

Working Paper Series 216

Cyclical Effects of Bank Capital Buffers with Imperfect Credit Markets: international evidence

A.R. Fonseca, F. González and L. Pereira da Silva October, 2010

					30 00.038.100/0001-05
Working Paper Series	Brasília	n. 216	Oct.	2010	p. 1-54

Working Paper Series

Edited by Research Department (Depep) - E-mail: workingpaper@bcb.gov.br

Editor: Benjamin Miranda Tabak – E-mail: benjamin.tabak@bcb.gov.br Editorial Assistant: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br Head of Research Department: Adriana Soares Sales – E-mail: adriana.sales@bcb.gov.br

The Banco Central do Brasil Working Papers are all evaluated in double blind referee process.

Reproduction is permitted only if source is stated as follows: Working Paper n. 216.

Authorized by Carlos Hamilton Vasconcelos Araújo, Deputy Governor for Economic Policy.

General Control of Publications

Banco Central do Brasil Secre/Surel/Cogiv SBS – Quadra 3 – Bloco B – Edifício-Sede – 1° andar Caixa Postal 8.670 70074-900 Brasília – DF – Brazil Phones: +55 (61) 3414-3710 and 3414-3565 Fax: +55 (61) 3414-3626 E-mail: editor@bcb.gov.br

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, é requerida a citação da fonte, mesmo quando reproduzido parcialmente.

Consumer Complaints and Public Enquiries Center

Banco Central do Brasil Secre/Surel/Diate SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º subsolo 70074-900 Brasília – DF – Brazil Fax: +55 (61) 3414-2553 Internet: http://www.bcb.gov.br/?english

Cyclical Effects of Bank Capital Buffers with Imperfect Credit Markets: international evidence^{*}

A.R. Fonseca^{**} F. González^{**} L. Pereira da Silva^{***}

Abstract

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the author(s) and do not necessarily reflect those of the Banco Central do Brasil.

This paper analyzes the cyclical effects of bank capital buffers using an international sample of 2,361 banks from 92 countries over the 1990-2007 period. We find that capital buffers reduce the bank credit supply but – through what could be "monitoring or signaling effects" – have also an expansionary effect on economic activity by reducing lending and deposit rate spreads. This influence on lending and deposit rate spreads is more pronunced in developing countries and during downturns. The results suggest that capital buffers have a counter-cyclical effect in these countries. Our data do not suggest differences in the cyclical effects of capital buffers between Basel I and Basel II.

Keywords: capital regulation, cyclical effects, developing countries, interest rates, panel data

JEL Classification: E32, E44, G21, G28.

^{*} We would like to thank Pierre-Richard Agénor for useful suggestions. The usual disclaimers apply. ^{**} School of Economics and Business, Department of Business Administration, University of Oviedo.

Corresponding author: Francisco González. E-mail address: fgonzale@uniovi.es

^{**} Deputy Governor for International Affairs, Banco Central do Brasil.

1. Introduction

Bank capital regulation is the most traditional pillar for regulators and supervisors to control bank-risk taking and foster financial stability all over the world.¹ In addition to efficiently increasing financial stability, one of the most discussed effects of capital regulation is its cyclical effect. This discussion has sparked greater interest since the adoption of Basel II and with the current financial crisis.

As Basel II creates a closer link between capital requirements and risk, it makes capital requirements more dependent on the business cycle. In a cyclical downturn, when asset prices start declining, banks may be forced to undertake continuous writedowns (accompanied by increased provisioning), and this raises their need for capital. Capital requirements may therefore increase in a cyclical downturn. If banks are highly leveraged and capital becomes difficult to raise and/or costly, banks might have to reduce their loans, and the subsequent credit squeeze might add to the downturn, making the recession deeper. Similarly, during an economic upturn, the amount of capital required decreases and the credit supply increases, making the economic upturn more marked. These intuitive arguments suggest that capital requirements are procyclical and that Basel II is more pro-cyclical than Basel I.

The cyclical effects of capital regulation may, however, be lower when capital regulations are not binding. Recent empirical evidence shows that most banks keep capital buffers which, in some cases, are quite significant (Ayuso *et al.*, 2004; Nier and Bauman, 2006; Flannery and Rangan, 2008; Fonseca and González, 2009). Capital buffers may even be counter-cyclical if banks tend to increase them, and then reduce their credit supply, during upturns. In this case, banks might be making use of capital buffers to offset—at least partially—the negative effects of pro-cyclical requirements. In contrast, capital buffers may increase the pro-cyclical effects of capital regulation if banks decrease them, and then increase their credit supply, during upturns. All this implies that the management of bank capital buffers over the course of the business cycle might be as important, or even more so, as rules-based capital requirements in determining the cyclical impact of capital regulation.

Empirical evidence on the relation between capital buffers and the business cycle is not conclusive and varies across countries, suggesting a negative relation in developed countries and a less clear relation in developing countries. Ayuso *et al.* (2004),

¹ Over 100 countries implemented the 1987 Basel I Accord, which focuses on bank capital regulation (Barth *et al.*, 2004). The Basel II Accord continues to consider bank capital regulation as one of its three pillars (Pillar 1), alongside official supervision (Pillar 2) and market discipline (Pillar 3).

Lindquist (2004) and Stoltz and Wedow (2005) find a negative relationship between capital buffers and the cycle variables for Spanish, Norwegian, and German banks respectively. Similarly, Bikker and Metzemakers (2004) and Jokipii and Milne (2009) find a negative relationship between capital buffers and the cycle for 29 OECD and the EU15 countries. This negative co-movement might exacerbate the pro-cyclical impact of bank capital requirements. Jokipii and Milne (2009) find opposite results for the 10 accession countries that joined the European Union in 2005. This positive co-movement might reduce the pro-cyclical impact of bank capital requirements. Fonseca and González (2010) also find different patterns across countries. They find a negative relation between economic cycle and capital buffers in seven countries – Chile, Denmark, France, Indonesia, the Philippines, the UK, and the US. In 5 countries – Brazil, Hong Kong, India, Italy, and Romania – there is a positive relation. They do not find a statistically significant relation between capital buffer and the business cycle in the remaining 59 countries.

The above literature assumes that higher capital buffers reduce banks' credit supply and have a contractionary effect on economic activity. This suggests that a negative (positive) relation between capital buffers and the cycle might exacerbate (reduce) the pro-cyclical effects of capital regulation. Capital buffers, however, may have additional effects on the business cycle if they influence the lending and deposit rate spreads (Meh and Moran, 2009; Agénor and Pereira da Silva, 2009a; Agénor *et al.*, 2009). There may be a negative relation between capital buffers and lending rate spreads if capital buffers induce banks to screen and monitor borrowers more carefully or if the switching costs for borrowers are relevant. In such cases, bank capital may play a significant cyclical role that has not yet been empirically analyzed: the higher the capital buffer, the lower the lending rate spread and the greater the expansionary effect on economic activity. This expansionary effect of bank capital buffers through the reduction of lending spreads is in contrast to the reduction effect associated to date with a lower credit supply.

Moreover, there may be a negative relation between capital buffers and deposit rate spreads in the presence of market discipline by depositors or if capital represents a signal that the bank's financial position is strong, so that it reduces the intensity of regulatory scrutiny. In this case, a higher capital buffer would reduce the deposit rate, tending today to increase consumption through intertemporal substitution. The result is an expansion of economic activity. This expansionary effect of bank capital buffers through the reduction of deposit rate spreads contrasts again with the contractionary effect associated to date with a lower credit supply. The theoretical opposing effects of capital buffers on the business cycle increase the relevance of empirical analysis. The cyclical effects of capital buffers through their influence on lending and deposit rate spreads have been theoretically suggested by Agénor and Pereira da Silva (2009a), and Agénor *et al.* (2009) but, to our knowledge, not empirically tested. In this paper, we address this question empirically for a set of international bank data from developed and developing countries. Using standard econometric panel data techniques, we build an incomplete panel of 2,361 banks from 92 countries over the 1990-2007 period and control for the endogeneity of explanatory variables and unobservable bank effects.

We make several contributions. First, we analyze the influence of capital buffers and risk-adjusted capital ratios on lending and deposit spreads in an international bank database. This is a novelty of our paper because literature analyzing the lending channel of bank capital has focused on the effect of capitalization on loan growth.²

To our knowledge, Lown and Peristiani (1996), Hubbard *et al.* (2002), and Coleman *et al.* (2002) provide evidence of a negative relation between bank capital and lending interest rates for the U.S. They do not provide evidence outside the U.S and focus on capital ratios instead of capital buffers. Capital buffers might, however, be more important than capital ratios as determinants of the cyclical effects of capital regulation because they internalize if capital requirements are binding or not.³ For that reason, we focus on capital buffers as a better proxy of bank financial health, but also provide evidence on risk-adjusted capital ratios to allow comparison with existing literature. Regarding the relation between bank capital and the cost of deposits, Demirgüc-Kunt and Huizinga (2004) provide evidence on an international set of banks from 30 countries, suggesting that banks with higher capital ratios pay lower interest rates for deposits. However, they do not focus on capital buffers or the cyclical effects of capital regulation.

Second, we directly analyze the cyclical effects of capital buffers by analyzing their influence on the relation between the business cycle and, respectively, lending and deposit rate spreads. Higher capital buffers promoting a more negative (positive) relation between the business cycle and the lending rate spread can be expected to

 $^{^{2}}$ Hancok *et al.* (1995), Thakor (1996), and Kishan and Opiela (2000), among others, emphasize the importance of bank capital on lending behavior in the U.S. Altumbas *et al.* (2002) and Gambacorta and Mistrulli (2004) provide evidence for Europe.

³ Previous studies use the capital ratio as a proxy negatively related to bank risk. However, when the minimum capital required is adjusted to bank risk, the capital ratio may be positively related to bank risk if the requirement is binding.

provide evidence on its pro-cyclicality (counter-cyclicality). In this case, the lower (higher) lending rate spreads that capital buffers promote during upturns might increase (reduce) the expansion of economic activity by expanding investment by firms. In the same way, higher capital buffers promoting a more negative (positive) relation between the business cycle and the deposit rate spread might provide evidence on its pro-cyclicality (counter-cyclicality). In this case, the lower (higher) deposit rate spreads that capital buffers promote during upturns might increase (reduce) the expansion of economic activity by expanding on the degree of intertemporal substitution. Previous studies have focused on how capital buffers vary over the business cycle, assuming that capital buffers reduce economic activity through a reduction of the credit supply. To our knowledge, there are no studies analyzing and testing the potential expansionary effect of capital buffers through a reduction in interest rate spreads.

Third, we compare the cyclical effects of capital buffers between developed and developing countries. Much of the analytical and empirical work on the cyclicality of capital regulatory regimes focuses largely on industrialized countries and therefore does not account for the type of financial market imperfections that middle-income developing countries face. Agénor and Pereira da Silva (2009a) suggest that capital buffers may play a more important role in these environments as signals to depositors of a greater commitment to screening and monitoring borrowers, because of either the absence, or the lack of credibility, of the deposit insurance system.

Fourth, we examine the differences in cyclicality between Basel I and Basel II. Most of the previous work comparing cyclical effects between Basel I and Basel II uses simulated data. To our knowledge, only Kerbl and Sigmund (2009) use realized data from Austrian banks. We use realized data from an international bank database that allows not only comparison between Basel I and Basel II in an ample dataset but also analyzes any different effects across developed and developing countries.

Finally, we consider the possibility that lending and interest rates may face adjustment costs in their moving toward their equilibrium levels by using the Generalized Method of Moments (GMM) estimator developed by Arellano and Bond (1991) for dynamic panel data. GMM models also control for the presence of unobserved bank-specific effects and the endogeneity of the explanatory variables. Lown and Peristani (1996), Coleman *et al.* (2002), and Hubbard *et al.* (2002) do not control for adjustment cost and endogeneity when they analyze the relation between capital buffers and lending interest rates in the U.S. market.

Our results indicate that well-capitalized banks are less constrained by capital requirements and charge lower interest spreads in their loans. This is in line with the results of Hubbard *et al.* (2002) for the United States. In the same way, well-capitalized banks pay lower interest spreads for their deposits. However, this influence of capital buffers on lending and deposit rate spreads varies across countries depending on their development stage and the business cycle. We find that capital buffers influence more economic activity through these two channels (lending and deposit spreads) in developing countries during downturns. The consequence is that capital buffers produce a counter-cyclical effect in these countries. We do not, however, find statistically significant differences in the cyclical effects of capital buffers between Basel I and Basel II.

The rest of the paper is organized as follows. Section 2 describes the theoretical background and discusses the hypotheses. Section 3 describes the characteristics of the dataset and the empirical methodology, while Section 4 shows the results of the cyclical effects of bank capital on lending and deposit rate spreads and how they vary between developed and developing countries. Finally, Section 5 presents our conclusions.

2. Theoretical background and hypotheses

The macroeconomic consequences of bank capital buffers have received growing interest in the debate on their cyclical effects, especially after the 2008 global financial crisis suggested the need to tame macro-financial pro-cyclicality in mature economies. An increase in bank capital buffers has traditionally been associated with a reduction in the credit supply, leading to a contractionary effect on economic activity. The literature analyzes whether bank capital buffers increase during upturns, reducing the pro-cyclicality of capital requirements, or if they decrease during upturns, increasing the pro-cyclicality of capital requirements (Ayuso *et al.*, 2004; Bikker and Metzemakers, 2004; Lindquist, 2004; Stoltz and Wedow, 2005; and Jokipii and Milne, 2009). Most of the empirical evidence finds a negative co-movement of capital buffers and the cycle for developed countries, suggesting their pro-cyclicality.

Agénor and Pereira da Silva (2009a) and Agénor *et al.* (2009) have recently suggested two additional channels through which capital buffers may have cyclical effects. They may: 1) influence investment by firms by affecting lending rate spreads; and 2) influence consumption by households by affecting deposit rate spreads.

Bank capital buffers may reduce bank lending spreads for at least two reasons. First, bank capital may induce banks to screen and monitor borrowers more carefully. Meh and Moran (2008) develop a model where banks lack the incentive to monitor borrowers adequately, because monitoring is privately costly and any resulting increase in the risk of loan portfolios is mostly borne by investors. This moral hazard problem is mitigated when banks are well capitalized and have more to lose from loan default. As a result, higher bank capital increases the ability to raise loanable funds and facilitates bank lending. Agénor et al. (2009) use the same idea in a general equilibrium model to also show that well-capitalized banks charge a lower risk premium to borrowers. Second, if a borrower faces switching costs in a relationship with an individual bank, bank-specific financial health might affect a borrower's cost of funds. In a market without information asymmetries, bank-specific increases in the cost of funds would not be passed on to loan customers because borrowers could simply switch banks. With information asymmetries, however, borrowers face switching costs in changing lenders and hence an idiosyncratic increase in banks' cost of funds might increase the cost of funds to borrowers. If higher capital buffers reduce bank's cost of funds, wellcapitalized banks might charge lower risk premium to borrowers and increase investment.

There is empirical evidence for the U.S consistent with capital-constrained banks charging higher spreads on their loans (Hubbard *et al.*, 2002, Coleman *et al.*, 2002). Lown and Peristiani (1996), moreover, find that undercapitalized banks contributed to the 1990 credit slowdown in the U.S. by charging consumers a higher-than-average loan rate relative to better-capitalized institutions. Empirical evidence outside U.S and/or analyzing capital buffers is, to our knowledge, not available.

A second channel through which capital buffers might influence economic activity is by influencing deposit interest spreads and, consequently, consumption. Several empirical studies, mostly for the U.S., find a negative relation between the cost of deposits and the capital ratio (Ellis and Flannery, 1992; Cook and Spellman, 1994; Flannery and Sorescu, among others). Demirgüc-Kunt and Huizinga (2004) find that the negative relation remains on average in a sample of banks from 30 countries. This evidence is generally interpreted as consistent with market discipline in the deposit market. Agénor and Pereira da Silva (2009a) also explain the negative relation through a signaling effect when households internalize the fact that more capital increases banks' incentives to screen and monitor their borrowers. Depositors are, therefore, willing to accept a lower, but safer, return. The strength of this bank capital channel, which operates through the

deposit rate, depends on the presence and the magnitude of an intertemporal substitution effect on consumption.

The above arguments lead us to establish the first hypothesis:

H.1. Capital buffers reduce the interest rate spreads that banks charge for loans and the interest rate spreads they pay for deposits.

2.1. Developed vs. developing countries

Most existing studies on the cyclicality of capital regulatory regimes, both theoretical and empirical, are based on industrialized countries. However, the pervasiveness of financial market imperfections in developing countries, coupled with their greater vulnerability to shocks, warrant a focus on the potential different cyclical effect of capital buffers in these countries. For middle-income countries, in particular, these imperfections cover a broad spectrum: underdeveloped capital markets; limited competition among banks; more severe asymmetric information problems, which make screening out good from bad credit risks difficult and foster collateralized lending; a pervasive role of government in banking; uncertain public guarantees; inadequate disclosure and transparency, coupled with weak supervision and a limited ability to enforce prudential regulations; weak property rights and an inefficient legal system, which make contract enforcement difficult and also encourage collateralized lending; and a volatile economic environment, which increases exposure to adverse shocks and magnifies both the possibility of default by borrowers and the risk of bankruptcy for financial institutions.

The higher degree of market imperfections in developing economies may then magnify the above-mentioned role that bank capital buffers play in loan and deposit markets. Greater information asymmetries increase switching costs in bank relationships and/or the cost for banks of screening and monitoring borrowers. In this case, capital has a stronger effect by signaling to depositors that there will be greater supervision of borrowers. The above reasons favor a greater negative relation in developing countries between capital and both lending and deposit rate spreads. Thus our second hypothesis is:

H.2. The negative influence of bank capital buffers on lending rates and banks' cost of deposits is greater in developing countries.

We also expect that the negative influence of capital buffers on deposit rate spreads varies across countries depending on the presence of deposit insurance that could offset somehow the signaling effect of buffers. It has long been suggested that more generous deposit insurance weakens the market discipline enforced by depositors and encourages banks to take greater risks (Merton, 1977). Some empirical evidence confirms this effect, showing that deposit insurance increases the likelihood of banking crises (Demirgüc-Kunt and Detragiache, 2002) and that risk-shifting incentives are positively related to the generosity of deposit insurance (Hovakimian *et al.* 2003). According to this evidence, if more generous deposit insurance reduces market discipline, it will also make the cost of deposits less sensitive to bank capital. For this reason, we forecast that the negative relation between the capital buffer and the deposit rate spread will be lower in countries with explicit deposit insurance. Thus our third hypothesis is:

H.3. The presence of an explicit deposit insurance diminishes the ability of bank capital buffers to reduce deposit rate spreads.

2.2. Cyclical effects of capital buffers

The influence of bank's financial health on reducing lending and deposit rate spreads may spark an expansionary effect for economic activity because they help increase, respectively, investment by firms and household consumption. This effect comes from a macro, general equilibrium perspective and is different from the financial, partial equilibrium perspective that sees a traditional contractionary effect associated with the reduction of credit supply, present in most of the previous literature links with higher capital buffers. Thus, if capital buffers are increased during an expansion with the initial objective of being counter-cyclical, they may actually turn out to be pro-cyclical if the reduction in loan and deposit rate spreads outweighs the reduction of credit supply. These opposing effects make the analysis of the cyclical effects of capital buffers an empirical question.

Moreover, the influence of capital buffers on lending and deposit rate spreads might vary over the business cycle and among developed and developing countries. If existing information asymmetries become more pronounced during periods of financial distress, we can expect higher capital buffers to induce a higher reduction in interest rates (loans and deposits) during downturns. Aditionally, during downturns capital requirements are more binding and differences in bank capital across banks are more relevant. Poorly capitalized banks becomes more capital constrained during downturns and might charge higher spreads on loans relative to better capitalized banks. Consistent with this behavior, Lown and Peristiani (1996) find surrounding the 1990 credit slowdown in the U.S. that the correlation between capital and loan rates in the U.S. became increasingly more negative in 1989 and only started to narrow roughly a year after the end of the recession. Thus, if the expansionary effects associated with higher capital buffers are higher during downturns than in upturns, we can even expect a counter-cyclical effect for capital buffers.

As information asymmetries are greater in developing countries, we expect capital buffers to be more counter-cyclical (less pro-cyclical) in these countries. Thus, our fourth hypothesis is

H.4. Capital buffers are more counter-cyclical (less pro-cyclical) in developing countries.

3. Database and econometric model

3.1. Database

We obtain consolidated bank balance-sheet and income-statement data (in US dollars and in real prices) from the Fitch-IBCA Ltd. BankScope Database for 1990-2007. Our starting point is the 152 countries included in the World Bank's Bank Regulation and Supervision database, for which information about bank capital requirements is available. We eliminate 55 countries because of the lack of data in Bankscope to calculate bank explanatory variables for at least three consecutive years and five countries because we do not have information on bank concentration and the growth of GDP per capita. The final sample covers 92 countries.

3.2. Econometric model

We apply the generalized method of moments (GMM) estimator developed for dynamic models of panel data by Arellano and Bond (1991). This methodology is specifically designed to address three relevant econometric issues: (1) the presence of unobserved bank-specific effects, which are eliminated by taking first-differences of all variables; (2) the autoregressive process in the data regarding the behavior of interest rate spreads (i.e., the need to use a lagged dependent variables model to capture the dynamic nature of the interest rate spread); and (3) the likely endogeneity of the explanatory variables. The panel estimator controls for this potential endogeneity by using instruments based on lagged values of the explanatory variables.

Our basic models to estimate the influence of capital buffer on lending and deposits rate spreads are:

$$LOANRATE_{i,t} = \alpha_0 + \alpha_1 \text{ LOANRATE}_{i,t-1} + \alpha_2 \text{ BUFFER}_{i,t} / \text{ CAPITAL}_{i,t} + \alpha_3 \text{ BANK}_{i,t} + \alpha_4 \text{ CONC}_{j,t} + \alpha_5 \text{ GDPGR}_{j,t} + \alpha_5 \text{ GDPGR}_{j,$$

$$COSTDEP_{i,t} = \beta_0 + \beta_1 \text{ COSTDEP}_{i,t-1} + \beta_2 \text{ BUFFER}_{i,t} / \text{ CAPITAL}_{i,t} + \beta_3 \text{ BANK}_{i,t} + \beta_4 \text{ CONC}_{j,t} + \beta_5 \text{ GDPGR}_{j,t} + \beta_6 \sum_{j=1}^{92} \text{ Country}_j + \beta_7 \sum_{t=1990}^{2007} \text{T}_t + \nu_t^{\text{D}} + \varepsilon_t^{\text{D}}$$

$$[2]$$

where $LOANRATE_{i,t}$ is the average spread of loan rates for bank i in year t. We measure it as the ratio of interest income to total earning assets minus the government interest rate. The government rate is the Treasury bill rate where available; otherwise, it is the discount rate.⁴

 $COSTDEP_{i,t}$ is the average spread of deposit rates for bank i in year t. We follow Demirgüc-Kunt and Huizinga (2004) to define it as the ratio of interest expense to interest-bearing debt of the bank minus the government interest rate. The government rate is the Treasury bill rate where available; otherwise, it is the discount rate.

The importance of adjustment costs is captured by using a partial adjustment model that includes the first lag of the dependent variable (LOANRATE_{i,t-1} and COSTDEP_{i,t-1}). A positive and significant coefficient for this variable would indicate that adjustment costs are relevant.

 $BUFFER_{i,t}$ is the capital buffer for bank i in year t. We measure capital buffers in relative and absolute terms. RBUFFER is the relative capital buffer, i.e., the difference between capital and the requirement divided by the requirement. ABUFFER is the absolute capital buffer measured as the difference between capital and the requirement. To save space, we only report results measuring capital buffers in relative terms (RBUFFER). The results do not change when we measure buffers in absolute terms.

CAPITAL_{i,t} is the capital of bank i in year t divided by its risk-weighted assets. We include CAPITAL as an alternative to BUFFER to analyze differential effects bweteen capital buffers and total capital ratios. This analysis also allows us to compare our results with existing literature focusing on total capital ratios. Capital ratios, requirements, and capital buffers by country are reported in Table 1. Figure 1 shows the

⁴ Agénor and Pereira da Silva (2009a) and Agénor *et al.* (2009) define the spread in terms of differences with respect to the central bank policy rate. Our empirical approach fits to its theoretical analysis.

evolution of relative capital buffers and risk-adjusted capital ratios for developed and developing countries over the 1989-2007 period. Banks in developing countries hold on average larger capital buffers and differences in RBUFFER and CAPITAL are statistically significant, at least at the 10 per cent level, in 10 and 12 years, respectively.

BANK includes a set of bank-specific characteristics: size, collateral, liquid asset, and loans. We control for the influence of bank size (SIZE) for several reasons. Big banks might be thought to have smaller buffers if, as the "too-big-to-fail" hypothesis suggests, they believe that they will receive support from the regulator in the event of difficulties, or if they have lower risk as a consequence of the enhanced diversification of their asset portfolio. These arguments predict a negative coefficient for SIZE. We use the natural logarithm of total bank assets as a measure of bank size.

We also include the percentage of loans with collateral (COLLATERALTA), the percentage of liquid assets (LATA), and the percentage of total loans (TLNTA) to total bank assets. Although not reported, we check that results do not vary when we include non-performing loans and allowance for loan loss as additional bank control variables. The inclusion of these two variables, however, reduced our bank sample due to lack of data.

 $CONC_{j,t}$ is the bank market concentration of country j in year t. If market concentration is a proxy of market power we expect to find positive coefficients for CONC to explain lending rate spreads, and negative coefficients in the deposit rate spreads equation. We measure bank concentration as the fraction of bank assets held by the three largest commercial banks in a country. This variable comes from the Beck *et al.* (2009) database.

Annual growth in real per capita gross domestic product (GDPGR) is included to control for the potential cyclical behavior of loan and deposit rates. A negative relation between loan rates and the growth of real per capita gross domestic product offers support for a pro-cyclicality of interest rates. Data on GDP growth come from the International Financial Statistics of the IMF.

A set of dummy country variables $(\sum_{j=1}^{92} Country_j)$ is included to control for countryspecific characteristics, and a set of dummy time variables $(\sum_{t=1990}^{2007} T_t)$ captures any unobserved bank-invariant time effects not included in the regression. Finally, \varkappa is an unobservable bank-specific effect, which is assumed to be constant over time; and ε_{tt} is the white noise error term.

We control for the potential endogeneity of BUFFER, CAPITAL, COLLATERALTA, LATA, TLNA, CONC, and GDPGR in the GMM estimations using two-to-four period lags of the same variables as instruments. We use one-step estimation and specify the robust estimator of the variance-covariance matrix of the parameters. We also examine the hypothesis that there is no second-order serial correlation in the first-difference residuals (m_2). In our models this hypothesis is not rejected. First-order serial correlation (m_1) in the differentiated residuals is attributable to the first difference of models.

To analyze the cyclical effects of capital buffers, we study how they influence the relation between the business cycle and interest rate spreads. To do it, we include in the regressions the interaction between BUFFER/CAPITAL and GDPGR. In our models, first, a negative relation between the growth of GDP and the interest rate spreads would imply pro-cyclicality (lending and deposit spreads fall during booms and increase during downswings). Then, a positive (negative) coefficient for the interaction BUFFER/CAPITALxGDPGR would imply that bank capital reduces (increases) the pro-cyclicality. The models are:

$$LOANRATE_{t} = \gamma_{0} + \gamma_{1} LOANRATE_{t-1} + \gamma_{2} BUFFER_{t} / CAPITAL_{t} + \gamma_{3} BANK_{t} + \gamma_{4} CONG_{t} + \gamma_{5} GDPGR_{t} + \gamma_{6} BUFFER_{t} / CAPITAL_{t} \times GDPGR_{t} + \gamma_{7} \sum_{j=1}^{92} Country + \gamma_{8} \sum_{t=1990}^{2007} T_{t} + \varkappa^{L} + \varepsilon_{t}^{L}$$

$$[3]$$

$$COSTDEP_{t} = \delta_{0} + \delta_{1} COSTDEP_{t-1} + \delta_{2} BUFFER_{t} / CAPITAL + \delta_{3} BANK_{t} + \delta_{4} CONG_{t} + \delta_{5} GDPGR_{t} + \delta_{6} BUFFER_{t} / CAPITAL \times GDPGR_{t} + \delta_{7} \sum_{j=1}^{92} Country + \delta_{8} \sum_{t=1990}^{2007} T_{t} + \varkappa^{D} + \varepsilon_{t}^{D}$$

$$(4)$$

Mean values by country of the variables used in the paper are reported in Panel A of Table 1. Correlations in Panel B show that capital buffers in relative and absolute terms are highly correlated (correlation of 0.985). Loan and deposit rates correlate positively with capital buffers (absolute and relative), collateral, liquid assets, and bank concentration. Loan and deposit rates, however, correlate negatively with total loans and growth in real per capita GDP.

INSERT TABLE 1 ABOUT HERE

4. Empirical results

4.1. The bank lending and deposit channels of capital buffers

This section analyzes whether capital buffers and risk-adjusted capital ratios influence lending and deposit rate spreads in our international bank dataset. Panel A of Table 2 reports the results for the influence of bank capital on lending rate spreads. Panel B reports the results for the influence of bank capital on bank deposit rate spreads. The non-significance of the m_2 statistic indicates no second-order serial correlation in the first-difference residuals. These are the conditions required for consistency of the GMM estimates.⁵ The lagged dependent variables have positive coefficients in all estimations, confirming the relevance of adjustment cost in the movement of lending and deposit rates and the appropriateness of using GMM estimations.

Results in columns (1) to (4) indicate that the effect of capital on lending interest spreads is always negative and statistically significant. The results are similar using both capital buffers and risk-adjusted capital ratios. This suggests that well-capitalized banks are less constrained by capital requirements and charge lower interest spreads in their loans. This result is consistent with the evidence for the United States reported in Hubbard *et al.* (2002), which suggests that the capital position of individual U.S. banks negatively affects the interest rate at which their clients borrow, and in Coleman *et al.* (2002), who found that capital-constrained banks charge higher spreads on their loans.

Bank control variables have the expected influence on lending rate spreads. Although coefficients are not statistically significant, higher values of collateral reduce lending rate spreads. A higher percentage of liquid assets is associated with higher lending rate spreads. The ratio of total loans to total bank assets does not have statistically significant coefficients. Bank concentration has positive coefficients, although only one is statistically significant in column (1), consistent with a greater negotiation power of banks in more concentrated markets. We do not obtain significant coefficients for growth in per capita GDP.

INSERT TABLE 2 ABOUT HERE

⁵ The absence of first-order serial correlation in the first-difference residuals indicated by the nonsignificant values of m_1 in some estimation suggests that errors in levels follow a random walk. This fact does not affect the consistency of the GMM estimates in the first-difference model (Arellano and Bond, 1991).

The negative and statistically significant coefficients of RBUFFER and CAPITAL in columns (5) to (8) indicate that well-capitalized banks pay lower interest spreads for their deposits. This result is consistent with Demirgüc-Kunt and Huizinga (2004) when, in an international database of banks from 30 countries, they find that, on average, safer banks pay lower interest rates for deposits. It suggests the presence of market discipline or a positive signaling effect for bank capital.

Bank control variables have the expected influence on deposit rates. The negative coefficients for size are consistent with a lower risk for large banks. Big banks may have a lower cost of deposits if, as the "too-big-to fail" hypothesis suggests, depositors believe that they will receive support from the regulator in the event of difficulties, or if they have greater opportunities of asset portfolio diversification. Other bank control variables and market concentration do not have statistically significant coefficients. Finally, we obtain negative coefficients for growth in per capita GDP, suggesting that banks pay lower spreads in deposit rates during upswing periods.

4.2. Developed vs. Developing countries

We now analyze whether there are differences in the two bank capital channels across countries depending on the level of development. We sequentially include an interaction term between capital buffers (total capital ratios) and dummy variables capturing the country's development. We use several dummy variables: DEVELOP takes a value of 1 for countries classified as high income and upper middle income and zero for countries classified as low income and lower middle income;⁶ OECD takes a value of 1 for OECD countries and zero otherwise; G20 takes a value of 1 for countries belonging to the G20 group and zero otherwise; and G8 takes a value of 1 for countries belonging to the G8 group and zero otherwise. The inclusion of country dummies avoids the need for dummy development variables to enter the regression on their own and allows us to focus only on their interaction terms. Results are reported in Table 3 for the lending rate and in Table 4 for the cost of deposits.

In Table 3, we obtain positive coefficients for the interaction terms RBUFFERxDEVELOP and RBUFFERxOECD whereas RBUFFER keeps the negative and statistically significant coefficients found in estimations of Table 2. We even obtain more statistically significant results when we use the risk-adjusted capital ratio instead of the capital buffer as proxy of bank's financial health. This indicates that the negative

⁶ Economies are divided according to GNI per capita, calculated using the World Bank's Atlas method. Low income and middle income economies are sometimes referred to as developing economies.

relation between capital buffers (risk-adjusted capital ratios) and lending rate spreads found on average for our sample disappears in developed and OECD countries. It suggests that it is in developing countries where well-capitalized banks charge lower interest rate spreads in loans, i.e., where the bank's financial health has a greater influence on lending rates. We do not, however, obtain statistically significant coefficients for interaction terms of countries belonging to the G20.

The greater sensitivity of lending rate spreads to banks' financial health in developing countries is consistent with the presence of higher market imperfections in these countries and a weaker institutional environment. The more severe asymmetric information problems, weaker institutions, and the absence of financial safety net, all of which usually characterize developing countries, may give rise to higher switching costs for borrowers in bank relationships or to a lower ability of banks to diversify risk. Both factors may explain why lending rates are more dependent on banks' financial health and why there is a higher negative relation between bank capital buffers and loan rate spreads.

We directly test the influence of the institutional environment in columns (5) and (8). We use the KKZ index (KKZ) calculated by Kaufman *et al.* (2001) as the average of six indicators (voice and accountability, political stability, government effectiveness, regulatory quality, rule of law, and control of corruption) as a proxy of the quality of a country's institutional environment. The positive and statistically significant coefficients of RBUFFERxKKZ and CAPITALxKKZ confirms that the effect of capital on reducing lending rate spreads is stronger in less-developed institutional environments.

INSERT TABLE 3 ABOUT HERE

Results in Table 4 show a positive and statistically significant coefficient for the interaction between RBUFFER/CAPITAL and the dummy for OECD countries. We do not obtain statistically significant coefficients for the remaining interaction terms (DEVELOP, G20, and G8). This indicates that the positive signaling effect to depositors of larger capital buffers or capital ratios is higher in non-OECD countries. Again, the higher market imperfections in non-OECD countries may lead capital buffers to play a more important role by helping banks convey a signal to depositors regarding their commitment to screening and monitoring their borrowers, thus raising deposits at a lower cost. The positive and statistically significant coefficients for the interaction between RBUFFER/CAPITAL and KKZ in columns (5) and (11) confirm that bank

capital plays a more relevant role to reduce the cost of deposits in less developed institutional environments.

In columns (6) and (12) we test whether the presence of explicit deposit insurance in a country diminishes the ability of bank capital to reduce deposit rate spreads (H.3). We include an interaction between RBUFFER/CAPITAL and a dummy variable (INS) that takes a value of 1 if the country has explicit deposit insurance a zero otherwise. Deposit insurance data come from Demirgüc-Kunt *et al.* (2005).

We do not obtain statistically significant coefficients for RBUFFERxINS and CAPITALxINS. Thus, our results do not suggest that the effect of bank capital to reduce the cost of deposits is stronger when a country does not have explicit deposit insurance. Bank control variables, market concentration, and growth in per capita GDP have similar coefficients to those reported in Table 2.

INSERT TABLE 4 ABOUT HERE

4.3. Cyclical effects of capital buffers: lending rates and cost of deposits

We now analyze the cyclical effects of capital buffers by focusing on their influence on the relationship between growth in GDP per capita and, respectively, lending and deposit rate spreads.

A higher (lower) reduction (increase) in lending rate spreads when GDP grows favors investment by firms and helps make the upturn more marked. So capital buffers would be pro-cyclical (counter-cyclical) when they promote a more negative (positive) relation between GDP growth and lending rate spreads. To test whether GDP effects on lending rate spreads are equal among banks with different capital ratios we introduce in the estimations an interaction term between capital buffer and per capita GDP growth. Results are reported in Panel A of Table 5.

The interaction term between capital buffer and GDP growth is positive and statistically significant whereas the negative coefficients of RBUFFER increase compared to those reported in Panel A of Table 2. This indicates that the reduction in lending rate spreads associated with well-capitalized banks is higher during downturns and decreases, or even disappears, during upturns. This asymmetric influence of capital buffers on lending rate spreads depending on business cycle makes them counter-cyclical. An increase in capital buffers during downturns (negative growth in GDP per capita)

decreases loan rate spreads and, consequently, reduces the initial downturn. This result is consistent with an expansionary effect of capital buffers during downturns because the increased benefits of bank screening and monitoring in lending activity outweigh, in well-capitalized banks, the reduction in credit supply. During upswings (positive growth in GDP per capita), however, an increase in capital buffers also tend to increase lending spreads. This is consistent with a contractionary effect of capital buffers during upswings. It suggests that the negative effect of the reduction of credit supply associated with an increase in capital buffers outweighs, during upturns, the positive effect on lending rate spreads caused by the improvement of bank incentives to screen and monitor borrowers. Results are similar when we use the risk-adjusted capital ratio instead of the capital buffer.

This means that the credit supply of well-capitalized banks is less dependent on the business cycle and/or that their incentives to monitor and screen borrowers increase more during downturns. This result is consistent with Gambacorta and Mistrulli (2004), and Kwan and Eisenbeis (1997). On theoretical grounds, our findings are consistent with Flannery (1989) and Genotte and Pyle (1991), who argue that well-capitalized banks are more risk-averse and select ex ante borrowers with less probability of defaulting. This also means that when an economic downturn occurs, well-capitalized banks suffer less loan losses and their capital changes less with respect to other banks.

In Panel B of Table 5, we test the cyclical effects of capital buffers via their influence on the cost of deposits and, therefore, on consumption. We also obtain a countercyclical effect for capital buffers using the same channel. The interaction term between RBUFFER and GDPGR has positive and statistically significant coefficients in columns (5) to (8). This means that the reduction in the cost of deposits associated with a higher capital buffer decreases more the higher the growth in GDP per capita. So, during upturns, the expansionary effect of capital buffers caused by cutting back the interest paid to depositors and increasing consumption disappears. During downturns, however, the signaling effect of capital buffers is greater and helps improve economic activity by reducing bank deposit rates and thus promoting consumption. Results are again similar when we use the risk-adjusted capital ratio as proxy of bank's financial health.

INSERT TABLE 5 ABOUT HERE

Additionally, we test whether the cyclical effects of capital buffers vary depending on country development. For this purpose, we introduce sequentially triple interaction terms between RBUFFER, GDPGR, and the set of dummy variables positively correlated with the country's development: DEVELOP, OECD, G20, and G8. Table 6 reports the results for lending rate spreads and Table 7 for banks' deposit cost.

We obtain negative and statistically significant coefficients for three out of the four triple interaction terms in Table 6 (RBUFFERxGDPGRxDEVELOP, RBUFFERxGDPGRxOECD, RBUFFERxGDPGRxG8). We also obtain negative coefficients for two of the four triple interaction terms in Table 7 (RBUFFERxGDPGRxDEVELOP, RBUFFERxGDPGRxG8) when the dependent variable is the deposit rate spreads. These results indicate that the counter-cyclical effect of capital buffers disappears in developed countries. Only in developing countries did we find a significant counter-cyclical effect for capital buffers consistent with the hypothesis that the higher market imperfections in developing countries increase the benefits of capital buffers in reducing lending and deposit rate spreads. This conclusion remains valid when we use a proxy of institutional quality in a country. The negative and statistically significant coefficient of the interaction between the KKZ index and RBUFFERxGDPGR indicates that the counter-cyclical effect of capital buffers diminishes in more institutional developed countries.

Results are less significant, although similar, when we use the risk-adjusted capital ratio instead of the capital buffer in columns (6) to (10).

INSERT TABLE 6 ABOUT HERE

INSERT TABLE 7 ABOUT HERE

4.4. Basel II vs. Basel I

In this section we analyze whether the cyclical effects of capital buffers through lending and deposit rate spreads change from Basel I to Basel II since the two requirements differ vis-à-vis the role of risk. We include in the estimations a dummy variable (BASEL II) that takes the value of 1 for the 2004-2007 period and zero otherwise. It needs to be stressed that the dataset does not capture the real implementation of Basel II at a country level and that we are assuming in the period segmentation that all provisions of Basel II are indeed implemented.

First, we construct the interaction of the capital buffer and the Basel II dummy variable to know if the influence of capital buffers on lending and deposit rate spreads changes from Basel I to Basel II. The results for lending rate spreads in Panel A of Table 8 show negative, although not statistically significant, coefficients for the interaction terms of RBUFFERxBASEL II and CAPITALxBASEL II. RBUFFER and CAPITAL keep the negative and significant coefficients initially reported in Table 2. In panel B, we do not obtain statistically significant coefficients for the influence of the interaction of RBUFFERxBASEL II and CAPITALxBASEL II on banks' cost of deposits, whereas RBUFFER and CAPITAL keep, respectively, their negative influence. These results do not suggest a change in the influence of capital buffers on interest rate spreads from Basel I to Basel II subject to the caveat mentioned above.

INSERT TABLE 8 ABOUT HERE

Second, in Table 9 we analyze whether the cyclical effects of capital buffers on lending and deposit rate spreads vary from Basel I to Basel II. We include two interaction terms. RBUFFERxGDPGR indicates how the influence of capital buffers on interest rate spreads depends on the business cycle in the Basel I period (1990-2003). The triple interaction term of RBUFFERxGDPGRxBASEL II indicates how this influence changes in the Basel II period (2004-2007).

All the estimations provide positive and statistically significant coefficients for RBUFFERxGDPGR indicating that during upturns, there is a reduction in the expansionary effects on economic activity of capital buffers that exist during upturns via reduction of lending and deposit rate spreads. This asymmetric influence of capital buffers depending on the business cycle makes then counter-cyclical. We do not, however, obtain statistically significant coefficients for the interaction term of RBUFFERxGDPGxBASEL II. The non-significant coefficients for these triple interaction terms indicate that there is no difference in the counter-cyclical effect of capital buffers between Basel I and Basel II.

INSERT TABLE 9 ABOUT HERE

5. Conclusions

This paper analyzes the cyclical effects of bank capital using an international bank panel dataset of 2,361 banks from 92 countries over the 1990-2007 period. Our results suggest bank capital may influence business cycle through two channels. First, we find that well-capitalized banks are less constrained by capital requirements and charge lower interest spreads in their loans. Second, we find that well-capitalized banks also pay lower interest spreads for their deposits. The influence of bank's financial health on

reducing lending and deposit rate spreads sparks an expansionary effect for economic activity because they help increase, respectively, investment by firms and household consumption. The paper tests extensively –including for different groupings of countries and stages of development—whether this effect outweights the traditional contractionary effect associated with the reduction of credit supply that most of the previous literature links with higher capital buffers. It is important to determine empirically the strength of these opposing effects since a number of official reports and academic proposals (see Agénor and Pereira da Silva (2009b) were published after the global financial crisis calling for a strengthening of prudential regulation, a more accurate evaluation of risk, and a tightening of accounting standards to reduce the perceived macro-prudential procyclicality of financial systems. These reports feature higher capital buffers prominently as a counter-cyclical device.

Regarding the relationship between lending rate spreads and capital buffers, our results suggest that buffers are counter-cyclical. An increase in capital buffers during downturns decreases loan rate spreads and, consequently, mitigates the initial downturn by supporting investment; during upswings an increase in capital buffers tend to increase lending spreads and therefore smooths the upturn. Similarly, regarding the cyclical effects of capital buffers via their influence on the cost of deposits and ultimately on consumption, we also obtain a countercyclical effect. During upturns, the expansionary effect of capital buffers caused by a decrease of deposit rates is reduced. However, during downturns, the signaling effect of capital buffers is stronger and helps support economic activity by reducing bank deposit rates and thus promoting household consumption.

In addition, the influence of capital buffers on lending and deposit rate spreads varies across countries depending on their development and also the business cycle. We find that capital buffers influence more economic activity through these two channels (lending and deposit spreads) in developing countries during downturns. The consequence is a counter-cyclical effect for capital buffers in these countries. We do not, however, find statistically significant differences in the cyclical effects of capital buffers between Basel I and Basel II.

Therefore, the paper contributes to confirm the relevance of the bank capital channel for policy purposes. However, by identifying a stronger counter-cyclical effect in developing countries, it also alerts policy-makers and regulators that caution should be exercized when deriving international standards for bank capital requirements from the intuition of the previous partial equilibrium, developed-country centered litterature.

After all, if the counter-cyclical role of buffers is stronger in developing countries – where there was no perceived excessive growth of credit of dubious quality—and weaker in developed countries –where indeed there was--, it might mean that additional regulatory and prudential safeguards should be sought to moderate macro-financial pro-cyclicality in the developed world while careful examination of country specificity is needed not to cause unwarranted loss of output and sound credit growth in the developing world.

References

Agénor, P-R., Pereira da Silva, L., 2009a. Cyclical Effects of bank capital requirements with imperfect credit markets. Policy Research Working Paper No. 5067, World Bank, forthcoming, Journal of Financial Stability.

Agénor, P-R., Pereira da Silva, L., 2009b. Reforming International Standards for Bank Capital Requirements: A Perspective from the Developing World, mimeo, World Bank, forthcoming in International Banking in the New Era: Post-Crisis Challenges and Opportunities, ed. by S. Kim and M. D. McKenzie, IFR Vol. No 11, Emerald (Bingley: 2010).

Agénor, P-R., Alper, K., Pereira da Silva, L., 2009. Capital requirements and business cycles with credit market imperfections. Policy Research Working Paper No. 5151, World Bank.

Alfon, I., Argimon, I., Bascunana-Ambros, P., 2004. What determines how much capital is held by UK banks and building societies? Occasional paper N° 22. UK Financial Services Authority.

Altunbas, Y., Fazylow, O., Molyneux, P., 2002. Evidence on the bank lending channel in Europe. Journal of Banking and Finance 26, 2093-2110.

Arellano, M., Bond, S., 1991. Some test of specification for panel data: Monte Carlo evidence and application to employment equations. Review of Economic Studies 58, 227-297.

Ayuso, J., Pérez, D., Saurina, J., 2004. Are capital buffers pro-cyclical? Evidence from Spanish panel data. Journal of Financial Intermediation 13, 249-264.

Barth, J.R., Caprio, G., Levine, R., 2004. Bank regulation and supervision: What works best? Journal of Financial Intermediation 13, 205-248.

Beck, T., Demirgüc-Kunt, A., 2009. Financial institutions and markets across countries and over Time: Data and Analusis. World Bank Policy Research Working Paper No. 4943, May 2009.

Bikker, J., Metzemakers, P., 2004. Is bank capital procyclical? A cross-country analysis. Working Paper No. 9, De Nederlandsche Bank.

Coleman, A. D. F., Esho, N., Sharpe, I.G., 2002. Do bank characteristics influence loan contract terms? Working Paper No 2002-01, Australian Prudential Regulation Authority.

Cook, D., Spellman, L., 1994. Repudiation risk and restitution costs: toward understanding premiums on insured deposits. Journal of Money, Credit and Banking 26, 439–459.

Demirgüc-Kunt, A., Detragiache, E., 2002. Does deposit insurance increase banking system stability? An empirical investigation. Journal of Monetary Economics 49, 1373-1406.

Demirgüc-Kunt, A., Huizinga, H., 2004. Market discipline and deposit insurance. Journal of Monetary Economics 51, 375-399.

Demirgüç-Kunt, A., Karacaovali, B., Laeven, L., 2005. Deposit Insurance around the World: A Comprehensive Database. World Bank Policy Research Working Paper 3628.

Ellis, D., Flannery, M., 1992. Does the debt market assess large banks' risk? time series evidence from money center CDs. Journal of Monetary Economics 30, 481–502.

Flannery, M.J., 1989. Capital regulation and insured banks'choice of individual loan default risk. Journal Monetary and Economics 24, 235-258.

Flannery, M. J., Rangan, K. P., 2008. What caused the bank capital build-up of the 1990s? Review of Finance 12 (2), 391-429

Flannery, M. J., Sorescu, S. M., 1996. Evidence of bank market discipline in subordinated debenture yields: 1983-1991. Journal of Finance 51, 1347–1377.

Fonseca, A.R., González, F. (2010): "How bank capital buffers vary across countries. The influence of cost of deposits, market power and bank regulation". Journal of Banking and Finance 34, 892-902.

Freixas, X., Rochet, J-Ch., 1997. Microeconomics of banking. MIT Press (Cambridge).

Gambacorta, L., Mistrulli P.E., 2004. Does bank capital affect lending behavior? Journal of Financial Intermediation 13, 436-457.

Genotte, G., Pyle, D., 1991. Capital control and bank risk. Journal of Banking and Finance 15, 805-824.

Hancock, D., Laing, J.A., Wilcox, J.A., 1995. Bank capital shocks: Dynamic effects on securities, loans, and capital. Journal of Banking and Finance 19, 661-677.

Hovakimian, A., Kane, E.J., Laeven, L., 2003. How country and safety-net characteristics affect bank risk-shifting. Journal of Financial Services Research 23, 177-204.

Hubbard, R.G., Kuttner, K.N., Palia, D.N., 2002. Are there bank effects in borrower's costs of funds? Evidence from a matched sample of borrowers and banks. Journal of Business 75, 559-581.

Jokipii, T., Milne, A., 2009. The cyclical behavior of European capital buffers. Journal of Banking and Finance 32, 1440-1451.

Kaufman, D., Kraay, A., Zoido-Lobaton, P., 2001. Governance matters II: Update indicators for 2000/01. World Bank.

Kerbl, S., Sigmund, M., 2009. Quantifying the cyclicality of regulatory capital: First evidence from Austria. Financial Stability Report 18, 93-103.

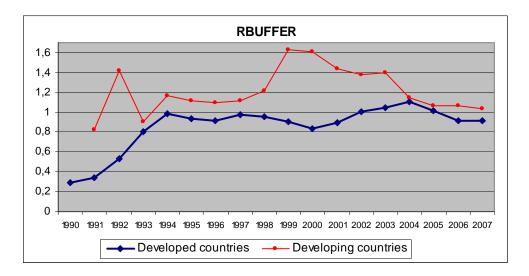
Kishan, R.P., Opiela, T.P., 2000. Bank size, bank capital and the bank lending cannel. Journal of Money, Credit, and Banking 32, 121-141.

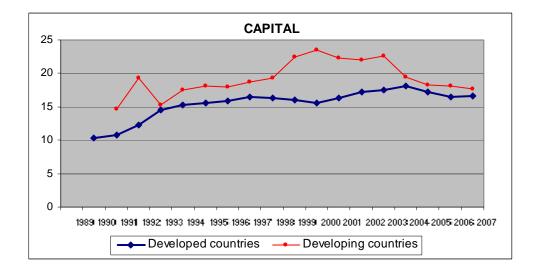
Kwan, S., Eisenbeis, R.A., 1997. Bank risk, capitalization and operating efficiency. Journal of Financial Services Research 12, 117-131.

Lindquist, K.G., 2004. Banks buffer capital: How important is risk? Journal of International Money and Finance 23, 493-513.

Lown, C., Peristani, S., 1996. The behavior of consumer loan rates during the 1990 credit slowdown. Journal of Banking and Finance 20, 1673-1694.

Meh, C., Moran, K., 2009. The role of bank capital in the propagation of shocks. Working Paper No. 2008-36, Bank of Canada.


Merton, R.C., 1977. An analytic derivation of the cost of deposit insurance and loan guarantees. Journal of Banking and Finance 1, 3-11.


Stoltz S., Wedow, M., 2005. Banks' regulatory capital buffer and the business cycle: Evidence for German saving and cooperative banks. Discussion Paper Series 2: Banking and Financial Studies, 07/2005.

Thakor, A.V., 1996. Capital Requirements, Monetary Policy and Aggregate Bank Lending: Theory and Empirical Evidence. Journal of Finance 51, 279-324.

Figure 1 Capital buffers and risk-adjusted capital ratios: Developed vs. developing countries

RBUFFER is the capital buffer in relative terms, i.e., the difference between CAPITAL and the requirement divided by the requirement. CAPITAL is the total capital adequacy ratio under the Basle rules. It measures Tier 1 + Tier 2 capital as a percentage of risk-weighted assets and off balance-sheet risks.

Table 1. Summary statistics by country

Panel A reports descriptive statistics by country. Loan Interest is the ratio of interest income to total earning assets, Deposit Interest is the cost of deposits (the ratio of interest expense to interestbearing debt of the bank), CAPITAL is the total capital adequacy ratio under the Basel rules published in the bank's annual report, Capital Requirement is the percentage of minimum capital required over risk-weighted assets defined following Basel I and Basel II, ABUFFER is the capital buffer in absolute terms, RBUFFER is the capital buffer in relative terms, SIZE is the logarithm for total bank assets, COLLATERAL is the difference between total assets risks and liquid assets, LATA is the ratio of liquid assets to total assets, TLNTA is the ratio of net total loan to total assets, GDPGR is the growth of per capita GDP, CONC is the country's bank market concentration (the ratio of the three largest banks' assets to total banking sector assets), GNIPC is the gross national income per capita. Bank data are from the BankScope data base of Fitch IBCA and macro data are from the IMF's International Financial Statistics and Beck at al. (2000) and (2009) database. Panel B reports the correlation matrix. *** and ** represent significance at the 1% and 5% levels, respectively.

	Panel A: Descriptive statistics (Mean values)														
COUNTRY	# obsv.	# banks	Loan Interest	Deposit Interest	CAPITAL	Capital Requirement	ABUFFER	RBUFFER	SIZE	COLLATERALTA	LATA	TLNTA	GDPGR	CONC	GNIPC
ALBANIA	13	4	0.2477	0.0351	22.5923	0.12	0.1059	0.8826	12.6135	0.0274	0.6285	0.2802	0.1192	0.8272	1375.5
ALGERIA	10	2	0.1274	0.0209	21.1800	0.08	0.1318	1.6475	14.3647	0.0127	0.3313	0.3101	0.0830	0.8638	2133
ARGENTINA	23	4	0.1333	0.0496	18.4652	0.115	0.0696	0.6056	15.3219	0.0296	0.3400	0.5243	0.0326	0.3737	5874.5
ARMENIA	11	4	0.1936	0.0383	26.5363	0.12	0.1453	1.2113	11.2457	0.0892	0.4336	0.4130	0.2363	0.6387	1019.412
AUSTRALIA	135	20	0.1011	0.0586	11.9237	0.08	0.0392	0.4904	16.4002	0.0144	0.1363	0.7553	-0.0156	0.5975	22417
AUSTRIA	26	12	0.1319	0.0488	12.0500	0.08	0.0405	0.5062	15.2988	0.0161	0.3621	0.5111	-0.0150	0.7167	28430
AZERBAIJAN	67	17	0.1994	0.0610	25.6104	0.1	0.1561	0.1561	11.2968	0.0725	0.2985	0.5668	0.2586	0.7707	1050.625
BAHRAIN	103	13	0.1941	0.0421	24.8506	0.12	0.1285	1.0708	14.5523	0.0099	0.3342	0.4027	0.0615	0.8170	10750
BANGLADESH	150	31	0.1320	0.0644	12.5640	0.08	0.0456	0.5705	12.7813	0.0115	0.2663	0.6435	-0.0151	0.4435	348
BELARUS	51	14	0.3074	0.1173	29.7000	0.1	0.1970	1.9700	12.4068	0.0815	0.3280	0.5334	-0.0119	0.7892	2093.529
BELGIUM	112	15	0.2010	0.0568	12.7625	0.08	0.0476	0.5953	16.9418	0.0057	0.4761	0.3625	0.0274	0.7557	27390.5
BENIN	5	1	0.1153	0.0259	11.7800	0.08	0.0378	0.4725	13.3261	0.0246	0.3548	0.4324	0.0400	0.8750	410.5
BOTSWANA	53	7	0.2607	0.0865	19.3434	0.113	0.0804	0.8665	12.4824	0.0155	0.3489	0.5088	-0.0041	0.8805	3659.5
BRAZIL	691	128	0.7582	0.1945	24.4055	0.11	0.1340	1.2186	14.2999	0.0223	0.4418	0.4017	0.0018	0.4660	3862.5
BULGARIA	81	19	0.2073	0.0624	23.4604	0.12	0.1146	0.9550	13.2824	0.0357	0.4300	0.5016	0.0861	0.5238	2216.5
CANADA	327	54	0.1012	0.0459	16.6335	0.09	0.0756	0.8615	15.0394	0.0067	0.1713	0.6323	0.0523	0.5436	24556
CHILE	112	19	0.1355	0.0658	14.4057	0.08	0.0640	0.8007	15.2061	0.0207	0.2091	0.6584	0.0322	0.5152	4727.5
CHINA	224	69	0.0793	0.0313	13.0940	0.08	0.0509	0.6367	16.0233	0.0133	0.2120	0.5413	0.1313	0.6652	1032.5
COLOMBIA	43	18	0.2713	0.1353	12.2534	0.09	0.0325	0.3614	13.8369	0.0443	0.1894	0.6124	-0.0988	0.3773	2340.5
COSTA RICA	11	3	0.2472	0.0763	19.1390	0.09	0.1023	1.1566	14.3653	0.0329	0.3467	0.4723	-0.0590	0.6629	3654
CROATIA	90	26	0.1239	0.0407	20.8844	0.09	0.1130	1.2209	13.5182	0.0330	0.3850	0.5251	0.0924	0.6026	6561.25
CYPRUS	26	6	0.1774	0.0539	13.6326	0.08	0.0532	0.6238	15.1635	0.0188	0.3493	0.5440	0.0265	0.8752	12874.21
CZECH REPUBLIC	152	21	0.2569	0.0719	22.3605	0.08	0.1436	1.7950	14.7887	0.0218	0.4847	0.4017	0.0848	0.6513	7194.118
DENMARK	778	65	0.1431	0.0360	17.0287	0.08	0.0902	1.1285	13.5814	0.0186	0.1738	0.5716	0.0304	0.7706	35187.5
ECUADOR	65	21	0.2262	0.0682	20.5692	0.09	0.1156	1.2854	12.0455	0.0746	0.2999	0.4896	-0.1107	0.5395	1775.5
EGYPT	71	13	0.1723	0.0632	13.7084	0.087	0.0500	0.5860	14.9692	0.0076	0.4297	0.4558	-0.0042	0.5688	1103.5
FINLAND	47	8	0.1654	0.0834	15.0277	0.08	0.0702	0.8784	15.8167	0.0202	0.2746	0.4713	-0.0125	0.9037	28041.5
FRANCE	748	131	0.2486	0.0782	16.3814	0.08	0.0838	1.0470	15.3538	0.0101	0.3371	0.4799	0.0091	0.4951	26622
GAMBIA	10	2	0.3811	0.0440	13.9900	0.08	0.0599	0.7487	11.5168	0.0460	0.5471	0.3230	0.0240	0.9651	319.5
GEORGIA REP. OF	18	8	0.2252	0.0668	29.3500	0.15	0.1435	0.9566	11.2576	0.0623	0.3285	0.5442	0.0988	0.7403	974.1176
GERMANY	159	25	0.1128	0.0566	11.6710	0.08	0.0367	0.4588	17.8539	0.0085	0.3079	0.4955	0.0100	0.6130	27855.5
GHANA	18	3	0.5151	0.0856	10.6880	0.06	0.0468	0.7814	12.6600	0.0322	0.3979	0.3409	-0.1066	0.8710	401
GREECE	86	18	0.1472	0.0478	14.0767	0.08	0.0607	0.7595	16.0322	0.0182	0.3395	0.5534	0.0586	0.8211	14559
GUYANA	10	2	0.2373	0.0345	22.6700	0.08	0.1467	1.8337	12.1652	0.0436	0.5698	0.2904	-0.0030	1.0000	784.5
HONG KONG	341	41	0.1886	0.0484	27.4049	0.116	0.1579	1.3637	14.9312	0.0194	0.3621	0.4862	0.0164	0.5764	23405.5
HUNGARY	97	18	0.2542	0.0815	14.6864	0.08	0.0668	0.8358	15.0186	0.0267	0.3599	0.5255	0.0135	0.6295	5772
ICELAND	8	5	0.1826	0.1064	10.2000	0.08	0.0220	0.2750	14.8325	0.0151	0.2433	0.6143	-0.1150	1.0000	32029.5

INDIA	547	64	0.2039	0.0688	13.8820	0.08	0.0545	0.6499	14.5609	0.0169	0.4346	0.4708	0.0286	0.3451	511.5
		84													
	507		0.2932	0.1067	22.6839	0.08	0.1468	1.8354	13.5323	0.0178	0.3894	0.5416	0.0312	0.5175	952.5
	10	2	0.0974	0.0545	13.7800	0.08	0.0578	0.7225	17.0595	-0.1489	0.2510	0.6085	0.0650	0.6468	24496
ISRAEL	148	17	0.1039	0.0491	13.7493	0.09	0.0474	0.5277	15.5204	0.0138	0.2609	0.6721	-0.0056	0.7582	15824.5
ITALY	1190	184	0.1604	0.0475	17.1023	0.08	0.0910	1.1377	15.0405	0.0168	0.3443	0.5396	0.0255	0.5054	22865
JAMAICA	17	5	0.5474	0.0693	25.4000	0.1	0.1540	1.5400	14.2948	0.0136	0.6085	0.2588	-0.0541	0.8664	2877
JAPAN	825	152	0.0456	0.0137	11.2368	0.08	0.0323	0.4046	17.4004	0.0164	0.1352	0.6439	-0.0017	0.3709	34159.5
JORDAN	100	11	0.1440	0.0404	19.3380	0.12	0.0733	0.6115	14.6368	0.0156	0.4405	0.4362	0.0252	0.8694	1863
KAZAKHSTAN	84	16	0.1969	0.0869	23.7428	0.12	0.1174	0.9785	13.4924	0.0353	0.3531	0.5585	0.1061	0.6841	2175.294
KENYA	89	21	0.2126	0.0553	21.1471	0.08	0.1333	1.7161	12.3978	0.0254	0.3699	0.5158	-0.0077	0.5803	421.5
KOREA REP. OF	199	25	0.1231	0.0674	11.1971	0.08	0.0319	0.3996	17.0803	0.0233	0.1183	0.5836	0.0519	0.3942	11840.56
KUWAIT	45	5	0.1594	0.0409	20.8778	0.12	0.0887	0.7398	15.9227	0.0103	0.5149	0.4005	0.0535	0.6759	21038.46
KYRGYZSTAN	23	6	0.4933	0.0254	34.0869	0.12	0.2208	1.8405	10.4638	0.0545	0.5291	0.3637	0.0721	0.8638	409.4118
LATVIA	133	27	0.3486	0.0306	23.3897	0.1	0.1338	1.3389	12.4131	0.0362	0.4547	0.3988	0.1036	0.5286	4143.5
LEBANON	407	58	0.3783	0.0689	23.3486	0.0948	0.1386	1.5102	12.7521	0.0330	0.6298	0.2864	0.0306	0.3697	3991.579
LITHUANIA	64	9	0.1125	0.0313	16.7531	0.1	0.0675	0.6753	13.0969	0.0828	0.3068	0.5490	0.1440	0.8008	4527.056
MACEDONIA	32	9	0.1482	0.0313	31.4031	0.08	0.2340	2.9253	12.0756	0.0543	0.4136	0.4936	0.0828	0.7774	2190.588
MALAWI	18	3	0.6129	0.0748	27.5500	0.08	0.1955	2.4437	11.7215	0.0822	0.4313	0.3055	-0.0672	0.8914	190
MALAYSIA	252	37	0.1444	0.0416	20.5496	0.08	0.1254	1.5687	15.0643	0.0073	0.3389	0.5522	0.0332	0.4422	4016.5
MALTA	52	6	0.5691	0.0361	19.9788	0.08	0.1197	1.4973	14.0631	0.0144	0.4528	0.3733	0.0223	0.8067	9865.789
MAURITIUS	16	4	0.1747	0.0787	17.9187	0.1	0.0791	0.7918	12.9593	0.0614	0.3179	0.5764	-0.0450	0.9086	3824.4
MEXICO	118	18	0.3082	0.1665	16.0211	0.08	0.0802	1.0026	15.4811	0.0253	0.2254	0.5950	0.0430	0.6214	5345
MOLDOVA REP. OF	35	10	0.3082	0.0719	34.4894	0.08	0.2248	1.8741	11.1991	0.0605	0.3323	0.5603	0.0600	0.6566	598.8235
NAMIBIA	12	5	0.1282	0.0635	14.2417	0.12	0.0624	0.7802	13.8513	0.0129	0.1066	0.3803	0.0800	0.9055	2366
NEW ZEALAND	37	10	0.0880	0.0569	11.6513	0.08	0.0365	0.4564	16.2639	0.0085	0.0988	0.8020	0.1240	0.8962	27723.5
NIGERIA	69	13	0.3380	0.0469	20.8021	0.08	0.1280	1.6002	14.2809	0.0383	0.5803	0.2857	0.0469	0.4204	412.5
NORWAY	150	17	0.0875	0.0659	12.1120	0.08	0.0411	0.5140	15.1091	0.0112	0.0746	0.8140	0.0487	0.9012	42045.5
OMAN	61	9	0.0970	0.0375	19.1245	0.12	0.0712	0.5937	14.0991	0.0102	0.2462	0.6697	0.0652	0.7607	6779.444
PAKISTAN	48	17	0.1342	0.0444	16.5458	0.08	0.8540	1.0682	14.4266	0.0287	0.3265	0.5160	0.0445	0.4406	549.5
PERU	19	24	0.1695	0.0512	11.3789	0.09	0.0232	0.2573	15.2025	0.0338	0.2498	0.5605	0.0284	0.6866	2073.5
PHILIPPINES	164	30	0.1768	0.0496	19.4923	0.1	0.0949	0.9492	14.2015	0.0280	0.2764	0.4666	0.0017	0.7001	1069.5
POLAND	222	41	0.2664	0.0812	16.9675	0.08	0.0896	1.1209	14.2661	0.0235	0.4252	0.4884	0.0414	0.5777	5238.235
PORTUGAL	42	13	0.2567	0.0744	16.9738	0.08	0.0897	1.1217	15.7934	0.0241	0.4491	0.3763	0.0419	0.5343	12058
QATAR	24	5	0.0783	0.0204	23.8750	0.096	0.1420	1.4977	14.8914	0.0108	0.3307	0.5536	0.1416	0.9038	
ROMANIA	51	15	0.7339	0.1516	38.9886	0.08	0.3098	3.8735	13.3108	0.1108	0.4792	0.3725	-0.1658	0.6860	
RUSSIAN FED.	245	115	0.2814	0.0732	30.8661	0.116	0.1918	1.6383	12.7306	0.0537	0.4001	0.4574	0.0360	0.3113	3474.444
RWANDA	7	2	0.2680	0.0206	17.3571	0.075	0.0978	1.2992	11.5668	0.0308	0.5366	0.3893	0.0285	0.7819	274.5
SENEGAL	6	2	0.0857	0.0130	24.4500	0.08	0.1645	2.0562	12.1589	0.0527	0.2138	0.5881	0.0983	0.6695	880
SINGAPORE	54	10	0.0806	0.0310	24.1388	0.12	0.1213	1.0115	16.3780	0.0166	0.2901	0.5842	0.0144	0.8298	208545
SLOVAKIA	83	15	0.1987	0.0499	17.3698	0.08	0.0936	1.1712	14.4710	0.0295	0.4409	0.4239	0.0995	0.7715	5146
SLOVENIA	106	16	0.1262	0.0486	15.1679	0.08	0.0716	0.8959	14.2656	0.0226	0.2725	0.5606	0.0092	0.6368	12654.12
SOUTH AFRICA	161	29	0.2082	0.1135	18.4875	0.086	0.0982	1.1602	13.3541	0.0152	0.2245	0.6991	-0.0163	0.8593	3716
SPAIN	252	32	0.2156	0.0483	12.8924	0.08	0.0489	0.6115	16.5977	0.0226	0.3490	0.5494	0.0244	0.7259	17570.5
SRI LANKA	64	11	0.1556	0.0847	15.1084	0.09	0.0585	0.6697	13.2549	0.0309	0.2734	0.6061	-0.0168	0.6652	873.5
SWEDEN	159	19	0.1393	0.0366	15.5849	0.08	0.0758	0.9481	14.9705	0.0081	0.1927	0.6989	0.0420	0.9466	43513.5
THAILAND	130	19	0.0885	0.0343	15.5783	0.085	0.0707	0.8327	15.8362	0.0508	0.2172	0.6451	0.0574	0.4798	2182.5
TRINIDAD & TOBAGO	14	3	0.1479	0.0470	14.7714	0.08	0.0677	0.8464	13.8422	0.0271	0.2230	0.6289	0.0714	0.8002	6642.5
TURKEY	130	32	0.4354	0.0470	23.6825	0.08	0.1568	1.9603	15.4598	0.0285	0.4791	0.0209	0.0714	0.6897	3972.5
UKRAINE	226	43	0.4354	0.0845	20.3157	0.08	0.1231	1.5394	12.8425	0.0285	0.2692	0.4297	0.0792	0.0097	1303
	375	43 52	0.2209	0.0645	19.2018	0.08	0.1231	1.4002	15.9276	0.0100	0.3495	0.4878	0.0792	0.6371	25898.5
USA	375 6487	52 608	0.2008	0.0593	14.8666		0.0686	0.8583	14.6004		0.3495	0.4878	0.0447	0.6371	25698.5 32811
	6487 197	608 44		0.0337		0.08				0.0147					32011
VENEZUELA	197	44	0.5896	0.0924	27.7101	0.106	0.1707	1.6358	12.3878	0.0406	0.2597	0.4107	-0.1403	0.4290	

VIETNAM ZAMBIA ZIMBABWE	20 5 42	1 0	.1226 .3409 .2316	0.0484 0.1322 0.2292	13.5840 21.8000 21.5333	0.08 0.08 0.087	0.0558 0.1380 0.1277	0.6980 1.7250 1.4360	14.1173 10.7014 8.1795	0.0213 0.0120 0.0434	0.3306 0.4069 0.3987	0.5419 0.4848 0.3816	0.0460 0.0860 -0.5914	0.7022 0.5825 0.7348	387 419.5 640
MEDIAN		C	.1169	0.0393	13.16	0.08	0.048	0.5693	14.5432	0.0138	0.1957	0.5839	0.02	0.4227	1629999. 81
MEAN		C	.1946	0.0558	17.207	0.0853	0.0867	1.0078	14.6566	0.0192	0.2511	0.5541	0.0216	0.4625	22417
STANDARD DEVIATION		C	.3440	0.0623	12.2104	0.0122	0.1196	1.3771	2.1635	0.0312	0.2086	0.2006	0.1020	0.2191	2713072. 98
							Panel B: Co	relations							
VARIABLES LOANRATE COSTDEP CAPITAL ABUFFER RBUFFER SIZE COLLATERALTA LATA TLNTA GDPG		LOANRATE 1.000 0.3749*** 0.2599*** 0.2479*** 0.2305*** -0.1611*** 0.3987*** -0.4688*** -0.1987	1.00 0.13 0.11 0.09 -0.1 0.13 0.15 -0.0	STDEP 00 307*** 128** 003*** 054*** 371*** 585*** 1925*** 1359***	CAPITAL 1.000 0.9952*** 0.3699*** 0.3777*** 0.1256*** 0.3616*** -0.3984*** -0.0100	ABUFFER 1.000 0.9848*** -0.3667*** 0.1102*** 0.3426*** -0.3886*** -0.0130**	1.000 -0.3516*** 0.0891*** 0.3250*** -0.3803*** -0.0101	1.000 -0.2400*** 0.1522*** 0.087*** 0.0833***	1.000 0.052 0.096 -0.09	4*** 5***	LATA 1.000 -0.7700*** -0.0166**	TLNTA 1.000 0.0698***	GDF 1.00		CONC
CONC		-0.1987 0.450***		183***	-0.0100 0.0776***	0.0624***	0.0516***	-0.0094	0.080		0.2512***	-0.0908***		25***	1.000

Table 2Interest rate spreads and capital buffers

Regressions are estimated using the Arellano and Bond (1991) GMM difference estimator for panel data with lagged dependent variables. The dependent variable is the lending rate spread (LOANRATE) in Panel A and the deposit rate spread (COSTDEP) in Panel B. As explanatory variables we include one lag of the dependent variable (LOANRATE_{i,t-1}) or COSTDEP_{i,t-1}), the capital buffer in relative terms (RBUFFER) or total capital over risk-weighted assets (CAPITAL), the natural logarithm of bank assets (SIZE), the ratio of collateral to total bank assets (COLLATERALTA), the ratio of liquid assets to total bank assets (LATA), the ratio of total loans to total bank assets (TLNTA), the country's bank market concentration (CONC), and the growth of per capita GDP in the country (GDPGR). Regressions are estimated for 1990-2007. Year and country dummy variables are included for all the estimations but are not reported. T-statistics are in parentheses. ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively.

	Panel A.	Dependent varia	ble: Lending Ra	te Spread	Panel B. D	Panel B. Dependent variable: Deposit Rate Spread				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
LOANRATE _{t-1} /COSTDEP _{t-1}	0.2482***	0.24852***	0.2477***	0.2480***	0.1713**	0.1717**	0.1705**	0.1709**		
	(2.85)	(2.86)	(2.85)	(2.86)	(2.03)	(2.04)	(2.03)	(2.04)		
RBUFFER	-0.3696**	-0.3567**			-0.0051**	-0.0048**				
	(-2.15)	(-2.01)			(-2.55)	(-2.47)				
CAPITAL			-0.0490**	-0.0481**			-0.006***	-0.0006***		
			(-2.02)	(-1.92)			(-2.68)	(-2.63)		
SIZE	-1.2340	-1.1533	-1.2715	-1.2046	-0.0272***	-0.0219**	-0.0274***	-0.0222**		
	(-1.27)	(-1.28)	(-1.29)	(-1.30)	(-2.93)	(-2.50)	(-2.92)	(-2.50)		
COLLATERALTA	-4.8984	-3.8434	-4.4396	-3.661	0.1451	0.1548	0.1546	0.1621		
	(-0.58)	(-0.45)	(-0.53)	(-0.44)	(0.75)	(0.84)	(0.81)	(0.89)		
LATA	2.1108*	2.1736	2.3438**	2.2159	0.0092	0.0065	0.0125	0.0073		
	(1.75)	(1.25)	(1.99)	(1.28)	(0.52)	(0.32)	(0.71)	(0.36)		
TLNTA		-0.0423		-0.3069		-0.0039		-0.0067		
		(-0.02)		(-0.17)		(-0.13)		(-0.23)		
CONC	1.4411***	1.5752	1.5518	1.5326	-0.0189	-0.0181	-0.0199	-0.0193		
	(5.25)	(1.05)	(1.07)	(1.02)	(-1.21)	(1.15)	(-1.27)	(-1.22)		
GDPGR	1.0227	1.1744	1.1125	1.2707	-0.0307**	-0.0287**	-0.0292**	-0.0273**		
	(0.79)	(0.92)	(0.87)	(1.00)	(-2.46)	(-2.34)	(-2.37)	(-2.25)		
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Country dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
m ₁	-1.57	-1.57	-1.59	-1.59	-3.43***	-3.47***	-3.47***	-3.50***		
m ₂	-0.46	-0.47	-0.47	-0.43	0.64	0.59	0.68	0.63		
# observations	13,651	13,651	13,651	13,651	13,612	13,606	13,612	13,606		
# banks	2,316	2,316	2,316	2,316	2,317	2,314	2317	2314		
# countries	92	92	92	92	92	92	92	92		

Table 3

Lending rate spreads and country development

Regressions are estimated using the Arellano and Bond (1991) GMM difference estimator for panel data with lagged dependent variables. The dependent variable is the lending rate spread. As explanatory variables we include one lag of the dependent variable (LOANRATE_{i,t-1}), the capital buffer in relative terms (RBUFFER) or total capital over risk-weighted assets (CAPITAL), the natural logarithm of bank assets (SIZE), the ratio of collateral to total bank assets (COLLATERALTA), the ratio of liquid assets to total bank assets (LATA), the ratio of total loans to total bank assets (TLNTA), the country's bank market concentration (CONC), and the growth of per capita GDP in the country (GDPGR). DEVELOP is a dummy variable that takes a value of 1 for countries classified as high income and upper middle income and zero otherwise. OECD takes a value of 1 for OECD countries and zero otherwise. G20 takes a value of 1 for countries belonging to the G20 group and zero otherwise. G8 takes a value of 1 for countries belonging to the G8 group and zero otherwise. Regressions are estimated for 1990-2007. Year and country dummy variables are included for all the estimations but are not reported. T-statistics are in parentheses. ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively.

		RBUFFER						CAPITAL		
	(1)	(2)	(3)	(4)	(5)	(6)	(5)	(6)	(7)	(8)
LOANRATE _{t-1}	0.246***	0.2473***	0.2483***	0.2478***	0.2455***	0.2459**	0.2457***	0.2475***	0.2466***	0.2456***
	(2.85)	(2.86)	(2.85)	(2.85)	(2.87)	(2.86)	(2.86)	(2.85)	(2.86)	(2.88)
RBUFFER /CAPITAL	-0.6412**	-0.7075**	-0.3490	-0.4139*	-2.9082***	-0.0697*	-0.0908**	-0.0472	-0.0547*	-0.2741**
	(-2.01)	(-2.27)	(-1.49)	(-1.79)	(-2.75)	(-1.84)	(-2.23)	(-1.40)	(-1.75)	(-2.50)
RBUFFER /CAPITAL x DEVELOP	0.5939**					0.0532**				
	(2.21)					(1.91)				
RBUFFER /CAPITAL x OECD		0.7161**					0.0947**			
		(2.45)					(2.50)			
RBUFFER /CAPITAL x G20			0.0410					0.0027		
			(0.21)					(0.10)		
RBUFFER /CAPITAL x G8				0.3192					0.0513*	
				(1.48)					(1.73)	
RBUFFER /CAPITAL x KKZ					0.1688***					0.0151**
					(2.73)				10001	(2.52)
SIZE	-1.1802	-1.0493	-1.0745	-1.0744	-1.1673	-1.3296	-1.1111	-1.2083	-10884	-1.2223
	(-1.28)	(-1.13)	(-1.21)	(-1.19)	(-1.28)	(-1.42)	(-1.20)	(-1.32)	(-1.18)	(-1.30)
COLLATERALTA	-5.7503	-3.7039	-4.2398	-5.1959	-4.2330	-6.6448	-3.6491	-4.1390	-4.6732	-3.7651
	(-0.72)	(-0.47)	(-0.52)	(-0.62)	(-0.51)	(-0.82)	(-0.46)	(-0.51)	(-0.56)	(-0.46)
LATA	1.6385	1.6843	1.8556*	1.6313	2.2460**	1.8690	2.0826*	2.0260*	1.7789*	2.2689**
20112	(1.43)	(1.52)	(1.69)	(1.52)	(2.12)	(1.62)	(1.90)	(1.81)	(1.66)	(2.20)
CONC	1.2992	1.7920	1.4745	1.5842	1.4585	1.4634	1.8936	1.3893	1.7067	1.4876
CDDCD	(0.90)	(1.24)	(1.04)	(1.11)	(0.99)	(1.04)	(1.34)	(0.98)	(1.21)	(1.00)
GDPGR	1.1911	1.3384	1.2259	1.0886	0.9707	1.5721	1.8808	1.1089	1.4352	0.9975
×7 1 ·	(0.96)	(1.08)	(0.94)	(0.86)	(0.78)	(1.30)	(1.59)	(0.86)	(1.20)	(0.80)
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Country dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
m ₁	-1.62	-1.60	-1.55	-1.56	-1.63	-1.66*	-1.66*	-1.59	-1.58	-1.66*
m ₂	-0.51	-0.52	-0.48	0.51	-0.52	-0.42	-0.47	-0.47	-0.49	-0.41
# observations	13,651	13,651	13,651	13,651	13,651	13,651	13,651	13,651	13,651	13,651
# banks	2,316	2,316	2,316	2,316	2,316	2,316	2,316	2,316	2,316	2,316
# countries	92	92	92	92	92	92	92	92	92	92

Table 4

Deposit rate spreads and country development

Regressions are estimated using the Arellano and Bond (1991) GMM difference estimator for panel data with lagged dependent variables. The dependent variable is the deposit rate spread (COSTDEP). As explanatory variables we include one lag of the dependent variable (COSTDEP $_{i,t-1}$), the capital buffer in relative terms (RBUFFER) or total capital over risk-weighted assets (CAPITAL), the natural logarithm of bank assets (SIZE), the ratio of collateral to total bank assets (COLLATERALTA), the ratio of liquid assets to total bank assets (LATA), the ratio of total loans to total bank assets (TLNTA), the country's bank market concentration (CONC), and the growth of per capita GDP in the country (GDPGR). DEVELOP is a dummy variable that takes a value of 1 for countries classified as high income and upper middle income and zero otherwise. OECD takes a value of 1 for OECD countries and zero otherwise. G20 takes a value of 1 for countries belonging to the G8 group and zero otherwise. INS is a dummy variable that takes a value of 1 if the country has a deposit insurance scheme and zero otherwise. Regressions are estimated for 1990-2007. Year and country dummy variables are included for all the estimations but are not reported. T-statistics are in parentheses. ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively.

			RBUI	FFER			CAPITAL					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
COSTDEP _{t-1}	0.1705** (2.04)	0.1701** (2.04)	0.1718** (2.04)	0.1707** (2.03)	0.1675** (2.03)	0.1679** (2.03)	0.1695** (2.03)	0.1691** (2.04)	0.1714** (2.04)	0.1694** (2.03)	0.1667** (2.03)	0.1670** (2.03)
RBUFFER /CAPITAL	-0.0051** (-1.98)	-0.0087**	-0.0034 (-1.40)	-0.0051** (-2.16)	-0.0396*** (-3.79)	0.0020 (0.24)	-0.0005* (-1.84)	-0.0011*** (-2.68)	-0.0004 (-1.45)	-0.0007** (-2.29)	-0.0042*** (-3.80)	0.0013 (1.25)
RBUFFER /CAPITAL x DEVELOP	0.0028 (1.18)				(,		0.0001 (0.45)				()	
RBUFFER /CAPITAL x OECD	()	0.0073** (2.08)					(0.12)	0.0009** (2.29)				
RBUFFER /CAPITAL x G20		(,)	-0.0009 (-0.35)					()	-0.0002 (-0.73)			
RBUFFER /CAPITAL x G8				0.0034 (1.08)						0.0005 (1.38)		
RBUFFER /CAPITAL x KKZ					0.0022*** (3.59)						0.0002*** (3.58)	
RBUFFER /CAPITAL x INS						-0.0069 (-0.66)						-0.0021 (-1.62)
SIZE	-0.0254*** (-2.91)	-0.0223** (-2.52)	-0.0227*** (-2.77)	-0.0228*** (-2.78)	-0.0240*** (-2.80)	-0.0261*** (-2.89)	-0.0262*** (-2.96)	-0.0214** (-2.43)	-0.0242*** (-2.92)	-0.0225*** (-2.79)	-0.0243*** (-2.82)	-0.0256*** (-2.80)
COLLATERALTA	0.1512 (0.81)	0.1783	0.1348 (0.72)	0.1453 (0.78)	0.1529	001718 (0.94)	0.1543 (0.83)	0.1883 (1.04)	0.1374 (0.74)	0.1657 (0.90)	0.1624 (0.88)	0.1793 (1.00)
LATA	0.0019 (0.11)	-0.0032	-0.0007 (-0.04)	-0.0019	0.0079 (0.48)	-0.0008 (-0.05)	0.0051 (0.30)	0.0030 (0.18)	0.0026 (0.15)	0.0024 (0.14)	0.0090 (0.57)	0.0041 (0.23)
CONC	-0.0221 (-1.46)	-0.0172	-0.0220 (-1.45)	-0.0205 (-1.38)	-0.0163	-0.0235 (-1.52)	-0.0219 (-1.46)	-0.0176 (-1.13)	-0.0255 (-1.63)	-0.0209 (-1.38)	-0.0209	-0.0239 (-1.53)
GDPGR	-0.0305** (-2.55)	-0.0253** (-2.13)	-0.0268** (-2.14)	-0.0290** (-2.37)	-0.0314*** (-2.63)	-0.0307** (-2.52)	-0.0282** (-2.46)	-0.0208* (-1.80)	-0.0251** (-2.01)	-0.0257** (-2.21)	-0.0302*** (-2.60)	-0.0295** (-2.46)
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Country dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
m1	-3.44***	-3.53***	-3.44***	-3.46***	-3.55***	-3.45***	-3.47***	-3.59***	-3.47***	-3.51***	-3.61***	-3.49***
m ₂	0.63	0.64	0.60	0.62	0.62	0.60	0.66	0.71	0.65	0.66	0.69	0.63
# observations	13,612	13,612	13,612	13,612	13,612	13,612	1,3612	1,3612	1,3612	1,3612	13,612	13,612
# banks	2,317	2,317	2,317	2,317	2,317	2,317	2,317	2,317	2,317	2,317	2,317	2,317
# countries	92	92	92	92	92	92	92	92	92	92	92	92

Table 5

Interest rate spreads, capital buffers, and cyclical effects

Regressions are estimated using the Arellano and Bond (1991) GMM difference estimator for panel data with lagged dependent variables. The dependent variable is the lending rate spread (LOANRATE) in Panel A and the deposit rate spread (COSTDEP) in Panel B. As explanatory variables we include one lag of the dependent variable (LOANRATE) or COSTDEP_{i,t-1}), the capital buffer in relative terms (RBUFFER) or total capital over risk-weighted assets (CAPITAL), the natural logarithm of bank assets (SIZE), the ratio of collateral to total bank assets (COLLATERALTA), the ratio of liquid assets to total bank assets (LATA), the ratio of total loans to total bank assets (TLNTA), the country's bank market concentration (CONC), and the growth of per capita GDP in the country (GDPGR). Regressions are estimated for 1990-2007. Year and country dummy variables are included for all the estimations but are not reported. T-statistics are in parentheses. ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively.

	Panel A. D	ependent varia	ble: Lending R	ate Spread	Panel B. Dependent variable: Deposit Rate Spread					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
LOANRATE _{t-1} /COSTDEP _{t-1}	0.2327***	0.2327***	0.2343***	0.2343***	0.1541**	0.1544**	0.1575**	0.1578**		
	(2.94)	(2.95)	(2.93)	(2.93)	(2.03)	(2.04)	(2.02)	(2.03)		
RBUFFER	-0.4540**	-0.4379**			-0.0059***	-0.0052**				
	(-2.52)	(-2.36)			(-2.75)	(-2.57)				
CAPITAL			-0.0538**	-0.0520**			-0.0007***	-0.0006***		
			(-2.19)	(-2.06)			(-2.73)	(-2.60)		
SIZE	-1.3336	-1.2320	-1.4617	-1.3547	-0.0299***	-0.0254***	-0.0302***	-0.0258***		
	(-1.50)	(-1.47)	(-1.60)	(-1.57)	(-3.38)	(3.02)	(-3.39)	(-3.01)		
COLLATERALTA	-1.3689	-0.5777	-1.4790	-0.9083	0.1977	0.2001	0.1986	0.1977		
	(-0.16)	(-0.06)	(-0.17)	(-0.10)	(1.10)	(1.14)	(1.11)	(1.14)		
LATA	2.4362**	2.3383	2.5187**	2.2796	0.0120	0.0074	0.0133	0.0043		
	(2.13)	(1.41)	(2.27)	(1.37)	(0.70)	(0.37)	(0.77)	(0.21)		
TLNTA		-0.0957		-0.2314		-0.0047		-0.0102		
		(-0.05)		(-0.13)		(-0.17)		(-0.37)		
CONC	1.4734	1.5555	1.6061	1.6641	-0.0187	-0.0181	-0.0187	-0.0182		
	(1.04)	(1.06)	(1.15)	(1.15)	(-1.27)	(-1.20)	(-1.29)	(-1.24)		
GDPGR	-2.5871	-2.4893	-6.0191*	-5.9606*	-0.0606***	-0.0592***	-0.0735**	-0.0727**		
	(-1.41)	(-1.34)	(-1.77)	(-1.74)	(-3.48)	(-3.40)	(-2.51)	(-2.45)		
RBUFFER x GDPGR	4.2956***	4.3182***			0.0367***	0.0373***				
	(3.45)	(3.45)			(2.94)	(2.94)				
CAPITAL x GDPGR			0.4422***	0.4465***			0.0028*	0.0029*		
			(0.60)	(2.61)			(1.93)	(1.93)		
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Country dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
m1	-1.70*	-1.70*	-1.81*	-1.81*	-3.59***	-3.63***	-3.59***	-3.62***		
m2	-1.07	-1.11	-0.77	-0.80	0.56	0.51	0.65	0.60		
# observations	13,651	13,651	13,651	13,651	13,606	13,606	13,612	13,612		
# banks	2,316	2,316	2,316	2,316	2,314	2,314	2,317	2,317		
# countries	92	92	92	92	92	92	92	92		

Cyclical effects of capital buffers, lending rates, and country development

Regressions are estimated using the Arellano and Bond (1991) GMM difference estimator for panel data with lagged dependent variables. The dependent variable is the lending rate spread. As explanatory variables we include one lag of the dependent variable (LOANRATE_{i,t-1}), the capital buffer in relative terms (RBUFFER) or total capital over risk-weighted assets (CAPITAL), the natural logarithm of bank assets (SIZE), the ratio of collateral to total bank assets (COLLATERALTA), the ratio of liquid assets to total bank assets (LATA), the ratio of total loans to total bank assets (TLNTA), the country's bank market concentration (CONC), and the growth of per capita GDP in the country (GDPGR). DEVELOP is a dummy variable that takes a value of 1 for countries classified as high income and upper middle income and zero otherwise. OECD takes a value of 1 for OECD countries and zero otherwise. G20 takes a value of 1 for countries belonging to the G8 group and zero otherwise. Regressions are estimated for 1990-2007. Year and country dummy variables are included for all the estimations but are not reported. T-statistics are in parentheses. ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively.

			RBUF	FER				CAPITA	Ĺ	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
LOANRATE _{t-1}	0.2261***	0.2255***	0.2212***	0.2289***	0.2106***	0.2285***	0.2285***	0.2229***	0.2307***	0.2228***
	(3.05)	(3.02)	(2.99)	(2.99)	(3.12)	(3.07)	(3.00)	(2.97)	(2.99)	(3.11)
BUFFER /CAPITAL	-0.3838**	-0.4657***	-0.4558***	-0.3641**	-0.2961**	-0.0439*	-0.0493**	-0.0476**	-0.0425*	-0.0437*
	(-2.29)	(-2.63)	(-2.74)	(-2.21)	(-2.05)	(-1.91)	(-2.13)	(-2.11)	(-1.90)	(-1.86)
SIZE	-1.1971	-1.4056*	-1.3345*	-1.2414	-1.1232	-1.2774	-1.5516*	-1.6665*	-1.4474*	-1.4981
	(-1.46)	(-1.64)	(-1.64)	(-1.57)	(-1.40)	(-1.51)	(-1.71)	(-1.88)	(-1.70)	(-1.61)
COLLATERALTA	-0.0117	-1.5226	-0.8890	-1.2272	-0.2838	1.5086	-0.8122	2.9794	2.0548	3.0352
	(-0.00)	(-0.18)	(-0.11)	(-0.14)	(-0.03)	(0.19)	(-0.09)	(0.37)	(0.23)	(0.38)
LATA	1.5451	2.0193*	2.1537**	-2.4409**	2.8536***	1.544	2.3524**	2.4240**	2.9932***	2.8171**
	(1.39)	(1.91)	(1.90)	(2.34)	(2.71)	(1.43)	(2.22)	(2.22)	(2.96)	(2.59)
CONC	1.6224	2.1012	-2.5171*	1.9249	2.0300	1.7742	2.4465*	2.9903**	2.0677*	1.6709
	(1.12)	(1.56)	(1.85)	(1.52)	(1.39)	(1.25)	(1.83)	(2.21)	(1.71)	(1.10)
GDPGR	-1.3558	-2.0677	-2.6863	-2.2867	-1.9975	-5.2478*	-5.1937	-6.2332*	-4.1165	-4.7694
	(-0.82)	(1.14)	(-1.47)	(-1.28)	(-1.31)	(-1.67)	(-1.48)	(-1.88)	(-1.22)	(-1.39)
BUFFER /CAPITAL x	7.6011***	5.5978***	6.0240***	5.2378***	27.559***	0.8488***	0.4814***	0.5204**	0.4463***	1.784***
GDPGR	(4.42)	(3.55)	(2.81)	(3.91)	(3.99)	(4.30)	(2.76)	(2.43)	(2.70)	(3.33)
BUFFER /CAPITAL x	-5.6892***	()			()	-0.5407***				()
GDPGR x DEVELOP	(-4.33)					(-4.68)				
BUFFER /CAPITAL x	(-3.1814*					-0.1434			
GDPGR x OECD		(-1.79)					(-1.01)			
BUFFER /CAPITAL x			-1.9092					-0.0339		
GDPGR x G20			(-0.91)					(-0.23)		
BUFFER /CAPITAL x			(-6.8222***				(====)	-0.5400***	
GDPGR x G8				(-6.30)					(-5.43)	
BUFFER /CAPITAL x				(0.00)	-1.6730***				(0.10)	-0.0980***
GDPGR x KKZ					(-3.80)					(-3.19)
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Country dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
m	-1.94*	-1.73*	-1.78*	-1.78*	-2.25**	-2.15**	-1.81*	-1.90*	-1.88*	-2.35**
m ₂	-1.47	-1.09	-1.52	-1.06	-1.75*	-1.26	-0.72	-1.10	-0.59	-1.44
# observations	13,651	13,651	13,651	13,651	13,651	13,651	13,651	13,651	13,651	13,651
# banks	2,316	2,316	2,316	2,316	2,316	2,316	2,316	2,316	2,316	2,316
# countries	92	92	92	92	92	92	92	92	92	92

Cyclical effects of capital buffers, cost of deposits, and country development

Regressions are estimated using the Arellano and Bond (1991) GMM difference estimator for panel data with lagged dependent variables. The dependent variable is the deposit rate spread (COSTDEP). As explanatory variables we include one lag of the dependent variable (COSTDEP_{i,t-1}), the capital buffer in relative terms (RBUFFER) or total capital over risk-weighted assets (CAPITAL), the natural logarithm of bank assets (SIZE), the ratio of collateral to total bank assets (COLLATERALTA, the ratio of liquid assets to total bank assets (LATA), the ratio of total loans to total bank assets (TLNTA), the country's bank market concentration (CONC), and the growth of per capita GDP in the country (GDPGR). DEVELOP is a dummy variable that takes a value of 1 for countries classified as high income and upper middle income and zero otherwise. OECD takes a value of 1 for OECD countries and zero otherwise. G20 takes a value of 1 for countries belonging to the G8 group and zero otherwise. Regressions are estimated for 1990-2007. Year and country dummy variables are included for all the estimations but are not reported. T-statistics are in parentheses. ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively.

				RBUFFER				C	APITAL	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
COSTDEP _{t-1}	0.1436**	0.1499**	0.1497**	0.1507**	0.1329**	0.1473**	0.1561**	0.1532**	0.1473**	0.1465**
	(2.06)	(2.03)	(2.03)	(2.03)	(2.02)	(2.07)	(2.02)	(2.01)	(2.07)	(2.06)
BUFFER /CAPITAL	-0.0051**	-0.0060***	-0.0055***	-0.0053***	-0.0033*	-0.0006**	-0.007***	-0.0006***	-0.0006**	-0.0005**
	(-2.42)	(-2.86)	(-2.72)	(-2.70)	(-1.79)	(-2.32)	(-2.80)	(-2.62)	(-2.32)	(-2.26)
SIZE	-0.0253***	-0.0291***	-0.0247***	-0.0230***	-0.0248***	-0.0250***	-0.0291***	-0.0266***	-0.0250***	-0.0273***
	(-3.22)	(-3.57)	(2.98)	(-2.88)	(-3.33)	(-3.14)	(-3.46)	(-3.11)	(-3.14)	(-3.17)
COLLATERALTA	0.2121	0.2111	0.1908	0.1979	0.2276	0.2191	0.2163	0.2164	0.2191	0.2481
	(1.27)	(1.22)	(1.09)	(1.12)	(1.31)	(1.34)	(1.26)	(1.27)	(1.34)	(1.45)
LATA	-0.0066	0.0101	0.0121	0.0219	0.0140	-0.0057	0.0108	0.0159	-0.0057	0.0176
	(-0.38)	(0.61)	(0.75)	(1.36)	(0.86)	(-0.33)	(0.65)	(0.95)	(-0.33)	(1.04)
CONC	-0.0119	-0.0125	-0.0053	-0.0144	-0.0051	-0.0127	-0.0114	-0.0029	-0.0127	-0.0097
	(-0.85)	(-0.92)	(-0.39)	(-1.06)	(-0.38)	(-0.94)	(-0.87)	(-0.22)	(-0.94)	(-0.71)
GDPGR	-0.0492***	-0.0563***	-0.0601***	-0.0613***	-0.0580***	-0.0565**	-0.0828***	-0.0702**	-0.0565**	-0.0620**
	(-3.04)	(-3.26)	(-3.42)	(-3.57)	(-3.79)	(-2.00)	(-2.73)	(-2.42)	(-2.00)	(-2.12)
BUFFER /CAPITAL x	0.0690***	0.0418***	0.0460**	0.0437***	0.2713***	0.0064***	0.0028*	0.0031*	0.0064***	0.0150***
GDPGR	(3.89)	(2.75)	(2.33)	(3.32)	(4.32)	(3.47)	(1.88)	(1.81)	(3.47)	(3.21)
BUFFER /CAPITAL x	-0.0677***					-0.0063***				
GDPGR x DEVELOP	(-4.11)					(-5.16)				
BUFFER /CAPITAL x		-0.0084					0.0023			
GDPGR x OECD		(-0.46)					(1.51)			
BUFFER /CAPITAL x			-0.0114					-0.0003		
GDPGR x G20			(-0.63)					(-0.26)		
BUFFER /CAPITAL x				-0.0501***					-0.063***	
GDPGR x G8				(-3.80)					(-5.16)	
BUFFER /CAPITAL x					-0.0171***					-0.0009***
GDPGR x KKZ					(-4.16)					(-3.22)
Year dummies	Yes									
Country dummies	Yes									
m ₁	-3.82***	-3.65***	-3.70***	-3.71	-4.11***	-3.89***	-3.61***	-3.66***	-3.89***	-3.98***
m ₂	0.19	0.50	0.43	0.46	0.14	0.24	0.58	0.55	0.24	0.43
# observations	13,612	13,612	13,612	13,612	13,612	13,612	13,612	13,612	13,612	13,612
# banks	2,317	2,317	2,317	2,317	2,317	2,317	2,317	2,317	2,317	2,317
# countries	92	92	92	92	92	92	92	92	92	92

Interest rate spreads, capital buffers, and regulatory regime

Regressions are estimated using the Arellano and Bond (1991) GMM difference estimator for panel data with lagged dependent variables. The dependent variable is the lending rate spread (LOANRATE) in Panel A and the deposit rate spread (COSTDEP) in Panel B. As explanatory variables we include one lag of the dependent variable (LOANRATE_{i,t-1}) or COSTDEP_{i,t-1}), the capital buffer in relative terms (RBUFFER) or total capital over risk-weighted assets (CAPITAL), the natural logarithm of bank assets (SIZE), the ratio of collateral to total bank assets (COLLATERALTA), the ratio of liquid assets to total bank assets (LATA), the ratio of total loans to total bank assets (TLNTA), the country's bank market concentration (CONC), and the growth of per capita GDP in the country (GDPGR). Basel II is a dummy variable that takes the value of 1 for the 2004-2007 period and zero otherwise. Regressions are estimated for 1990-2007. Year and country dummy variables are included for all the estimations but are not reported. T-statistics are in parentheses. ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively.

		nt variable: Lending Spread	1	nt variable: Deposit Spread	
	(1)	(2)	(3)	(4)	
LOANRATE _{t-1}	0.2485***	0.2479***	0.1714**	0.1707**	
LOAINATE _{t-1}	(2.85)	(2.85)	(2.03)	(2.03)	
RBUFFER	-0.3947**		-0.0048**		
RBUITER	(-2.18)		(-2.33)		
RBUFFER x BASELII	-0.1601		0.0022		
RBUITER X BASELII	(-1.39)		(1.54)		
CAPITAL		-0.0520**		-0.0006**	
CAITIAL		(-2.04)		(-2.50)	
CAPITAL x BASELII		-0.0226		0.0002	
CAITTAL X DASEEII		(-1.46)		(1.08)	
SIZE	-1.2757	-1.3223	-0.0268***	-0.0271***	
SIZE	(-1.29)	(-1.31)	(-2.84)	(-2.83)	
	-4.6492	-3.9617	0.1414	0.1505	
COLLATERALTA	(-0.56)	(-0.48)	(0.73)	(0.78)	
LATA	2.0904*	2.2009*	0.0109	0.0140	
	(1.74)	(1.87)	(0.61)	(0.79)	
CONC	1.5861	1.5031	-0.0187	-0.0192	
CONC	(1.09)	(1.03)	(-1.20)	(-1.22)	
GDPGR	1.0163	1.1459	-0.0306**	-0.0296**	
SDI OK	(0.79)	(0.90)	(-2.44)	(-2.42)	
Year dummies	Yes	Yes	Yes	Yes	
Country dummies	Yes	Yes	Yes	Yes	
nı	-1.57	-1.59	-3.43***	-3.46***	
m ₂	-0.47	-0.47	0.63	0.70	
# observations	13,651	13,651	13,612	13,612	
# banks	2,361	2,316	2,317	2,317	
# countries	92	92	92	92	

Cyclical effects of capital buffers, interest rate spreads, and regulatory regime

Regressions are estimated using the Arellano and Bond (1991) GMM difference estimator for panel data with lagged dependent variables. The dependent variable is the lending rate spread (LOANRATE) in Panel A and the deposit rate spread (COSTDEP) in Panel B. As explanatory variables we include one lag of the dependent variable (LOANRATE_{i,t-1}) or COSTDEP_{i,t-1}), the capital buffer in relative terms (RBUFFER) or total capital over risk-weighted assets (CAPITAL), the natural logarithm of bank assets (SIZE), the ratio of collateral to total bank assets (COLLATERALTA), the ratio of liquid assets to total bank assets (LATA), the ratio of total loans to total bank assets (TLNTA), the country's bank market concentration (CONC), and the growth of per capita GDP in the country (GDPGR). Basel II is a dummy variable that takes the value of 1 for the 2004-2007 period and zero otherwise. Regressions are estimated for 1990-2007. Year and country dummy variables are included for all the estimations but are not reported. T-statistics are in parentheses. ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively.

	Panel A. Dependent variable: Lending Rate Spread		Panel B. Depender Rate S	
	(1)	(2)	(3)	(4)
COSTDED	0.2324***	0.2341***	0.1551**	0.1591**
COSTDEP _{t-1}	(2.94)	(2.93)	(2.01)	(2.02)
RBUFFER	-0.4270**		-0.0053**	
KBUFFER	(-2.48)		(-2.58)	
CAPITAL		-0.0522**		-0.0006***
CAPITAL		(-2.19)		(-2.66)
017E	-1.2847	-1.4308*	-0.0287***	0.0292***
SIZE	(-1.52)	(-1.63)	(-3.56)	(-3.57)
	-1.3137	-1.3760	0.1950	0.1952
COLLATERALTA	(-0.15)	(-0.16)	(1.08)	(1.09)
LATA	2.5785**	2.5795**	0.0184	0.0172
LATA	(2.25)	(2.32)	(1.06)	(0.99)
CONC	-2.6667	1.5924	-0.0186	-0.0165
COINC	(-1.46)	(1.14)	(-1.27)	(-1.17)
CDDCD	1.3918	-6.0023*	-0.0639***	-0.0737***
GDPGR	(0.97)	(-1.82)	(-3.75)	(-2.66)
RBUFFER x GDPGR	4.0501***		0.0308**	
KDUFFEK X ODPOK	(3.53)		(2.58)	
RBUFFER x GDPGR x BASELII	2.2761		0.0702***	
KDUFFEK X ODPOK X DASELII	(1.14)		(2.77)	
CAPITAL x GDPGR		0.4203***		0.0021
CAFITAL & ODFOR		(2.67)		(1.57)
CAPITAL x GDPGR x BASELII		0.1643		0.0051***
CAFITAL X ODFOR X BASELII		(0.90)		(2.67)
Year dummies	Yes	Yes	Yes	Yes
Country dummies	Yes	Yes	Yes	Yes
m ₁	-1.80*	-1.92**	-3.70***	-3.73***
m ₂	-1.02	-0.70	0.98	1.27
# observations	13,651	13,651	13,612	13,612
# banks	2,316	2,316	2,317	2,317
# countries	92	92	92	92

Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

1	Implementing Inflation Targeting in Brazil Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang	Jul/2000
2	Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil Eduardo Lundberg	Jul/2000
	Monetary Policy and Banking Supervision Functions on the Central Bank Eduardo Lundberg	Jul/2000
3	Private Sector Participation: a Theoretical Justification of the Brazilian Position <i>Sérgio Ribeiro da Costa Werlang</i>	Jul/2000
4	An Information Theory Approach to the Aggregation of Log-Linear Models <i>Pedro H. Albuquerque</i>	Jul/2000
5	The Pass-Through from Depreciation to Inflation: a Panel Study Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang	Jul/2000
6	Optimal Interest Rate Rules in Inflation Targeting Frameworks José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira	Jul/2000
7	Leading Indicators of Inflation for Brazil Marcelle Chauvet	Sep/2000
8	The Correlation Matrix of the Brazilian Central Bank's Standard Model for Interest Rate Market Risk <i>José Alvaro Rodrigues Neto</i>	Sep/2000
9	Estimating Exchange Market Pressure and Intervention Activity <i>Emanuel-Werner Kohlscheen</i>	Nov/2000
10	Análise do Financiamento Externo a uma Pequena Economia Aplicação da Teoria do Prêmio Monetário ao Caso Brasileiro: 1991–1998 Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Mar/2001
11	A Note on the Efficient Estimation of Inflation in Brazil Michael F. Bryan and Stephen G. Cecchetti	Mar/2001
12	A Test of Competition in Brazilian Banking Márcio I. Nakane	Mar/2001

13	Modelos de Previsão de Insolvência Bancária no Brasil Marcio Magalhães Janot	Mar/2001
14	Evaluating Core Inflation Measures for Brazil Francisco Marcos Rodrigues Figueiredo	Mar/2001
15	Is It Worth Tracking Dollar/Real Implied Volatility? Sandro Canesso de Andrade and Benjamin Miranda Tabak	Mar/2001
16	Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA Sergio Afonso Lago Alves	Mar/2001
	Evaluation of the Central Bank of Brazil Structural Model's Inflation Forecasts in an Inflation Targeting Framework <i>Sergio Afonso Lago Alves</i>	Jul/2001
17	Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção <i>Tito Nícias Teixeira da Silva Filho</i>	Abr/2001
	Estimating Brazilian Potential Output: a Production Function Approach <i>Tito Nícias Teixeira da Silva Filho</i>	Aug/2002
18	A Simple Model for Inflation Targeting in Brazil Paulo Springer de Freitas and Marcelo Kfoury Muinhos	Apr/2001
19	Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo	May/2001
20	Credit Channel without the LM Curve Victorio Y. T. Chu and Márcio I. Nakane	May/2001
21	Os Impactos Econômicos da CPMF: Teoria e Evidência <i>Pedro H. Albuquerque</i>	Jun/2001
22	Decentralized Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Jun/2001
23	Os Efeitos da CPMF sobre a Intermediação Financeira Sérgio Mikio Koyama e Márcio I. Nakane	Jul/2001
24	Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini	Aug/2001
25	Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00 Pedro Fachada	Aug/2001
26	Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil Marcelo Kfoury Muinhos	Aug/2001
27	Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais <i>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior</i>	Set/2001

28	Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais Marco Antonio Bonomo e Ricardo D. Brito	Nov/2001
29	Using a Money Demand Model to Evaluate Monetary Policies in Brazil Pedro H. Albuquerque and Solange Gouvêa	Nov/2001
30	Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates Benjamin Miranda Tabak and Sandro Canesso de Andrade	Nov/2001
31	Algumas Considerações sobre a Sazonalidade no IPCA Francisco Marcos R. Figueiredo e Roberta Blass Staub	Nov/2001
32	Crises Cambiais e Ataques Especulativos no Brasil <i>Mauro Costa Miranda</i>	Nov/2001
33	Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation André Minella	Nov/2001
34	Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises <i>Arminio Fraga and Daniel Luiz Gleizer</i>	Nov/2001
35	Uma Definição Operacional de Estabilidade de Preços <i>Tito Nícias Teixeira da Silva Filho</i>	Dez/2001
36	Can Emerging Markets Float? Should They Inflation Target? <i>Barry Eichengreen</i>	Feb/2002
37	Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein	Mar/2002
38	Volatilidade Implícita e Antecipação de Eventos de <i>Stress</i> : um Teste para o Mercado Brasileiro <i>Frederico Pechir Gomes</i>	Mar/2002
39	Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio <i>Paulo Castor de Castro</i>	Mar/2002
40	Speculative Attacks on Debts, Dollarization and Optimum Currency Areas <i>Aloisio Araujo and Márcia Leon</i>	Apr/2002
41	Mudanças de Regime no Câmbio Brasileiro Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho	Jun/2002
42	Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella	Jun/2002
43	The Effects of the Brazilian ADRs Program on Domestic Market Efficiency Benjamin Miranda Tabak and Eduardo José Araújo Lima	Jun/2002

44	Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén	Jun/2002
45	Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence <i>André Minella</i>	Aug/2002
46	The Determinants of Bank Interest Spread in Brazil Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane	Aug/2002
47	Indicadores Derivados de Agregados Monetários Fernando de Aquino Fonseca Neto e José Albuquerque Júnior	Set/2002
48	Should Government Smooth Exchange Rate Risk? Ilan Goldfajn and Marcos Antonio Silveira	Sep/2002
49	Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade Orlando Carneiro de Matos	Set/2002
50	Macroeconomic Coordination and Inflation Targeting in a Two-Country	Sep/2002
	Model Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira	
51	Credit Channel with Sovereign Credit Risk: an Empirical Test Victorio Yi Tson Chu	Sep/2002
52	Generalized Hyperbolic Distributions and Brazilian Data José Fajardo and Aquiles Farias	Sep/2002
53	Inflation Targeting in Brazil: Lessons and Challenges André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Nov/2002
54	Stock Returns and Volatility Benjamin Miranda Tabak and Solange Maria Guerra	Nov/2002
55	Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén	Nov/2002
56	Causality and Cointegration in Stock Markets: the Case of Latin America Benjamin Miranda Tabak and Eduardo José Araújo Lima	Dec/2002
57	As Leis de Falência: uma Abordagem Econômica Aloisio Araujo	Dez/2002
58	The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case <i>Benjamin Miranda Tabak</i>	Dec/2002
59	Os Preços Administrados e a Inflação no Brasil Francisco Marcos R. Figueiredo e Thaís Porto Ferreira	Dez/2002
60	Delegated Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Dec/2002

61	O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa João Maurício de Souza Moreira e Eduardo Facó Lemgruber	Dez/2002
62	Taxa de Juros e Concentração Bancária no Brasil Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama	Fev/2003
63	Optimal Monetary Rules: the Case of Brazil Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak	Feb/2003
64	Medium-Size Macroeconomic Model for the Brazilian Economy Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves	Feb/2003
65	On the Information Content of Oil Future Prices <i>Benjamin Miranda Tabak</i>	Feb/2003
66	A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla Pedro Calhman de Miranda e Marcelo Kfoury Muinhos	Fev/2003
67	Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Fev/2003
68	Real Balances in the Utility Function: Evidence for Brazil Leonardo Soriano de Alencar and Márcio I. Nakane	Feb/2003
69	r-filters: a Hodrick-Prescott Filter Generalization Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto	Feb/2003
70	Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates <i>Benjamin Miranda Tabak</i>	Feb/2003
71	On Shadow-Prices of Banks in Real-Time Gross Settlement Systems <i>Rodrigo Penaloza</i>	Apr/2003
72	O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras <i>Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osmani</i> <i>Teixeira de C. Guillen</i>	Maio/2003
73	Análise de Componentes Principais de Dados Funcionais – uma Aplicação às Estruturas a Termo de Taxas de Juros Getúlio Borges da Silveira e Octavio Bessada	Maio/2003
74	Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves	Maio/2003
75	Brazil's Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth <i>Ilan Goldfajn, Katherine Hennings and Helio Mori</i>	Jun/2003

76	Inflation Targeting in Emerging Market Economies Arminio Fraga, Ilan Goldfajn and André Minella	Jun/2003
77	Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Jul/2003
78	Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro <i>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio</i> <i>Carlos Figueiredo, Eduardo Facó Lemgruber</i>	Out/2003
79	Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber	Out/2003
80	Diferenças e Semelhanças entre Países da América Latina: uma Análise de <i>Markov Switching</i> para os Ciclos Econômicos de Brasil e Argentina Arnildo da Silva Correa	Out/2003
81	Bank Competition, Agency Costs and the Performance of the Monetary Policy Leonardo Soriano de Alencar and Márcio I. Nakane	Jan/2004
82	Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo	Mar/2004
83	Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries <i>Thomas Y. Wu</i>	May/2004
84	Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis Aloisio Araujo and Marcia Leon	May/2004
85	Risk Premia for Emerging Markets Bonds: Evidence from Brazilian Government Debt, 1996-2002 <i>André Soares Loureiro and Fernando de Holanda Barbosa</i>	May/2004
86	Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo Fabio Araujo e João Victor Issler	Maio/2004
87	Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil Ana Carla Abrão Costa	Dez/2004
88	Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos Arnildo da Silva Correa e Ronald Otto Hillbrecht	Dez/2004
89	O Mercado de <i>Hedge</i> Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central Fernando N. de Oliveira	Dez/2004

90	Bank Privatization and Productivity: Evidence for Brazil Márcio I. Nakane and Daniela B. Weintraub	Dec/2004
91	Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – a Corporate Analysis <i>Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and</i> <i>Guilherme Cronemberger Parente</i>	Dec/2004
92	Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil <i>Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes</i> <i>Silva, Marcelo Kfoury Muinhos</i>	Apr/2005
93	Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Abr/2005
94	Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber	Abr/2005
95	Comment on Market Discipline and Monetary Policy by Carl Walsh <i>Maurício S. Bugarin and Fábia A. de Carvalho</i>	Apr/2005
96	O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina Anthero de Moraes Meirelles	Ago/2005
97	Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching Ryan A. Compton and Jose Ricardo da Costa e Silva	Aug/2005
98	Capital Flows Cycle: Stylized Facts and Empirical Evidences for Emerging Market Economies <i>Helio Mori e Marcelo Kfoury Muinhos</i>	Aug/2005
99	Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo,e Eduardo Facó Lemgruber	Set/2005
100	Targets and Inflation Dynamics Sergio A. L. Alves and Waldyr D. Areosa	Oct/2005
101	Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates <i>Marcelo Kfoury Muinhos and Márcio I. Nakane</i>	Mar/2006
102	Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans Ana Carla A. Costa and João M. P. de Mello	Apr/2006
103	The Effect of Adverse Supply Shocks on Monetary Policy and Output Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva	Apr/2006

104	Extração de Informação de Opções Cambiais no Brasil <i>Eui Jung Chang e Benjamin Miranda Tabak</i>	Abr/2006
105	Representing Roommate's Preferences with Symmetric Utilities José Alvaro Rodrigues Neto	Apr/2006
106	Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities <i>Cristiane R. Albuquerque and Marcelo Portugal</i>	May/2006
107	Demand for Bank Services and Market Power in Brazilian Banking Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk	Jun/2006
108	O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar e Tony Takeda	Jun/2006
109	The Recent Brazilian Disinflation Process and Costs Alexandre A. Tombini and Sergio A. Lago Alves	Jun/2006
110	Fatores de Risco e o Spread Bancário no Brasil Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues	Jul/2006
111	Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira e Myrian Beatriz Eiras das Neves	Jul/2006
112	Interdependence and Contagion: an Analysis of Information Transmission in Latin America's Stock Markets Angelo Marsiglia Fasolo	Jul/2006
113	Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro	Ago/2006
114	The Inequality Channel of Monetary Transmission Marta Areosa and Waldyr Areosa	Aug/2006
115	Myopic Loss Aversion and House-Money Effect Overseas: an Experimental Approach <i>José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak</i>	Sep/2006
116	Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Join Use of Importance Sampling and Descriptive Sampling <i>Jaqueline Terra Moura Marins, Eduardo Saliby and Joséte Florencio dos</i> <i>Santos</i>	Sep/2006
117	An Analysis of Off-Site Supervision of Banks' Profitability, Risk and Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian Banks Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak	Sep/2006
118	Contagion, Bankruptcy and Social Welfare Analysis in a Financial Economy with Risk Regulation Constraint <i>Aloísio P. Araújo and José Valentim M. Vicente</i>	Oct/2006

119	A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de Informação Ricardo Schechtman	Out/2006
120	Forecasting Interest Rates: an Application for Brazil Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak	Oct/2006
121	The Role of Consumer's Risk Aversion on Price Rigidity Sergio A. Lago Alves and Mirta N. S. Bugarin	Nov/2006
122	Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Curve Model With Threshold for Brazil Arnildo da Silva Correa and André Minella	Nov/2006
123	A Neoclassical Analysis of the Brazilian "Lost-Decades" Flávia Mourão Graminho	Nov/2006
124	The Dynamic Relations between Stock Prices and Exchange Rates: Evidence for Brazil <i>Benjamin M. Tabak</i>	Nov/2006
125	Herding Behavior by Equity Foreign Investors on Emerging Markets Barbara Alemanni and José Renato Haas Ornelas	Dec/2006
126	Risk Premium: Insights over the Threshold José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña	Dec/2006
127	Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil Ricardo Schechtman	Dec/2006
128	Term Structure Movements Implicit in Option Prices <i>Caio Ibsen R. Almeida and José Valentim M. Vicente</i>	Dec/2006
129	Brazil: Taming Inflation Expectations Afonso S. Bevilaqua, Mário Mesquita and André Minella	Jan/2007
130	The Role of Banks in the Brazilian Interbank Market: Does Bank Type Matter? <i>Daniel O. Cajueiro and Benjamin M. Tabak</i>	Jan/2007
131	Long-Range Dependence in Exchange Rates: the Case of the European Monetary System Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro	Mar/2007
132	Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics' Model: the Joint Use of Importance Sampling and Descriptive Sampling <i>Jaqueline Terra Moura Marins and Eduardo Saliby</i>	Mar/2007
133	A New Proposal for Collection and Generation of Information on Financial Institutions' Risk: the Case of Derivatives <i>Gilneu F. A. Vivan and Benjamin M. Tabak</i>	Mar/2007
134	Amostragem Descritiva no Apreçamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins	Abr/2007

135	Evaluation of Default Risk for the Brazilian Banking Sector <i>Marcelo Y. Takami and Benjamin M. Tabak</i>	May/2007
136	Identifying Volatility Risk Premium from Fixed Income Asian Options Caio Ibsen R. Almeida and José Valentim M. Vicente	May/2007
137	Monetary Policy Design under Competing Models of Inflation Persistence Solange Gouvea e Abhijit Sen Gupta	May/2007
138	Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil <i>Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak</i>	May/2007
139	Selection of Optimal Lag Length inCointegrated VAR Models with Weak Form of Common Cyclical Features Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani Teixeira de Carvalho Guillén	Jun/2007
140	Inflation Targeting, Credibility and Confidence Crises Rafael Santos and Aloísio Araújo	Aug/2007
141	Forecasting Bonds Yields in the Brazilian Fixed income Market Jose Vicente and Benjamin M. Tabak	Aug/2007
142	Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski e Renato da Silva Carvalho	Ago/2007
143	Price Rigidity in Brazil: Evidence from CPI Micro Data Solange Gouvea	Sep/2007
144	The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options <i>Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber</i>	Oct/2007
145	The Stability-Concentration Relationship in the Brazilian Banking System <i>Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo</i> <i>Lima and Eui Jung Chang</i>	Oct/2007
146	Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial Caio Almeida, Romeu Gomes, André Leite e José Vicente	Out/2007
147	Explaining Bank Failures in Brazil: Micro, Macro and Contagion Effects (1994-1998) Adriana Soares Sales and Maria Eduarda Tannuri-Pianto	Oct/2007
148	Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial <i>Felipe Pinheiro, Caio Almeida e José Vicente</i>	Out/2007
149	Joint Validation of Credit Rating PDs under Default Correlation Ricardo Schechtman	Oct/2007

150	A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks Roberta Blass Staub and Geraldo da Silva e Souza	Oct/2007
151	Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability <i>Eduardo José Araújo Lima and Benjamin Miranda Tabak</i>	Nov/2007
152	Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation? <i>Fernando N. de Oliveira and Walter Novaes</i>	Dec/2007
153	Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro Jaqueline Terra Moura Marins	Dez/2007
154	Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves <i>Adriana Soares Sales and Maria Tannuri-Pianto</i>	Dec/2007
155	Does Curvature Enhance Forecasting? <i>Caio Almeida, Romeu Gomes, André Leite and José Vicente</i>	Dec/2007
156	Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil Sérgio Mikio Koyama e Márcio I. Nakane	Dez/2007
157	Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil <i>Tito Nícias Teixeira da Silva Filho</i>	Jan/2008
158	Characterizing the Brazilian Term Structure of Interest Rates Osmani T. Guillen and Benjamin M. Tabak	Feb/2008
159	Behavior and Effects of Equity Foreign Investors on Emerging Markets <i>Barbara Alemanni and José Renato Haas Ornelas</i>	Feb/2008
160	The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden? <i>Fábia A. de Carvalho and Cyntia F. Azevedo</i>	Feb/2008
161	Evaluating Value-at-Risk Models via Quantile Regressions Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton	Feb/2008
162	Balance Sheet Effects in Currency Crises: Evidence from Brazil Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes	Apr/2008
163	Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks' Economy: the Brazilian Case Tito Nícias Teixeira da Silva Filho	May/2008
164	Foreign Banks' Entry and Departure: the recent Brazilian experience (1996-2006) <i>Pedro Fachada</i>	Jun/2008
165	Avaliação de Opções de Troca e Opções de <i>Spread</i> Européias e Americanas Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e	Jul/2008
	Gustavo Santos Raposo	

166	Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study <i>Fernando de Holanda Barbosa and Tito Nícias Teixeira da Silva Filho</i>	Jul/2008
167	O Poder Discriminante das Operações de Crédito das Instituições Financeiras Brasileiras Clodoaldo Aparecido Annibal	Jul/2008
168	An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks Wenersamy Ramos de Alcântara	Jul/2008
169	Mensuração do Risco Sistêmico no Setor Bancário com Variáveis Contábeis e Econômicas Lucio Rodrigues Capelletto, Eliseu Martins e Luiz João Corrar	Jul/2008
170	Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação Adriana Soares Sales	Jul/2008
171	Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil Sérgio Mikio Koyama e Márcio Issao Nakane	Ago/2008
172	Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap <i>Marta Areosa</i>	Aug/2008
173	Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions <i>Eduardo José Araújo Lima and Benjamin Miranda Tabak</i>	Aug/2008
174	Foreign Exchange Market Volatility Information: an investigation of real-dollar exchange rate Frederico Pechir Gomes, Marcelo Yoshio Takami and Vinicius Ratton Brandi	Aug/2008
175	Evaluating Asset Pricing Models in a Fama-French Framework Carlos Enrique Carrasco Gutierrez and Wagner Piazza Gaglianone	Dec/2008
176	Fiat Money and the Value of Binding Portfolio Constraints Mário R. Páscoa, Myrian Petrassi and Juan Pablo Torres-Martínez	Dec/2008
177	Preference for Flexibility and Bayesian Updating <i>Gil Riella</i>	Dec/2008
178	An Econometric Contribution to the Intertemporal Approach of the Current Account <i>Wagner Piazza Gaglianone and João Victor Issler</i>	Dec/2008
179	Are Interest Rate Options Important for the Assessment of Interest Rate Risk? Caio Almeida and José Vicente	Dec/2008
180	A Class of Incomplete and Ambiguity Averse Preferences Leandro Nascimento and Gil Riella	Dec/2008
181	Monetary Channels in Brazil through the Lens of a Semi-Structural Model André Minella and Nelson F. Souza-Sobrinho	Apr/2009

182	Avaliação de Opções Americanas com Barreiras Monitoradas de Forma Discreta Giuliano Carrozza Uzêda Iorio de Souza e Carlos Patrício Samanez	Abr/2009
183	Ganhos da Globalização do Capital Acionário em Crises Cambiais Marcio Janot e Walter Novaes	Abr/2009
184	Behavior Finance and Estimation Risk in Stochastic Portfolio Optimization José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak	Apr/2009
185	Market Forecasts in Brazil: performance and determinants Fabia A. de Carvalho and André Minella	Apr/2009
186	Previsão da Curva de Juros: um modelo estatístico com variáveis macroeconômicas André Luís Leite, Romeu Braz Pereira Gomes Filho e José Valentim Machado Vicente	Maio/2009
187	The Influence of Collateral on Capital Requirements in the Brazilian Financial System: an approach through historical average and logistic regression on probability of default Alan Cosme Rodrigues da Silva, Antônio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins, Myrian Beatriz Eiras da Neves and Giovani Antonio Silva Brito	Jun/2009
188	Pricing Asian Interest Rate Options with a Three-Factor HJM Model Claudio Henrique da Silveira Barbedo, José Valentim Machado Vicente and Octávio Manuel Bessada Lion	Jun/2009
189	Linking Financial and Macroeconomic Factors to Credit Risk Indicators of Brazilian Banks Marcos Souto, Benjamin M. Tabak and Francisco Vazquez	Jul/2009
190	Concentração Bancária, Lucratividade e Risco Sistêmico: uma abordagem de contágio indireto <i>Bruno Silva Martins e Leonardo S. Alencar</i>	Set/2009
191	Concentração e Inadimplência nas Carteiras de Empréstimos dos Bancos Brasileiros <i>Patricia L. Tecles, Benjamin M. Tabak e Roberta B. Staub</i>	Set/2009
192	Inadimplência do Setor Bancário Brasileiro: uma avaliação de suas medidas Clodoaldo Aparecido Annibal	Set/2009
193	Loss Given Default: um estudo sobre perdas em operações prefixadas no mercado brasileiro Antonio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves	Set/2009
194	Testes de Contágio entre Sistemas Bancários – A crise do subprime Benjamin M. Tabak e Manuela M. de Souza	Set/2009
195	From Default Rates to Default Matrices: a complete measurement of Brazilian banks' consumer credit delinquency Ricardo Schechtman	Oct/2009

196	The role of macroeconomic variables in sovereign risk Marco S. Matsumura and José Valentim Vicente	Oct/2009
197	Forecasting the Yield Curve for Brazil Daniel O. Cajueiro, Jose A. Divino and Benjamin M. Tabak	Nov/2009
198	Impacto dos Swaps Cambiais na Curva de Cupom Cambial: uma análise segundo a regressão de componentes principais Alessandra Pasqualina Viola, Margarida Sarmiento Gutierrez, Octávio Bessada Lion e Cláudio Henrique Barbedo	Nov/2009
199	Delegated Portfolio Management and Risk Taking Behavior José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak	Dec/2009
200	Evolution of Bank Efficiency in Brazil: A DEA Approach <i>Roberta B. Staub, Geraldo Souza and Benjamin M. Tabak</i>	Dec/2009
201	Efeitos da Globalização na Inflação Brasileira Rafael Santos e Márcia S. Leon	Jan/2010
202	Considerações sobre a Atuação do Banco Central na Crise de 2008 Mário Mesquita e Mario Torós	Mar/2010
203	Hiato do Produto e PIB no Brasil: uma Análise de Dados em Tempo Real Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior	Abr/2010
204		Apr/2010
205	Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions George Athanasopoulos, Osmani Teixeira de Carvalho Guillén, João Victor Issler and Farshid Vahid	Apr/2010
206	Fluctuation Dynamics in US interest rates and the role of monetary policy <i>Daniel Oliveira Cajueiro and Benjamin M. Tabak</i>	Apr/2010
207	Brazilian Strategy for Managing the Risk of Foreign Exchange Rate Exposure During a Crisis <i>Antonio Francisco A. Silva Jr.</i>	Apr/2010
208	Correlação de <i>default</i>: uma investigação empírica de créditos de varejo no Brasil Antonio Carlos Magalhães da Silva, Arnildo da Silva Correa, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves	Maio/2010
209	Produção Industrial no Brasil: uma análise de dados em tempo real Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior	Maio/2010
210	Determinants of Bank Efficiency: the case of Brazil <i>Patricia Tecles and Benjamin M. Tabak</i>	May/2010

211	Pessimistic Foreign Investors and Turmoil in Emerging Markets: the case of Brazil in 2002 <i>Sandro C. Andrade and Emanuel Kohlscheen</i>	Aug/2010
212	The Natural Rate of Unemployment in Brazil, Chile, Colombia and Venezuela: some results and challenges <i>Tito Nícias Teixeira da Silva</i>	Sep/2010
213	Estimation of Economic Capital Concerning Operational Risk in a Brazilian Banking Industry Case Helder Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falci Villela Loures	Oct/2010
214	Do Inflation-linked Bonds Contain Information about Future Inflation? José Valentim Machado Vicente and Osmani Teixeira de Carvalho Guillen	Oct/2010
215	The Effects of Loan Portfolio Concentration on Brazilian Banks' Return and Risk <i>Benjamin M. Tabak, Dimas M. Fazio and Daniel O. Cajueiro</i>	Oct/2010