooses to enter, its

per period return is,

RO,IN(Kt, t, θ) = −δE + 1t,

and if it decides to stay out, its per period return is,

RO,OUT (Kt, t, θ) = 2t.

We assume the random component of the current period returns to be distributed i.i.d normal

as follows.

lt ∼ N(0, σl), l = 1, 2

The level of capital Kt evolves as follows. If the incumbent firm stays in, then,

lnKt+1 = b1 + b2 lnKt + ut+1,

where,

ut ˜ N(0, σu),

and if the potential entrant enters,

lnKt+1 = be + ut+1.

Now, consider a firm who is an incumbent at the beginning of period t. Let VI(Kt, t, θ)

be the value function of the incumbent with capital stock Kt, and VO(Kt, t, θ) be the value

function of the outsider, who has capital stock 0. The Bellman equation for the optimal

choice of the incumbent is:

VI(Kt, t, θ) =Max{VI,IN(Kt, t, θ), VI,OUT (Kt, t, θ)}.

where,

VI,IN(Kt, t, θ) = RI,IN(Kt, 1t, θ) + βEt+1VI(Kt+1(Kt, ut+1,θ), t+1, θ)

20

is the value of staying in during period t. Similarly,

VI,OUT (Kt, t, θ) = RI,OUT (Kt, 2t, θ) + βEt+1VO(0, t+1, θ)

is the value of exiting during period t . The Bellman equation for the optimal choice of the

outsider is:

VO(0, t, θ) =Max{VO,IN(0, t, θ), VO,OUT (0, t, θ)}.

where,

VO,IN(0, t, θ) = RO,IN(0, 1t, θ) + βEt+1VI(Kt+1(0, ut+1,θ), t+1, θ),

is the value of entering during period t and,

VO,OUT (0, t, θ) = RO,OUT (0, 2t, θ) + βEt+1VO(0, t+1, θ),

is the value of staying out during period t. Notice that the capital stock of an outsider is

always 0.

The parameter vector θ of the model is (δx, δE, α, β, σ1, σ2, σu, b1, b2, be).The state vari-

ables are the capital stock K, the parameter vector θ and the status of the firm, Γ ∈ {I, O},
that is, whether the firm is an incumbent or a potential entrant. Notice that capital stock is

a continuous state variable with random transition, in contrast to the theoretical framework

where the state space was assumed to be finite and the transition function deterministic.

We assume that for each firm, we only observe the capital stock, profit of the firm that

stays in and the entry/exit status over T periods. That is, we know,

{Kd
i,t, π

d
i,t,Γ

d
i,t}t=1,Ti=1,N

where,

πdi,t = αKd
i,t + ε1t,

if the firm stays in.

We assume the prior of the exit value and entry cost to be normally distributed as follows.

δx ∼ N(δx, A
−1
x),

δE ∼ N(δE, A
−1
E),

21

where δx, δE are the prior means and Ax, AE are the prior precisions (inverse of variance)

of the exit value and the entry cost, respectively. Let δ ≡ (δx, δE) and Aδ ≡ (Ax, AE) .

For parameters α, b1, b2 and be, we assume the priors to be uninformative. This implies

that the prior precision of each of these parameters, say Aα, Ab, b ≡ (b1, b2, be), is assumed
to be zero. Let α and b be the prior means of these parameters.

We also assume independent Chi squares prior for the precision of the shocks 1 and u.

That is,

s1
2h 1 ˜ χ

2(ν 1),

where s1
2 is a parameter and ν 1 is the degree of freedom. Similarly,

su
2hu ˜ χ

2(νu).

Finally,

sη
2hη ˜ χ

2(νη).

where η = 1 − 2.

Below, we explain the estimation steps in detail.

Bellman Equation Step
In this step, we derive the value function, i.e., V (s)

Γ (K, (s), θ(s)) for iteration s.

1) Suppose we have already calculated the approximation for the expected value function,

where the expectation is over the choice shock , that is, bE(s)
VΓ(K

0(K,u(s), θ(s)), , θ(s)).

To further integrate the value function over the capital shock u, we can either use the

random grid integration method of Rust (1997) which uses a fixed grid or let the grid

size increase over the iterations. Here, we use the Rust method although we conduct

experiments for both cases. That is, given that we have drawn M i.i.d. capital stock

grids Km, m = 1, ..,M from a given distribution, we take the weighted average as

follows,

bE(s)
h
VΓ(K

0(K,u, θ(s)), , θ(s))
i
=

MX
m=1

bE(s)
h
V
(s)
Γ (Km, , θ(s))

i f(Km|K, θ(s))PM
m=1 f(Km|K, θ(s))

.

22

where f(Km|K, θ(s)) is the capital transition function from K to Km. In this example,

the random grids remain fixed throughout the estimation. Note that if the firm exits

or stays out, K 0 = 0 with probability 1. Hence, the expected value function becomesbE(s)
h
VO(0, , θ(s))

i
.

2) Draw (s) = (
(s)
1 ,

(s)
2).

3) Given (s) and bE(s)VΓ(K, , θ(s)), solve the Bellman equation, that is, solve the decision

of the incumbent (whether to stay or exit) or of the entrant (whether to enter or stay

out) and derive the value function corresponding to the optimal decisions:

V
(s)
Γ (K, (s), θ(s)) = Max{RΓ,IN(K,

(s)
1 , θ(s)) + β bE(s)

h
VI(K

0(K,u, θ(s)), , θ(s))
i
,

RΓ,OUT (K,
(s)
2 , θ(s)) + β bE(s)

h
VO(K

0(K,u, θ(s)), , θ(s))
i
}

Gibbs Sampling and Data Augmentation Step

Here, we describe how the new parameter vector θ(s+1) is drawn. Let the deterministic

values for the incumbent be defined as follows:

V I,IN(K, θ(s)) = α(s)K + β bE(s)
h
VI(K

0, , θ(s))
i
,

and,

V I,OUT (K, θ(s)) = δ(s)x + β bE(s)
h
VO(0, , θ(s))

i
.

Similarly, for the potential entrant, we define,

V O,IN(0, θ
(s)) = −δ(s)E + β bE(s)

h
VI(K

0, , θ(s))
i
,

and,

V O,OUT (0, θ
(s)) = β bEs

h
VO(0, , θ(s))

i
.

Then, at iteration s, we go through the following two steps.

23

1) Data Augmentation Step on Entry and Exit choice: Define current revenue

difference net of α(s)Kd
i,t by

r
(s+1)
i,t ≡ RΓ,OUT (K

d
i,t, 2,i,t, θ

(s))−RΓ,IN(K
d
i,t, 1,i,t, θ

(s)) + α(s)Kd
i,t

= δ
(s)
E I(Γi,t = O) + δ(s)x I(Γi,t = I)− 1,i,t + 2,i,t.

The empirical economist does not observe rs+1i,t directly because he can only obtain

data on status of the firm, that is, whether it is an incumbent or not, and through it,

the entry-exit choices and profits, not the current revenues themselves. Nonetheless,

the empirical economist can indirectly recover rs+1i,t by simulating and augmenting the

shock ηi,t = 1,i,t− 2,i,t. But the simulation of ηi,t has to be consistent with the actual

choices that the firm makes. That is, if, in the data, the firm i at period t either stays

in or enters, that is, Γdi,t+1 = I, then draw bηi,t = 1,i,t − 2,i,t such that,

bη(s+1)i,t ≥ V Γ,OUT (K
d
i,t, θ

(s))− V Γ,IN(K
d
i,t, θ

(s)).

If, in the data, the firm i either stays out or exits, that is, Γdi,t = O, then draw ηi,t such

that bη(s+1)i,t < V Γ,OUT (K
d
i,t, θ

(s))− V Γ,IN(K
d
i,t, θ

(s)).

Once the shock bηi,t is generated, the econometrician can proceed to recover r(s+1)i,t using

the following linear relationship.

r
(s+1)
i,t = δ

(s)
E I(Γi,t = O) + δ(s)x I(Γi,t = I)− bηi,t.

Data Augmentation Step on Profit: If the firm stays out or exits, then its potential

profit is not observable. In that case, we simulate the profit as follows:

π
(s+1)
i,t = α(s)Kd

i,t +b1,i,t.
We draw b1,i,t conditional on bηi,t as follows:

b(s+1)1,i,t = γ
(s)
1 bηi,t + vi,t,

24

where,

vi,t ∼ N(0, σ2v),

σ2v =
σ(s)2
1

σ(s)2
2

σ
(s)2
1 + σ

(s)2
2

,

and,

γ1 =
σ(s)2
1

σ
(s)2
1 + σ

(s)2
2

.

2) Draw the new parameter vector θ(s+1) from the posterior distribution.

We denote the stacked matrix I with row T (i− 1) + t defined as follows:

IT (i−1)+t = [I
d
i,t(IN), I

d
i,t(OUT)],

where Idi,t(IN) = 1 if the firm either enters or decides to stay in, and 0 otherwise, and

Idi,t(OUT) = 1 if the firm either exits or stays out and 0 otherwise. Similarly, we denote

r(s+1), π(s+1) to be the stacked vector of r(s+1)i,t and π
(s+1)
i,t .

We draw δ(s+1) =
h
δ(s+1)x , δ

(s+1)
E

i0
conditional on (r(s+1), h(s)η) as follows.

δ(s+1)|(r(s+1), h(s)η) ∼ N(δ,A
−1
δ),

where,

Aδ = Aδ + h(s)η I
0I,

and,

δ =
¡
Aδ

¢−1
(Aδδ + h(s)η I

0r(s+1)).

We draw the posterior distribution of hη from the following χ2 distribution. That is,

[sη
2 +

X
i,t

eη2i,t]h(s+1)η |(w(s+1), δ(s+1)) ∼ χ2(NT + ν),

where eηi,t is the “residual”, that is,
eηi,t = −r(s+1)i,t + δ

(s+1)
E Idi,t(OUT) + δ(s+1)x Idi,t(IN).

25

The above Gibbs sampling data augmentation steps are an application of McCulloch

and Rossi (1994).

Next, we draw α(s+1) conditional on (π(s+1), h(s)a). Denote kt = ln(Kt), and k to be

the stacked vector of log capital. That is,

k = [k11, k12, ..., k1T , ..., kNd1, kNd2, ..., kNdT].

Also, let k0 be the stacked vector without the intial period capital, i.e.

k0 = [k12, k13, ..., k1T , ..., kNd2, kNd3, ..., kNdT],

and k−1be the lagged log capital. That is,

k−1 = [k11, k12, ..., k1T−1, ..., kNd1, kNd2, ..., kNdT−1].

• Then, draw α(s+1) from the following normal distribution.

α(s+1)|(π(s+1), h(s)
1
) ∼ N(α,A

−1
α),

where,

Aα = Aα + h(s)
1
k0k,

and,

α = (Aα)
−1 (Aαα+ h(s)

1
k0π(s+1)).

We draw the posterior distribution of h 1 from the following χ2 distribution. That is,

[s 1

2 +
X
i,t

e21,i,t]h(s+1)1
|(π(s+1), α(s+1)) ∼ χ2(NdT + ν),

where e1,i,t is the “residual”, that is,
e1i,t = π

(s+1)
i,t − α(s+1)ki,t.

Furthermore, (σ(s+1)2)2 or h(s+1)2 = (σ
(s+1)
2)−2 can be recovered as follows:

(σ(s+1)
2

)2 = (h(s+1)η)−1 − (h(s+1)
1

)−1

26

Next, we draw b(s+1) = [b
(s+1)
1 , b

(s+1)
2]0 conditional on (k, h(s)u) as follows.

b(s+1)|(k, h(s)u) ∼ N(b, A
−1
b),

where,

Ab = Ab + h(s)u k
0
−1k−1,

and,

b = A
−1
b (Abb+ h(s)u k

0
−1k0).

We draw the posterior distribution of hu from the following χ2 distribution. That is,

[su
2 +

X
i,t

eu2i,t]h(s+1)u |b(s+1) ∼ χ2(NdT + ν),

where eui,t is the “residual”, that is,
eui,t = kdi,t − b

(s+1)
1 − b

(s+1)
2 kdi,t−1.

Expected Value Function Iteration Step
Next, we update the expected value function for iteration s+ 1.

First, we derive E(s+1)
VΓ(K, , θ(s+1)).

E(s+1)
h
VΓ(K, , θ(s+1))

i
=

Ps
l=Max{s−N(s),1}

∙
1
M

MP
m=1

V
(l)
Γ (K,

(l)
m , θ(l))

¸
Kh(θ

(s+1) − θ(l))Ps
l=Max{s−N(s),1}Kh(θ

(s+1) − θ(l))
,

where K() is the kernel function. We adopt the following Gaussian kernel:

Kh(θ
(s) − θ(l)) = (2π)−L/2

JY
j=1

h−1j exp[−1
2
(
θ
(s)
j − θ

(l)
j

hj
)2].

The expected value function is updated by taking the average over those past N(s) iterations

where the parameter vector θ(l) was close to θ(s+1).

Then, if the firm enters or stays in, the expected value function is as follows.

27

bE(s+1)
h
VI(K

0(K,u, θ(s+1)), , θ(s+1))
i

= bE(s+1)
,K

h
VI(K

0(K,u, θ(s+1)), , θ(s+1))
i

=
MX
m=1

bE(s+1)
h
VI(Km, , θ(s+1))

i f(Km|K, θ(s+1))PM
m=1 f(Km|K, θ(s+1))

.

As discussed before, in principle, only one simulation of is needed during each solu-

tion/estimation iteration. But that requires the number of past iterations for averaging,

i.e. N(s) to be large, which adds to computational burden. Instead, in our example, we

draw ten times and take an average. Hence, when we derive the expected value function,

instead of averaging past value functions, we average over past average value functions, i.e.,
1
M

MP
m=1

VΓ(Km,
(j)
m , θ(j)), where M = 10. This obviously increases the accuracy per iteration,

and reduces the need to have a large N(s). That is partly why in the examples below, to

have N (s) increase up to 2000 turned out to be sufficient for good estimation performance.

Notice that if the firm stays out or exits, then its future capital stock is zero. Therefore, no

averaging over capital grid points is required to derive the expected value function, i.e., the

emax function is simply E(s+1)
h
VO(0, , θ(s+1))

i
.

After the Bellman equation step, data augmentation step and the expected value function

iteration step, we now have the parameter vector θ(s+1) and the expected value function

E(s+1)V (K, , θ(s+1)) for s+1 th iteration. We repeat these steps to derive iteration s+2 in

the same way as described above for s+ 1 th iteration.

In the next section, we present the results of several Monte Carlo studies we conducted

using our Bayesian DP method. The first experiment is the basic model using the Rust

random grid method. The second experiment incorporates observed and unobserved het-

erogeneity. The third experiment uses the basic model but lets the capital stock grid size

increase over iterations and finally, we conduct an experiment in which capital stock evolves

deterministically.

28

5 Simulation and Estimation

Denote the true values of θ by θ∗. Thus θ∗ = (δ∗E, δ
∗
x, σ

∗
1
, σ∗

2
, σ∗u, α

∗, b∗1, b
∗
2, b

∗
e, β

∗). We set the

following parameters for the above model. δ∗E = 0.4, δ
∗
x = 0.4, σ

∗
1
= 0.4, σ∗

2
= 0.4, σ∗u = 0.4,

α∗ = 0.2, b∗1 = 0.2, b
∗
2 = 0.2, b

∗
e = −1.0, β∗ = 0.9.

We first solve the DP problem numerically using conventional numerical methods. Next,

we generate artificial data based on this DP solution. All estimation exercises are done on

a Sun Blade 2000 workstation. Below, we briefly explain how we solved the DP problem to

generate the data for the basic model. For the other three experiments, the data generation

step is basically similar involving only minor variations. Notice that for data generation, we

only need to solve the DP problem once, that is, for a fixed set of parameters. Hence, we

took time and made sure that the DP solution is accurate.

We first set the M capital grid points to be equally spaced between 0 and K, which we

set to be 10.0. Assume that we already know the expected value function of the sth iteration

for all capital grid points.

E V s
Γ (Km, , θ∗), Γ ∈ {I,O}, m = 1, 2, ...,M.

Here, Km (m = 1, ...,M) are grid points.

The following steps are taken to generate the expected value function for the (s+ 1)th

iteration.

Step 1 Given capital stock K, derive,

E(s)VΓ(K
0(K,u, θ∗), (s), θ∗) =

MX
m=1

E(s)VΓ(Km,
(s), θ∗)f(Km|K, θ∗).

Here f(Km|K, θ(s)) is the transition probability from K to Km.

Step 2 Draw the random shocks l. Then, for a given capital stock K, calculate

V
(s+1)
Γ (K, l, θ

∗) = Max{RΓ,IN(K, 1l, θ
∗) + βE(s)VI(K

0, , θ∗),

RΓ,OUT (K, 2l, θ
∗) + βE(s)VO(0, , θ∗)}

29

Step 3 Repeat Step 2, L times and take an average to derive the approximated expected

value function, given K, for the next iteration.

E(s+1)VΓ(K, , θ∗) =
1

L

LX
l=1

V
(s+1)
Γ (K, l, θ

∗).

The above steps are taken for all possible capital grid points, K = K1, ..,KM . In our

simulation exercise, we set the simulation size L to be 1000. The total number of

capital grid points is set to be M = 100.

Step 4 Repeat Step 1 to Step 3 until the Emax function converges. That is, for a small δ

(in our case, δ = 0.00001),

Maxm=1,..,M{E(s+1)VΓ(Km, , θ∗), E(s)VΓ(Km, , θ∗)} < δ.

We simulate artificial data of capital stock, profit and entry/exit choice sequences using

the expected value functions derived above. We then estimate the model using the simulated

data with our Bayesian DP routine. We do not estimate the discount factor β. Instead, we

set it at the true value β∗ = 0.9.

5.1 Experiment 1: Basic Model

We first describe the prior distributions of parameters. The priors are set to be reasonably

diffuse in order to keep the influence on the outcome of the estimation exercise to a minimum.

δx ∼ N(δx, A
−1
x), δx = 0.4, Ax = 0.1,

δE ∼ N(δE, A
−1
E), δE = 0.4, AE = 0.1

s 1

2h 1 ˜ χ
2(ν 1), (s 1

2)−1/2 = 0.4, v 1 = 1.

sη
2hη ˜ χ

2(vη), (sη
2)−1/2 =

√
0.32, vη = 1.

su
2hu ˜ χ

2(νu), (su2)−1/2 = 0.4, vu = 1.

The priors for α, b1, b2 and be are set to be noninformative.

30

We set the initial guesses of the parameters to be the true parameter values given by θ∗,

and the initial guess of the expected value function to be 0. We used the same 100 grid points

in each iteration as used in generating the data. The Gibbs sampling was conducted 10, 000

times. The Gibbs sampler for the simulation with sample size 10, 000 (N = 1, T = 10, 000) is

shown in figures 1 to 9. In estimation experiments with this sample size as well as others, the

Gibbs sampler converged around 4, 000 iterations. The posterior mean and standard errors

from the (5, 001)th iteration up to (10, 000)th iteration are shown in Table 1. The posterior

mean of δx and δE are estimated to be somewhat away from the true values if the sample

size is 2000, but they are estimated to be reasonably close to the true values for the sample

size 5, 000 and 10, 000. Overall, we can see that as the sample size increases, the estimated

values become closer to the truth, even though there are some exceptions, such as σ2, the

standard error of the revenue shock of being out.

Figures 1 and 2 show the Gibbs sampler output of parameters δx and δE. Even though

the initial guess is set to be the true value, at the start of the Gibbs sampling algorithm,

both parameters immediately jump to values very close to zero. Notice that these values are

the estimates we should expect to get when we estimate the data generated by a dynamic

model using a static model. Because the expected value functions are set to zero initially,

the future benefit of being in or out is zero. Hence, if either exit value or entry cost were

big in value, then either entry or exit choice would dominate most of the time, and thus

the model would not predict both choices to be observed in the data. Notice that with

iterations, the estimates of the parameters directly affecting entry and exit choices, such as

δx and δE converge to the true value (see Figures 1 and 2). This is because as we iterate

our Bayesian DP algorithm, the expected value functions become closer to the true value

functions. Because the future values of entry and exit choices converge to the truth, so do

the parameters representing the current benefits and costs of the entry and exit choices, i.e.,

δx and δE. This illustrates that our algorithm solves the Dynamic Programming problem

and estimates the parameters simulataneously, and not subsequently.

Figure 3 plots the Gibbs sampler output of σ2, the standard error of the revenue shock

of being out. We can see that the parameter estimate frequently wanders off from the truth.

Here prior information on σ2 would greatly help to pin down the posterior. The Gibbs

31

sampler of parameter b1 is reported in Figure 4. There, we see that it stays closely around

the true value from the start.6 We have also conducted experiments where we set the initial

values of the parameters to half the true values and ran the Gibbs sampler. The posterior

mean and standard error of the parameters are shown in column 7 of Table 1. As we can

see, the results turn out to be hardly different from the original ones. These results confirm

the theorems on convergence in section 1 that the estimation algorithm is not sensitive to

the initial values.

Table 1: Posterior Means and Standard Errors (standard errors are in parenthesis)
parameter estimate estimate estimate true value
δx 0.7415 (0.0291) 0.3868 (0.0203) 0.3983 (0.0097) 0.4
δE 0.6946 (0.0206) 0.4262 (0.0127) 0.4133 (0.0084) 0.4
α 0.2109 (0.0165) 0.1959 (0.0119) 0.1868 (0.0100) 0.2
σ1 0.4046 (0.0153) 0.4140 (0.0135) 0.4221 (0.0115) 0.4
σ2 0.3217 (0.1123) 0.3552 (0.0905) 0.2931 (0.0706) 0.4
b1 0.0980 (0.0216) 0.1081 (0.0127) 0.1010 (0.0090) 0.1
b2 0.1050 (0.0420) 0.0965 (0.0244) 0.0977 (0.0168) 0.1
be −0.9620 (0.0128) −0.9857 (0.0087) −0.9938 (0.0061) −1.0
σu 0.3891 (0.0052) 0.4047 (0.0033) 0.4033 (0.0022) 0.4
sample size 2, 000 5, 000 10, 000
CPU time 17 min. 20 sec. 40 min.34 sec. 1 hr. 18 min. 19 sec.

parameter estimate7 true value
δx 0.4032 (0.0097) 0.4
δE 0.4182 (0.0083) 0.4
α 0.1868 (0.0100) 0.2
σ1 0.4221 (0.0115) 0.4
σ2 0.2932 (0.0707) 0.4
b1 0.1010 (0.0090) 0.1
b2 0.0977 (0.0168) 0.1
be −0.9938 (0.0061) −1.0
σu 0.4033 (0.0022) 0.4
sample size 10, 000
CPU time 1 hr. 16 min. 51 sec.

6Other parameters also stay close around their true values from the start. To see those figures, please
refer to the the following website: http://alcor.concordia.ca/~simai

7This column corresponds to different starting values.

32

5.2 Experiment 2: Random Effects

We now report estimation results of a model that includes observed and unobserved hetero-

geneities. We assume that the profit coefficient for each firm i, αi is distributed normally

with mean µ = 2.0 and standard error σα = 0.04. The transition equation for capital is,

lnKi,t+1 = b1X
d
i + b2 lnKi,t + ui,t+1,

where Xd
i is a firm characteristics observable to the econometrician. In our simulation

sample, we simulate Xd
i from N(1.0, 0.04). Notice that if we use the conventional simulated

ML method to estimate the model, for each firm i we need to draw αi many times, say

Mα times, and for each draw, we need to solve the dynamic programming problem with the

constant coefficient for capital transition equation being b1X
d
i . If the number of firms in

the data is Nd, then for a single simulated likelihood evaluation, we need to solve the DP

problem NdMα times. This process is computationally so demanding that most researchers

use only a finite number of types, typically less than 10, as an approximation of the observed

heterogeneity and the random effect. The only exceptions are economists who have access

to supercomputers or large PC clusters. Since in our Bayesian DP estimation exercise, the

computational burden of estimating the dynamic model is roughly equivalent to that of a

static model, we can easily accomodate random effects estimation as is shown below.

We set the prior for αi as follows.

αi|µ, τ 2 ∼ N(µ, τ 2),

µ ∼ N(µ, h−1a),

sτ
2τ−2 ∼ χ2(ντ).

Then, if we let α0 = (α1, ..., αN) and eN the N by 1 vector of 10s, then, given τ 2, the prior

distribution of α is assumed to be as follows.

α ∼ N
³
eNµ, τ

2IN + h−1α eNe
0
N

´
.

The rest of the parameters have the same priors as those of the basic model. Let θ(s)−α be

defined as parameters not including αi. Below, we briefly describe the differences between

the earlier estimation routine and the one that involves random effects.

33

Data Augmentation Step on Entry and Exit choice: For data augmentation, we

need to generate,

r
(s+1)
i,t = RΓ,OUT (K

d
i,t, 2,i,t, θ

(s)
−α, α

(s)
i)−RΓ,IN(K

d
i,t, 1,i,t, θ

(s)
−α, α

(s)
i) + α

(s)
i Kd

i,t.

To draw ηi,t = 1,i,t − 2,i,t we follow the same data augmentation steps as in the basic case

except for the fact that to evaluate the entry and exit values, we use different αi for each

firm i.

Data Augmentation Step on Profit: If the firm stays out or exits, then its potential

profit is not observable. In that case, we simulate the profit:

πi,t = α
(s)
i Kt + 1,i,t.

The only difference from the estimation of the basic model is that the capital coefficient αi

is different for each firm i. We skip discussing the rest of the step because it is the same as

before.

Draw the new parameter vector θ(s+1) from the posterior distribution: The

only difference in the estimation procedure is for drawing the posterior of αi. Let π0 =

(π11, π12, ..., π1T , ..., πNd1,, πNdT) and,

K =

⎡⎢⎢⎢⎣
K1 0 · · · 0

0 K2
. . .

...
...

. 0
0 · · · 0 KN

⎤⎥⎥⎥⎦
where Kj = [Kj1,Kj2, ...,KjT] . The posterior draw of α for iteration s, α(s+1), can be done

from the following distribution.

α(s+1)|
¡
π(s), K

¢
∼ N

³
α,H

−1
α

´
,

where,

Hα = (σ
(s)
1)

−2K0K+
³
τ 2IN + h−1α eNe

0
N

´−1
,

α = H
−1
α

∙³
τ 2IN + h−1α eNe

0
N

´−1
eNµ+ (σ

(s)
1)

−2K0π
¸
.

Initial Conditions Problem

34

As pointed out by Heckman (1981) and others, the missing initial state vector (that

is, the status of the firm and initial capital) is likely to be correlated with the unobserved

heterogeneity αi, which would result in bias of the parameter estimates. To deal with this

problem, for each firm i, given parameters (θ(s)−α, αi), we simulate the model for 20 initial

periods to derive the initial capital and the status of the firm.

One-Step Bellman Equation and Expected Value Function Iteration Step

In contrast to the solution/estimation of the basic model, we solve the one step Bellman

equation for each firm i separately. For given K, bE(s+1)
VΓ(K, , θ

(s+1)
−α , α

(s+1)
i) is derived as

follows.

bE(s+1)VΓ(K, , θ
(s+1)
−α , α

(s+1)
i)

=

Ps
j=Max{s−N(s),1}

∙
1
M

MP
l=1

V
(j)
Γ (K,

(j)
l , θ(j))

¸
Kh(θ

(s+1)
−α − θ

(j)
−α)Kh(α

(s+1)
i − α

(j)
i)Ps

j=Max{s−N(s),1}Kh(θ
(s+1)
−α − θ

(j)
−α)Kh(α

(s+1)
i − α

(j)
i)

.

The remaining step to derive the expected value function bE(s+1)
h
VΓ(K

0(K,u, θ(s+1)), , θ(s+1))
i

is the same as in Experiment 1.

We set N(s) to go up to 1000 iterations. The one-step Bellman equation is the part

where we have an increase in computational burden. But it turns out that the additional

burden is far lighter than that of computing the DP problem again for each firm i, and for

each simulation draw of αi as would be done in the Simulated ML estimation strategy.

We set the sample size to be 100 firms for 100 periods, and the Gibbs sampling was

conducted 10, 000 times. The Gibbs sampling routine converged after 4, 000 iterations. Table

2 describes the posterior mean and standard errors from the 5, 001 th iteration up to 10, 000

th iteration.

Table 2: Posterior Means and Standard Errors (standard errors are in parenthesis)

35

parameter estimate true value
δx 0.3704 (0.0253) 0.4
δE 0.3833 (0.0157) 0.4
µ 0.2089 (0.0112) 0.2
τ 0.03763 (0.00364) 0.04
σ1 0.4031 (0.0117) 0.4
σ2 0.4019 (0.0811) 0.4
b1 0.1007 (0.0136) 0.1
b2 0.1009 (0.0266) 0.1
be −0.9661 (0.0102) −1.0
σu 0.4064 (0.0036) 0.4
sample size 100× 100
CPU time 13 hrs 26 min 29 sec

Notice that most of the parameters are close to the true values. The computation time

is about 13 hours, which roughly corresponds to that required for Bayesian estimation of a

reasonably complicated static random effects model.

We also conducted an estimation exercise using the conventional simulated ML routine.

For each firm, we simulated αi a hundred times (i.e. Mα = 100). We solved the DP problem

using Monte-Carlo integration to integrate over the choice shock . We set the simulation

size for to be 100. We set the number of capital grid points MK to be 100. A single

likelihood calculation took about 35minues to compute. Since we took numerical derivatives,

in addition to the likelihood evaluation under the original parameter θ, we calculated the

likelihood for the 10 parameter perturbations θ +∆θi, i = 1, ..., 10. Therefore, a single step

of the Newton-Raphson method took 11 likelihood calculations. After computing the search

direction, we calculated the likelihood twice to derive the step size. The entire computation

took us 6 hours and 20 minutes. In this time, Bayesian DP routine would have completed

6, 063 iterations. That is, by the time the conventional ML routine finished its first iteration,

the Bayesian DP routine would have already converged.

Another estimation strategy for the simulated ML could be to expand the state variables

of the DP problem to include bothX and α. Then, we have to assign grid points for the three-

dimensional state space points (K,X, α). If we assign 100 grid points per dimension, then we

end up having 10, 000 times more grid points than before. Hence, the overall computational

burden would be quite similar to the orginal simulated ML estimation strategy.

36

5.3 Experiment 3: Infinite Random Grids

In Experiment 1, we used the same capital grid points at every iteration. As discussed

earlier, instead of fixing the grid points throughout the DP solution/estimation algorithm,

we can draw different random grid points for each solution/estimation iteration. Hence, even

though per iteration, we only draw a small number of state vector grid points K(t)
1 , ..., K

(t)
MK

(in this example, MK = 10)8, the number of random grid points can be made arbitrarily

large when we increase the number of iterations.

The formula for the expected value function for the firm who stays in or enters is as

follows.

∧
E
(t+1) h

VI(K
0
³
K,u, θ(t+1)

´
, , θ(t+1))

i
≡

N(t)X
n=1

MKX
m=1

"
1

M

MX
j=1

V
(t−n)
IN (K(t−n)

m ,
(t−n)
j , θ(t−n))

#

×
f
³
K
(t−n)
m |a,K, θ(t−n)

´
Kh(θ

(t) − θ(t−n))PN(t)
k=1

MKP
m=1

f
³
K
(t−k)
m |a,K, θ(t−k)

´
Kh(θ

(t) − θ(t−k))

The formula for the expected value function for either the firm who stays out or the firm

who exits is similar to that of example 1, because there is no uncertainty about the future

capital stock.

∧
E
(t+1)

0

h
VO(0, , θ(t+1))

i
≡

N(t)X
n=1

"
1

M

MX
j=1

V
(t−n)
OUT (0,

(t−n)
j , θ(t−n))

#
Kh(θ

(t) − θ(t−n))PN(t)
k=1 Kh(θ

(t) − θ(t−k))

We increase the total number of grid points up to 20, 000 by letting N(s) increase up to

2, 000. Table 3 shows the estimation results. We can see that the estimates parameters are

close to the true ones. The entire exercise took about 10 hours.

Table 3: Posterior Means and Standard Errors
8In principle, only one random capital grid per iteration is needed. But again, that requires the number

of past iterations for averaging, N(s) to be large.

37

(Standard errors are in parenthesis)

parameter estimate true value
δx 0.3817 (0.0146) 0.4
δE 0.3923 (0.0117) 0.4
α 0.1998 (0.0108) 0.2
σ1 0.4069 (0.0123) 0.4
σ2 0.3697 (0.0782) 0.4
b1 0.1001 (0.0091) 0.1
b2 0.1028 (0.0174) 0.1
be −0.9836 (0.0061) −1.0
σu 0.4018 (0.0022) 0.4
sample size 10, 000
CPU time 9 hrs52 min 42 sec

5.4 Experiment 4: Continuous State Space with Deterministic
Transition

The framework is similar to the basic model in Experiment 1 except for the capital transition

of the incumbent, which now is deterministic. Assume that if the incumbent decides to stay

in, the next period capital is,

Kt+1 = Kt.

If the firm decides to either exit or stay out, then the next period capital is 0, and if it enters,

then the next period capital is,

ln (Kt+1) = b1 + ut+1,

where,

ut+1 ∼ N (0, σu) .

Since the state space is continuous, we useK(t)
1 , ..., K

(t)
MK

as grid points. As in the previous

experiment, we set MK = 10 but let the grid points grow over iterations. Now, the formula

38

for the expected value function for the incumbent who stays in is as follows.

∧
E [VI(K, 0, θ)]

≡
N(t)X
n=1

MKX
m=1

"
1

M

MX
j=1

V
(t−n)
I (K(t−n)

m ,
(t−n)
j , θ(t−n))

#
KhK

³
K −K

(t−n)
m

´
Khθ(θ − θ(t−n))PN(t)

k=1

MKP
m=1

KhK

³
K −K

(t−k)
m

´
Khθ(θ − θ(t−k))

,

where KhK is the kernel for the capital stock with bandwidth hK. The expected value

function for the entrant is different because unlike the incumbent who stays in, the entrant

faces uncertain future capital. Thus, the entrant’s expected value function is,

∧
EK0, 0 [VI(K

0 (u) , , θ)]

≡
N(t)X
n=1

MKX
m=1

"
1

M

MX
j=1

V
(t−n)
I (K(t−n)

m ,
(t−n)
j , θ(t−n))

#

×
f
³
K
(t−n)
m |θ(t−n)

´
Kh(θ − θ(t−n))PN(t)

k=1

MKP
m=1

f
³
K
(t−k)
m |θ(t−k)

´
Kh(θ − θ(t−k))

.

The formula for the expected value function for either the firm who stays out or the firm

who exits is the same as in the infinite random grids case:

∧
E 0 [VO(0, , θ)]

≡
N(t)X
n=1

"
1

M

MX
j=1

V
(t−n)
O (0,

(t−n)
j , θ(t−n))

#
Kh(θ − θ(t−n))PN(t)
k=1 Kh(θ − θ(t−k))

We let the number of grid points increase up to 20, 000 over the iterations.

Table 4 shows the estimation results. We can see that the estimates parameters are

reasonably close to the truth, except for the standard error of the revenue shock σ2. The

entire exercise took about 6 hours 30 minutes.

Table 4: Posterior Means and Standard Errors

(Standard errors are in parenthesis)

39

parameter estimate true value
δx 0.4294 (0.0159) 0.4
δE 0.4890 (0.0178) 0.4
α 0.1313 (0.0026) 0.1
σ1 0.3776 (0.0033) 0.4
σ2 0.7214 (0.0381) 0.4
b1 0.2178 (0.0054) 0.2
σu 0.3911 (0.0039) 0.4
sample size 10, 000
CPU time 6 hrs 28 min 30 sec

6 Conclusion

In conventional estimation methods of Dynamic Discrete Choice models, such as GMM,

Maximum Likelihood or Markov Chain Monte Carlo, at each iteration step, given a new set

of parameter values, the researcher first solves the Bellman equation to derive the expected

value function, and then uses it to construct the likelihood or moments. That is, during

the DP iteration, the researcher fixes the parameter values and does not “estimate”. We

propose a Bayesian estimation algorithm where the DP problem is solved and parameters

estimated at the same time. In other words, we move parameters during the DP solution.

This dramatically increases the speed of estimation. We have demonstrated the effectiveness

of our approach by estimating a simple dynamic model of discrete entry-exit choice. Even

though we are estimating a dynamic model, the required computational time is in line with

the time required for Bayesian estimation of static models. The reason for the speed is

clear. The computational burden of estimating dynamic models has been high because the

researcher has to repeatedly evaluate the Bellman equation during a single estimation routine,

keeping the parameter values fixed. We move parameters, i.e. ‘estimate’ the model after each

Bellman equation evaluation. Since a single Bellman equation evaluation is computationally

no different from computing a static model, the speed of our estimation exercise, too, is no

different from that of a static model.

Another computational obstacle in the estimation of a Dynamic Discrete Choice model

is the Curse of Dimensionality. That is, the computational burden increases exponentially

with the increase in the dimension of the state space. In our algorithm, even though at each

40

iteration, the number of state space points on which we calculate the expected value function

is small, the total number of ‘effective’ state space points over the entire solution/estimation

iteration grows with the number of Bayesian DP iterations. This number can be made

arbitrarily large without much additional computational cost. And it is the total number of

‘effective’ state space points that determines accuracy. Hence, our algorithm moves one step

further in overcoming the Curse of Dimensionality. This also explains why our nonparametric

approximation of the expected value function works well under the assumption of continuous

state space with deterministic transition function of the state variable. In this case, as

is discussed in the main body of the paper, Rust (1997) random grid method may face

computational difficulties..

It is worth mentioning that since we are locally approximating the expected value func-

tion nonparametrically, as we increase the number of parameters, we may face the “Curse

of Dimensionality” in terms of the number of parameters to be estimated. So far, in our

examples, this issue does not seem to have made a difference. The reason is that most

dynamic models specify per period return function and transition functions to be smooth

and well-behaved. Hence, we know in advance that the value functions we need to approx-

imate are smooth, hence well suited for nonparametric approximation. Furthermore, the

simulation exercises in the above examples show that with a reasonably large sample size,

the MCMC simulations are tightly centered around the posterior mean. Hence, the actual

multidimensional area where we need to apply nonparametric approximation is small. But

in empirical exercises that involve many more parameters, one probably needs to adopt an

iterative MCMC strategy where only up to 4 or 5 parameters are moved at once, which is

also commonly done in conventional ML estimation.

7 References

Aguirreagabiria, Victor and Pedro Mira (2002) “Swapping the Nested Fixed Point Al-

gorithm: A Class of Estimators for Discrete Markov Decision Models. ” Econometrica,

Vol. 70, pp. 1519− 1543

Ackerberg, Daniel (2004)“A New Use of Importance Sampling to Reduce Computational

41

Burden in Simulation Estimation," mimeo. University of Arizona.

Arcidiacono, Peter and John B. Jones (2003)“Finite Mixture Distributions, Sequen-

tial Likelihood and the EM Algorithm”, Econometrica, , Vol. 71. No. 3, pp. 933−946

Bierens, Herman J. (1994)“Topics in Advanced Econometrics”, Cambridge University

Press.

Erdem, Tulin and Michael P. Keane (1996) “DecisionMaking under Uncertainty: Cap-

turing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets.”

Marketing Science, Vol. 15 : 1, pp. 1− 20.

Geweke, John and Michael P. Keane (1995) “Bayesian Inference for Dynamic Discrete

Choice Models without the Need for Dynamic Programming.” in Mariano, Scheuer-

mann and Weeks (eds.), Simulation Based Inference and Econometrics: Methods and

Applications, Cambridge University Press.

Geweke, John, Daniel Houser and Michael P. Keane (1998) “Simulation Based In-

ference for Dynamic Multinomial Choice Models.” working paper, University of Ari-

zona.

Haerdle, Wolfgang (1989)“Applied Nonparametric Regression,” Cambridge University Press.

Heckman, James, J. (1981)“The Incidental Parameters Problem and the Problem of Ini-

tial Conditions in Estimating a Discrete Time-Discrete Data Stochastic Process,” in

Structural Analysis of Discrete Data with Econometric Applications, ed. C. F. Manski

and D. McFadden. Cambridge, MA. MIT Press, pp.179− 195

Houser, Daniel (2003)“Bayesian Analysis of Dynamic Stochastic Model of Labor Supply

and Savings”, Journal of Econometrics, Vo. 113 : 2, pp. 289− 335.

Imai, Susumu and Michael P. Keane (2003)“Intertemporal Labor Supply and Human

Capital Accumulation”, forthcoming, International Economic Review.

Imai, Susumu and Kala Krishna (2001) “Employment, Dynamic Deterrence and Crime.”

NBER Working Paper, No. 8281

42

Keane, Michael P. and Kenneth I. Wolpin (1994)“The Solution and Estimation of Dis-

crete Choice Dynamic Programming Models by Simulation and Interpolation: Monte

Carlo Evidence” The Review of Economics and Statistics, Vol. 74 (4), pp. 648− 72

Keane, Michael P. and Kenneth I. Wolpin (1997) “The Career Decisions of YoungMen.”

Journal of Political Economy, Vol. 105, pp. 473− 521.

Lancaster, Tony (1997) “Exact Structural Inference in Optimal Job SearchModels.” Jour-

nal of Business and Economic Statistics, Vol. 15 (2), pp. 165− 179.

McCullogh, Robert, and Peter Rossi (1994) “An Exact Likelihood Analysis of theMultino-

mial Probit Model.” Journal of Econometrics, Vol. 64 (1), pp. 207− 240.

Pakes, Ariel and Paul McGuire (2001) “Stochastic Algorithms, Symmetric Markov Per-

fect Equilibrium, and the ‘Curse’ of Dimensionality.”, forthcoming Econometrica

Roberts, Mark and James Tybout (1997)“The Decision to Export in Columbia: An

Empirical Model of Entry with Sunk Costs.” American Economic Review.

Rosenthal, Jeffrey, S. (1995)“Minorization Conditions and Convergence Rates for Markov

Chain Monte Carlo”, JASA, Vol. 90, No. 430, pp. 558− 566

Rust, John (1997) “Using Randomization to Break the Curse of Dimensionality.” Econo-

metrica, Vol. 55, No. 5, pp. 999− 1033

Tanner, Martin A. and Wing H. Wong (1987) “The Calculation of Posterior Distrib-

utions by Data Augmentation.” Journal of the American Statistical Association, vol.

82, pp. 528− 549.

Tierney, Luke (1994)“Markov Chains for Exploring Posterior Distributions”, The Annals

of Statistics, Vol. 22, No. 4, pp. 1701− 176

43

Appendix
Proof of Theorem 1

We need to show that for any s ∈ S, , θ ∈ Θ,

V (t) (s, , θ)
P→ V (s, , θ) uniformly, as t→∞

But since,

V (t)(s, , θ) = max
a∈A

V(t)(s, a, , θ), V (s, , θ) = max
a∈A

V(s, a, , θ),

it suffices to show that for any s ∈ S, a ∈ A, , θ ∈ Θ,

V(t) (s, a, , θ)
P→ V (s, a, , θ) as t→∞.

Define

WN(t),h(θ, θ
(t−n)) ≡ Kh(θ − θ(t−n))PN(t)

k=1 Kh(θ − θ(t−k))
.

Then, the difference between the true value function of action a and that obtained by the

Bayesian Dynamic Programming iteration can be decomposed into 3 parts as follows.

V (s, a, , θ)− V(t) (s, a, , θ)

= β

⎡⎣Z V (s0, 0, θ)dF 0(0, θ)−
N(t)X
n=1

V (t−n)(s0, (t−n), θ(t−n))WN(t),h(θ, θ
(t−n))

⎤⎦
= β

⎡⎣Z V (s0, 0, θ)dF 0(0, θ)−
N(t)X
n=1

V (s0, (t−n), θ)WN(t),h(θ, θ
(t−n))

⎤⎦
+β

⎡⎣N(t)X
n=1

h
V (s0, (t−n), θ)− V (s0, (t−n), θ(t−n))

i
WN(t),h(θ, θ

(t−n))

⎤⎦
+β

⎡⎣N(t)X
n=1

h
V (s0, (t−n), θ(t−n))− V (t−n)(s0, (t−n), θ(t−n))

i
WN(t),h(θ, θ

(t−n))

⎤⎦
≡ A1 +A2 +A3

44

The kernel smoothing part is difficult to handle because the underlying distribution

of θ(s) has a conditional density function f (s)(θ(s−1), θ(s)) (conditional on θ(s−1)), which is a

complicated nonlinear function of all the past value functions and the parameters. Therefore,

instead of deriving the asymptotic value of 1
N(t)

PN(t)
k=1 Kh(θ − θ(t−k)), as is done in standard

nonparametric kernel asymptotics, we derive and use its asymptotic lower bound and upper

bound. Lemma 1 below is used for the derivation of the asymptotic lower bound. Lemma

2 is used for the derivation of the asymptotic upper bound. Using the results of Lemma 1

and 2, in Lemma 3 we prove that A1 → 0 and in Lemma 4 A2 → 0.

Lemma 1:There exists a density function g(θ), such that g(θ) > 0 for any θ ∈ Θ and for

any t and θ, there exists ε0 such that 0 < ε0 ≤ 1 and f (t) (θ, .) ≥ ε0g (.).

Proof:

Recall that

p(t)
¡
θ0j|θ−j

¢
≡

π(θ−j, θ
0
j)L(YT |b², θ−j, θ0j, V (t))R

π(θ−j, θ
0
j)L(YT |b², θ−j , θ0j, V (t))dθ0j

By assumptions 1 (Compactness of parameter space), 5 (Strict Positivity and Boundedness

of π and L), and 6 (Compactness of support of), and because utility function is uniformly

bounded, there exist η1, η2,M1,M2 > 0, such that for any θ, b, V satisfying the assumptions,
η1 < π(θ)L(YT |b², θ, V) < M1, and

η2 <

Z
π(θ−j, θ

0
j)L(YT |b², θ−j, θ0j, V)dθ0j < M2.

Therefore, for any θ0j,

infb,θ−j p(t)
¡
θ0j|θ−j

¢
exists, is strictly positive and uniformly bounded below by η1/M2. Let

h
¡
θ0j
¢
≡ infb,θ−j p(t)

¡
θ0j|θ−j

¢
.

Notice that h(.) is Lebesgue integrable. Now, define,

g (θ) ≡
JY
j=1

h (θj)R
h
³
θ̃j
´
dθ̃j
, ε0 =

JY
j=1

Z
h
³
θ̃j
´
dθ̃j.

45

By construction, g(θ) is positive and bounded and
R
g (θ) dθ = 1. Hence, g(θ) is a density

function. Also, by construction, ε0 is a positive constant.

Furthermore,

ε0g (θ
0) =

JY
j=1

h
¡
θ0j
¢
≤

JY
j=1

p(t)
¡
θ0j|θ−j

¢
= f (t) (θ0, θ) .

Finally, since both g() and f (t) (θ, .) are densities and integrate to 1, 0 < ε0 ≤ 1.
Lemma 1 implies that the transition density of the parameter process has an important

property: regardless of the current parameter values or the number of iterations, every

parameter value is visited with a strictly positive probability.

Lemma 2: There exists a density function eg(), ε1 ≥ 1 such that eg(θ) > 0 and for any t,
for any θ ∈ Θ, ε1eg (.) ≥ f (t) (θ, .) .

Proof: Using similar logic as in Lemma 1, one can show that for any θ0j,

supb,θ−j p
¡
θ0j|θ−j

¢
exists and is bounded. Let eh ¡θ0j¢ ≡ supb,θ−j p

(t)
¡
θ0j|θ−j

¢
Now, let,

eg (θ) ≡ JY
j=1

eh (θj)R eh³θ̃j´ dθ̃j , ε1 =
JY

j=1

Z eh³θ̃j´ dθ̃j.
Then, eg (θ) and ε1 satisfy the conditions of the Lemma.

Lemma 2 implies that the transition density is bounded above, the bound being inde-

pendent of the current parameter value or the number of iterations.

Lemma 3: A1 →P 0, as t→∞.

Proof: Recall that,

A1
β
=

Z
V (s0, 0, θ)dF 0(0, θ)−

N(t)X
n=1

V (s0, (t−n), θ)WN(t),h(θ, θ
(t−n)).

46

Rewrite it as,

A1
β
=

1
N(t)

PN(t)
n=1

¡R
V (s0, 0, θ)dF 0(0, θ)− V (s0, (t−n), θ)

¢
Kh(θ − θ(t−n))

1
N(t)

PN(t)
k=1 Kh(θ − θ(t−k))

.

We show that the numerator goes to zero in probabilty and the denominator is bounded

below by a positive number with probability arbitrarily close to one as t→∞.
Let

XN(t)n =
1

N(t)

∙Z
V (s0, 0, θ)dF 0(0, θ)− V (s0, (t−n), θ)

¸
Kh(θ − θ(t−n)),

where n = 1, ..., N(t). Then, because (t−n)’s are i.i.d. and (t−n)˜F 0(0, θ),

E
£
XN(t)n

¤
= 0, E

£
XN(t)nXN(t)m

¤
= 0 for n 6= m.

Hence,

V ar

⎡⎣N(t)X
n=1

XN(t)n

⎤⎦ =

N(t)X
n=1

V ar
£
XN(t)n

¤
≤ [sup |K|]2

N(t)h(N(t))2J
sup
s0,θ

E

∙Z
V (s0, 0, θ)dF 0(0, θ)− V (s0, (t−n), θ)

¸2
.

Because N(t)h(N(t))2J →∞ as t →∞ and V (s, , θ) is assumed to be uniformly bounded,

the RHS of the inequality converges to zero. That is, for any γ > 0, δ > 0, there is tγ such

that for any t > tγ, i.e., N(t) ≥ N(tγ),

[sup |K|]2

δ2N(t)h(N(t))2J
sup
s0,θ

E

∙Z
V (s0, 0, θ)dF 0(0, θ)− V (s0, , θ)

¸2
< γ

Hence, from Chebychev Inequality, for any θ ∈ Θ,

Pr

⎧⎨⎩
¯̄̄̄
¯̄N(t)X
n=1

XN(t)n − 0

¯̄̄̄
¯̄ ≥ δ

⎫⎬⎭ ≤ γ (A1)

This shows that the numerator in A1
β
goes to zero in probability uniformly over θ ∈ Θ.

47

We next show that the denominator is bounded below with probability arbitrarily close

to one as t goes to infinity. Let

R(t−n) ≡ ε0
g
³
θ(t−n)

´
f (t−n)

³
θ(t−n−1), θ(t−n)

´ . (A2)

Then, from Lemma 1, 0 ≤ R(t−n) ≤ 1 and 0 ≤ ε0 ≤ 1. Also, define a random variable Y (t−n)

as follows.

Y (t−n) =

(
Kh

³
θ − θ(t−n)(f (t−n))

´
with probability R(t−n)

0 with probability 1−R(t−n)
(A3)

where θ(t−n)(f (t−n)) means that θ(t−n) has density f (t−n)
³
θ(t−n−1), θ(t−n)

´
conditional on

θ(t−n−1). Then, Y (t−n) is a mixture of 0 and Kh

³
θ − θ(t−n)(g)

´
, with the mixing probability

being 1− ε0 and ε0. That is,

Y (t−n) =

(
Kh

³
θ − θ(t−n)(g)

´
with probability ε0

0 with probability 1− ε0
(A4)

Further, from the construction of Y (t−n),

Y (t−n) ≤ Kh

³
θ − θ(t−n)(f (t−n))

´
.

Now, because θ(t−n)(g), n = 1, ..., N(t) are i.i.d., from equation A4, following Bierens (1994),

section 10.1, we derive,

E
£
Y (t−n)¤ = ε0E

h
Kh

³
θ − θ(t−n)(g)

´i
= ε0

Z
1

hJ
K

Ã
θ − θ(t−n)

h

!
g
³
θ(t−n)

´
dθ(t−n)

= ε0

Z
g (θ − hz)K (z) dz → ε0g (θ) as h→ 0

48

and

N(t)hJV ar

⎡⎣ 1

N(t)

N(t)X
n=1

Y (t−n)

⎤⎦
=

hJ

N(t)

N(t)X
n=1

V ar
£
Y (t−n)¤

= hJE
£
Y (t−n)2¤− hJE

£
Y (t−n)¤2

= E

⎡⎣ ε0
hJ

K

Ã
θ − θ(t−n)(g)

h

!2⎤⎦− hJε20E

"
1

hJ
K

Ã
θ − θ(t−n)(g)

h

!#2

= ε0

Z
g (θ − hz)K (z)2 dz − hJ

∙
ε0

Z
g (θ − hz)K (z) dz

¸2
≤ ε0 sup

θ∈Θ

Z
g (θ − hz)K (z)2 dz → ε0 sup

θ∈Θ
g (θ)

Z
K (z)2 dz

as h→ 0. Since N(t)hJ →∞, V ar
"

1
N(t)

N(t)P
n=1

Y (t−n)

#
→ 0 as t→∞. Then, by Chebyshev’s

inequality,

1

N(t)

N(t)X
n=1

Y (t−n) P→ ε0g(θ).

Therefore, for any η1 > 0, η2 > 0, there exists t > 0 , N ≡ N(t) such that for any t > t, i.e,

N(t) > N ,

Pr

⎡⎣¯̄̄̄¯̄ 1

N(t)

N(t)X
n=1

Y (t−n) − ε0g (θ)

¯̄̄̄
¯̄ ≤ η1

⎤⎦ > 1− η2.

That is,

Pr

⎡⎣ 1

N(t)

N(t)X
n=1

Y (t−n) + η1 ≥ ε0 inf
θ∈Θ

g (θ)

⎤⎦ > 1− η2

Now, choose η1 <
1
2
ε0 infθ∈Θ g (θ). Then,

Pr

⎡⎣ 1

N(t)

N(t)X
n=1

Y (t−n) >
1

2
ε0 inf

θ∈Θ
g (θ)

⎤⎦ > 1− η2. (A5)

49

Since
NP
n=1

Kh

³
θ − θ(t−n)(f (t−n))

´
≥

NP
n=1

Y (t−n), we conclude that for any η2 > 0, there

exists tη > 0 , N ≡ N(tη) such that for any t > tη, i.e, N(t) > N,

Pr

⎡⎣ 1

N(t)

N(t)X
n=1

Kh

³
θ − θ(t−n)(f (t−n))

´
>
1

2
ε0 inf

θ∈Θ
g (θ)

⎤⎦ > 1− η2. (A6)

for any θ ∈ Θ. From A1 and A6, we can see that for t = max{tγ, tη} > 0 , N ≡ N(t), the

following holds: for any t > t, i.e, N(t) > N

Pr

⎡⎢⎢⎢⎣
1

N(t)

N(t)P
n=1

£R
V (s0, 0, θ)dF 0(0, θ)− V (s0, (t−n), θ)

¤
Kh(θ − θ(t−n))

1
N(t)

N(t)P
n=1

Kh

³
θ − θ(t−n)

´ ≤ δ
1
2
ε0 infθ∈Θ g (θ)

⎤⎥⎥⎥⎦
≥ Pr

⎧⎨⎩
⎡⎣ 1

N(t)

N(t)X
n=1

∙Z
V (s0, 0, θ)dF 0(0, θ)− V (s0, (t−n), θ)

¸
Kh(θ − θ(t−n)) ≤ δ

⎤⎦
\ ⎡⎣ 1

N(t)

N(t)X
n=1

Kh

³
θ − θ(t−n)

´
>
1

2
ε0 inf

θ∈Θ
g (θ)

⎤⎦⎫⎬⎭
≥ 1− Pr

⎧⎨⎩
⎡⎣ 1

N(t)

N(t)X
n=1

∙Z
V (s0, 0, θ)dF 0(0, θ)− V (s0, (t−n), θ)

¸
Kh(θ − θ(t−n)) > δ

⎤⎦
[⎡⎣ 1

N(t)

N(t)X
n=1

Kh

³
θ − θ(t−n)

´
≤ 1
2
ε0 inf

θ∈Θ
g (θ)

⎤⎦⎫⎬⎭
≥ 1− Pr

⎡⎣ 1

N(t)

N(t)X
n=1

∙Z
V (s0, 0, θ)dF 0(0, θ)− V (s0, (t−n), θ)

¸
Kh(θ − θ(t−n)) > δ

⎤⎦
−Pr

⎡⎣ 1

N(t)

N(t)X
n=1

Kh

³
θ − θ(t−n)

´
≤ 1
2
ε0 inf

θ∈Θ
g (θ)

⎤⎦
≥ 1− γ − η2

uniformly over Θ. Since δ/
£
1
2
ε0 infθ∈Θ g (θ)

¤
can be made arbitrarily small by choosing δ

small enough, we have shown that

A1
P→ 0 as N(t)→∞

50

uniformly over Θ.

Lemma 4: A2 →P 0 as t→∞.

Proof

¯̄̄̄
A2
β

¯̄̄̄
≤

N(t)X
n=1

¯̄̄
V
¡
s0, (t−n), θ

¢
− V

³
s0, (t−n), θ(t−n)

´¯̄̄
WN(t),h

³
θ, θ(t−n)

´
=

N(t)X
n=1

¯̄̄
V
¡
s0, (t−n), θ

¢
− V

³
s0, (t−n), θ(t−n)

´¯̄̄
WN(t),h

³
θ, θ(t−n)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
≤ δ

´
+

N(t)X
n=1

¯̄̄
V
¡
s0, (t−n), θ

¢
− V

³
s0, (t−n), θ(t−n)

´¯̄̄
WN(t),h

³
θ, θ(t−n)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ
´

≡ H1 +H2 (A7)

where
¯̄̄
θ − θ(t−n)

¯̄̄
≡ maxj∈J

¯̄̄
θj − θ

(t−n)
j

¯̄̄
and δ > 0 is arbitrarily set.

Step 1 of Lemma 4: We show that H2
P→ 0 uniformly over Θ.

Note that

H2 ≤ 2V
N(t)X
n=1

WN(t),h

³
θ, θ(t−n)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ
´

(A8)

where V = sups, ,θ |V (s, , θ)|. Then,

RHS of (A8) = 2V

1
N(t)

N(t)P
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ
´

1
N(t)

PN(t)
k=1 Kh(θ − θ(t−k))

. (A9)

We first show that the numerator goes to 0 in probability as h goes to 0.

Note thatKh(N(t))(θ−θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ
´
≥ 0. Hence, from Chebychev Inequality,

for any η > 0,

51

Pr

⎡⎣ 1

N(t)

N(t)X
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ
´
≥ η

⎤⎦
≤ 1

η
E

⎡⎣ 1

N(t)

N(t)X
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ
´⎤⎦ . (A10)

From Lemma 2, there exists ε1 > 0 such that for any s, θ
(s−1), θ ∈ Θ

ε1eg(θ) ≥ f (s)
³
θ(s−1), θ

´
.

Hence,

E

⎡⎣ 1

N(t)

N(t)X
n=1

Kh(θ − θ(t−n)(f (t−n)))I
³¯̄̄
θ − θ(t−n)(f (t−n))

¯̄̄
> δ
´⎤⎦

≤ ε1E

⎡⎣ 1

N(t)

N(t)X
n=1

Kh(θ − θ(t−n) (eg))I ³¯̄̄θ − θ(t−n) (eg)¯̄̄ > δ
´⎤⎦ .

Since θ(t−n) (eg), n = 1, 2.., N(t), are i.i.d., we have,
E

⎡⎣ 1

N(t)

N(t)X
n=1

Kh(θ − θ(t−n)(f (t−n)))I
³¯̄̄
θ − θ(t−n)(f (t−n))

¯̄̄
> δ
´⎤⎦

≤ ε1E

"
1

hJ
K(

θ − θ(t−n) (eg)
h

)I
³¯̄̄
θ − θ(t−n) (eg)¯̄̄ > δ

´#

= ε1

Z
|θ−eθ|>δ

1

hJ
K

Ã
θ − eθ
h

!eg ³eθ´ deθ (A11)

Now, by change of variables,Z
|θ−eθ|>δ

1

hJ
K

Ã
θ − eθ
h

!
g
³eθ´ deθ =

Z
|z|> δ

h

K (z) g (θ − hz) dz

≤ sup
θ∈Θ

g (θ)

Z
|z|> δ

h

K (z) dz (A12)

52

Because
R
K (z) dz = 1,

R
|z|> δ

h
K (z) dz → 0 as h → 0. Furthermore, g() is bounded by

construction. Hence, The RHS of A12 converges to zero as h goes to zero. Therefore, RHS

of A11 converges to zero as h converges to zero uniformly over Θ, and thus,

Pr

⎡⎣ 1

N(t)

N(t)X
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ
´
≥ η

⎤⎦→ 0 (A13)

as h→ 0 uniformly over Θ. Note that η can be made arbitrarily small.

From (A6), we know that the denominator in A9 is bounded below uniformly over θ ∈ Θ

by 1
2
ε0 infθ∈Θ g (θ) with probability arbitrarily close to 1 as t goes to infinity. Thus, using

similar steps as in Lemma 3, the result follows. That is, H2
P→ 0 as t → ∞ uniformly over

Θ.

Step 2 of Lemma 4: Show that H1
P→ 0 as t→∞, uniformly over Θ.

Define L ≡ supj∈J,s∈S, ,θ∈Θ
¯̄̄
∂V (s, ,θ)

∂θ

¯̄̄
. Then, from the Intermediate Value Theorem,

N(t)X
n=1

¯̄̄
V
¡
s0, (t−n), θ

¢
− V

³
s0, (t−n), θ(t−n)

´¯̄̄
WN(t),h

³
θ, θ(t−n)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
≤ δ

´
≤

N(t)X
n=1

L
¯̄̄
θ − θ(t−n)

¯̄̄
WN(t),h

³
θ, θ(t−n)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
≤ δ

´
≤ Lδ

N(t)X
n=1

WN(t),h

³
θ, θ(t−n)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
≤ δ

´
≤ Lδ

N(t)X
n=1

WN(t),h

³
θ, θ(t−n)

´
= Lδ

which can be made arbitrarily small by choosing small enough δ > 0.

From Step 1 of Lemma 4, we already know that given arbitrary δ > 0, H2
P→ 0 as t→∞

uniformly over Θ. Hence it follows that A2
P→ 0 as t→∞ uniformly over Θ.

Now, we return to the proof of Theorem 1. That is, we need to show that

V (s, a, , θ)− V(t) (s, a, , θ)
P→ 0 as t→∞

Define A(t) to be as follows:

A(t)(θ) ≡ A1 +A2

From Lemma 3 and Lemma 4, we know that,

A(t)(θ)
P→ 0, as t→∞,

53

uniformly over Θ. Therefore,

A(t)(θ(t))
P→ 0 as t→∞

Now,

V (s, a, , θ)− V(t) (s, a, , θ) = A(t)(θ)

+β

⎡⎣N(t)X
n=1

h
V (s0, (t−n), θ(t−n))− V (t−n)(s0, (t−n), θ(t−n))

i
WN(t),h(θ, θ

(t−n))

⎤⎦ (A14)

Notice that if V (s, , θ) ≥ V (t) (s, , θ), then

0 ≤ V (s, , θ)− V (t) (s, , θ) =Maxa∈AV (s, a, , θ)−Maxa∈AV(t) (s, a, , θ)

≤ Maxa∈A
£
V (s, a, , θ)− V(t) (s, a, , θ)

¤
≤Maxa∈A

¯̄
V (s, a, , θ)− V(t) (s, a, , θ)

¯̄
Similarly, if V (s, , θ) ≤ V (t) (s, , θ), then

0 ≤ V (t) (s, , θ)− V (s, , θ) =Maxa∈AV(t) (s, a, , θ)−Maxa∈AV (s, a, , θ)

≤ Maxa∈A
£
V(t) (s, a, , θ)− V (s, a, , θ)

¤
≤Maxa∈A

¯̄
V (s, a, , θ)− V(t) (s, a, , θ)

¯̄
Hence, taking supremum over s0 on the right hand side of A14and then taking absolute
values on both sides, we obtain:¯̄

V (s, , θ)− V (t) (s, , θ)
¯̄
≤Maxa∈A

¯̄
V (s, a, , θ)− V(t) (s, a, , θ)

¯̄
≤ sup

s0∈S

¯̄
A(t) (θ)

¯̄
+β

⎡⎣N(t)X
n=1

supbs∈S
¯̄̄
V (bs, (t−n), θ(t−n))− V (t−n)(bs, (t−n), θ(t−n))

¯̄̄
WN(t),h(θ, θ

(t−n))

⎤⎦(A14’)
Now,

¯̄
V (s, , θ)− V (t) (s, , θ)

¯̄
appears on the LHS and¯̄̄

V (bs, (t−n), θ(t−n))− V (t−n)(bs, (t−n), θ(t−n))
¯̄̄
appears on the RHS of equation A140. Using

this, we can recursively substitute away¯̄̄
V (bs, (t−n), θ(t−n))− V (t−n)(bs, (t−n), θ(t−n))

¯̄̄
. This logic is used in the following Lemma.

Lemma 5: For τ < t, let

cW (t, t, τ) ≡fW (t, τ) ≡ βWN(t),h(θ
(t), θ(τ)).

54

Now, for N ≥ 1 and for m such that 0 < m ≤ N + 1, define

Ψm (t+N, t, τ) ≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+N > tm−1 > > t2 > t1 ≥ t, t0 = τ}

and,

cW (t+N, t, τ) ≡
N+1X
m=1

⎧⎨⎩ X
Ψm(t+N,t,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭ .

Then, for any N ≥ 1, t > 0,¯̄
V (s, , θ)− V (t+N) (s, , θ)

¯̄
≤ sup

s0∈S

¯̄
A(t+N) (θ)

¯̄
+

N−1X
m=0

cW (t+N, t+N −m, t+N −m− 1) sup
s0∈S

¯̄̄
A(t+N−m−1)

³
θ(t+N−m−1)

´¯̄̄
+

N(t)X
n=1

supbs∈S
¯̄̄
V (bs, (t−n), θ(t−n))− V (t−n)(bs, (t−n), θ(t−n))

¯̄̄ cW (t+N, t, t− n). (A15)

Furthermore,
N(t)X
n=1

cW (t+N, t, t− n) ≤ β (A16)

Proof of Lemma 5.

First, we show that inequality A15 and A16 hold for N = 1. For iteration t+ 1, we get¯̄̄
V
³
s, , θ(t+1)

´
− V (t+1)

³
s, , θ(t+1)

´¯̄̄
≤ sup

s0∈S

¯̄̄
A(t+1)

³
θ(t+1)

´¯̄̄
+

N(t+1)X
n=1

sup
s0∈S

¯̄̄
V (s0, (t+1−n), θ(t+1−n))− V (t+1−n)(s0, (t+1−n), θ(t+1−n))

¯̄̄
fW (t+ 1, t+ 1− n)

≤ sup
s0∈S

¯̄̄
A(t+1)

³
θ(t+1)

´¯̄̄
+ sup

s0∈S

¯̄̄
V (s0, (t), θ(t))− V (t)(s0, (t), θ(t))

¯̄̄ fW (t+ 1, t)

+

N(t+1)−1X
n=1

sup
s0∈S

¯̄̄
V (s0, (t−n), θ(t−n))− V (t−n)(s0, (t−n), θ(t−n))

¯̄̄ fW (t+ 1, t− n)

55

Now, we substitute away
¯̄̄
V (s0, (t), θ(t))− V (t)(s0, (t), θ(t))

¯̄̄
by using A140) and the fact that

N(t) ≥ N(t+ 1)− 1,

¯̄̄
V
³
s, , θ(t+1)

´
− V (t+1)

³
s, , θ(t+1)

´¯̄̄
≤ sup

s0∈S

¯̄̄
A(t+1)(θ(t+1))

¯̄̄
+ sup

s0∈S

¯̄̄
A(t)(θ(t))

¯̄̄ fW (t+ 1, t)
+

N(t)X
n=1

supbs∈S
¯̄̄
V (bs, (t−n), θ(t−n))− V (t−n)(bs, (t−n), θ(t−n))

¯̄̄
{fW (t+ 1, t)fW (t, t− n) +fW (t+ 1, t− n)}

= sup
s0∈S

¯̄̄
A(t+1)

³
θ(t+1)

´¯̄̄
+ sup

s0∈S

¯̄̄
A(t)

³
θ(t)
´¯̄̄cW (t+ 1, t+ 1, t)

+

N(t)X
n=1

supbs∈S
¯̄̄
V (bs, (t−n), θ(t−n))− V (t−n)(bs, (t−n), θ(t−n))

¯̄̄ cW (t+ 1, t, t− n)

Hence, Inequality A15 holds for N = 1.

Furthermore, because
N(t)P
n=1

fW (t, t− n)/β =
N(t)P
n=1

WN(t),h(θ
(t), θ(t−n)) = 1,

N(t)X
n=1

cW (t+ 1, t, t− n) =

N(t)X
n=1

fW (t+ 1, t)fW (t, t− n) +

N(t)X
n=1

fW (t+ 1, t− n)

= fW (t+ 1, t)N(t)X
n=1

fW (t, t− n) +

N(t)X
n=1

fW (t+ 1, t− n)

= βfW (t+ 1, t) + N(t)X
n=1

fW (t+ 1, t− n) ≤
N(t)+1X
n=1

fW (t+ 1, t+ 1− n)

Since fW (t+ 1, t+ 1− n) = 0 for any n > N(t+ 1),

N(t)+1X
n=1

fW (t+ 1, t+ 1− n) =

N(t+1)X
n=1

fW (t+ 1, t+ 1− n)

= β

N(t+1)X
n=1

WN(t+1),h(θ
(t+1), θ(t+1−n)) = β

56

Thus,
N(t)X
n=1

cW (t+ 1, t, t− n) ≤ β (A17)

Hence, inequality A16 holds for N = 1.

Next, suppose that inequality A15 holds for N = M . Then, using t + 1 instead of t in

inequality A15, we get

¯̄
V (s, , θ)− V (t+1+M) (s, , θ)

¯̄
≤ sup

s0∈S

¯̄
A(t+1+M) (θ)

¯̄
+

M−1X
m=0

cW (t+ 1 +M, t+ 1 +M −m, t+M −m) sup
s0∈S

¯̄̄
A(t+M−m)

³
θ(t+M−m)

´¯̄̄
+supbs∈S

¯̄̄
V (bs, (t), θ(t))− V (t)(bs, (t), θ(t))

¯̄̄ cW (t+ 1 +M, t+ 1, t)

+

N(t+1)X
n=2

supbs∈S
¯̄̄
V (bs, (t+1−n), θ(t+1−n))− V (t+1−n)(bs, (t+1−n), θ(t+1−n))

¯̄̄
cW (t+ 1 +M, t+ 1, t+ 1− n).

Now, using A140 to substitute away supbs∈S
¯̄̄
V (bs, (t), θ(t))− V (t)(bs, (t), θ(t))

¯̄̄
, we get

¯̄
V (s, , θ)− V (t+M+1) (s, , θ)

¯̄
≤ sup

s0∈S

¯̄
A(t+M+1) (θ)

¯̄
+

MX
m=0

cW (t+M + 1, t+M + 1−m, t+M −m) sup
s0∈S

¯̄̄
A(t+M−m)

³
θ(t+M−m)

´¯̄̄
+

N(t)X
n=1

supbs∈S
¯̄̄
V (bs, (t−n), θ(t−n))− V (t−n)(bs, (t−n), θ(t−n))

¯̄̄
hcW (t+M + 1, t+ 1, t)fW (t, t− n) +cW (t+M + 1, t+ 1, t− n)

i
(A18)

57

Now, we claim that, for any M ≥ 1,

cW (t+M, t+ 1, t)fW (t, t− n) +cW (t+M, t+ 1, t− n)

= cW (t+M, t, t− n) (A19)

Proof of the Claim:

Let

Ψm,1(t+M, t, τ)

≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+M > tm−1 > > t2 ≥ t+ 1, t1 = t, t0 = τ} .

Notice that

Ψm(t+M, t+ 1, τ)

≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+M > tm−1 > > t2 > t1 ≥ t+ 1, t0 = τ} .

Then,

Ψm(t+M, t, τ) = Ψm,1(t+M, t, τ) ∪Ψm(t+M, t+ 1, τ)

and

Ψm,1(t+M, t, τ) ∩Ψm(t+M, t+ 1, τ) = ∅.

Also,

ΨM+1(t+M, t+ 1, τ) = ∅

Therefore,

58

cW (t+M, t, τ)

≡
M+1X
m=1

⎧⎨⎩ X
Ψm(t+M,t,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

M+1X
m=1

⎧⎨⎩ X
Ψm,1(t+M,t,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭+
M+1X
m=1

⎧⎨⎩ X
Ψm(t+M,t+1,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

M+1X
m=2

⎧⎨⎩ X
Ψm−1(t+M,t+1,t)

m−1Y
k=1

fW (tk, tk−1)

⎫⎬⎭fW (t, τ) +
MX

m=1

⎧⎨⎩ X
Ψm(t+M,t+1,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

MX
m=1

⎧⎨⎩ X
Ψm(t+M,t+1,t)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭fW (t, τ) +
MX

m=1

⎧⎨⎩ X
Ψm(t+M,t+1,τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
= cW (t+M, t+ 1, t)fW (t, τ) +cW (t+M, t+ 1, τ)

Hence, the claim holds. Substituting this into equation A17 yields the first part of the lemma

by induction.

Next, suppose that A16 holds for N =M . That is,

N(t)X
n=1

cW (t+M, t, t− n) ≤ β.

Then,

N(t)X
n=1

cW (t+M + 1, t, t− n)

=

N(t)X
n=1

cW (t+M + 1, t+ 1, t)fW (t, t− n) +

N(t)X
n=1

cW (t+M + 1, t+ 1, t− n)

≤ cW (t0 +M, t0, t) +

N(t)X
n=1

cW (t0 +M, t0, t− n)

=

N(t)X
n=1

cW (t0 +M, t0, t0 − n) ≤ β

59

where t0 = t+ 1. Hence, induction holds and for any N > 0,

N(t)X
n=1

cW (t+N, t, t− n) ≤ β

Therefore, from induction, Lemma 5 holds.

Now, for anym = 1, ... eN(l), if we substitute t(l)−m for t+N , t(l−1) for t, then equation
A15 becomes¯̄̄

V
³
s, (t(l)−m), θ(t(l)−m)

´
− V (t(l)−m)

³
s, (t(l)−m), θ(t(l)−m)

´¯̄̄
≤ sup

s0∈S

¯̄̄
A(t(l)−m)

³
θ(t(l)−m)

´¯̄̄
+

eN(l)−m−1X
i=0

cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄
+

eN(l−1)X
n=1

supbs∈S
¯̄̄
V (bs, (t(l−1)−n), θ(t(l−1)−n))− V (t(l−1)−n)(bs, (t(l−1)−n), θ(t(l−1)−n))

¯̄̄
cW (t(l)−m, t(l − 1), t(l − 1)− n)

Now, we take weighted sum of
¯̄̄
V
³
s, , θ(t(l)−m)

´
− V (t(l)−m)

³
s, , θ(t(l)−m)

´¯̄̄
, m = 1, ... eN(l),

where the weights are defined to beW# (t(l), t(l)−m). These weights satisfyW# (t(l), tl) >

0 for tl such that t(l − 1) ≤ tl < t(l) andX
t(l−1)≤tl<t(l)

W# (t(l), tl) = 1 (A20)

60

Then,

eN(l)X
m=1

¯̄̄
V
³
s, (t(l)−m), θ(t(l)−m)

´
− V (t(l)−m)

³
s, (t(l)−m), θ(t(l)−m)

´¯̄̄
W# (t(l), t(l)−m)

≤
eN(l)X
m=1

½
sup
s0∈S

¯̄̄
A(t(l)−m)

³
θ(t(l)−m)

´¯̄̄

+

eN(l)−m−1X
i=0

cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1)

sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄¾
W# (t(l), t(l)−m)

+

eN(l)X
m=1

eN(l−1)X
n=1

supbs∈S
¯̄̄
V (bs, (t(l−1)−n), θ(t(l−1)−n))− V (t(l−1)−n)(bs, (t(l−1)−n), θ(t(l−1)−n))

¯̄̄
cW (t(l)−m, t(l − 1), t(l − 1)− n)W# (t(l), t(l)−m) (A21)

Now, let,

B1(l, l) =

eN(l)X
m=1

sup
¯̄
A(t(l)−m)

¯̄
W# (t(l), t(l)−m) ,

B2(l, l) ≡
eN(l)X
m=1

W# (t(l), t(l)−m)

×
eN(l)−m−1X

j=0

ncW (t(l)−m, t(l)−m− j, t(l)−m− j − 1) sup
¯̄
A(t(l)−m−j−1)

¯̄o
and,

A(l, l) ≡ B1(l, l) +B2(l, l).

Lemma 6

A(l, l)
P→ 0 as l→∞.

Proof : We first show that B1(l, l)
P→ 0. Recall that

A(t)(θ) = β

⎡⎣Z V (s0, 0, θ)dF 0(0, θ)−
N(t)X
n=1

V (s0, (t−n), θ)WN(t),h(θ, θ
(t−n))

⎤⎦
61

+β

⎡⎣N(t)X
n=1

h
V (s0, (t−n), θ)− V (s0, (t−n), θ(t−n))

i
WN(t),h(θ, θ

(t−n))

⎤⎦
Because

R
V (s0, 0, θ)dF 0(0, θ), and V (s0, (t−n), θ) are uniformly bounded and the parameter

space is compact, A(t) is uniformly bounded. Hence, there exists A > 0 such that A(t) ≤ A

for any t. Because A(t) P→ 0 uniformly, for any η1 > 0, η2 > 0, there exists T such that for

any t > T ,

Pr

∙
sup

s0∈S,θ∈Θ

¯̄
A(t)(θ)

¯̄
< η1

¸
> 1− η2

Therefore,

E

∙
sup

s0∈S,θ∈Θ

¯̄
A(t)(θ)

¯̄¸
≤ η1 Pr

∙
sup

s0∈S,θ∈Θ

¯̄
A(t)(θ)

¯̄
< η1

¸
+APr

∙
sup

s0∈S,θ∈Θ

¯̄
A(t)(θ)

¯̄
≥ η1

¸
≤ η1 (1− η2) +Aη2 (A22)

Hence,

E [B1(l, l)] = E

⎡⎣ eN(l)X
m=1

sup
¯̄
A(t(l)−m)

¯̄
W# (t(l), t(l)−m)

⎤⎦
≤

eN(l)X
m=1

W# (t(l), t(l)−m)
£
η1 (1− η2) +Aη2

¤
=

£
η1 (1− η2) +Aη2

¤
Now, from Chebychev’s Inequality,

Pr

⎡⎣ 1eN(l)
eN(l)X
m=1

W#(t(l), t(l)−m) sup
s0,θ(t(l)−m)∈Θ

¯̄
A(t(l)−m)

¯̄
> δ

⎤⎦
≤

£
η1 (1− η2) + η2A

¤
δ

(A23)

For any given δ, the RHS can be made arbitrarily small by choosing η1and η2. Thus,

B1(l, l)
P→ 0 as t→∞.

We now show that B2(l, l)
P→ 0 as t→∞. Recall that B2(l, l) =

eN(l)P
m=1

W# (t(l), t(l)−m)

62

×
PeN(l)−m−1

j=0

ncW (t(l)−m, t(l)−m− j, t(l)−m− j − 1) sup
¯̄
A(t(l)−m−j−1)

¯̄o
For any t0 > t > 0, let, eK (t0, t) ≡ Kh

³
θ(t

0) − θ(t)
´

For t1 > t2 > t, define W ∗ (t1, t2, t, j) recursively to be as follows.

W ∗ (t1, t2, t, 1) ≡ fW (t1, t)
W ∗ (t1, t2, t, 2) ≡

t1−t2X
j=1

fW (t1, t1 − j)W ∗ (t1 − j, t2, t, 1)

...

W ∗ (t1, t2, t, k) ≡
t1−t2−(k−2)X

j=1

fW (t1, t1 − j)W ∗ (t1 − j, t2, t, k − 1)

Similarly,

K∗ (t1, t2, t, 1) ≡
1

N(t1)
eK(t1, t)

K∗ (t1, t2, t, 2) ≡
t1−t2X
j=1

1

N(t1)
eK(t1, t1 − j)K∗ (t1 − j, t2, t, 1)

...

K∗ (t1, t2, t, k) ≡
t1−t2−(k−2)X

j=1

1

N(t1)
eK(t1, t1 − j)K∗ (t1 − j, t2, t, k − 1)

Then,

cW (t(l), t(l − 1), τ) ≡ eN(l)+1X
m=1

⎧⎨⎩ X
Ψm(t(l),t(l−1),τ)

mY
k=1

fW (tk, tk−1)

⎫⎬⎭
=

eN(l)+1X
k=1

W ∗(t(l), t(l − 1), τ , k) (A24)

63

Hence,

eN(l)−m−1X
i=0

½cW (t(l), t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄¾

=

eN(l)−m−1X
i=0

(
m+i+1X
k=1

W ∗(t(l), t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄)

=

eN(l)X
k=1

⎧⎨⎩
eN(l)−m−1X

i=max{0,k−m−1}

W ∗(t(l), t(l)−m− i, t(l)−m− i− 1, k) sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄⎫⎬⎭
Also, notice that,

W ∗(t(l), t(l)− i, t(l)− i− 1, k)

=
X

Ψk(t(l),t(l)−i,t(l)−i−1)

kY
j=1

fW (tj, tj − 1)

=
X

Ψk(t(l),t(l)−i,t(l)−i−1)

kY
j=1

β
eK (tj, tj − 1)

N(tj)P
i=1

eK (tj, tj − i)

≤ βk

⎡⎣ inf
t(l−1)≤t≤t(l)

N(t)X
i=1

eK (t, t− i)

⎤⎦−k X
Ψk(t(l),t(l)−i,t(l)−i−1)

kY
j=1

eK (tj, tj−1)
= βk

⎡⎣ 1eN(l) inf
t(l−1)≤t≤t(l)

N(t)X
i=1

eK (t, t− i)

⎤⎦−k X
Ψk(t(l),t(l)−i,t(l)−i−1)

kY
j=1

eK (tj , tj−1)eN(l)
= βk

⎡⎣ 1eN(l) inf
t(l−1)≤t≤t(l)

N(t)X
i=1

eK (t, t− i)

⎤⎦−kK∗(t(l), t(l)− i, t(l)− i− 1, k)

Hence, we get

64

Pr

⎡⎣ eN(l)X
k=1

eN(l)X
m=1

W#(t(l), t(l)−m)

eN(l)−m−1X
i=max{0,k−m−1}

W ∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄
≥ δ − δ

eN(l)+2
1− δ

#

≤ Pr

⎡⎣ eN(l)[
k=1

⎧⎨⎩
eN(l)X
m=1

W#(t(l), t(l)−m)

eN(l)−m−1X
i=max{0.k−m−1}

W ∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄
≥ δk

¾¸

≤
eN(l)X
k=1

Pr

⎡⎣ eN(l)X
m=1

W#(t(l), t(l)−m)

eN(l)−m−1X
i=max{0,k−m−1}

W ∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄
≥ δk

¸

≤
eN(l)X
k=1

Pr

⎧⎨⎩
⎡⎣ eN(l)X
m=1

W#(t(l), t(l)−m)

eN(l)−m−1X
i=max{0,k−m−1}

K∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄
≥
∙

δ

4Aβ
ε0 inf

θ
g (θ)

¸k#
[⎡⎣ inf

t(l−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦ <
1

4A
ε0 inf

θ
g (θ)

⎤⎦⎫⎬⎭
≤

eN(l)X
k=1

Pr

⎡⎣ eN(l)X
m=1

W#(t(l), t(l)−m)

eN(l)−m−1X
i=max{0,k−m−1}

K∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄
≥
∙

δ

4Aβ
ε0 inf

θ
g (θ)

¸k#

+Pr

⎡⎣ inf
t(l−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦ <
1

4A
ε0 inf

θ
g (θ)

⎤⎦

65

Claim 1 : The following equation holds.

E

⎧⎨⎩
eN(l)X
m=1

K∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)

⎫⎬⎭
≤ k+1

1

½
sup
θ0∈Θ

E [Kh (θ
0 − θ(eg))]¾k

1

(k − 1)! (A25)

Proof: First, by definition of K∗, note that,

E

⎧⎨⎩
eN(l)X
m=1

K∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)

⎫⎬⎭
=

1eN(l)k
eN(l)X
m=1

X
j1,...,jk−1

I(t(l)−m− i ≤ j1 < j2 < ... < jk−1 < jk = t(l))

E

∙
k−1Q
i=0

h
Kh

³
θ(ji+1)(f)− θji(f)

´i¸
(A26)

Because θ0(eg) and θ(eg) are assumed to be independent,
Eθ0,θ [Kh (θ

0(eg)− θ(eg))] = Eθ0 [Eθ {Kh (θ
0(eg)− θ(eg))}]

≤ Eθ0

"
supeθ∈ΘEθ

n
Kh

³eθ − θ(eg)´o#
= supeθ∈ΘEθ

h
Kh

³eθ − θ(eg)´i (A27)

Now, for k ≥ 1, let (j0, j1, ..., jk) satisfy t(l)−m−i−1 = j0 < j1 < j2 < ... < jk−1 < jk = t(l).

Notice that from Lemma 2, for any l,

f (t(l))
³
θ(t(l)), θ(t(l)−1)

´
f (t(l)−1)

³
θ(t(l)−1), θ(t(l)−2)

´
...f (2)

³
θ(2), θ(1)

´
=

1Y
l=k

(
f (jl)(θ(jl), θ(jl−1))

" Y
jl−1<t<tjl

f (t)
³
θ(t), θ(t−1)

´#)
f (j0)(θ(j0), θ(j0−1))f (j0−1)(θ(j0−1), θ(j0−2))...f (2)

³
θ(2), θ(1)

´
≤

1Y
l=k

(
ε1eg(θ(jl))" Y

jl−1<t<tjl

f (t)
³
θ(t), θ(t−1)

´#)
ε1eg(θ(j0))f (j0−1)(θ(j0−1), θ(j0−2))...f (2) ³θ(2), θ(1)´

66

Because Kh () ≥ 0,

E
h
Kh(θ

(t(l)) − θ(t(l)−m))
i
= E

h
Kh

³
θ(t(l))(f t(l))− θ(t(l)−m)(f (t(l)−m))

´i
≤ ε21E

h
Kh

³
θ(t(l))(eg)− θ(t(l)−m)(eg)´i .

By A27,

E

∙
k−1Q
i=0

h
Kh

³
θ(ji+1)(f)− θji(f)

´i¸
≤ εk+11 E

∙
k−1Q
i=0

h
Kh

³
θ(ji+1)(eg)− θji(eg)´i¸

≤ εk+11 E

∙
k−1Q
i=0

sup
θ0∈Θ

£
Kh

¡
θ0 − θji(eg)¢¤¸ = εk+11

½
sup
θ0∈Θ

E [Kh (θ
0 − θ(eg))]¾k

(A28)

Furthermore, for any i,m such that 0 < m+ i ≤ eN(l) and for any k > 1 such that k ≤ m+ i,

1eN(l)k−1 X
j1,...,jk−1

I(t(l)−m− i ≤ j1 < ... < jk−1 < t(l))

=
1eN(l)k−1

µ
[m+ i]!

(k − 1)!(m+ i− (k − 1))!

¶

≤

h
[m+ i] / eN(l)ik−1

(k − 1)! ≤ 1

(k − 1)! (A29)

Substituting A28 and A29 into A26, A25 follows and hence Claim 1 is proved.

Now, by
PeN(l)

m=1W
#(t(l), t(l) −m) = 1, the law of iterated expectations and the results

67

obtained in A22 and A25,

E

⎡⎣ eN(l)X
m=1

W#(t(l), t(l)−m)

eN(l)−m−1X
i=max{0,k−m−1}

K∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄¸

= E

⎧⎨⎩
eN(l)X
m=1

W#(t(l), t(l)−m)

E

⎡⎣ eN(l)−m−1X
i=max{0,k−m−1}

K∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)|Ω(t(l)−m−i−1)
⎤⎦ sup

s0∈S

¯̄
A(t(l)−m−i−1)

¯̄⎫⎬⎭
≤

eN(l)X
m=1

W#(t(l), t(l)−m)

∙
εk+11 sup

θ0∈Θ
E [Kh (θ

0 − θ(eg))]k 1

(k − 1)!

¸ £
η1 (1− η2) + η2A

¤
=

∙
εk+11 sup

θ0∈Θ
E [Kh (θ

0 − θ(eg))]k 1

(k − 1)!

¸ £
η1 (1− η2) + η2A

¤
Chebychev Inequality implies,

Pr

⎡⎣ eN(l)X
m=1

W#(t(l), t(l)−m)

eN(l)−m−1X
i=max{0,k−m−1}

K∗(t(l), t(l)−m− i, t(l)−m− i− 1, k)

sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄
>

∙
δ

4Aβ
ε0 inf

θ
g (θ)

¸k#

≤
£
η1 (1− η2) + η2A

¤
εk+11 supθ0∈ΘE [Kh (θ

0 − θ(eg))]k 1
(k−1)!h

δ
4Aβ

ε0 infθ g (θ)
ik (A30)

Claim 2: For any t(l − 1) ≤ t ≤ t(l), either
h
t(l − 1)− eN(l − 1)/2, t(l − 1)i ⊆ [t−N(t), t]

orh
t(l − 1), t(l − 1) + eN(l − 1)/2i ⊆ [t−N(t), t] or both.

Proof : First, we show that for t satistying t(l − 1) ≤ t ≤ t(l − 1) + eN(l − 1)/2,h
t(l − 1)− eN(l − 1)/2, t(l − 1)i ⊆ [t−N(t), t] (A31)

68

Because N() is a nondecreasing function, N(t) ≥ eN(l − 1). Hence,
t− t(l − 1) ≤ eN(l − 1)/2 = eN(l − 1)− eN(l − 1)/2 ≤ N(t)− eN(l − 1)/2

Thus,

t−N(t) ≤ t(l − 1)− eN(l − 1)/2
Since t(l − 1) ≤ t, A31 holds.

Next, we show that for t satisfying t(l − 1) + eN(l − 1)/2 ≤ t ≤ t(l),h
t(l − 1), t(l − 1) + eN(l − 1)/2i ⊆ [t−N(t), t] . (A32)

From the definition of eN(),
t(l)− eN(l) = t(l − 1)

Furthermore, because N(s) is increasing at most by one with unit increase in s, s−N(s) is

nondecreasing in s. Hence,

t−N(t) ≤ t(l)− eN(l) = t(l − 1).

Furthermore, t ≥ t(l − 1) + eN(l − 1)/2. Therefore, A32 holds. Hence, Claim 2 is proved.

Now, from A6, we know that for any η3 > 0, there exists L such that for any l > L,

t1 = t(l − 1) and for t2 = t(l − 1) + eN(l − 1)/2,
Pr

"
1eN(l)/2

eN(l)/2P
k=1

Kh(θ − θ(ti−k)(f (ti−k))) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

#
≤ η3, i = 1, 2

Therefore,

Pr

"(
1eN(l)/2

eN(l)/2P
k=1

Kh(θ − θ(t1−k)(f (t1−k))) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

) S
(

1eN(l)/2
eN(l)/2P
k=1

Kh(θ − θ(t2−k)(f (t2−k))) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

)#

≤ Pr

"
1eN(l)/2

eN(l)/2P
k=1

Kh(θ − θ(t1−k)(f (t1−k))) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

#

+Pr

"
1eN(l)/2

eN(l)/2P
k=1

Kh(θ − θ(t2−k)(f (t2−k))) ≤ 1
2
ε0 inf

θ∈Θ
g (θ)

#
≤ 2η3

69

Therefore,

Pr

"(
1eN(l)/2

eN(l)/2P
k=1

Kh(θ − θ(t1−k)(f (t1−k))) >
1

2
ε0 inf

θ∈Θ
g (θ)

) T
(

1eN(l)/2
eN(l)/2P
k=1

Kh(θ − θ(t2−k)(f (t2−k))) >
1

2
ε0 inf

θ∈Θ
g (θ)

)#
> 1− 2η3

Hence, for any t such that t(l − 1) ≤ t ≤ t(l),

1eN(l)
N(t)P
n=1

Kh(θ − θ(t−k)(f (t−k))) ≥
eN(l − 1)/2eN(l) 1eN(l − 1)/2

eN(l−1)/2P
k=1

Kh(θ − θ(s−k)(f (s−k)))

(A33)

where either s = t1 = t(l− 1) or s = t2 = t(l− 1)+ eN(l− 1)/2 or both. Furthermore, notice
that

eN(l−1)/2eN(l) ≥ 1
2A
. Therefore,

Pr

"
inf

t(l−1)≤t≤t(l)

1eN(l)
N(t)P
n=1

Kh(θ − θ(t−n)(f (t−n))) ≥ 1

4A
ε0 inf

θ∈Θ
g (θ)

#
> 1− 2η3

Thus,

Pr

⎡⎣ inf
t(l−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
n=1

eK(t, t− n)

⎤⎦ <
1

4A
ε0 inf

θ
g (θ)

⎤⎦ ≤ 2η3 (A34)

By A30 and A34,

RHS of A24

≤
eN(l)+1X
k=1

£
η1 (1− η2) + η2A

¤
εk+11 supθ0∈ΘEθ [Kh (θ

0 − θ(g))]
k 1
(k−1)!h

δ
4Aβ

ε0 infθ g (θ)
ik + 2η3

= ε1
£
η1 (1− η2) + η2A

¤
eλλ

eN(l)+1X
k=1

"
e−λ

λ(k−1)

(k − 1)!

#
+ 2η3

where,

λ =
4Aβε1 supθ0∈ΘEθ [Kh (θ

0 − θ(g))]

δε0 infθ g (θ)
> 0

70

Notice that e−λ λ
k

k!
is the formula for the distribution function of the Poisson distribution.

Hence, eN(l)+1X
k=1

e−λ
λ(k−1)

(k − 1)! ≤
∞X
k=1

e−λ
λ(k−1)

(k − 1)! = 1

Together, we have shown that,

LHS of A24

≤ ε1
£
η1 (1− η2) + η2A

¤
λ exp (λ) + 2η3 (A35)

Now,

Eθ {Kh(θ
0, θ(g))}→ g(θ0) as h→ 0.

Hence, for any B > supθ∈Θ g(θ), there exists H > 0 such that for any positive h < H,

Eθ {Kh(θ
0, θ(g))} < B

Furthermore, for h satisfying H ≤ h ≤ h(eN(1)), Eθ {Kh(θ
0, θ(g))} is bounded. Therefore,

supremum of this expectation over θ0 is uniformly bounded. Therefore, λ also is uniformly

bounded. Hence, RHS of A35 can be made arbitrarily small by choosing η1, η2 and η3 small

enough.

Thus, Lemma 6 is proved. That is, we have shown that

A(l, l)→ 0 as l→∞

Let

Ξ (l, l1 + 1)

≡ {(tl, tl−1, ..., tl1+1) : t(l1) ≤ tl1+1 < t(l1 + 1), ..., tl−1 ≤ t(l − 1) ≤ tl < t(l)} .

Now, define,
−→
W (t(l), t(l1), tl1) as follows: For l1 = l,

−→
W (t(l), t(l), tl) ≡W# (t(l), tl) .

For l1 = l − 1,
−→
W (t(l), t(l − 1), tl−1)

=

eN(l)X
m=1

W# (t(l), t(l)−m)cW (t(l)−m, t(l − 1), tl−1).

71

For l1 ≤ l − 2,
−→
W (t(l), t(l1), tl1)

≡
X

(tl,tt−1,...,tl1+1)∈Ξ(l,l1+1)

W# (t(l), tl)

(
l−1Y

j=l1+1

cW (tj+1, t(j), tj)

)cW (tl1+1, t(l1), tl1)

Hence, A21 can be written as follows.

eN(l)X
m=1

¯̄̄
V
³
s, (t(l)−m), θ(t(l)−m)

´
− V (t(l)−m)

³
s, (t(l)−m), θ(t(l)−m)

´¯̄̄−→
W (t(l), t(l), t(l)−m)

≤
eN(l)X
m=1

−→
W (t(l), t(l), t(l)−m) sup

s0∈S

¯̄̄
A(t(l)−m)

³
θ(t(l)−m)

´¯̄̄

+

eN(l)X
m=1

−→
W (t(l), t(l), t(l)−m)

×
N(l)−m−1X

i=0

cW (t(l)−m, t(l)−m− i, t(l)−m− i− 1) sup
s0∈S

¯̄
A(t(l)−m−i−1)

¯̄
+

eN(l−1)X
m=1

supbs∈S
¯̄̄
V (bs, (t(l−1)−m), θ(t(l−1)−m))− V (t(l−1)−m)(bs, (t(l−1)−m), θ(t(l−1)−m))

¯̄̄
−→
W (t(l), t(l − 1), t(l − 1)−m) (A36)

Now, let

A(l, l1) ≡ B1(l, l1) +B2(l, l1)

where,

B1(l, l1) ≡
eN(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m) sup

s0∈S

¯̄
A(t(l1)−m)

¯̄
and

B2(l, l1) ≡
eN(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m)

N(l1)−m−1X
j=0½cW (t(l1)−m, t(l1)−m− j, t(l1)−m− j − 1) sup

s0∈S

¯̄
A(t(l1)−m−j−1)

¯̄¾
72

Then,

eN(l1)X
m=1

¯̄̄
V
³
s, (t(l1)−m), θ(t(l1)−m)

´
− V (t(l1)−m)

³
s, (t(l1)−m), θ(t(l1)−m)

´¯̄̄
−→
W (t(l), t(l1), t(l1)−m)

≤ A(l, l1)

+

eN(l1−1)X
m=1

¯̄̄
V
³
s, (t(l1−1)−m), θ(t(l1−1)−m)

´
− V (t(l1−1)−m)

³
s, (t(l1−1)−m), θ(t(l1−1)−m)

´¯̄̄
−→
W (t(l), t(l1 − 1), t(l1 − 1)−m) (A37)

Lemma 7

Given l > l1

A(l, l1)
P→ 0 as l→∞.

Proof : By definition of
−→
W ,

−→
W (t(l), t(l1), t(l1)−m)

=

⎡⎣ P
t(l−1)≤tl<t(l)

W# (t(l), tl)

⎧⎨⎩ X
t(l−2)≤tl−1<t(l−1)

cW (tl, t(l − 1), tl−1)

...

⎧⎨⎩ X
t(l1)≤tl1+1<t(l1+1)

cW (tl1+2, t(l1 + 1), tl1+1)cW (tl1+1, t(l1), t(l1)−m)

⎫⎬⎭
⎫⎬⎭
⎤⎦(A38)

By Lemma 5, eN(l1)P
m=1

cW (tl1+1, t(l1), t(l1)−m) ≤ β

and similarly, for any k > l1, X
t(k−1)≤tk<t(k)

cW (tk+1, t(k), tk) ≤ β

Applying these inequalities to A38 yields,

eN(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m) ≤ β(l−l1) (A39)

73

By A22 and A39 (and using iterated expectations as earlier),

E [B1(l, l1)] ≡ E

⎡⎣ eN(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m) sup

s0∈S

¯̄
A(t(l1)−m)

¯̄⎤⎦
≤ βl−l1

£
η1 (1− η2) + η2A

¤
.

Hence, from Chebychev Inequality

Pr [B1(l, l1) ≥ δ] ≤
βl−l1

£
η1 (1− η2) + η2A

¤
δ

Since, η1, η2 can be made arbitrarily small by choosing l to be large enough, for any arbitarily

positive δ, RHS can be made arbitarrily small by increasing l, while keeping l− l1 constant,

B1(l, l1)
P→ 0

as l→∞.
Next, we prove convergence of B2(l, l1). We again use A22, A25, and A39 and the law of

iterated expectations, to derive,

E

⎡⎣ eN(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m)

⎧⎨⎩
eN(l1)−m−1X

j=max{0,k−m−1}

K∗(t(l1)−m, t(l1)−m− j, t(l1)−m− j − 1, k) sup
s0∈S

¯̄
A(t(l1)−m−j−1)

¯̄⎫⎬⎭
⎤⎦

≤ β(l−l1)
£
η1 (1− η2) + η2A

¤
k+1
1

½
sup
θ0∈Θ

E [Kh (θ
0 − θ(eg))]¾k

1

(k − 1)!

74

Hence, from Chebyshev’s inequality, we get,

Pr

⎡⎣ eN(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m)

⎧⎨⎩
eN(l1)−m−1X

j=max{0,k−m−1}

K∗(t(l1)−m, t(l1)−m− j, t(l1)−m− j − 1, k) sup
s0∈S

¯̄
A(t(l1)−m−j−1)

¯̄⎫⎬⎭
>

∙
δ

4Al+1−l1
ε0 inf

θ
g (θ)

¸k#

≤
β(l−l1)

£
η1 (1− η2) + η2A

¤
k+1
1 supθ0∈ΘE [Kh (θ

0 − θ(eg))]k 1
(k−1)!£

δ
4Al+1−l1 ε0 infθ g (θ)

¤k
Furthermore, let t1(l) ≡ t(l − 1) and t2(l) = t(l − 1) + eN(l − 1)/2. Then, arguments similar
to ones used in deriving equation A33 can be used to derive the inequality below.

inf
t(l1−1)≤t≤t(l)

⎡⎣ 1eN(l)
N(t)X
i=1

eK(t, t− i)

⎤⎦
≥ min

l1−1≤el<l
(eN(el)/2eN(l) 1eN(el)/2 min

(eN(el)/2P
k=1

Kh(θ − θ(t1(
el)−k)(f (t1(el)−k))), eN(el)/2P

k=1

Kh(θ − θ(t2(
el)−k)(f (t2(el)−k)))

))

≥ 1

2Al+1−l1
1eN(l∗)/2 min

(eN(l∗)/2P
k=1

Kh(θ − θ(t1(l
∗)−k)(f (t1(l

∗)−k))),
eN(l∗)/2P
k=1

Kh(θ − θ(t2(l
∗)−k)(f (t2(l

∗)−k)))

)

where,

l∗ ≡ arg minel:l1−1≤el<l
(

1

2Al+1−el 1eN(el)/2
min

(eN(el)/2P
k=1

Kh(θ − θ(t1(
el)−k)(f (t1(el)−k))), eN(el)/2P

k=1

Kh(θ − θ(t2(
el)−k)(f (t2(el)−k)))

))

Hence, using A24,

75

Pr

⎡⎣ eN(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m)

eN(l1)−m−1X
j=max{0,k−m−1}

cW (t(l1)−m, t(l1)−m− j, t(l1)−m− j − 1) sup
s0∈S

¯̄
A(t(l1)−m−j−1)

¯̄
>

δ − δ
eN(l)+1

1− δ

⎤⎦
≤

eN(l1)X
k=1

Pr

⎡⎣ eN(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m)

eN(l1)−m−1X
j=max{0,k−m−1}

W ∗ (t(l1)−m, t(l1)−m− j, t(l1)−m− j − 1, k) sup
s0∈S

¯̄
A(t(l1)−m−j−1)

¯̄
≥ δk

⎤⎦

≤
eN(l1)X
k=1

Pr

⎡⎣ eN(l1)X
m=1

−→
W (t(l), t(l1), t(l1)−m)

eN(l1)−m−1X
j=max{0,k−m−1}

βkK∗(t(l1)−m, t(l1)−m− j, t(l1)−m− j − 1, k) sup
s0∈S

¯̄
A(t(l1)−m−j−1)

¯̄
≥
∙

δ

4Al+1−l1
ε0 inf

θ
g (θ)

¸k#

+Pr

"
inf

l1−1<el≤l
1eN(l) min

(eN(el)/2P
k=1

Kh(θ − θ(t1(
el)−k)(f (t1(el)−k))), eN(el)/2P

k=1

Kh(θ − θ(t2(
el)−k)(f (t2(el)−k)))

)

<
1

4Al+1−l1
ε0 inf

θ
g (θ)

¸

≤ βl−l1ε1
£
η1 (1− η2) + η2A

¤
eλ

eN(l1)X
k=1

∙
e−λ

λk

(k − 1)!

¸
+ 2(l + 1− l1)η3

where,

λ =
4βAl+1−l1ε1 supθ0∈ΘE [Kh (θ

0 − θ(g))]

δε0 infθ g (θ)
> 0

which can be made arbitrarily close to zero by increasing l while keeping∆l ≡ l−l1 constant.
Therefore,

B2(l, l −∆l)
P→ 0

76

Hence, Lemma 7 holds.

Now, let,

∆V (m,n) ≡ sup
s∈S

¯̄̄
V (s, (t(m)−n), θ(t(m)−n))− V (t(m)−n)(s, (t(m)−n), θ(t(m)−n))

¯̄̄

∆V (m) ≡
h
∆V (m, 1), ...,∆V (m, eN(m))i

W (l, k) ≡
h−→
W (t(l), t(l + 1− k), t(l + 1− k)−m)

i eN(l+1−k)
m=1

Then, by A39,W (l, k)0 ι ≤ βk−1 and from A36, we obtain the following.

∆V (l)0W (l, 1) ≤ A(l, l) +∆V (l − 1)0W (l, 2)

≤ ... ≤
k−1X
i=0

A (l, l − i) +∆V (l − k)0W (l, k + 1) .

Given k, the first term on the RHS,
k−1P
i=0

A (l, l − i) converge to 0 in probability as l→∞, by

Lemma 7 and since ∆V (l + 1− k) is bounded and W (l, k)0 ι ≤ βk−1, the second term can

be made arbitrarily small by chosing a large enough k. Therefore, ∆V (l)0W (l, 1) converges

to zero in probability as l→∞.
Lemma 8:

¯̄̄
V (s, (t), θ(t))− V (t)(s, (t), θ(t))

¯̄̄
P→ 0 as t→∞

Suppose not. Then, there exists a positive δ, η and a sequence {tk} such that

Pr
³¯̄̄
V (s, (tk), θ(tk))− V (tk)(s, (tk), θ(tk))

¯̄̄
≥ δ

´
> η. (A40)

Set the weights W# be as follows: If there is tk such that t(l − 1) ≤ tk < t(l), then, let

t∗(l) = min
t(l−1)≤tk<t(l)

{tk} .

Otherwise, let

t∗(l) = t(l − 1).

77

Let

W# (t(l), tl) = I(tl = t∗(l))

Then, because ∆V (l)0W (l, 1)
P→ 0 as l→∞,¯̄̄

V (s, (t∗(l)), θ(t
∗(l)))− V (t∗(l))(s, (t∗(l)), θ(t

∗(l)))
¯̄̄

P→ 0 as l→∞

which contradicts A40. Hence, Lemma 8 holds, and thus we have proved Theorem 1.

Proof of Theorem 2

We are given a Markov chain with transition function f (t) (., .) which converges to f (., .)

in probability uniformly as t → ∞. As in Lemma 1, we can construct a density g(.) and a

constant ε > 0 such that for any θ ∈ Θ,

f (t)(θ, .) ≥ εg(.)

f(θ, .) ≥ εg(.)

Define ν(t) as follows.

v(t)(θ) = min

½
inf
θ0

½
f (t) (θ, θ0)

f (θ, θ0)

¾
, 1

¾
Then,

f (t)(θ, .) ≥ v(t)f (θ, .)

f(θ, .) ≥ v(t)f (θ, .)

Now, construct the following coupling scheme. Let X(t) be a random variable that follows

the transition probability f (t)(x, .) given X(t−1) = x, and Y (t) be a Markov process that

follows the transition probability f(y, .), given Y (t−1) = y. Suppose X(t) 6= Y (t). With

probability ε > 0, let

X(t+1) = Y (t+1) = Z(t+1)˜g(.)

and with probability 1− ε,

X(t+1)˜
1

1− ε

£
f (t)

¡
X(t), .

¢
− εg(.)

¤

78

Y (t+1)˜
1

1− ε

£
f
¡
Y (t), .

¢
− εg(.)

¤
Suppose X(t) = Y (t) = Z(t). With probability v(t),

X(t+1) = Y (t+1)˜f(Z(t), .)

and with probaiblity 1− v(t),

X(t+1)˜
1

1− v(t)
£
f (t)

¡
X(t), .

¢
− v(t)f(Z(t), .)

¤

Y (t+1)˜
1

1− v(t)
£
f
¡
Y (t), .

¢
− v(t)f(Z(t), .)

¤
As f (t)(x, .) P→ f(x, .) uniformly over the compact parameter set Θ, v(t) converges to 1 in

probability. Let w(t) = 1 − v(t). Then, w(t) P→ 0 as t → ∞. Let S(t) ∈ {1, 2} be the state
at iteration t, where state 1 is assumed to be the state in which X(t) = Y (t), and state 2

the state in which X(t) 6= Y (t). Then, S(t) follows the Markov process with the following

transition matrix.

P =

∙
1− w(t) w(t)

ε 1− ε

¸
Denote the unconditional probability of state 1 at time t as π(t). Then,

£
π(t+1), 1− π(t+1)

¤
=
£
π(t), 1− π(t)

¤ ∙ 1− w(t) w(t)

ε 1− ε

¸
Hence,

π(t+1) = π(t)
¡
1− w(t) − ε

¢
+ ε

≥ π(t) (1− ε) + ε− w(t)

≥ π(t−m) (1− ε)m+1 + 1− (1− ε)m+1 −
£
w(t) + (1− ε)w(t−1) + ...+ (1− ε)mw(t−m)

¤
We now prove that π(t) P→ 1.

Define Wtm to be

Wtm = w(t) + (1− ε)w(t−1) + ...+ (1− ε)mw(t−m)

79

Because w(t) P→ 0, for any δ1 > 0, δ2 > 0, there exists N > 0 such that for any t ≥ N ,

Pr
£¯̄
w(t) − 0

¯̄
< δ1

¤
> 1− δ2

Now, given any δ1 > 0, δ2 > 0, let m be such that

max
©
(1− ε)m , εm+1

ª
<

δ1
5

Also, let δ1 satisfy δ1 < δ1
5(m+1)

, and δ2 satisfy δ2 < δ2
m+1

. Then,

Pr

½
|Wtm − 0| <

δ1
5

¾
≥ Pr

(
t\

j=t−m

¯̄
w(j) − 0

¯̄
< δ1

)

= 1− Pr
(

t[
j=t−m

¯̄
w(j) − 0

¯̄
≥ δ1

)

≥ 1−
tX

j=t−m
Pr
©¯̄
w(j) − 0

¯̄
≥ δ1

ª
≥ 1− δ2 (A47)

Now, let N be defined as N = max {N,m}. Then, for each k > N ,

Pr
£¯̄
π(t+1) − 1

¯̄
< δ1

¤
≥ Pr

£¯̄
π(t−m) (1− ε)m − (1− ε)m+1 +Wtm

¯̄
< δ1

¤
≥ Pr

∙¯̄
π(t−m) (1− ε)m − (1− ε)m+1

¯̄
<
2δ1
5
, |Wtm| <

δ1
5

¸
= Pr

∙
|Wtm| <

δ1
5

¸
(A48)

Last equality holds because 0 ≤ π(t−m) ≤ 1 and thus,¯̄
π(t−m) (1− ε)m − (1− ε)m+1

¯̄
≤
¯̄
(1− ε)m − (1− ε)m+1

¯̄
≤ |(1− ε)m| < δ1

5

From (A47) and (A48), we conclude that

Pr
£¯̄
π(t+1) − 1

¯̄
< δ1

¤
≥ 1− δ2

Therefore, πk converges to 1 in probability.

Therefore, for any δ > 0, there exists M such that for any t > M ,

Pr
£
X(t) = Y (t)

¤
> 1− δ

Since Y (t)follows a stationary distribution, X(t) converges to a stationary process in proba-

bility.

80

Figure 1: Gibbs Sampler Output of Exit Value (True Value:0.4)

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

iteration

de
lta

x

Series1

Figure 2: Gibbs Sampler Output of Entry Cost (True Value:0.4)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

iteration

de
lta

E

Series1

Figure 3: Gibbs Sampler Output of the Entry and Exit Shock Standard
Error (True Value: 0.4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

iteration

si
gm

a2

Series1

Figure 4: Gibbs Sampler Output of the Capital Stock Transition
Parameter b1 (True Value: 0.1)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

iteration

b1 Series1

