
 
 
 

NONSTATIONARY DISCRETE CHOICE 
A CORRIGENDUM AND ADDENDUM 

 
 

By 
 

Peter C.B. Phillips, Sainan Jin and Ling Hu 
 
 
 

June 2005 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1516 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
http://cowles.econ.yale.edu/ 



Nonstationary Discrete Choice: A Corrigendum
and Addendum∗

Peter C. B. Phillips
Cowles Foundation, Yale University,

University of Auckland & University of York

Sainan Jin
Guanghua School of Management

Peking University

and

Ling Hu
Department of Economics
Ohio State University

May 26, 2005

∗This is the full length version of a paper with the same title. Phillips gratefully acknowl-
edges research support from a Kelly Fellowship and the NSF under Grant No. SES 04-142254.
Jin thanks the Cowles Foundation for support under a Cowles Fellowship.



ABSTRACT

We correct the limit theory presented in an earlier paper by Hu and Phillips
(Journal of Econometrics, 2004) for nonstationary time series discrete choice
models with multiple choices and thresholds. The new limit theory shows that,
in contrast to the binary choice model with nonstationary regressors and a zero
threshold where there are dual rates of convergence (n1/4 and n3/4), all parame-
ters including the thresholds converge at the rate n3/4. The presence of non-zero
thresholds therefore materially affects rates of convergence. Dual rates of con-
vergence reappear when stationary variables are present in the system. Some
simulation evidence is provided, showing how the magnitude of the thresholds
affects finite sample performance. A new finding is that predicted probabilities
and marginal effect estimates have finite sample distributions that manifest a
pile-up, or increasing density, towards the limits of the domain of definition.

Key words and Phrases: Brownian motion, Brownian local time, Discrete choices,
Integrated processes, Pile-up problem, Threshold parameters.
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1 Introduction
This note corrects the limit theory given in Hu and Phillips (2004, hereafter
HP) for discrete choice models with integrated covariates and non-zero thresh-
olds that determine an ordered set of choices. The error occurs in lemma 1
and theorem 1 of HP. Those results sought to provide the asymptotic theory
for sample moment expressions that appear in the score function and hessian
(equations (7)-(9) in HP); and they gave dual rates of convergence (n1/4 and
n3/4) and limit expressions involving the local time of Brownian motion at the
origin. Those results turn out to apply only when the threshold parameters
are unscaled or zero, and in these cases the results correspond to those in the
binary choice model considered in Park and Phillips (2000, hereafter PP). When
the threshold parameters are non-zero and are scaled to have the same order
of magnitude as the covariates (i.e., by

√
n for integrated regressors), a single

convergence rate of n3/4 applies to both parameters and thresholds and the limit
theory involves expressions with local time evaluated at the thresholds rather
than the origin. The limit theory for the parameter estimates is still mixed
normal and usual procedures for statistical inference remain valid, as do the
expressions for the arc sine laws and extended arc sine laws given in PP and
HP.
As discussed in Hu and Phillips (2004, hereafter HP2), practical empirical

work on ordered discrete choice models frequently involves explanatory variables
that display random wandering characteristics. For instance, HP2 construct a
discrete choice model of the empirical behavior of the Federal Reserve in mak-
ing discrete adjustments to the federal funds target rate, where the explanatory
variables involve economic fundamentals monitored by the Fed such as the in-
flation rate and unemployment as well as leading indicators like consumer and
business confidence. In modeling such intervention decisions where some of the
explanatory variables behave like stochastic trends, it seems appropriate for
the thresholds in the decision choices to be scaled to have the same order as
the regressors so that there are nontrivial effects. This scaling is a theoreti-
cal device for developing a more meaningful asymptotic theory. Otherwise, the
limit distribution will be degenerate and trivial. When the latent variable y∗t
in the choice model is nonstationary and converges to a continuous stochas-
tic process like Brownian motion after scaling by

√
n, the choices ultimately

depend on the behavior of the limiting stochastic process. For example, the
observed dependent variable yt may take on a discrete value such as unity (cor-
responding to a certain choice) when y∗t falls in the interval between the scaled
thresholds

√
nµ10 and

√
nµ20, and for such realizations the limit Brownian mo-

tion lies in the interval between µ10 and µ20 and the associated probability will
generally be non zero. However, if the thresholds were unscaled, the limiting
probability of y∗t falling in the fixed interval between µ10 and µ20 would be zero
(since µ10/n

1/2, µ20/n
1/2 → 0), and therefore trivial. The thresholds could, in

fact, be determined by other variables, although this is not explored in HP or
the present paper.
In the development that follows, we use the same model and notation as
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HP. To correct the error in the limit theory, we provide a revised version of
lemma 1 and theorem 1 of HP (given in Lemma R1 and Theorem R2 below)
and the results which depend on it. We also need some supplementary results
on convergence to functionals of Brownian local time at spatial points away
from the origin. These are provided, together with proofs of the main results,
in Appendices I and II.
The results of some simulation experiments are reported. These reveal that

the finite sample distributions of the regression coefficient and threshold esti-
mates are generally well approximated by the mixture normal limit theory. A
new finding is that predicted probabilities and marginal effect estimates have
finite sample distributions in which the density increases towards the limits of
the domain of definition. This pile-up problem is shown to occur also in the
stationary discrete choice model.

2 Model, Notation and Assumptions
The set up here follows HP and PP with some differences and extensions. In
particular, we consider the regression model given by

y∗t = x0tβ0 − εt, for t = 1, . . . , n (1)

where xt is a (m × 1) vector of explanatory variables and εt is an error. The
dependent variable y∗t is unobserved. Instead, what is observed is the indicator
yt, which takes the following possible (J + 1) values

yt = 0 if y∗t ∈ (−∞,
√
nµ10] (2)

= 1 if y∗t ∈ (
√
nµ10,

√
nµ20]

...

= J − 1 if y∗t ∈ (
√
nµJ−10 ,

√
nµJ0 ]

= J if y∗t ∈ (
√
nµJ0 ,∞).

The threshold parameters in (2) are scaled by
√
n so that the thresholds

have the same order of magnitude as the dependent variable y∗t in (1) when the
covariates xt are integrated time series. This avoids trivial results and means, in
effect, that the threshold levels adjust according to the sample size of the data.
This seems realistic in a model where the covariates are allowed to be recurrent
time series like integrated processes.
We assume that xt is predetermined, i.e., xt+1 is adapted to some filtration

(Ft) with respect to which εt is measurable. The theory of the discrete choice
model in (1) and (2) when xt is a stationary and ergodic process and when the
thresholds are fixed is obtained by standard methods. In this paper, xt is taken
to be an integrated time series with integration order unity. The error process εt
is assumed to be iid conditionally on Ft−1 with marginal distribution F , which
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is assumed to be known and standardized, like a standard normal (leading to
the probit model) or the standard logistic (leading to the logit model). Thus,
the model given by (1) and (2) is taken as correctly specified. The parameters
are assembled in the vector θ, whose true value θ0 = (β00, µ

0

0)
0 is an interior

point of a subset of Rm+J which we assume to be compact and convex.
In the general discrete choice model with error distribution F, the conditional

probability distribution of yt, P (yt = j|Ft−1) = Pj(xt; θ0) is given by

P0(xt; θ0) = 1− F (x0tβ0 −
√
nµ10)

Pj(xt; θ0) = F (x0tβ0 −
√
nµj0)− F (x0tβ0 −

√
nµj+10 ) for j = 1, . . . , J − 1

PJ(xt; θ0) = F (x0tβ0 −
√
nµJ0 )

The corresponding conditional expectation of yt is

m(xt; θ0) =
JX
j=0

j · Pj(xt; θ0)

=
JX
j=1

F (x0tβ0 −
√
nµj0)

If ut is defined as the residual in the equation

yt = mt + ut =
JX
j=1

F (x0tβ0 −
√
nµj0) + ut (3)

then (ut,Ft) is a martingale difference with conditional moments:

σk(xt; θ0) = E(ukt |Ft−1)

=
JX
j=0

(j −mt)
k · Pj(xt; θ0) = σkt, say.

Define zkt as zk(xt; θ0) = ukt − σk,t, its conditional second moments ηkl,t
as ηkl(xt; θ0) = E(zkt · zlt|Ft−1), and akl,t as akl(xt; θ0) = zktzlt − ηkl,t. Then
(zkt,Ft), (akl,t,Ft) are also martingale difference. Obviously, σ1t = 0 and z1t =
ut. Further, define τklpq,t = E {akl,t · apq,t|Ft−1}, giving fourth conditional
moments for zkt.
These moment conditions and Assumption 1 below make available the use

of embedding arguments that allow for a stochastic process representation of
key partial sum processes. For example, from PP (Lemma1), there exists a
probability space (Ω, F, P ) supporting sequences of random variables Unt and
Vnt for which

(Unt, Vnt) =d

Ã
1√
n

tX
i=1

ui,
1√
n

tX
i=1

vi

!
, for all t ≤ n, (4)
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and for which: (i) Unt = U
¡
Tnt
n

¢
, for a standard Brownian motion U and certain

time changes Tnt in (Ω, F, P ); and (ii) the process

Vn(r) =
nX
t=1

Vnt 1

½
t−1
n
≤ r <

t

n

¾
(5)

is such that Vn →a.s. V, vector Brownian motion in (Ω, F, P ) with variance ma-
trix Σ. Embeddings of this type are used in subsequent arguments, in particular
in the proof of Lemma R1. We note here that→a.s. reverts to weak convergence
(⇒) in the original space.

Assumption 1 Let xt = xt−1 + vt with x0 = 0 and where

vt = Π(L)et =
∞X
i=1

Πiet−i,

with Π(1) nonsingular and
P∞

i=0 ikΠik < ∞. The innovations et are iid with
mean zero and Eketkr <∞ for some r > 8, have a distribution that is absolutely
continuous with respect to Lebesgue measure and have characteristic function
ϕ(t) which satisfies limktk→∞ktkκϕ(t) = 0 for some κ > 0.
As in PP, we rotate the regressor space to help isolate the effects of the

nonlinearities. In particular, we assume that β0 6= 0 and rotate the regressor
space using an orthogonal matrix H = (h1,H2) with h1 = β0/(β

0
0β0)

1/2. Let
(α10, α

20
0 )

0 = α0 = H 0β0. Then we can write (1) as:

y∗t = x0tβ0 − εt

= x0tHH 0β0 − εt

= (H 0xt)
0H 0β0 − εt

= x1tα
1
0 + x02tα

2
0 − εt

where
x1t = h01xt and x2t = H 0

2xt,

α10 = h01β0 = (β
0
0β0)

1/2 and α20 = H 0
2β0 = 0.

Accordingly, we now define

V1 = h01V and V2 = H 0
2V,

which are Brownian motions of dimensions 1 and (m − 1), respectively. Our
subsequent theory involves the local time of the scalar process V1, which we
denote by LV1(t, s), where t and s are the temporal and spatial parameters.
LV1(t, s) is a stochastic process in time (t) and space (s) and represents the
sojourn density of the process V1 around the spatial point s over the time interval
[0, t]. The reader is referred to Revuz and Yor (1994) for an introduction to the
properties of local time and to Phillips (1998, 2001), Phillips and Park (1998),
Park and Phillips (1999, 2001) for discussions and applications of this process
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in econometrics. In our analysis, it is more convenient to use the scaled local
time of V1 given by

L1(t, s) = (1/σ11)LV1(t, s)

where σ11 is the variance of V1.
Now we come back to the estimation of the multiple choice model. Let

Λ(t, j) =

Q
i=0,...,J & i6=j(yt − i)Q
i=0,...,J & i6=j(j − i)

. (6)

It is easy to see that Λ(t, j) = 1 {yt = j}. The log likelihood function can be
written as:

logLn(θ) =
nX
t=1

JX
j=0

Λ(t, j)logPj(xt; θ).

Let the first derivative of F be denoted f and the second derivative be de-
noted ḟ . The elements of the score function Sn(θ) = (Sn(β)

0, Sn(µ)
0)0 =³

∂logLn
∂β0 , ∂logLn∂µ0

´0
are

∂logLn
∂β

=
nX
t=1

JX
j=0

Λ(t, j)

Pj(xt; θ)
pj(xt; θ)xt, (7)

∂logLn
∂µj

=
√
n

nX
t=1

µ
Λ(t, j − 1)
Pj−1(xt; θ)

− Λ(t, j)

Pj(xt; θ)

¶
f(x0tβ −

√
nµj), (8)

where

p0(xt; θ) = −f(x0tβ −
√
nµ1),

pj(xt; θ) = f(x0tβ −
√
nµj)− f(x0tβ −

√
nµj+1) for j = 1, . . . , J − 1,

pJ(xt; θ) = f(x0tβ −
√
nµJ).

Note that the ratio Λ(t, j)/Pj appears in both (7) and (8). SinceE(Λ(t, j)|Ft−1) =
Pj(xt; θ0), the expected value of the ratio Λ(t, j)/Pj is 1. The ratio can be writ-
ten as a sum of martingale differences, as is clear from the following calculation:

Λ(t, j)

Pj(xt; θ0)
=

1

Pj(xt; θ0)

Q
i=0,...,J & i6=j(yt − i)Q
i=0,...,J & i6=j(j − i)

=
1

Pj(xt; θ0)

Q
i=0,...,J & i6=j(mt + ut − i)Q

i=0,...,J & i6=j(j − i)

=
JX

k=1

gk(xt; j, θ0))(u
k
t − σkt(xt; θ0)) + 1

=
JX

k=1

gk(xt; j, θ0))zkt + 1, (9)
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where gk(j) is defined to be the coefficient associated with zkt for a given j
and where zkt = ukt − E(ukt |Ft − 1), which is a martingale difference. The
binary choice case is much simpler. Here, J = 1 and we have either yt = 0,
with probability P0(xt; θ0) = 1 − F (x0tβ0 −

√
nµ10) or yt = 1, with probability

P1(xt; θ0) = F (x0tβ0 −
√
nµ10). The indicator functions are Λ(t, 0) = 1− yt and

Λ(t, 1) = yt. The ratio of Λ(t, j)/Pj is then simply

Λ(t, 0)

P0(xt; θ0)
=

1− (0 · P0(xt; θ0) + 1 · P1(xt; θ0) + ut)

P0(xt; θ0)

= − 1

1− F (x0tβ0 −
√
nµ10)

z1t + 1,

Λ(t, 1)

P1(xt; θ0)
=

0 · P0(xt; θ0) + 1 · P1(xt; θ0) + ut
P1(xt; θ0)

=
1

F (x0tβ0 −
√
nµ10)

z1t + 1.

Therefore, in a binary choice case, g1(xt; 0, θ0) = −1/(1−F ) and g1(xt; 1, θ0) =
1/F . Using the above results, rewrite the score functions (7) and (8) as

∂ logLn
∂β

=
nX
t=1

JX
k=1

Ak(xt; θ)zk(xt; θ)xt, (10)

∂ logLn
∂µj

=
√
n

nX
t=1

JX
k=1

Bk(xt; j, θ)zk(xt; θ), (11)

where

Ak(xt; θ) =
JX
j=0

gk(xt; j, θ)pj(xt; θ)

=
JX
j=1

f(x0tβ −
√
nµj) [gk(xt; j, θ)− gk(xt; j − 1, θ)] , (12)

and
Bk(xt; j, θ) = f(x0tβ −

√
nµj)[gk(xt; j − 1, θ)− gk(xt; j, θ)] (13)

Again, in the binary choice example, it is easy to see thatA(xt; θ) = f/(F (1−
F )) and B(xt; 1, θ) = −f/(F (1 − F )). Taking second derivatives of the log
likelihood function with respect to β and µ gives the hessian matrix Jn(θ). To
present the elements of this matrix, we let M(i, j) denote the (i, j)’th element
of the matrix M and let M(j) denote its j’th column. Then

Jn(θ) =

µ
Jn,11(θ) Jn,12(θ)
Jn,21(θ) Jn,22(θ)

¶
(14)
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where

Jn,11(θ) =
∂logLn
∂β∂β0

= −
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlxtx
0
t +

nX
t=1

JX
k=1

Cββ,kzkxtx
0
t,

Jn,12(θ)(j) =
∂logLn
∂β∂µj

= −
√
n

nX
t=1

JX
k=1

JX
l=1

AkBl(j)zkzlx
0
t +
√
n

nX
t=1

JX
k=1

Cβµj ,kzkx
0
t,

Jn,22(θ)(i, i) =
∂2logLn
∂2µi

= −n
nX
t=1

JX
k=1

JX
l=1

Bk(i)Bl(i)zkzl − n
nX
t=1

JX
k=1

Cµiµi,kzk,

Jn,22(θ)(i, i− 1) =
∂logLn
∂µi∂µi−1

= −n
nX
t=1

JX
k=1

JX
l=1

Bk(i)Bl(i− 1)zkzl for i = 2, . . . , J

Jn,22(θ)(i, i+ 1) =
∂logLn
∂µi∂µi+1

= −n
nX
t=1

JX
k=1

JX
l=1

Bk(i)Bl(i+ 1)zkzl for i = 1, . . . , J − 1

Jn,22(θ)(i, j) = 0 for j > i+ 1 and j < i− 1

where we omit the arguments (xt; θ) in the functions A,B,C and z for simplicity
and where

Cββ,k(xt; θ) =
JX
j=0

gk(xt; j, θ)ṗj(xt; θ),

Cβµj ,k(xt; θ) = gk(xt; j, θ)ṗj(xt; θ),

Cµiµi,k(xt; θ) = (gk(xt; i− 1, θ)− gk(xt; i, θ))ḟ(x
0
tβ −

√
nµi).

The following assumption about the distribution function F and density f of
εt extends Assumption 2 of HP by placing some additional explicit component
functions in the classes and placing uniform tail conditions on F and f. Both
probit and logit functions satisfy conditions (a) - (c) of Assumption R2 (as
discussed in PP and HP) and (15), as is easily verified. As in HP, we use
the following classifications for nonlinear functions: g : R→ R is regular if it is
bounded, integrable, and differentiable with bounded derivative; FR denotes the
class of regular functions; FI is the class of bounded and integrable functions;
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and F0 the class of functions that are bounded and vanish at infinity. The
notation ġ and g̈ is used to denote the first and second derivatives of g.

Assumption R2 (updates Assumption 2 of HP) F is three times differ-
entiable with bounded derivatives and satisfies

sup
|x|<M

F
¡
x−M1+ηµ

¢
F (x)

= o (1) , sup
|x|≤M

1− F
¡
x+M1+ηµ)

¢
1− F (x)

= o(1),

sup
|x|<M

f
¡
x±M1+ηµ

¢
f (x)

= o (1) , (15)

as M →∞ for any η, µ > 0. Further, for k, l = 1, . . . , J :
(a) ηklAkBl, ηklAkAl, ηklBkBl ∈ FR;

(b) ηkkAk, ηkkBk, (ηklȦkBl), (ηklȦkAl), (ηklḂkBl), η
1/2
kk Ċk ∈ FI ;

(c) τklpqAkAlApAq, τklpqAkAlBpBq, τklpqBkBlBpBq, CkClηkl ∈ F0

3 Correction to Lemma 1 of HP
Lemma R0 gives some limit results for partial sum expressions that are needed
in analyzing the asymptotic behavior of the score and hessian functions. Lemma
R1 below corrects lemma 1 of HP. Proofs and complementary results are given
in the Appendix.

Lemma R0 Let f and P be the density and probability distribution functions

defined above, let Assumptions 1 and R2 hold, and let µj0 6= 0 and κ1 ≥ 0.
Then, as n→∞,
(a)

1

n1/2(1+κ1)

nX
t=1

f2(x1tα
1
0 −
√
nµj0)

Pj
xκ11t ⇒

(µj0)
κ1

(α10)
κ1+1

L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)
ds,

(b)

1

n1/2(1+κ1)

nX
t=1

f2(x1tα
1
0 −
√
nµj0)

Pj−1
xκ11t ⇒

(µj0)
κ1

(α10)
κ1+1

L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

1− F (s)
ds,

(c)

1

n3/2

nX
t=1

f2(x1tα
1
0 −
√
nµj0)

Pj
x1tx2t ⇒

µj0
(α10)

2

Z 1

0

V2(r)dL1

Ã
r,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)
ds,

(d)

1

n3/2

nX
t=1

f2(x1tα
1
0 −
√
nµj0)

Pj−1
x1tx2t ⇒

µj0
(α10)

2

Z 1

0

V2(r)dL1

Ã
r,
µj0
α10

!Z ∞
−∞

f2(s)

1− F (s)
ds,
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(e)

1

n3/2

nX
t=1

f2(x1tα
1
0 −
√
nµj0)

Pj
x2tx

0
2t ⇒

1

α10

Z 1

0

V2(r)V2(r)
0dL1

Ã
r,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)
ds,

(f)

1

n3/2

nX
t=1

f2(x1tα
1
0 −
√
nµj0)

Pj−1
x2tx

0
2t ⇒

1

α10

Z 1

0

V2(r)V2(r)
0dL1

Ã
r,
µj0
α10

!Z ∞
−∞

f2(s)

1− F (s)
ds,

(g)

n−1/2
nX
t=1

f(x1tα
1
0 −
√
nµj0)f(x1tα

1
0 −
√
nµj−10 )

Pj−1
→p 0,

(h)

n−1/2
nX
t=1

f(x1tα
1
0 −
√
nµj0)f(x1tα

1
0 −
√
nµj+10 )

Pj
→p 0.

Remark In a similar fashion to part (a) when κ1 = 2 (as occurs in the hessian
expression considered below), we obtain the limit

1

n3/2

nX
t=1

f(x1tα
1
0 −
√
nµj0)x

2
1t ⇒

(µj0)
2

(α10)
3
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f(s)ds, (16)

whereas, when µj0 = 0, we have (e.g. from Lemma 2 part (a) of PP)

1

n1/2

nX
t=1

f(x1tα
1
0)x

2
1t ⇒

1

(α10)
3
L1 (1, 0)

Z ∞
−∞

f(s)s2ds. (17)

Thus, a major effect of the non-zero threshold µj0 6= 0 is to change the rate of
convergence (or standardization) from 1/

√
n in (17) to 1/n3/2. Another effect

is that the limit random variable involves Brownian local time at µj0/α
1
0 instead

of the origin. Finally, the scale effect arising from the spatial integral changes
from

R∞
−∞ f(s)s2ds in (17) to µ20

R∞
−∞ f(s)ds in (16). Each of these effects arises

from the fact that the principal contribution to the partial sum comes when x1t
is around

√
nµj0/α

1
0. These are the changes in the limit theory for the non-zero

threshold case that lead to the corrections needed for HP.

Lemma R1 (corrects Lemma 1 of HP) : Let Assumption 1 hold, and write
Ak(x1t; θ0) = Ak, Bk(xt; j, θ0) = Bk. Assume for k, l,= 1, .., J, that AkAlηkl,
AkBlηkl, BkBlηkl ∈ FR, Akηkk, Bkηkk ∈ FI , and τkkkkA

4
k, τkkkkB

4
k ∈ F0 for

Ak, Bk : R→ R. Then⎛⎜⎝ n−3/4
Pn

t=1

PJ
k=1Akzktx1t

n−3/4
Pn

t=1

PJ
k=1Akzktx2t

n−1/4
Pn

t=1

PJ
k=1Bkzkt

⎞⎟⎠⇒M1/2W (1), (18)
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where M = ([Mij ]) is partitioned conformably with component submatrices

M11 =
JX
j=1

(
(µj0)

2

(α10)
3
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
, (19)

M12 =
JX
j=1

(
µj0
(α10)

2

Z 1

0

V2(r)dL1

Ã
r,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
, (20)

M22 =
JX
j=1

(
1

α10

Z 1

0

V2(r)V2(r)
0dL1

Ã
r,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
,

(21)

M13 =
µj0
(α10)

2
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds, (22)

M23 =
1

α10

Z 1

0

dL1

Ã
r,
µj0
α10

!
V2(r)

0
Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds, (23)

M33 =
1

α10
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds, (24)

and W is m−dimensional Brownian motion with covariance matrix I, which is
independent of V.

Remarks

1. The main correction that Lemma R1 makes to Lemma 1 of HP is to include
the component n−3/4

Pn
t=1

PJ
k=1Akzktx1t, which has the same rate of

convergence (n−3/4) as the element n−3/4
Pn

t=1

PJ
k=1Akzktx2t involving

the factor x2t. The other corrections, notably that the limit functional
involves Brownian local time at spatial points {µj0/α10 : j = 1, ..., J} away
from the origin, are discussed in the Remark above.

2. It is pointed out in PP that if x2t were replaced by a stationary variate (as
it would in some directions were x2t to be cointegrated), then the norming
would be different. Thus, suppose x3t is a stationary (m3×1) vector with
coefficient γ0, satisfies the same conditions as vt in Assumption 1 and is
independent of ut. Then we have:

1

n1/2

nX
t=1

f(x03tγ0+x1tα
1
0−
√
nµj0)x3tx

0
3t ⇒

1

α10
L1

Ã
1,

µj0
α10

!Z ∞
−∞

f(s)dsΣ33,

where Σ33 = E(x3tx
0
3t), and

1

n1/4

nX
t=1

JX
k=1

Akzktx3t ⇒MN

⎛⎝0, JX
j=1

(
1

α10
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
Σ33

⎞⎠ .
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4 Correction to the Main Results
Let bθn = (bβ0n, bµ0n)0 be the maximum likelihood estimator of θ0 = (β

0
0, µ

0

0)
0. As

in PP, the asymptotic distribution of bθn is obtained from the expansion

0 = Sn(bθn) = Sn(θ0) + Jn(eθ)(bθn − θ0), (25)

which in partitioned form is

0 =

µ
Sn(bβn)
Sn(bµn)

¶
=

µ
Sn(β0)
Sn(µ0)

¶
+

Ã
Jn,11(eθ) Jn,12(eθ)
Jn,21(eθ) Jn,22(eθ)

!µ bβn − β0bµn − µ0

¶
,

where eθ is on the line segment between bθn and θ0, which differs from row to row
of matrix Jn(eθ). Corresponding to the rotation in the regressor space, define

G =

µ
H 0
0 IJ

¶
,

and let θ = (α0, µ0)0. Then the score function and hessian matrix for the new
parameters are obtained from Sn(θ) = G0Sn(θ) and Jn(θ) = G0Jn(θ)G. Pre-
multiplying (25) by G0, we have

0 = Sn(θ̂n) = Sn(θ0) + Jn(θ̃n)(θ̂n − θ0). (26)

Using Lemma R1 above, we obtain the following limit theory for the score
function and the hessian, which corrects Theorem 1 of HP.

Theorem R2 Let Assumptions 1 and R2 hold. Then

n−3/4Sn(θ0)⇒ Q1/2W (1) and n−3/2Jn(θ0)⇒ −Q

jointly, where Q is the symmetric matrix partitioned as

Q =

⎛⎝ q11 q12 q13
q21 q22 q23
q31 q32 q33

⎞⎠ (27)

with

q11 =
JX
j=1

(
(µj0)

2

(α10)
3
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
,

q12 =
JX
j=1

(
µj0
(α10)

2

Z 1

0

dL1

Ã
r,
µj0
α10

!
V2(r)

0
Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
,

q13(j) =
µj0
(α10)

2
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds,

11



q22 =
JX
j=1

(
1

α10

Z 1

0

V2(r)V2(r)
0dL1

Ã
r,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
,

q23(j) =
1

α10

Z 1

0

dL1

Ã
r,
µj0
α10

!
V2(r)

0
Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds,

q33(j, j) =
1

α10
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds,

q33(j, i) = 0 for i 6= j.

and W is defined as in Lemma R1.

Remarks

1. Notice that with threshold parameters in the model, even if εt has a sym-
metric distribution, as in the probit and logit models, q12, q13, q21 and q31
are not zero and Q does not reduce to a block diagonal matrix, which
differs from the result in PP.

2. When stationary m3− dimensional variables x3t are present in the model,
we get multiple convergence rates. Suppose x3t is an m3− vector of zero
mean, stationary time series with coefficient γ0 defined as above. Let
ρ = (γ0, θ0)

0
, ρ = (γ0, θ0)

0
, and

G2 =

⎛⎝ Im3 0 0
0 H 0
0 0 IJ

⎞⎠ ,

Dn = Diag(n1/4Im3
, n3/4Im+J).

Following similar steps as those in the proof of Theorem R2, and using
Remark 2 after Lemma R1, we obtain the following limit theory:

DnSn(ρ0)⇒ Ξ
1/2W (1) and D−1n Jn(ρ0)D

−1
n ⇒ −Ξ,

where

Ξ =

µ
Ξ11 0
0 Q

¶
,

with

Ξ11 =
JX
j=1

(
1

α10
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
Σ33,

and Q is defined as in Theorem R2, and Σ33 = E(x3tx
0
3t).

12



The asymptotic results for Sn(θ0) and Jn(θ0) in Theorem R2 help deliver the
limit distribution of bθn. From the expansion (26), we expect that the normed
and centered estimator satisfies

n3/4(bθn − θ0) = −(n−3/2Jn(θ0))−1n−3/4Sn(θ0) + op(1), (28)

a result that is established in the proof of Theorem R3 below, which corrects
Theorem 2 of HP.

Theorem R3 Let Assumptions 1 and R2 hold. Then there exists a sequence
of ML estimators for which as bθn →p θ0, and n3/4

³bθn − θ0

´
⇒ Q−1/2W (1),

in the notation introduced in Theorem R2.

Remarks

1. From the above, we get

n3/4G0
³bθn − θ0

´
⇒ Q−1/2W (1), (29)

and therefore n3/4
³bθn − θ0

´
⇒ GQ−1/2W (1) =MN(0, GQ−1G0),

2. Following arguments similar to those in Theorem 3 and using Remark 2
above, when there are stationary variables in the model, we have

Dn

³bρ
n
− ρ

0

´
⇒ Ξ−1/2W (1),

and
DnG

0
2 (bρn − ρ0)⇒ Ξ−1/2W (1),

or

n1/4 (bγn − γ0) ⇒ Ξ
−1/2
11 W (1),

n3/4G0
³bθn − θ0

´
⇒ Q−1/2W (1),

thus

n3/4
³bθn − θ0

´
⇒ GQ−1/2W (1) =MN(0, GQ−1G0),

n1/4 (bγn − γ0) ⇒ Ξ
−1/2
11 W (1).

which we formalize in the Corollary that follows, which replaces Corollary
1 of HP.

13



Corollary R4 Under Assumptions 1 and R2, as n→∞µ
n3/4(bβn − β0)
n3/4(bµn − µ0)

¶
⇒MN(0, GQ−1G0). (30)

When there are stationary variables in the system with coefficients γ0, n
1/4 (bγn − γ0)⇒

MN(0,Ξ−111 ) and is independent of (30), so that⎛⎝ n1/4 (bγn − γ0)

n3/4(bβn − β0)
n3/4(bµn − µ0)

⎞⎠⇒MN(0, G2Ξ
−1G02),

in which case the convergence rates for the parameter estimates differ, with a
slower n1/4 rate for the parameters of stationary variables, and a faster n3/4

convergence rate for the other parameter estimates.
The conditional covariance matrix of θ̂n can be estimated by the hessian

inverse −Jn(θ̂n)−1, or the more commonly used alternative −Jn(θ̂n)−1, where

Jn(θ̂n) =

µ
Jn11(θ̂n) Jn12(θ̂n)

Jn21(θ̂n) Jn22(θ̂n)

¶
,

where Jn,ij excludes the term in Jn,ij that involves martingale differences, i.e.

Jn,11(θ) = −
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlxtx
0
t,

Jn,12(θ)(i) = −
√
n

nX
t=1

JX
k=1

JX
l=1

AkBlzkzlx
0
t,

Jn,22(θ)(i, i) = −n
nX
t=1

JX
k=1

JX
l=1

BkBlzkzl,

and other terms in J are the same as in J . This leads to the following result,
which replaces Theorem 3 of HP.

Theorem R5 Under Assumptions 1 and R2, −[n−3/2Jn(bθn)]−1 ⇒ GQ−1G0as
n→∞, with the same limit holding for −[n−3/2Jn(bθn)]−1.
Again, when we have stationary variables, −[n−1/2Jn(bγn)]−1 ⇒ Ξ−111 , and

−[n−3/2Jn(bθn)]−1 ⇒ GQ−1G0 as n→∞.

5 Simulation Experiments

5.1 Simulation Evidence of the Effects of Nonstationarity

This section provides some simulation evidence highlighting the effects of non
zero thresholds on the finite sample performance of ML estimation in a poly-

14
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Figure 1: Densities of estimators of β10 = 1, β
2
0 = 0, µ0 = (−0.1, 0.1)0.

chotomous choice model under nonstationarity. We take a model with m = 2
explanatory variables and J = 2, giving a triple-choice dependent variable yt.
The DGP for the exogenous data is the systemµ

x1t
x2t

¶
=

µ
ρ1 0
0 ρ2

¶µ
x1t−1
x2t−1

¶
+

µ
v1t
v2t

¶
,

with vt = (v1t, v2t)
0 = iid N(0, I2), and ρ1 = ρ2 = ρ = 1. The coefficient

parameter vector was set at β0 = (1, 0)
0 and µ0 = (µ

1
0, µ

2
0)
0 = (−0.1, 0.1)0 and

(−1.5, 1.5)0 respectively. Thus x0tβ0 = β10x1t = x1t and the direction orthogonal
to β0 is (0, 1), giving the coefficient β

2
0 = 0 of x2t, so that this set up is analogous

to that of the simulation study of PP. The number of replications is 50000.
Figs. 1 and 2 show that kernel estimates of the sampling distributions of the

probit estimates of the coefficients β10 and β
2
0 in the unit root case for sample sizes

n = 100, 250, 500. It is obvious that when µ0 is close to zero, the estimate of β
2
0 is

more concentrated than the estimate of β10, which is similar to the binary choice
results found in PP. As the magnitude of the threshold parameters increase,
however, it is evident that the two estimates have the same convergence rate,
corroborating the limit theory of the previous section.
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Figure 2: Densities of estimators of β10 = 1, β
2
0 = 0, µ = (−1.5, 1.5)0.

5.2 Simulation Experiments for the Main Results

First, we consider the distribution of the regression coefficients and thresholds³bβn, bµn´ and their convergence rates. We take the triple-choice case, based on
the DGP µ

x1t
x2t

¶
=

µ
ρ1 0
0 ρ2

¶µ
x1t−1
x2t−1

¶
+

µ
v1t
v2t

¶
,

with vt = (v1t, v2t)
0 = iid N(0, I2), and ρ1 = ρ2 = ρ = 1. The coefficient

parameter vector was set at β0 = (1, 0)
0 and µ0 = (µ

1
0, µ

2
0)
0 = (−0.2, 0.2)0. The

number of replications is 50, 000.
Figs. 3-6 show kernel estimates of the sampling distributions of the centred

and scaled probit estimates of the coefficients β10, β
2
0, µ

1
0, and µ20 for sample

sizes n = 100, 250, 500, 1000. The distributions of the parameters and threshold
estimates both appear to approach the asymptotic mixed normal distributions
derived above. Similar results were obtained for different values of β0and µ0
provided the elements of µ0 are small. When the magnitude of the µ

j
0 increase,

the distributions of the estimates are biased (to save the space, the graphs are
not shown here). The reason for the bias appears related to the behavior of the
choice probabilities, which quickly go to zero or unity when the arguments are
large. This behavior also leads to a pile-up problem in the predicted choice
probability distributions which we discuss below. Further, the bias is found to
occur in the stationary case as well when the thresholds are large (Graphs are
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Figure 3: Density of Scaled Estimator of β10 when µ0 = (−0.2, 0.2)0

not reported here to save the space).

6 Predicted Probability and Marginal Effects

6.1 Predicted Probability

Next consider P̂j,x = P̂j(xt; θ̂n), the predicted probability of the choice yt = j,
and bυj,x = p̂j(xt; θ̂n)β̂n, the estimated marginal effect of xt on P̂j(xt; θ̂n) both
evaluated for some xt = x. To achieve comparability between x0β0 and the
thresholds, and thereby assist in simulating the finite sample and asymptotic
distributions of the predicted probabilities, we write the scaled thresholds in the
comparable form znµ

j
0 (in place of

√
nµj0) and suppose zn > 0 is a realization of

some (independent) unit root time series so that zn = Op (
√
n), and the ordering

on the thresholds is positively scaled and therefore not reversed. This scaling is
analogous to the

√
nµj0 scaling of the thresholds used in previous sections and

serves as a device for developing the asymptotic theory in a convenient way.
The probabilities Pj are then evaluated at xt = x and zn = z for some specific
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Figure 6: Density of Scaled Estimator of µ20 when µ = (−0.2, 0.2)0

values x and z. These probabilities now satisfy

P0(xt; θ0) = 1− F (x0β0 − zµ10),

Pj(xt; θ0) = F (x0β0 − zµj0)− F (x0β0 − zµj+10 ) for j = 1, . . . , J − 1,
PJ(xt; θ0) = F (x0β0 − zµJ0 ).

To analyze these quantities, we define a matrix R(0) = Diag(Im, ι01) where ιj
is a vector of length J with the jth element 1 and other elements zero. Similarly,
R(J) = Diag(Im, ι

0
J) and for 1 ≤ j ≤ J − 1, R(j) = Diag(Im, (ιj, ιj+1)

0).
Accordingly, we may writeµ

β̂n − β0
µ̂1n − µ10

¶
= R(0)

µ
β̂n − β0
µ̂n − µ0

¶ µ
β̂n − β0
µ̂Jn − µJ0

¶
= R(J)

µ
β̂n − β0
µ̂n − µ0

¶
,

and for 1 ≤ j ≤ J − 1,⎛⎝ β̂n − β0
µ̂jn − µj0

µ̂j+1n − µj+10

⎞⎠ = R(j)

µ
β̂n − β0
µ̂n − µ0

¶
.

Corollary R6 Let Assumptions 1 and R2 hold. Given xt = x, zn = z, for
j = 0, ..., J, the predicted probabilities of yt = j (j = 0, ..., J) satisfy

n3/4
³ bPj,x − Pj,x

´
⇒MN

¡
0,Υ(j)GQ−1G0Υ(j)0

¢
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The above expressions use the following notation:

Pj,x = Pj(x; θ0), for j = 0, 1, ..., J

Υ(0) = f(x0β0 − zµ10)

µ
−x
z

¶0
R(0),

Υ(J) = f(x0β0 − zµJ0 )

µ
x
−z

¶0
R(J),

Υ(j) =

⎛⎜⎝
h
f(x0β0 − zµj0)− f(x0β0 − zµj+10 )

i
x

−f(x0β0 − zµj0)z

f(x0β0 − zµj+10 )z

⎞⎟⎠
0

R(j), for j = 1, ..., J − 1.

When we have stationary variables, given xt = x, zn = z, x3t = x3 the limit
theory becomes

n1/4
³ bPj,x − Pj,x

´
⇒ MN

³
0, f(x03γ0 + x0β0 − zµj0)

2x03Ξ
−1
11 x3

´
, for j = 0, J,

n1/4
³ bPj,x − Pj,x

´
⇒ MN

µ
0,
h
f(x0β0 − zµj0)− f(x0β0 − zµj+10 )

i2
x03Ξ

−1
11 x3

¶
,

for j = 1, ..., J − 1.

Therefore, the limit theory when stationary variables are present is dominated
by the stationary coefficients and the convergence rate is n1/4, just as in PP.

6.1.1 Simulation Experiments for R6

We use the same DGP as in the previous section, and set µ0 = (µ10, µ
2
0)
0 =

(−0.2, 0.2)0, z = 1. The number of replications is 50000. For j = 0, we set
xt = x = (−0.2, 0)0. Fig. 7 shows kernel estimates of the sampling distributions
of the (scaled and centred) choice probability when j = 0 for sample sizes
n = 100, 250, 500, 1000. Different choices of µ0, β0, z, and x do not change the
results in a material way provided the parameter settings are small, but when
they are large the choice probabilities can quickly go to zero or unity and this
appears to bias the distributions, as discussed earlier.
The distributions of the scaled choice probabilities approach the asymptotic

distributions given in the paper as n increases. However, the finite sample dis-
tribution has finite support and the figures reveal an interesting pile-up problem
where the density increases towards the limits of the domain of definition. This
pile-up problem, which to our knowledge has not before been noticed in the
discrete choice literature, also occurs in the stationary case — see Fig. 8, where
ρ1 = ρ2 = ρ = 0.95, and Fig. 9 where ρ1 = ρ2 = ρ = 0.99, with sample
sizes n = 100, 500, 1000, 5000. The figures show that as n passes to infinity the
pile-up problem steadily dissipates. For n = 5000 the upper and lower bounds
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Figure 7: Density of Choice Probability for j = 0

are close to the extremes of the support where the limit distribution is non
negligible. Thus, the problem of pile-up is not in any way special to the non-
stationary discrete choice problem but is a more generic problem. In effect, the
asymptotic approximations (such as those given in Corollary R6) are valid in
an immediate interval around the true values. Outside that interval, behavior
is rather different because of the fact that bP0,x goes to zero or unity depending
on the sign of its argument, resulting in a pile-up of the distribution in finite
samples. It might therefore be argued that the true finite sample distribution
would be better approximated by a mixture of three distributions, one of which
is the local asymptotic result given above and the other two are based on pile-
ups around bP0,x ∼ 0, and bP0,x ∼ 1. Developing such a mixture approximation
clearly involves further complications and is left for the future research.
The simulation results for the choice probabilities with j = 1, and j = 2 are

similar (see Figs. 10 and 11).

6.2 Marginal Effects

For the marginal effects, we have the following limit theory.

Corollary R7 Let Assumptions 1 and R2 hold. Given xt = x, zn = z, for
j = 0, ..., J, the estimated marginal effects bυj,x have the following asymptotic
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Figure 8: Stationary Models with ρ = 0.95
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Figure 9: Stationary Models with ρ = 0.99
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Figure 10: Density of Choice Probability for j = 1
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Figure 11: Density of Choice Probability for j = 2
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distributions as n→∞

n3/4 (bυj,x − υj,x)⇒MN
¡
0,Π(j)GQ−1G0Π(j)0

¢
.

These expressions use the notation:

υj,x = υj(x; θ0) = pj(x; θ0)β0, for j = 0, 1, ..., J

Π(0) =

µ
−ḟ((x0β0 − zµ10))xβ

0
0 − f((x0β0 − zµ10))Im

ḟ((x0β0 − zµ10))zβ0

¶0
R(0),

Π(J) =

µ
ḟ((x0β0 − zµJ0 ))xβ

0
0 + f((x0β0 − zµJ0 ))Im

−ḟ((x0β0 − zµJ0 ))zβ0

¶0
R(J),

Π(j) =

⎛⎜⎝
h
ḟ((x0β0 − zµj0))− ḟ((x0β0 − zµj+10 ))

i
xβ00 + pj(x; θ0)Im

−ḟ((x0β0 − zµj0))zβ0
ḟ((x0β0 − zµj+10 ))zβ0

⎞⎟⎠
0

R(j),

for j = 1, ..., J − 1.

When stationary variables are present, given xt = x, zn = z, x3t = x3, the
estimated marginal effects bυj,x have the following asymptotic distributions as
n→∞

n1/4 (bυj,x − υj,x)⇒MN
¡
0,Λ(j)Ξ−111 Λ(j)

0¢ ,
where

Λ(0) = −ḟ((x03γ + x0β0 − zµ10))ρx
0
3 − f((x03γ + x0β0 − zµ10))Im3

,

Λ(j) =
h
ḟ((x03γ + x0β0 − zµj0))− ḟ((x03γ + x0β0 − zµj+10 ))

i
ρx03 + pj(x, x3; γ, θ0)Im3

,

Λ(J) = ḟ((x03γ + x0β0 − zµJ0 ))ρx
0
3 + f((x03γ + x0β0 − zµ10))Im3

.

Therefore, the limit theory when stationary variables are present is dominated
by the stationary coefficients and the convergence rate is n1/4, just as in PP.

6.2.1 Simulation Experiments for R7

We use the same DGP as in the previous section, and set µ0 = (µ10, µ
2
0)
0 =

(−0.2, 0.2)0, z = 1. The number of replications is again 50, 000. For j = 0, we set
xt = x = (−0.6, 0)0. Figs. 12-17 show kernel estimates of the sampling distribu-
tions of the marginal effects bυj,x = bpj(xt;bθn)bβn = bυj,x = bpj(xt;bθn)³bβ1n, bβ2n´0when
j = 0, 1, and 2 for sample sizes n = 100, 250, 500, 1000. In the graphs, we use

ME1 to denote bpj(xt;bθn)bβ1n, and ME2 to denote bpj(xt;bθn)bβ2n. The graphs show
that in large samples the distributions of scaled marginal effects appear to ap-
proach the asymptotic distributions derived in the paper. Again, there appears
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Figure 12: Density of Marginal Effects when j = 0

to be a pile-up problem towards the limits of the domain of definition. Inves-
tigation shows that this problem also occurs in the stationary case for large
values of the autoregressive coefficient. As for the predicted probabilities, this
phenomenon deserves further study.
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Figure 13: Density of Marginal Effects when j = 0
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Figure 14: Density of Marginal Effects when j = 1
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Figure 15: Density of Marginal Effects when j = 1
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Figure 16: Density of Marginal Effects when j = 2
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Figure 17: Density of Marginal Effects when j = 2

7 Appendix I: Useful Lemmas and Proofs
The following lemmas update and extend as needed here some preliminary re-
sults used in HP and proved in PP. The updating takes into account the explicit
form of the dependence of functions on the threshold.

Lemma A (updates Lemma A.3 in HP) Let Assumption 1 hold, and
f, fk : R → R. Denote xκ11t the κ1-times tensor product of x1t with itself, and
xκ22t the κ2-times tensor product of x2t with itself. Define:

1M
κ1,κ2
n =

nX
t=1

f(x1t; θ0)x
κ1
1t x

κ2
2t , 2M

κ1,κ2
n =

nX
t=1

JX
k=1

fk(x1t; θ0)x
κ1
1t x

κ2
2t zkt,

3M
κ1,κ2
n =

nX
t=1

JX
k=1

JX
l=1

fkfl(x1t; θ0)x
κ1
1t x

κ2
2t akl,t

(a) for f ∈ F0, then 1M
κ1,κ2
n = op(n

1+κ1/2+κ2/2). Moreover, if f ∈ FI , then
1M

κ1,κ2
n = Op(n

(1+κ1+κ2)/2).
(b) If ηklfkfl ∈ F0, then 2M

κ1,κ2
n = op(n

(1+κ1+κ2)/2).
(c) If τklpqfkflfpfq ∈ F0,then 3M

κ1,κ2
n = op(n

(1+κ1+κ2)/2).

In applying this lemma, we note the following: for part (a) where f ∈ FI ,
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f could be ηkkAk, ηkkBk, (ηklȦkBl), (ηklȦkAl), (ηklḂkBl), or η
1/2
kk Ċk; for part

(b), fk could be Ck; and for part (c), fk could be Ak or Bk.

Lemma B (updates Lemma A3 of PP) Let Assumption 1 hold. Assume
ηklfkfl ∈ FR, and τklpqfkflfpfq ∈ F0 for some fk : R→ R. Define

1P
2
nt =

1

n3/2

JX
k=1

JX
l=1

fkfl(x1t; θ0)x
2
1tzktzlt, 2P

2
nt =

1

n3/2

JX
k=1

JX
l=1

fkfl(x1t; θ0)x2tx
0
2tzktzlt

and sQ
2
n = E

¡
sP

2
nt|Ft−1

¢
Then for s = 1, 2 we have, sup1≤t≤n k

Pt
j=1(sP

2
nj)−Pt

j=1(sQ
2
nj) k→p 0,as n→∞.

In applying this lemma, fk could be Ak or Bk.

Lemma C (updates Lemma A4 of PP and Lemma A.4 of HP) Let
Assumption 1 hold. Assume ηkkfk ∈ FI , and τkkkkf

2
k ∈ F0 for some fk : R→

R. Define

1N
2
nt =

1

n5/4
fk(x1t; θ0)x1tz

2
kt, 2N

2
nt =

1

n5/4
fk(x1t; θ0)x2tz

2
kt

Then, for i = 1, 2 we have, as n→∞, sup1≤t≤n k
Pt

s=1(iN
2
ns) k→p 0.

Again, in applying this lemma, fk could be Ak or Bk.

Lemma D (updates Lemma A1 of PP) Let f ∈ FI , ε > 0 and define

fεsup(x, y) = sup
|a|≤ε

sup
|b|≤ε

|f(x+ a; y + b)| .

Then fεsup ∈ FI .

Proofs of Lemmas A-D The proofs follow arguments similar to those given
in the proofs of Lemmas A1-A4 of PP.

Lemma E (Extends Lemma 2 of PP to local time away from the
origin) Let Assumption 1 hold, f : R → R be regular, and µ 6= 0. Then we
have:

(a) 1√
n

Pn
t=1 f (x1t −

√
nµ)⇒ L1 (1, µ)

R∞
−∞ f (s) ds,

(b) 1
n

Pn
t=1 f (x1t −

√
nµ)x2t ⇒

R 1
0
V2 (r) dL1 (r, µ)

R∞
−∞ f (s) ds,

(c) 1
n3/2

Pn
t=1 f (x1t −

√
nµ)x2tx

0
2t ⇒

R 1
0
V2 (r)V2 (r)

0
dL1 (r, µ)

R∞
−∞ f (s) ds.
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Proof of Lemma E The proof follows the same line of argument as that
used in the proof of lemma 2 of PP. The difference arises from the fact that
the main contribution to the sums in each case come from the neighborhood of
the threshold µ rather than the origin. More specifically, it follows by setting
a =
√
nµ in theorem 4 of Akonom (1993) that

√
n

δn

1

n

nX
t=1

1[
√
nµ≤x1t≤

√
nµ+δn] →p L1 (1, µ) , (31)

where δn = n−δ for some δ ∈ (0, 1/8) . Then, just as in the proof of theorem 5.1
of Park and Phillips (1999) we get part (a). An independent proof of a version
of part (a) has also been given recently by Jeganathan (2004). In particular,
theorem 2 of Jegananthan (2004) establishes that for the partial sum process
St =

Pt
s=1 vs of a linear process vs (that satisfies Assumption 1 of HP)

βn
n

nX
t=1

f
¡
βn
¡
γ−1n St − µ

¢¢
⇒ L1 (1, µ)

Z ∞
−∞

f (s) ds, (32)

where, in the present case of domain of attraction to a normal law, βn = γn =√
n. Jeganathan’s result is more general than part (a) because it covers cases

where the component innovations in the process determining vt may belong
to the domain of attraction of a stable law and the standardized partial sums
γ−1n S[nr] converge to fractional stable motion and L1 in (32) is the local time of
the limit stable process. Convergence in probability occurs in (31) because the
convergence is taken to apply in a suitably augmented probability space that
includes the limit processes and has random elements distributionally equivalent
to the original random elements.
Parts (b) and (c) follow in the same way as parts (b) and (c) of the proof

of lemma 2 in PP. We demonstrate part (b). In particular, define fn(x) =Pκn
k=−κn f(kδn)1[kδn≤x<(k+1)δn], where κn and δn are sequences of numbers

satisfying conditions in the proof of Theorem 5.1 in Park and Phillips (1999).
In particular, κn → ∞, δn → 0 and κnδn = nd → ∞ with d ∈ (1/p, 1/4) and
p > 4. Including the nonzero threshold µ 6= 0 in the development, equation (28)
of PP (which represents the sum 1√

n

Pn
t=1 f (x1t −

√
nµ)x2t in integral form)

and the lines that follow now become

√
n

Z 1

0

f(
√
nV1n(r)−

√
nµ)V2n(r) dr

=
√
n

Z 1

0

fn(
√
nV1n(r)−

√
nµ)V2n(r) dr + op(1)

=
√
n

κnX
k=−κn

f(kδn)

Z 1

0

1nk(r;µ)V2n(r) dr + op(1)

=

µZ ∞
−∞

fn(s)ds

¶ √
n

δn

Z 1

0

1n(r;µ)V2n(r) dr + op(1), (33)
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where V1n (r) = h01Vn(r) and V2n(r) = H 0
2Vn (r) , Vn (r) is defined in (5), and

1nk (r;µ) = 1[kδn≤
√
n{V1n(r)−µ}<(k+1)δn],

1n (r;µ) = 1[0≤
√
n{V1n(r)−µ}<δn],

1n (r;µ) = 1[0≤
√
n{V1(r)−µ}<δn].

Thus, the argument in PP changes by the replacement of V1n (r) with V1n (r)−µ.
We have Z ∞

−∞
fn(s)ds→

Z ∞
−∞

f(s) ds. (34)

Moreover, with δn = n−δ, 0 < δ < 1/8, and πn = δn/
√
n, we have n5/8πn →∞

and then as in the proof of lemma 2 of PP

1

πn

Z 1

0

1n (r;µ)V2n(r) dr =
1

πn

Z 1

0

1n (r;µ)V2(r) dr + op(1). (35)

Using the extended occupation times formula [e.g., Revuz and Yor (1994, Exer-
cise 1.15, p222)], we have

1

πn

Z 1

0

1n (r;µ)V2(r) dr =
1

πn

Z ∞
−∞

Z 1

0

1[0≤
√
n{s−µ}<δn]V2(r) dL1(r, s)ds

=
1

πn

Z µ+δn/
√
n

µ

Z 1

0

V2(r) dL1(r, s)ds

=
1

πn

Z πn

0

Z 1

0

V2(r) dL1(r, µ+ q)dq

→
Z 1

0

V2(r) dL1(r, µ), (36)

the last line following from the uniform continuity of the local time process.
Result (b) now follows from (33) - (36). Part (c) follows in the same way.

7.1 Appendix II: Proofs of the Main Results

Proof of Lemma R0: We use the same approach as in the proof of Lemma
E. We give the arguments here for part (a) and parts (b) - (f) follow in a similar
way. Define

g (x) =
f2(x)

F (x)− F
³
x+
√
n(µj0 − µj+10 )

´ = f2(x)

F (x)

⎧⎨⎩1− F
³
x+
√
n(µj0 − µj+10 )

´
F (x)

⎫⎬⎭
−1

,

(37)
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and set gn(x) =
Pκn

k=−κn g(kδn)1[kδn≤x<(k+1)δn]. Using the embedding (4)-(5)
and the same argument as in the proof of PP (theorem 5.1), we write

1

n1/2(1+κ1)

nX
t=1

f2(x1tα
1
0 −
√
nµj0)

Pj
xκ11t

=
1

n1/2

nX
t=1

f2
³√

n(x1t√
n
α10 − µj0)

´
F (
√
n(x1t√

n
α10 − µj0))− F (

√
n(x1t√

n
α10 − µj+10 )

µ
x1t√
n

¶κ1
= d

√
n

Z 1

0

g(
√
n
³
α10V1n(r)− µj0

´
V1n(r)

κ1 dr {1 + op (1)}

=
√
n

κnX
k=−κn

g(kδn)

Z 1

0

1nk(r;
µj0
α10
)V1n(r)

κ1dr + op(1)

=

ÃZ κnδn

−κnδn
gn(s)ds

! √
n

δn

Z 1

0

1n(r;
µj0
α10
)V1n(r)

κ1dr + op(1). (38)

Next, as in the proof of Lemma E and lemma 2 of PP, we have for πn = δn/
√
n,

1

πn

Z 1

0

1n

Ã
r;
µj0
α10

!
V1n(r)

κ1 dr

=
1

πn

Z 1

0

1n

Ã
r;
µj0
α10

!
V1(r)

κ1dr + op(1)

=
1

πn

Z ∞
−∞

Z 1

0

1[0≤
√
n{α10s−µj0}<δn]s

κ1dL1(r, s)ds

=
1

α10πn

Z πn

0

Ã
µj0
α10
+

c

α10

!κ1

L1

Ã
1,
µj0
α10
+

c

α10

!
dc

→ 1

α10

Ã
µj0
α10

!κ1

L1

Ã
1,
µj0
α10

!
, (39)

by the uniform continuity of the local time function.
Since µj0 < µj+10 , and κnδn = nd →∞ with d ∈ (1/p, 1/4) , we have in view

of (15)

sup
k

¯̄̄̄
¯̄F
³
kδn +

√
n(µj0 − µj+10 )

´
F (kδn)

¯̄̄̄
¯̄ ≤ sup

|x|≤nd

¯̄̄̄
¯̄F
³
x+
√
n(µj0 − µj+10 )

´
F (x)

¯̄̄̄
¯̄ = o (1) ,

and then Z κnδn

−κnδn
gn(s)ds =

Z κnδn

−κnδn

f2s)

F (s)
ds {1 + o (1)}

=

Z ∞
−∞

f2s)

F (s)
ds+ o (1) , (40)
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as n→∞ by the integrability of f2(s)/F (s). Combining (38) - (40) we get

1

n1/2(1+κ1)

nX
t=1

f2(x1tα
1
0 −
√
nµj0)

Pj
xκ11t ⇒

(µj0)
κ1

(α10)
κ1+1

L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)
ds,

as required for part (a). Parts (b) - (f) of the lemma are proved in the same
manner.
The proofs of parts (g) and (h) are also similar. To show part (g), for

instance, we set

g (x) =
f(x)f

³
x+
√
n(µj0 − µj−10 )

´
F
³
x+
√
n(µj0 − µj−10 )

´
− F (x)

=
f(x)f

³
x+
√
n(µj0 − µj−10 )

´
1− F (x)−

n
1− F

³
x+
√
n(µj0 − µj−10 )

´o
=

f(x)2

1− F (x)

f
³
x+
√
n(µj0 − µj−10 )

´
/f (x)

1−
n
1− F

³
x+
√
n(µj0 − µj−10 )

´o
/ {1− F (x)}

, (41)

and define gn(x) =
Pκn

k=−κn g(kδn)1[kδn≤x<(k+1)δn] as before. Using the em-
bedding (4)-(5) again and the same argument as in PP (theorem 5.1), we have

1

n1/2

nX
t=1

f(x1tα
1
0 −
√
nµj0)f(x1tα

1
0 −
√
nµj0)

Pj−1

=
1

n1/2

nX
t=1

f(x1tα
1
0 −
√
nµj0)f(x1tα

1
0 −
√
nµj−10 )

F (
√
n(x1t√

n
α10 − µj−10 ))− F (

√
n(x1t√

n
α10 − µj0)

= d

√
n

Z 1

0

g(
√
n
³
α10V1n(r)− µj0

´
dr {1 + op (1)}

=
√
n

κnX
k=−κn

g(kδn)

Z 1

0

1nk(r;
µj0
α10
)dr + op(1)

=

ÃZ κnδn

−κnδn
gn(s)ds

! √
n

δn

Z 1

0

1n(r;
µj0
α10
)dr + op(1). (42)

Next, since µj0 > µj−10 , κnδn = nd → ∞, and d ∈ (1/p, 1/4) , it follows from
Assumption R2 and (15) that

sup
k

¯̄̄̄
¯̄1− F

³
kδn +

√
n(µj0 − µj−10 )

´
1− F (kδn)

¯̄̄̄
¯̄ ≤ sup

|x|≤nd

¯̄̄̄
¯̄1− F

³
x+
√
n(µj0 − µj−10 )

´
1− F (x)

¯̄̄̄
¯̄ = o (1) ,

and

sup
k

f
³
kδn +

√
n(µj0 − µj−10 )

´
f (kδn)

≤ sup
|x|≤nd

f
³
x+
√
n(µj0 − µj−10 )

´
f (x)

= o (1) ,
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so that

g (kδn) ≤
f(kδn)

2

1− F (kδn)
sup

|s|≤κnδn

f
³
s+
√
n(µj0 − µj−10 )

´
/f (s)

1−
n
1− F

³
s+
√
n(µj0 − µj−10 )

´o
/ {1− F (s)}

≤ f(kδn)
2

1− F (kδn)

sup|x|≤κnδn

n
f
³
x+
√
n(µj0 − µj−10 )

´
/f (x)

o
1− ηn

≤ f(kδn)
2

1− F (kδn)

εn
1− ηn

,

for some sequences εn, ηn → 0 as n→∞. Then, setting h (x) = f(x)2/ (1− F (x)) ,
and hn(x) =

Pκn
k=−κn h(kδn)1[kδn≤x<(k+1)δn], we have

κnX
k=−κn

g(kδn)δn ≤
κnX

k=−κn

h(kδn)δn
εn

1− ηn
=

Z κnδn

−κnδn
hn(s)ds

εn
1− ηn

.

Since f(x)2/ (1− F (x)) is integrable it follows thatZ κnδn

−κnδn
gn(s)ds =

κnX
k=−κn

g(kδn)δn = o (1) . (43)

Finally, as in (31), we have
√
n

δn

Z 1

0

1n(r;
µj0
α10
)dr →p L1

Ã
1,
µj0
α10

!
. (44)

Hence, from (42), (43) and (44) we deduce that

n−1/2
nX
t=1

f(x1tα
1
0 −
√
nµj0)f(x1tα

1
0 −
√
nµj−10 )

Pj−1
→p 0,

giving part (g). Part (h) follows in the same way.

Proof of Lemma R1: The proof uses the same approach as that given in
lemma 3 of PP, but adjusts for the scaling rate and uses the limit results from
Lemma R0. It is also necessary to use the Skorohod embedding on a linear
combination of the components, rather than individual components as in HP
because the embedding is valid only for scalar processes. In particular, setting
m = 2 without loss of generality and for any c = (c1, c2, c3) ∈ R3, we let

Ckn(x1, x2) = c1n
−3/4Akx1 + c2n

−3/4Akx2 + c3n
−1/4Bk := c0Fkn (x1, x2) ,

and define wc
nt =

PJ
k=1Ckn(x1t, x2t)zkt, which is a martingale difference se-

quence by construction. As in the proof of lemma 1 of PP, there exists a prob-
ability space supporting sequences of random variables Unt and Vnt for which
we have the distributional equivalence
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(Uc
nt, Vnt) =d

Ã
1√
n

tX
i=1

wc
ni,

1√
n

tX
i=1

vi

!
, jointly for all t ≤ n

and for which the following hold. First, there is a representation Uc
nt = U c

¡
Tnt
n

¢
in terms of a standard Brownian motion Uc with time changes Tnt in (Ω,F ,P).
Moreover, letting Tnt =

Pt
i=1 τni and defining Fnt = σ

¡
(Uc(r))r≤Tnt/n, (Vns)

t+1
s=1

¢
,

the time changes satisfy

E(τnt|Fn,t−1) = E(wc2
nt|Ft−1) =

JX
k=1

JX
l=1

Ckn(x1t, x2t)Cln(x1t, x2t)E (zktzlt|Fn,t−1)

=
JX

k=1

JX
l=1

Ckn(x1t, x2t)Cln(x1t, x2t)ηkl(x1t),

and E(τrnt|Fn,t−1) ≤ crE(|wc
nt|2r|Ft−1) for all r ≥ 1, where cr is some constant

depending only upon r (c.f. Hall and Heyde, 1980, theorem A1). Finally,
defining

Vn(r) =
nX
t=1

Vnt 1

½
t−1
n
≤ r <

t

n

¾
,

then Vn →a.s. V where V is Brownian motion in (Ω, F, P ) with variance matrix
Σ.

Define M c
n (r) = U c (r) for Tn[nr]

n ≤ r <
Tn[nr]+1

n . Then, Mc
n (r) is a continu-

ous martingale satisfying

[nr]X
t=1

JX
k=1

Ckn(x1t, x2t)zkt =d M
c
n

µ
Tn[nr]
n

¶
.

Set

Dkl,n(x1, x2) = ηkl(x1)Ckn(x1, x2)Cln(x1, x2) = c0Fkn (x1, x2) ηkl(x1)Fln (x1, x2)
0
c,

and then the quadratic variation of Mc
n

¡
Tn[nr]/n

¢
is

[Mc
n]r =

JX
k=1

JX
l=1

[nr]X
t=1

Dkl,n(
√
nVnt) + op(1)

= c0

⎧⎨⎩
JX

k=1

JX
l=1

[nr]X
t=1

Fkn
¡√

nVnt
¢
Fln

¡√
nVnt

¢0
ηkl(
√
nV1nt)

⎫⎬⎭ c,

uniformly in r ∈ [0, 1]. Next, as we show below,

[Mc
n]r →p c

0M(r)c, (45)
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uniformly in r ∈ [0, 1], where M (r) = ([Mij (r)]) with submatrices Mij (in
block i, j of a 3 × 3 partition) given for r = 1 by (19) - (21) in the statement of
the Lemma. Limit expressions for the Mij are obtained as in Lemma R0. We
illustrate the argument for the (1, 1) submatrixM11 ofM (1) , which corresponds
to the coefficient of c21 in [M

c
n](1). This element has the form

n−3/2
JX

k=1

JX
l=1

nX
t=1

Ak

¡√
nV1nt; θ0

¢
Al

¡√
nV1nt; θ0

¢
ηkl(
√
nV1nt; θ0)x

2
1t, (46)

where the product AkAlηkl satisfies Assumption R2(a), which is now demon-
strated. We have

n−3/2
JX

k=1

JX
l=1

nX
t=1

Ak (x1t; θ0)Al (x1t; θ0) ηkl(x1t; θ0)x
2
1t

= n−3/2
nX
t=1

JX
j=1

JX
i=1

{f(x1tα10 −
√
nµj0)f(x1tα

1
0 −
√
nµi0)

×
JX

k=1

JX
l=1

[gk(j)− gk(j − 1)] [gl(i)− gl(i− 1)] ηkl,tx21t}

= n−3/2
nX
t=1

JX
j=1

JX
i=1,i6=j

{f(x1tα10 −
√
nµj0)f(x1tα

1
0 −
√
nµi0)

×
JX

k=1

JX
l=1

[gk(j)gl(i)− gk(j)gl(i− 1)− gk(j − 1)gl(i) + gk(j − 1)gl(i− 1)]ηkl,tx21t}

+n−3/2
nX
t=1

JX
j=1

{f2(x1tα10 −
√
nµj0)

×
JX

k=1

JX
l=1

[gk(j)gl(j)− gk(j)gl(j − 1)− gk(j − 1)gl(j) + gk(j − 1)gl(j − 1)]ηkl,tx21t}

(47)

From (9), we have

JX
k=1

gk(xt; j, θ0)zkt =
Λ(t, j)

Pj(xt; θ0)
− 1 (48)

and

JX
k=1

JX
l=1

gk(xt; j, θ0)gl(xt; i, θ0)zktzlt =

µ
Λ(t, j)

Pj(xt; θ0)
− 1
¶µ

Λ(t, i)

Pi(xt; θ0)
− 1
¶
.

(49)
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Then
JX

k=1

JX
l=1

gk(xt; j, θ0)gl(xt; i, θ0)ηkl,t

= E

½µ
Λ(t, j)

Pj(xt; θ0)
− 1
¶µ

Λ(t, i)

Pi(xt; θ0)
− 1
¶
|Ft−1

¾
= E

½
Λ(t, j)

Pj(xt; θ0)

Λ(t, i)

Pi(xt; θ0)
− Λ(t, j)

Pj(xt; θ0)
− Λ(t, i)

Pi(xt; θ0)
+ 1|Ft−1

¾
= −1 for i 6= j (50)

=
1

Pj(xt; θ0)
− 1 for i = j (51)

since E (Λ(t, j)|Ft−1) = Pj(xt; θ0).
Next, from (50), the first term of (47) is

n−3/2
nX
t=1

JX
j=1

JX
i=1,i6=j

n
f(x1tα

1
0 −
√
nµj0)f(x1tα

1
0 −
√
nµi0)x

2
1t(−1− (−1)− (−1)− 1)

o
= 0

(52)
From (50) and (51), the second term of (47) is

n−3/2
nX
t=1

JX
j=1

½
f2(x1tα

1
0 −
√
nµj0)

∙
1

Pj
+

1

Pj−1

¸
x21t

¾
(53)

for j = 1, ..., J−1. Using a Mills ratio argument, as in Park and Phillips (2000),
it is apparent that (53) has elements that belong to FR. Hence, AkAlηkl in (56)
belongs to FR, thereby satisfying Assumption R2; and the other conditions
follow upon some further routine calculations.
The required limit result now follows directly from Lemma R0 parts (a) and

(b). Thus, the (1, 1) submatrix of M (1) converges weakly to

JX
j=1

(
(µj0)

2

(α10)
3
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
.

The proofs for the other elements of M (1) are similar, and they are obtained in
the proof of the hessian asymptotics given below in the proof of Theorem R2.
Next, let σcuv be the covariance of U

c and V and define

En(x1, x2) =
JX

k=1

Ckn(x1, x2)ηkk(x1).

The quadratic covariation process [M c
n, V ] of M

c
n and V is:

[Mc
n, V ](r) =

√
n

[nr]X
i=1

JX
k=1

Ckn(
√
nVni)

µ
Tn,i
n
− Tn,i−1

n

¶
σcuv

= σuv

nX
t=1

En(
√
nVnt)1

½
r ≥ Tn,t

n

¾
+ op(1)→p 0,
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uniformly in r ∈ [0, 1], by Lemma C. It follows, in particular, that

[Mc
n, V ](ρn(r))→p 0, (54)

where ρn(r) = inf{s ∈ [0, 1] : [Mc
n]s > r} is a sequence of time changes.

The asymptotic distribution of the martingale Mc
n is completely determined

by (45) and (54), as shown in Revuz and Yor (1994, Theorem 2.3). Define

Wn(r) =Mc
n(ρn(r)).

The processWn is the DDS (or Dambis, Dubins-Schwarz) Brownian motion (see
Revuz and Yor, 1994) of the martingale M c

n. It follows that (V,Mn) converges
jointly in distribution to two independent standard linear Brownian motions
(V, Y ), say. Therefore,

Mc
n

µ
Tkn,n
n

¶
→d Y (c

0Mc),

which completes the argument because c is arbitrary.
When J = 1 we are back to the binary choice model. If we set the threshold

parameters to zero in this case, then (53) reduces to

nX
t=1

½
f2(x1t)

∙
1

F
+

1

1− F

¸
x21t

¾
=

nX
t=1

f2(x1t)x
2
1t

F (1− F )
=

nX
t=1

c (x1t) ,

a formula that occurs in the calculations in Park and Phillips (2000). Here, since
c belongs to FR and the major contribution to the sum

Pn
t=1 c (x1t) comes from

the vicinity of the origin, we have n−1/2
Pn

t=1 c (x1t)⇒ L1 (1, 0)
R∞
−∞ c (s) ds, so

that a different rate of convergence and a different limit result hold compared
with (19).

Proof of Theorem R2 The results for the score function follow from Lemma
R1 and those for the hessian involve similar calculations. Specifically, we parti-
tion the hessian Jn(θn) = G0Jn(θn)G as⎛⎝ Jn,11(θ0) Jn,12(θ0) Jn,13(θ0)

Jn,21(θ0) Jn,22(θ0) Jn,23(θ0)
Jn,31(θ0) Jn,32(θ0) Jn,33(θ0)

⎞⎠ .

In view of symmetry, we consider only the upper-right triangular block:

Jn,11(θ0) = −
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlx
2
1t

+
nX
t=1

JX
k=1

Cββ,kzkx
2
1t,
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Jn,12(θ0) = −
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlx1tx
0
2t

+
nX
t=1

JX
k=1

Cββ,kzkx1tx
0
2t,

Jn,22(θ0) = −
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlx2tx
0
2t

+
nX
t=1

JX
k=1

Cββ,kzkx2tx
0
2t,

Jn,13(θ0)(i) = −
√
n

nX
t=1

JX
k=1

JX
l=1

AkBl(xθ)zk(x1t,i, θ)zlx1t

+
√
n

nX
t=1

JX
k=1

Cβµi,kzkx1t,

Jn,23(θ0)(i) = −
√
n

nX
t=1

JX
k=1

JX
l=1

AkBl(xθ)zk(x1t,i, θ)zlx
0
2t

+
√
n

nX
t=1

JX
k=1

Cβµi,kzkx
0
2t,

Jn,33(θ0) = Jn,22(θ0),

where the arguments (x1t; θ0) in the functions of A,B,C are omitted for sim-
plicity. Observe that all terms involving zk alone as a factor are op(1) by Lemma
A (b), that is,

n−3/2
nX
t=1

JX
k=1

Cββ,kzkx
2
1t, n−3/2

nX
t=1

JX
k=1

Cββ,kzkx1tx
0
2t,

n−3/2
nX
t=1

JX
k=1

Cββ,kzkx2tx
0
2t, n−1

nX
t=1

JX
k=1

Cβµi,kzkx1t,

n−1
nX
t=1

JX
k=1

Cβµi,kzkx
0
2t, n−1/2

nX
t=1

JX
k=1

Cµjµj ,kzk

are all op(1).
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To get the stated results for Jn(θ0), we will proceed element by element.
First, for Jn,11(θ0), we have

n−3/2Jn,11(θ0)

= −n−3/2
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlx
2
1t + op(1), (55)

which, by Lemma B can be asymptotically validly approximated by its condi-
tional expectation

−n−3/2
nX
t=1

JX
k=1

JX
l=1

AkAlηklx
2
1t. (56)

The proof given in Lemma R1 above showed that (56) coverges weakly to

−
JX
j=1

(
(µj0)

2

(α10)
3
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
,

and thus

n−3/2Jn,11(θ0)⇒ −
JX
j=1

(
(µj0)

2

(α10)
3
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
(57)

The limits for Jn,12(θ0) and Jn,22(θ0) follow similarly from Lemma B and Lemma
R0 parts (c)-(f), viz.,

n−3/2Jn,12(θ0)

= −n−3/2
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlx1tx
0
2t + op(1)

⇒ −
JX
j=1

(
µj0
(α10)

2

Z 1

0

dL1

Ã
r,
µj0
α10

!
V2(r)

0
Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
, (58)

n−3/2Jn,22(θ0)

= −n−3/2
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlx2tx
0
2t + op(1)

⇒ −
JX
j=1

(
1

α10

Z 1

0

V2(r)V2(r)
0dL1

Ã
r,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds

)
.(59)
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Next, for Jn,13(θ0), we have

n−3/2Jn,13(θ0)(j)

= −n−1
nX
t=1

JX
k=1

JX
l=1

AkBlzkzlx1t + op(1)

= −n−1
nX
t=1

JX
k=1

JX
l=1

JX
i=1

{f(x1tα10 −
√
nµi0)f(x1tα

1
0 −
√
nµj0)

×[gk(i)− gk(i− 1)][gl(j − 1)− gl(j)]zktzltx1t}

= −n−1
nX
t=1

JX
i=1,i6=j

{f(x1tα10 −
√
nµi0)f(x1tα

1
0 −
√
nµj0)

×
JX

k=1

JX
l=1

[gk(i)− gk(i− 1)][gl(j − 1)− gl(j)]zktzltx1t}

−n−1
nX
t=1

(
f2(x1tα

1
0 −
√
nµj0)

JX
k=1

JX
l=1

[gk(j)− gk(j − 1)][gl(j − 1)− gl(j)]zktzltx1t

)
,

(60)

which can be asymptotically validly approximated by its conditional expectation

n−3/2
nX
t=1

JX
k=1

JX
l=1

AkBlηklx1t,

using Lemma B. Again, the conditional expectation of the first term of (60) is
0 by (50), and the conditional expectation of the second term behaves as

−n−1
nX
t=1

½
f2(x1tα

1
0 −
√
nµj0)

∙
1

Pj
+

1

Pj−1

¸
x1t

¾

⇒ − µj0
(α10)

2
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds,

by Lemma R0 parts (a) and (b). Thus,

n−3/2Jn,13(θ0)(j)

⇒ − µj0
(α10)

2
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds. (61)

Similarly,

n−3/2Jn,23(θ0)(j)

⇒ 1

α10

Z 1

0

dL1

Ã
r,
µj0
α10

!
V2(r)

0
Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds. (62)
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Finally, for Jn,23(θ0)(j, j)

n−3/2Jn,33(θ0)(j, j)

= −n−1/2
nX
t=1

JX
k=1

JX
l=1

Bk(j)Bl(j)zkzl + op(1)

⇒ 1

α10
L1

Ã
1,
µj0
α10

!Z ∞
−∞

f2(s)

F (s)(1− F (s))
ds, (63)

using Lemma R0 parts (a) and (b); and for Jn,23(θ0)(j, j − 1) we have

n−3/2Jn,33(θ0)(j, j − 1)

= −n−1/2
nX
t=1

JX
k=1

JX
l=1

Bk(j)Bl(j − 1)zkzl + op(1),

the conditional expectation of which is

n−1/2
nX
t=1

f(x1tα
1
0 −
√
nµj0)f(x1tα

1
0 −
√
nµj−10 )

µ
1

Pj−1

¶

= n−1/2
nX
t=1

f(x1tα
1
0 −
√
nµj0)f(x1tα

1
0 −
√
nµj−10 )

F (x1tα10 −
√
nµj−10 )− F (x1tα10 −

√
nµj0)

⇒ 0,

as is shown in Lemma R0 part (g). Thus,

n−3/2Jn,33(θ0)(j, j − 1)⇒ 0. (64)

By a similar argument and Lemma R0 part (h), we get

n−3/2Jn,33(θ0)(j, j + 1)⇒ 0. (65)

Combining (57), (58), (59), (61), (62), (63), (64) and (65), we get the stated
asymptotic results.

Proof of Theorem R3 As in Park and Phillips (2000), we can apply Theorem
10.1 of Wooldridge (1994) to show that (28) holds and thus there is a consistent
local solution to the likelihood equation. The likelihood equation for the ML
estimator θ̂n is

Sn(θ̂n) = 0, (66)

which has the expansion

0 = Sn(θ̂n) = Sn(θ0) + Jn(θn)(θ̂n − θ0),

or
Sn(θ0) + Jn(θ0)(θ̂n − θ0) + [Jn(θn)− Jn(θ0)](θ̂n − θ0) = 0, (67)
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where Sn(θ̂n) and Sn(θ0) are the scores respectively at θ̂n and θ0, and Jn(θn)
is the hessian matrix with rows evaluated at mean values θn that lie on the line
segment connecting θ̂n and θ0. Then (67) can be written as

0 = n−3/4Sn(θ0) + [n
−3/2Jn(θ0)]n

−3/4(θ̂n − θ0)

+
³
n−3/2[Jn(θn)− Jn(θ0)]

´
n−3/4(θ̂n − θ0),

or

0 = n−3/4Sn(θ0) + [n
−3/2Jn(θ0)]n

−3/4(θ̂n − θ0) +

+n−2δ(n−3/2+2δ[Jn(θn)− Jn(θ0)])n
−3/4(θ̂n − θ0), (68)

Equation (28) now follows from (68) if the final term of (68) is op(1). This
will be so, if condition (iii) (b) of Wooldridge’s theorem holds. To show this
condition holds, we need to establish that

sup
{θ:kn3/4−δ(θ−θ0)k≤1}

k n−3/2+2δ[Jn(θ)− Jn(θ0)] k= op(1). (69)

Our proof involves looking at the components of the hessian. We therefore
partition the hessian conformably with θ as

Jn(θ) =

⎛⎝ Jn,11(θ) Jn,12(θ) Jn,13(θ)
Jn,21(θ) Jn,22(θ) Jn,23(θ)
Jn,31(θ) Jn,32(θ) Jn,33(θ)

⎞⎠ .

Since the matrix is symmetric, we consider the upper-right triangular block:

Jn,11(θ) = −
nX
t=1

JX
k=1

JX
l=1

Akt(θ)Alt(θ)zkt(θ)zlt(θ)x
2
1t +

nX
t=1

JX
k=1

Cββ,kt(θ)zkt(θ)x
2
1t, (70)

Jn,12(θ) = −
nX
t=1

JX
k=1

JX
l=1

Akt(θ)Alt(θ)zkt(θ)zlt(θ)x1tx
0
2t +

nX
t=1

JX
k=1

Cββ,kt(θ)zkt(θ)x1tx
0
2t,

Jn,22(θ) = −
nX
t=1

JX
k=1

JX
l=1

Akt(θ)Alt(θ)zkt(θ)zlt(θ)x2tx
0
2t +

nX
t=1

JX
k=1

Cββ,kt(θ)zkt(θ)x2tx
0
2t,

Jn,13(θ)(j) = −
√
n

nX
t=1

JX
k=1

JX
l=1

Akt(θ)Blt(θ, j)zktzltx1t +
√
n

nX
t=1

JX
k=1

Cβµj ,kt(θ)zkt(θ)x1t,

Jn,23(θ)(j) = −
√
n

nX
t=1

JX
k=1

JX
l=1

Akt(θ)Blt(θ, j)zktzltx
0
2t +
√
n

nX
t=1

JX
k=1

Cβµj ,kt(θ)zkt(θ)x
0
2t,

Jn,33(θ) = Jn,22(θ)),

where we define ft(θ) = ft(x1tα
1 + x2tα

2;
√
Tµ) for any function f : R → R

and further define ft(θ0)to be the value of the function f at θ0.
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For (69) to hold, it is sufficient that

n−3/2+2δ k Jn,11(θ)− Jn,11(θ0) k→p 0, (71)

n−3/2+2δ k Jn,12(θ)− Jn,12(θ0) k→p 0,

n−3/2+2δ k Jn,22(θ)− Jn,22(θ0) k→p 0,

n−3/2+2δ k Jn,13(θ)− Jn,13(θ0) k→p 0,

n−3/2+2δ k Jn,23(θ)− Jn,23(θ0) k→p 0,

n−3/2+2δ k Jn,33(θ)− Jn,33(θ0) k→p 0,

uniformly for all α1, α2, and µ satisfying¯̄
α1 − α10

¯̄
≤ n−3/4+δ, k α2 − α20 k≤ n−3/4+δ, (72)

k µ− µ0 k≤ n−3/4+δ,

for some δ > 0. We show (71) one by one. From (70) we have

Jn,11(θ)− Jn,11(θ0) = Γn,11(θ
∗) +Φn,11(θ

∗), (73)

where

Γn,11(θ) = −
nX
t=1

JX
k=1

JX
l=1

·
(AktAltzktzlt(θ))x

2
1t

¡
x1t(α

1 − α10) + x02t(α
2 − α20)−

√
n(µ− µ0)

¢
,

Φn,11(θ) =
nX
t=1

JX
k=1

·
(Cββ,kzkt(θ))x

2
1t

¡
x1t(α

1 − α10) + x02t(α
2 − α20)−

√
n(µ− µ0)

¢
,

and θ∗ is on the line segment connecting θ and θ0. For any f : R → R, define
fsup as

fsup(x; y) ≡ fεsup(x; y) = sup
|a−a0|≤ε

sup
|b−b0|≤ε

|f(x+ a; y + b)| ,

for ε > 0 given. As shown in Lemma D, fsup(x1tα10;
√
nµ0) ∈ FI if f ∈ FI .

Since sup1≤t≤n x1t/
√
n = Op(1),

¯̄
α1 − α10

¯̄
≤ n−3/4+δ, sup1≤t≤n k x2t k /

√
n =

Op(1), k α2 k≤ n−3/4+δ, k µ − µ0 k≤ n−3/4+δ, and the fact that we have for
any ε > 0

|f(θ)| =
¯̄
f(x1tα

1 + x2tα
2;
√
nµ)

¯̄
≤ fsup(x1tα

1
0;
√
nµ0) + op(1),

for large n, uniformly in 1 ≤ t ≤ n.
By (72), we have
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k Γn,11(θ) k≤ n−3/4+δ
nX
t=1

Ã
JX

k=1

JX
l=1

·
(ηklAkAl)

!
sup

(x1tα
1
0;
√
nµ0) |x1t|

3

+n−3/4+δ
nX
t=1

Ã
JX

k=1

JX
l=1

·
(ηklAkAl)

!
sup

(x1tα
1
0;
√
nµ0) |x1t|

2 k x2t k

−n−1/4+δ
nX
t=1

Ã
JX

k=1

JX
l=1

·
(ηklAkAl)

!
sup

(x1tα
1
0;
√
nµ0) |x1t|

2
.

It therefore follows from Lemma A (a) that

k Γn,11(θ) k= Op(n
5/4+δ), (74)

uniformly in θ satisfying (72). Using exactly the same argument we can deduce
that

k Γn,12(θ) k= Op(n
5/4+δ), k Γn,22(θ) k= Op(n

5/4+δ), (75)

k Γn,13(θ) k= Op(n
5/4+δ) k Γn,23(θ) k= Op(n

5/4+δ),

k Γn,33(θ) k= Op(n
5/4+δ), k Φn,11(θ) k= Op(n

5/4+δ),

k Φn,12(θ) k= Op(n
5/4+δ), k Φn,22(θ) k= Op(n

5/4+δ),

k Φn,13(θ) k= Op(n
5/4+δ), k Φn,23(θ) k= Op(n

5/4+δ),

k Φn,33(θ) k= Op(n
5/4+δ),

uniformly in θ satisfying (72). If we let 0 < δ < 1/12, we may easily deduce
(71) from (74), (75) and (73). Hence, (69) holds and therefore (28).
It now follows as in the proof of Theorem 10.1 of Wooldridge (1994) that

there exists a solution to the likelihood equation (66) with probability approach-
ing one such that

n3/4(θ̂n − θ0) = Op(1).

From Theorem 1, we have the joint weak convergence³
n−3/4Sn(θ0), n

−3/2Jn(θ0)
´
⇒
³
Q1/2W (1),−Q

´
, (76)

where Q is positive definite with probability one. Thus, condition (iv) of
Wooldridge’s theorem holds. The given limit distribution of n3/4(θ̂n − θ0) now
follows from (68), (69) and (76).

Proof of Corollary R6 First consider j = 0 denote P0,x = P0(x; θ0), and
use the following mean value expansions for bP0,x = bP0(x;bθn), given xt = x, and
zn = z
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bP0,x = P0(x
0β0 − zµ10) +

³
∂P0(x

0βn−zµ1n)
∂β0

∂P0(x
0βn−zµ1n)
∂µ1

´µ bβn − β0bµ1n − µ10

¶
,

where βn and µ1n are on line segements joining bβn and β0 and bµ1n and µ10,
respectively, and where the derivatives have the form

∂P0(x
0βn − zµ1n)

∂β
= −f((x0βn − zµ1n))x ∼ −f(x0β0 − zµ10)x,

∂P0(x
0βn − zµ1n)

∂µ1
= f(x0βn − zµ1n)z ∼ f(x0β0 − zµ10)z,

and µ bβn − β0bµ1n − µ10

¶
= R(0)

µ bβn − β0bµn − µ0

¶
. (77)

Then

n3/4
³ bP0,x − P0((x

0β0 − zµ10))
´

= f(x0β0 − zµ10)

µ
−x
z

¶0
R(0)

µ
n3/4(bβn − β0))
n3/4(bµn − µ0)

¶
⇒ f(x0β0 − zµ10)

µ
−x
z

¶0
R(0)MN(0, GQ−1G0)

= MN(0,Υ(0)GQ−1G0Υ(0)0).

Thus,

n3/4
³ bP0,x − P0,x

´
⇒MN

¡
0,Υ(0)(GQG0)−1Υ(0)0

¢
,

where

Υ(0) = f(x0β0 − zµ10)

µ
−x
z

¶0
R(0).

Similarly, for j = J , denote PJ,x = PJ(x; θ0), we have

n3/4
³ bPJ,x − PJ(x

0β0 − zµJ0 )
´

= f(x0β0 − zµJ0 )

µ
x
−z

¶0
R(J)

µ
n3/4(bβn − β0))
n3/4(bµn − µ0)

¶
⇒ f(x0β0 − zµJ0 )

µ
x
−z

¶0
R(J)MN(0, GQ−1G0)

= MN(0,Υ(J)GQ−1G0Υ(J)0),

where

Υ(J) = f(x0β0 − zµJ0 )

µ
x
−z

¶0
R(J).

46



Now for 1 ≤ j ≤ J − 1, denote Pj,x = Pj(x; θ0) = F (x0β0− zµj0)−F (x0β0−
zµj+10 ), notice that

bPj,x = Pj,x +
³

∂Pj(x;θn)
∂β0n

∂Pj(x;θn)

∂µjn

∂Pj(x;θn)

∂µj+1n

´⎛⎝ bβn − β0bµjn − µj0bµj+1n − µj+10

⎞⎠ ,

and

∂Pj(x; θn)

∂βn
= pj(x; θn)x =

£
f(x0βn − zµjn)− f(x0βn − zµj+1n )

¤
x

∼
h
f(x0β0 − zµj0)− f(x0β0 − zµj+10 )

i
x,

∂Pj(x; θn)

∂µjn
= −f(x0β0 − zµj0)z,

∂Pj(x; θn)

∂µj+1n

= f(x0β0 − zµj+10 )z,

⎛⎝ bβn − β0bµjn − µj0bµj+1n − µj+10

⎞⎠ = R(j)

µ bβn − β0bµn − µ0

¶
.

Thus, we have

n3/4
³ bPj,x − Pj,x

´

∼

⎛⎜⎝
h
f(x0β0 − zµj0)− f(x0β0 − zµj+10 )

i
x

−f(x0β0 − zµj0)z

f(x0β0 − zµj+10 )z

⎞⎟⎠
0

R(j)

µ
n3/4(bβn − β0))
n3/4(bµn − µ0)

¶

⇒

⎛⎜⎝
h
f(x0β0 − zµj0)− f(x0β0 − zµj+10 )

i
x

−f(x0β0 − zµj0)z

f(x0β0 − zµj+10 )z

⎞⎟⎠
0

R(j)MN(0, GQ−1G0)

= MN(0,Υ(j)GQ−1G0Υ0(j)),

where

Υ(j) =

⎛⎜⎝
h
f(x0β0 − zµj0)− f(x0β0 − zµj+10 )

i
x

−f(x0β0 − zµj0)z

f(x0β0 − zµj+10 )z

⎞⎟⎠
0

R(j).

When stationary variates are present, the proof is similar. First consider
j = 0, denote P0,x = P0(x, x3; ρ0), and use the following mean value expansions
for bP0,x = bP0(x, x3;bρn), given x3t = x3, xt = x, and zn = z,
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bP0,x = P0(x
0
3γ0 + x0β0 − zµ10)

+
³

∂P0(x
0
3γn+x

0βn−zµ1n)
∂γ0

∂P0(x
0
3γn+x

0βn−zµ1n)
∂β0

∂P0(x
0
3γn+x

0βn−zµ1n)
∂µ1

´⎛⎝ bγn − γ0bβn − β0bµ1n − µ10

⎞⎠ ,

where γn, βn and µ1n are on line segements joining bγn and γ0, bβn and β0 andbµ1n and µ10, respectively, and where the derivatives have the form

∂P0(x
0
3γn + x0βn − zµ1n)

∂γ
= −f(x03γn + x0βn − zµ1n)x3 ∼ f(x03γ0 + x0β0 − zµ10)x3,

∂P0(x
0
3γn + x0βn − zµ1n)

∂β
= −f((x03γ0 + x0βn − zµ1n))x ∼ −f(x03γ0 + x0β0 − zµ10)x,

∂P0(x
0
3γn + x0βn − zµ1n)

∂µ1
= f(x03γ0 + x0βn − zµ1n)z ∼ f(x03γ0 + x0β0 − zµ10)z,

and we define a matrix R3(0) = Diag(Im+m3 , ι
0
1) where ιj is a vector of length

J with the j’th element 1 and other elements zero. Accordingly, we may write⎛⎝ bγn − α0bβn − β0bµ1n − µ10

⎞⎠ = R3(0)

⎛⎝⎛⎝ bγn − α0bβn − β0bµn − µ0

⎞⎠⎞⎠ . (78)

Then

n1/4
³ bP0,x − P0((x

0
3γ0 + x0β0 − zµ10))

´
= f(x03γ0 + x0β0 − zµ10)

⎛⎝ −x3−x
z

⎞⎠0

R3(0)

⎛⎝ n1/4(bγn − γ0)

n1/4(bβn − β0)
n1/4(bµn − µ0)

⎞⎠
∼ f(x03γ0 + x0β0 − zµ10)

⎛⎝ −x3−x
z

⎞⎠0

R3(0)

⎛⎝ n1/4(bγn − γ0)
op(1)
op(1)

⎞⎠
∼ −f(x03γ0 + x0β0 − zµ10)x

0
3

n
n1/4(bγn − γ0)

o
+ op(1)

⇒ MN
¡
0, f(x03γ0 + x0β0 − zµ10)

2x03Ξ
−1
11 x3

¢
..

The proof when j = 1, 2, ..., J − 1, and j = J is similar and is omitted.

Proof of Corollary R7 For j = 0, denote υ0,x = υ0(x; θ0) = p0(x; θ0)β0,
and we use the following mean value expansions for bυ0,x = bp0(xt;bθn)bβn, given
xt = x, and zn = z

bυ0,x = υ0,x +
³

∂υ0((x
0βn−zµ1n))
∂β0

∂υ0((x
0βn−zµ1n))
∂µ1

´µ bβn − β0bµ1n − µ10

¶
,
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where βn and µ1n are on line segements joining bβn and β0 and bµ1n and µ10,
respectively, and where the derivatives have the form

∂υ0(x; θn)

∂β0
= −ḟ((x0βn − zµ1n))βnx

0 − f((x0βn − zµ1n))Im

∼ −ḟ((x0β0 − zµ10))β0x
0 − f((x0β0 − zµ10))Im,

∂υ0(x; θn)

∂µ1
∼ ḟ((x0β0 − zµ10))zβ0.

Then
n3/4 (bυ0,x − υ0,x) ∼d MN

¡
0,Π(0)GQ−1G0Π(0)0

¢
,

where

Π(0) =

µ
−ḟ((x0β0 − zµ10))xβ

0
0 − f((x0β0 − zµ10))Im

ḟ((x0β0 − zµ10))zβ0

¶0
R(0),

and
ḟ((x0β0 − zµj0)) = −f((x0β0 − zµ10))(x

0β0 − zµ10).

Similarly, for j = J ,

n3/4 (bυJ,x − υJ,x) ∼d MN
¡
0,Π(J)GQ−1G0Π(J)0

¢
,

where

Π(J) =

µ
ḟ((x0β0 − zµJ0 ))xβ

0
0 + f((x0β0 − zµJ0 ))Im

−ḟ((x0β0 − zµJ0 ))zβ0

¶0
R(J).

Now for 1 ≤ j ≤ J − 1, define

υj = υj(x; θ0) = pj(x; θ0)β0 =
h
f((x0β0 − zµj0))− f((x0β0 − zµj+10 ))

i
β0,

so that

bυj = υj +
³

∂υj(x;θn)
∂β0n

∂υj(x;θn)

∂µjn

∂υj(x;θn)

∂µj+1n

´⎛⎝ bβn − β0bµjn − µj0bµj+1n − µj+10

⎞⎠ ,

and we have
∂υj(x; θn)

∂β0
= ṗj(x; θn)βnx

0 + pj(x; θn)Im

=
h
ḟ((x0βn − zµjn))− ḟ((x0βn − zµj+1n ))

i
βnx

0 + pj(x; θn)Im

∼
h
ḟ((x0β0 − zµj0))− ḟ((x0β0 − zµj+10 ))

i
β0x

0 + pj(x; θ0)Im,

∂υj(x; θn)

∂µj
= −ḟ((x0βn − zµjn))zβn

∼ −ḟ((x0β0 − zµj0))zβ0,

∂υj(x; θn)

∂µj+1
= ḟ((x0βn − zµj+1n ))zβn,

∼ ḟ((x0β0 − zµj+10 ))zβ0,
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⎛⎝ bβn − β0bµjn − µj0bµj+1n − µj+10

⎞⎠ = R(j)

µ bβn − β0bµn − µ0

¶
.

Thus,
n3/4 (bυj,x − υj,x) ∼d MN

¡
0,Π(j)GQ−1G0Π(j)0

¢
,

where

Π(j) =

⎛⎜⎝
h
ḟ((x0β0 − zµj0))− ḟ((x0β0 − zµj+10 ))

i
xβ00 + pj(x; θ0)Im

−ḟ((x0β0 − zµj0))zβ0
ḟ((x0β0 − zµj+10 ))zβ0

⎞⎟⎠
0

R(j).

The proof when we have stationary variates is similar and is omitted.
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