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ABSTRACT

A new family of kernels is suggested for use in heteroskedasticity and autocorrelation
consistent (HAC) and long run variance (LRV) estimation and robust regression testing.
The kernels are constructed by taking powers of the Bartlett kernel and are intended
to be used with no truncation (or bandwidth) parameter. As the power parameter (p)
increases, the kernels become very sharp at the origin and increasingly downweight values
away from the origin, thereby achieving effects similar to a bandwidth parameter. Sharp
origin kernels can be used in regression testing in much the same way as conventional
kernels with no truncation, as suggested in the work of Kiefer and Vogelsang (2002a,
2002b). A unified representation of HAC limit theory for untruncated kernels is provided
using a new proof based on Mercer’s theorem that allows for kernels which may or may
not be differentiable at the origin. This new representation helps to explain earlier
findings like the dominance of the Bartlett kernel over quadratic kernels in test power
and yields new findings about the asymptotic properties of tests with sharp origin kernels.
Analysis and simulations indicate that sharp origin kernels lead to tests with improved
size properties relative to conventional tests and better power properties than other tests
using Bartlett and other conventional kernels without truncation.

If p is passed to infinity with the sample size (T"), the new kernels provide consistent
HAC and LRV estimates as well as continued robust regression testing. Optimal choice
of p based on minimizing the asymptotic mean squared error of estimation is considered,
leading to a rate of convergence of the kernel estimate of 77/3, analogous to that of a
conventional truncated Bartlett kernel estimate with an optimal choice of bandwidth.
A data-based version of the consistent sharp origin kernel is obtained which is easily
implementable in practical work.

Within this new framework, untruncated kernel estimation can be regarded as a form
of conventional kernel estimation in which the usual bandwidth parameter is replaced by
a power parameter that serves to control the degree of downweighting. Simulations show
that in regression testing with the sharp origin kernel, the power properties are better
than those with simple untruncated kernels (where p = 1) and at least as good as those
with truncated kernels. Size is generally more accurate with sharp origin kernels than
truncated kernels. In practice a simple fixed choice of the exponent parameter around
p = 16 for the sharp origin kernel produces favorable results for both size and power in
regression testing with sample sizes that are typical in econometric applications.

JEL Classification: C13; C14; C22; C51

Keywords: Consistent HAC estimation, data determined kernel estimation, long run
variance, Mercer’s theorem, power parameter, sharp origin kernel.



1 Introduction

While much practical econometric testing makes use of heteroskedasticity and autocor-
relation consistent (HAC) covariance matrix estimates, it is not necessary that such
estimates be employed in order to produce asymptotically similar tests. In this spirit,
Kiefer, Vogelsang and Bunzel (2000; hereafter, KVB) and Kiefer and Vogelsang (2002a,
2002b; hereafter, KV) have proposed the use in robust regression testing of kernel based
covariance matrix estimates in which the bandwidth parameter (M) is set to the sample
size (T'). While these estimates are inconsistent for the asymptotic covariance matrix,
they nevertheless lead to asymptotically valid regression tests. Simulations reveal that
the null asymptotic approximation of these tests is often more accurate in finite samples
than that of tests based on consistent HAC estimates, although prewhitening is known to
improve size accuracy in the latter (den Haan and Levin, 1997) particularly when model
selection is used in the selection of the prewhitening filter (Lee and Phillips, 1994).
Using higher order asymptotics, Jansson (2002) explained this improved accuracy of the
null approximation, showing that the error rejection probability (ERP) in a Gaussian
location model of these tests is O(T~!), where T is the sample size, in contrast to the
usual rate of O(T~1/2) that is attained by tests using conventional HAC estimates.

While these alternative robust tests based on inconsistent HAC estimates have greater
accuracy in size, they also experience a loss of power, including local asymptotic power,
in relation to conventional tests. To address this deficiency, Jansson (2002) proposed
a weighting scheme, analogous to that used in Anderson and Darling (1952), in the
construction of these alternative tests that delivers power improvements while retaining
their better size properties in finite samples. Moreover, a local power analysis in Kiefer
and Voglesang (2002b) reveals that it is the Bartlett kernel among the common choices
of kernel that produces the highest power function when bandwidth is set to the sample
size. The latter outcome may appear unexpected in view of the usual preferred choice
of quadratic (at the origin) kernels in terms of their better asymptotic mean squared
error characteristics in consistent spectral density and HAC estimation (Hannan, 1970;
Andrews, 1991). Unlike quadratic kernels, the Bartlett kernel has a tent shape, is not dif-
ferentiable at the origin, and the reason for its better power performance characteristics
is unexplained.

The present paper takes a new look at HAC estimation and robust regression testing
using kernel estimation without truncation (or when the bandwidth equals the sample
size). One contribution of the paper is to provide a unified representation of the HAC
limit theory in such cases and a new proof using Mercer’s theorem that allows for kernels
which may or may not be differentiable at the origin. This new representation gives a
coherent asymptotic theory and thereby helps to explain earlier findings like the better
power performance of the untruncated Bartlett kernel mentioned above.

'If the autocorrelation is parametric and model selection based prefiltering (within the correct para-
metric class) is employed in conjunction with conventional kernel HAC estimation using a data deter-
mined bandwidth, Lee and Phillips (1994) show that the bandwidth is effectively proportional to the
sample size T (up to a slowly varying factor) and a convergence rate of /T (up to a slowly varying
factor) for the HAC estimator is attainable.



Our main contribution is to provide a new approach to HAC estimation that embeds
the Bartlett kernel in a new class of sharp origin kernels. The new kernels are equal
to the Bartlett kernel raised to some positive power (p). For p > 1, the kernels have a
sharper peak at the origin and they downweight non zero values more rapidly than the
Bartlett kernel. The asymptotic theory for HAC estimation and regression testing with
sharp origin kernels turns out to differ in some important ways and yet to be similar in
others to that of the conventional Bartlett kernel.

We consider two cases, one where the power parameter p is fixed and the other where
p passes to infinity with 7. When p > 1 is fixed as T' — oo, HAC estimation based on
this sharp origin kernel is inconsistent just as it is when p = 1. However, compared with
the Bartlett kernel, sharp origin kernels put less weight on autocovariances with larger
lags and correspondingly deliver HAC estimates with smaller asymptotic variance. The
reduction in asymptotic variance has important implications in regression testing. Com-
pared with conventional tests that use consistent estimates of the asymptotic variance
matrix, tests based on kernel estimates without truncation inevitably introduce addi-
tional variability by virtue of the fact that the HAC estimates are inconsistent, much
as an F ratio has more variability because of its random denominator than the asymp-
totic chi-squared limit. This additional variability assists in better approximating finite
sample behavior under the null while compromising power. Intuition suggests that test
power may be improved if the variability can be reduced while at the same time main-
taining more accurate size characteristics in finite samples. Sharp origin kernels can
achieve variance reductions in this way, while continuing to deliver better size.

Our findings indicate that sharp origin kernels without truncation deliver asymptot-
ically valid tests with greater accuracy in size and power close to or better than that
of conventional tests. The simulations we report below show that tests based on sharp
origin kernels with p > 1 uniformly dominate those based on the Bartlett kernel (p = 1).
As p increases there is a tendency for greater size distortion, although even for samples
as small as T = 50 the size distortion is smaller than that of the conventional tests using
data driven bandwidth choices. Overall, our results indicate that a simple fixed choice
of the exponent parameter around p = 16 for the sharp origin kernel produces favorable
outcomes for both size and power in regression testing with sample sizes that are typical
in econometric applications.

When p — oo with T, sharp origin kernels provide a new mechanism for consistent
HAC (and, more generally, spectral density) estimation. While there is no need to make
bandwidth choices in this approach and test validity is retained whatever the choice of p,
there is an opportunity for optimal choice of p. When p increases, the variance declines
and bias increases, just as in conventional kernel estimation bias decreases and variance
increases as the bandwidth shrinks. Accordingly, we develop an asymptotic distribution
theory for consistent HAC estimation using sharp origin kernels with no truncation.
Optimal choice of the power parameter p is then obtained by minimizing the asymptotic
mean squared error of the HAC estimate, leading to an explicit rate p = O(T 2/ 3) which
gives a convergence rate for the HAC estimate of T'V/3. This is precisely the same rate
that applies when a truncated Bartlett kernel HAC estimate is implemented with an
optimal bandwidth choice (c.f., Hannan, 1970; Andrews, 1991). These new asymptotics
for sharp kernels, like those for truncated kernels, offer the opportunity of data-driven
methods for selecting p in practical work; and an automated version of the new sharp



kernel HAC estimator is provided based on the plug-in approach.

The paper is organized as follows. Section 2 briefly overviews testing problems in
the presence of nonparametric autocorrelation. Section 3 introduces sharp origin kernels
and establishes the asymptotic properties of HAC estimators using these kernels without
truncation when the power parameter p is fixed. A new proof using Mercer’s theorem
is given for problems of this type which allows for kernels which may or may not be
differentiable at the origin. Section 4 develops the asymptotic theory for the case when
p — oo with T" and extracts optimal values of p based on a MSE criterion. Section 5
provides a limit theory for regression tests using sharp origin kernels under both null
and local alternatives. Section 6 reports simulation results on the finite sample perfor-
mance of the proposed tests and makes some suggestions for implementation in practical
econometric work. Section 7 concludes. Notation is given in a table at the end of the
paper and proofs and additional technical results are in the Appendix.

2 Robust Testing of Regression Hypotheses
As in earlier work by KVB, we use the following linear regression model for exposition
Yt :$2/6+Ut, t= 1727"'7T7 (1)

where u; is autocorrelated, possibly conditionally heteroskedastic and z; is such that as-

~ -1
sumption A1 below holds. Least squares estimation leads to 8 = (Zthl mtw{:) Zthl Tyt
and the scaled estimation error is written in the form

T -1
VTG - 8) = (1 xtx;> ), (2)
r>mat) (755)

where .

St = ZUT, and v = T u,. (3)

=1
Let v; = x;u, be estimates of v; constructed from the regression residuals w, = y; —w’TB,
and define the corresponding partial sum process S, = 2321 Ur.

The following high level condition for which sufficient conditions are well known (e.g.
Phillips and Solo, 1992) facilitates the asymptotic development and is in common use
(e.g., KVB, Jansson, 2002).

Al:

(a) Siry satisfies the functional law
T Y28 = AW(r), 7€10,1] (4)

where AN = Q > 0 is the long run variance of vy and Wy, (r) is m-dimensional
standard Brownian motion.

(b) plimy_oo Tt qu] xixy = rQ uniformly in r € [0,1] with positive definite Q.



Under A1 we have
T_1/2§[Tr] = AVm(T), re [07 1] ) (5)

where V,, is a standard m-dimensional Brownian bridge process, as well as the usual
regression limit theory

VT (B - ) = Q 'AW,,(1) = N(0,Q 1QQ 1), (6)

which provides a basis for robust regression testing on 3. The conventional approach
relies on consistent, estimation of the sandwich variance matrix @ *QQ ! in (6), which
in turn involves the estimation of 2 since Q! is consistently estimated by Q! where Q =
T-! Zthl xixy. Many consistent estimators of Q have been proposed in the literature
(see, for example, White (1980), Newey and West (1987), Andrews (1991), Hansen (1992)
and de Jong and Davidson (2000)). Among them, kernel-based nonparametric estimators
that involve smoothing and truncation are in common use. When vy is stationary with
spectral density matrix fy, (A), the long run variance (LRV) of v, is

Q=Ty+ 3 (N() + T(G)) = 27 £ (0), (7)
j=1

where I'(j) = E(vv;_;). Consistent kernel based estimation of  typically involves use
of formulae motivated by (7) of the general form

T—1 .
~ j o~ .
A0 = Y kEEG), ®)
j=—T+1
PG) = | Topt twt  forg20 )
T 2at——jy1 Oey0; for j <0

involving the sample covariances T'(j) that are based on estimates 0y = @ty = 2 (y;—,3)
of v; constructed from regression residuals. In (8), k() is a kernel function and M
a bandwidth parameter. Consistency of € (M) requires M — oo and M/T — 0 as
T — oo.

Various kernel functions k(-) are available for use in (8) and their properties have been
extensively explored in the time series literature (e.g., Parzen, 1957; Hannan, 1970; and
Priestley, 1981) from which the econometric literature on HAC estimation draws. Some of
these properties, such as asymptotic bias and mean squared error, hinge on the behavior
of the kernel function around the origin which is often characterized in terms of the
Parzen exponent g, the first positive integer for which k; = lim,_.o{1 — k(x))/|x|?} # 0.
Most standard kernels (except the Bartlett) have ¢ = 2 and hence quadratic behavior
around the origin. These kernels have been found to produce estimates Q (M) with
preferable asymptotic MSE properties and better rates of convergence for optimal choices
of the bandwidth than other kernels. When ¢ = 2, this rate of convergence is 7%/%. The
Bartlett kernel, which is also commonly used in econometric work (Newey and West,
1987, 1994), has ¢ = 1. When an optimal bandwidth rate is used with this kernel,
the rate of convergence of () (M) is T'/3. While none of these considerations matter
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asymptotically when all that is needed is a consistent estimate of 2, they do play an
important role in finite sample behavior. Indeed, higher order expansions, as in Linton
(1995) and Xiao and Phillips (1998, 2002) show that improved regression estimation
and testing can be accomplished using appropriate bandwidth selection that takes into
account higher order behavior. While we will not pursue that line of analysis in the
present paper, we do note here the important differences between standard kernels for
which ¢ = 2 and the Bartlett kernel where g = 1.

To test a null such as Hg : R3 = r, where R is a known p X m matrix of rank p and
r is a specified p-vector, the standard approach relies on the F-ratio statistic of the form

Faary = T(EB ) (RQD.(M) Q'R (BB —r)/p, (10)

which is asymptotically X]%/p. Use of FQ( M) is very convenient in empirical work and

robustifies the test to a wide range of possible behaviour in the regression error u; in (1).
However, it is well known that the size of tests based on (10) can be poorly approximated
by the asymptotic distribution, which neglects the finite sample randomness induced by
the consistent HAC estimate € (M), although prewhitening in the estimation of €2 does
help to ameliorate finite sample performance — see den Haan and Levin (1997) and
Jansson (2002) for further details and discussion.

KV proposed a class of kernel based estimators of €2 in which standard kernels are used
but where the bandwidth parameter is set equal to the sample size. These estimates are
inconsistent and tend to random matrices instead of €). Nonetheless, valid asymptotically
similar tests can be constructed with these covariance estimators in the same manner
as (10) but with a different limit distribution for the test that depends on the form of
the kernel. KV showed that the Bartlett kernel delivers tests with the highest power
among the standard kernels, including those for which ¢ = 2, although this finding is
unexplained. Jansson (2002) showed that power improvements are possible by use of a
suitably chosen weight function in the construction of the estimate of €.

Following KV, the next section proposes a new class of power kernels where the
bandwidth is set to the sample size and which dominate the Bartlett kernel in a sense
that will be made clear later on. We also provide a new way of deriving the limit theory
of these inconsistent HAC estimators.

3 Sharp Origin Kernels and HAC Estimation

We define a class of sharp origin (SO) kernels by taking an arbitrary power p > 1 of the
usual Bartlett kernel, giving

(L=, |z <1
— >
ky(x) { 0. ] > 1 for p > 1. (11)

When p = 1, k,() is the usual Bartlett kernel. As p increases, k,(x) becomes successively
more concentrated at the origin and its peak more pronounced and sharp. Fig. 1 graphs
k,(x) for several values of p illustrating these effects.

SO kernels have the following properties, which may be readily verified.



Figure 1: Sharp Origin (SO) Kernels k,(x) for p € [1, 16]

(i) kp(z): (—o0,00) — [0, 1] satisfies k,(x) = ky(—x), k,(0) =1, and k,(1) = 0.

(ii) The Parzen exponent (Parzen, 1957) of k,(x) equals 1, i.e. ¢ = 1 is the largest
integer such that limg_o [1 — (1 — |2|)]|z|™7 is finite and

gy Lo ()

k= ig)% 2] = p < 0. (12)

(iii) k,(x) is positive semi-definite in the sense that ]_11 k(x)exp(—Azx)dz > 0 for any
AreR.

As is well known (e.g. Newey and West, 1987; Andrews, 1991), positive semi-
definiteness of k,(x) guarantees the positive semi-definiteness of kernel HAC estima-
tors defined as in (14) below. It also enables us to use Mercer’s theorem (e.g., see
Shorack and Wellner, 1986), as it implies that for any square integrable function f(x),
_fol fol kE(r — s)f(r)f(s)drds > 0. The version of Mercer’s theorem given below provides
a convenient mechanism for extracting the limit distribution of inconsistent HAC esti-
mators and does so in a unified way for kernels with various Parzen exponents, thereby
removing the need for separate arguments such as those in Kiefer and Vogelsang (2002a,
2002b).



Mercer’s Theorem If k(x) is positive semi-definite, then

E(r —s) Z )\ifn (13)
n=1

n

where N\, > 0 are the eigenvalues of the kernel and f,(x) are the corresponding eigen-
functions, i.e. fn(s) =M\, 1-01 k(r — s) fo(r)dr. The right side of (13) converges uniformly
over (r,s) € [0,1] x [0, 1].

Using the kernel function k, in expression (8) and letting M = T gives a class of
untruncated HAC estimators of the form

T-1 ‘
%= 3 k(510 (19
j=—T+1

In what follows in this section we will assume that the p value in (14) is fixed as T — oo.
The following theorem establishes the asymptotic properties of a HAC estimator ﬁk
of the general form given in (8) with bandwidth M = T and any positive semi-definite
kernel k. The result includes cases such as , in (14) where a sharp origin kernel has

been used.

Theorem 1 Let A1 hold and define Oy = Q (T') as in (8) with M = T. If the kernel
k(x) used in ﬁk 18 positive semi-definite, then the following results hold:

(a) Q) = AZN, where = ]0 ]0 r — 8)dVpy,(r)dV,,(s),

and Vi (r) is an m-vector of standard Brownian bridges.

(b) E(AZEA) = p2, where p=1— _fol fol k(r — s)drds.

(¢) var(vec(AZA)) = v(I 2 + Kmm)Q @ Q where

V:‘/.k(r—s)k(p—q) —2/14:(7‘—3)14:(7‘—61)+‘/‘7€(7‘—S)27

and the integrals are taken with respect to all the underlying argument variables, for

/ K=o =) = ./0‘1 ‘/0.1 ‘/0.1 ‘/0‘1 k(r — s)k(p — q)drdsdpdq.

(a) The theorem shows that ﬁk, properly scaled, is centered on the true long run covari-
ance matrix. In particular, {2/ is asymptotically unbiased for €2, but inconsistent
in view of part (a).

example

Remarks

(b) Part (c) shows that the asymptotic covariance between the (a,b) and (c, d) elements
of Q is v (Qaca + Qadfe) , where Qqp denotes the (a,b) element of €.



(c) KV established asymptotic results similar to Theorem 1(a) under different assump-
tions. They assumed the kernels are continuously differentiable to the second order.
As a consequence, they had to treat the Bartlett kernel separately, obtaining dif-
ferent representations of the limit distributions for these two cases. The unified
representation given in Theorem 1(a) brings results of this type together, shortens
the technical arguments and allows for a coherent method of proof.

(d) As shown in the proof of the Theorem, an alternative representation of Z in part
(a) is

== ‘/0'1 ‘/0'1 K (r, 8)dWin (1) AWV, (5),

where
1 1 1
E*(r,s) =k(r—s) — / E(r —t)dt — / k(T — s)dT + / k(t — T)dtdr,
J0 J0 J0
and then

= ./01 ./01 E*(r,r)dr, v= '/0.1 '/0.1 [k*(r, s))? drds.

Explicit expressions for the constants o and v appearing in Theorem 1 can be obtained
for the sharp origin kernel %, and these are given in the Corollary below.

Corollary 1 When k = k, in Theorem 1, the constants . and v have the explicit forms

_ P
/’l’p - p 4 27
2 \* 1 2 2 8 I2(p+2
]jp = _ _|_ — 3 4 + _ _ (p + ) .
p+2 p+1l  (p+1) 2p+3 p+2 I'(2p+4)
Theorem 1 tells us that Qp/p —4 £q = AZA’ /i and
ESQ = Q7
var (vec(€q)) = v (T2 + Kmm)Q ® Q. (15)

Hence, ﬁk /1t is asymptotically unbiased with asymptotic variance matrix vu=2(I,,2 +
Kpm)2 @ Q.

In seeking a preferred kernel, it might first appear reasonable to search for a kernel
that minimizes the scale factor in (15), viz.,

16

subject to the constraints that (a) k£(0) = 1, and (b) k(x) is positive semi-definite. This
minimization problem is not well defined. Consider, for example, the class of SO kernels.
Then, using p, and v, in (16) we get v,u,? = f(p) with

= <<$>2+Pi1 . (pf1>2 <4+2pi3 o _2£§;Zﬁ;>> <pi2>2'
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Figure 2: Scale Function f (p) in the Asymptotic Variance of Q /v with Kernel &,

As shown in Fig.2, f(p) is a decreasing function of p and it is easily seen that lim, .~ f(p) =
0. So, the asymptotic variance of the HAC estimate can be made arbitrarily small by
taking an arbitrarily large p in the kernel k.

Below we will show that it is possible to choose an optimal value of p by taking
into account higher order terms in the asymptotic bias of ﬁk /p in conjunction with the
asymptotic variance.

4 Consistent HAC Estimation with SO Kernels

4.1 Some New Asymptotics with p — oo

This section develops an asymptotic theory for the HAC estimator ﬁk , when p — 00 as

T — oo. Under certain rate conditions on p, we show that ﬁk , is consistent for 2 and has
a limiting normal distribution. Thus, consistent HAC estimation is possible even when
the bandwidth is set equal to the sample size. Of course, as is apparent from the graphs
in Fig. 1, the action of p passing to infinity plays a role similar to that of a bandwidth
parameter in that very high order autocorrelations are progressively downweighted as
T — oo.

It is convenient to start the analysis with the HAC estimator that uses the true
regression errors u; rather than the regression residuals u;. Accordingly, let Qx, be this

pseudo-estimator, which is identical to ﬁk , except that it is based on the unobserved



sequence v; = vy(/3) rather than v, = v;(3), i.e.

T-1
U= > kol
j=—T+1
where
i) — { B v (B)ei(5)  for 20
A v (B)(B) for j <0
The spectral matrix of vy is fu, (A), and Q = 27 f,, (0) . Define

oo

= 3 pIr (), o0 = 2mp),

h=—00
and N N N
MSE(p,,, W) = pE {vec(Qkp — Q)W vec(Qy, — Q)} ,

2 2

for some m* x m* weight matrix W.

The following conditions help in the development of the asymptotic theory. The
linear process and summability conditions given in A2 ensure that the matrix f() is
well defined and enable the use of standard formulae for the covariance properties of
periodogram ordinates. A3 controls the allowable expansion rate of p as T' — oo so that
p=o0(T/logT) .1t will often be convenient to set p = aT® for some a > 0and 0 < b < 1.
The optimal expansion rate for p is found later to be of this form with b = 2/3.

A2: vy = v(B) is a mean zero, fourth order stationary linear process

=Y Cierj, Y j | Cjll<oo, forsome A >0, (17)

where g ; is 1id(0,%.) with E || & ||*< oo,
A3: %—&—ph’TgT—%), as T — oo.
Define the spectral window
T—1
h_ .
= D Kplg)e™ (18)
h=—T+1

corresponding to the SO kernel k,. Analogous to fNZk , we define the spectral estimate
fo(0) = = f;iT_H k:p(i’ﬁ)N(h) and let {\s = Z=£; s = 0,1,...,7 — 1} be the Fourier
frequencies and I,,(\s) be the periodogram of v;. Using the inversion formula f(h) =
s ZT ! Iw(Xs)es | we deduce the smoothed periodogram form of this estimate, viz.,

fon(0 TZKs As)s (19)

with a corresponding formula for Qkp =27 fm,(O). It is apparent that the limit behavior
of these two quantities depends on the spectral window K,(\s), whose asymptotic form
as T — oo is given in the next result.

10



Lemma 1 Let p = aT® — oo for some a > 0 and 0 < b < 1. Then, for all \; = 22,
s=0,1,....,[T/2], we have as T — oo

20T

_ (2_7ri’>)2T+—p2[1+0(1” s=o(l); (21)
S —— =[Z£], k €(0,1].
T(1—cos(km)) 2
Since K,(As) = Kp(—As) = K,(—=As + 27), it follows from (20) and (21) that
oL s<pands>T — p;
K,(\s) = ”> =’ - (22)

(0] ’;—35) p<s<T—p.

So, for frequencies A, in the vicinity of the origin such that Ay, = 22 = O (£) with p

satisfying A3, the spectral window K,(\s) = O (%) diverges, while for all frequencies
As = X € (0,21), K,(Xs) = O (%) = o(1). Thus, Lemma 1 shows that when p — oo
the sharp origin spectral estimate (19) effectively smooths periodogram ordinates in the
neighborhood of the origin by downweighting frequencies that are removed from the
origin (and 2).

In comparison to (20), the spectral window of the Bartlett kernel (p = 1) is well
known (e.g Priestley, 1981, p. 400) to be given by the exact formula

! sin? (L2
KM= Y < _ ‘-éﬁ‘) cos () = 252 (F) o i) (23)

2
h=—T+1 T sin® (3)

where Fip (\) is Fejer’s kernel. Fig. 3 compares the spectral windows (23) and (18) when
T = 10 for various p.

Note that the side lobes of the Fejer kernel are smoothed out in the sharp origin
spectral window even for p = 2, as we expect from the asymptotic approximation (21).
The peaks in the spectral windows at the origin reduce and the window becomes flatter

as p increases (for fixed T') because K, (0) = O (%) , as is clear from (22).

The following theorem describes the limit behavior of ﬁk , and gives the asymptotic
form of the mean squared error MSFE(p, Q,, W).

Theorem 2 Suppose A1 - A8 hold and p = aT® — oo for some a >0 and 0 < b < 1.
Then:

(a) limp_,o pVar (Uec(ﬁkp)) =+ Kpm)2®Q.
(b) If b < 3 then

NG (uec(fzkp) - vec(Q)) —a N(0,(I + Knm) Q2 ® Q).
(¢) imp_ o (%) (Eﬁkp — Q) = -0,

11
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— S0(1)
...... SO(Z)
-=-= SO(4)
-- S0(8)
— S0(16)

Figure 3: Spectral Window K () for Bartlett (p = 1) and Sharp Origin Kernels &k, with
p=2,4,8,16 and T = 10.

(d) If p3/T? — 9 € (0,00), then

= v vec (Q(l)>/ Woec (Q(l)> +tr {W({I + Kpm)Q2 ® Q}.

Remarks

(a) It is not surprising that the results in Theorem 2 are similar to those for conventional
HAC estimates as given, for example, in Andrews (1991). Fig. 4 shows the spectral
window K, (\) corresponding to the sharp origin kernel k, with p(T') = O(T?%3) for
various values of T" over the domain (—m, 7). Apparently, K, (\) becomes succes-
sively more concentrated at the origin as p and T increase, so that the overall effect
in this approach is analogous to that of conventional HAC estimation where in-
creases in the bandwidth parameter M ensure that the band of frequencies narrows
as T' — oo.

(b) Part (b) of Theorem 2 gives a CLT for the new HAC estimator €, - O , is computed
using a full set of frequencies as is apparent from (19), but since p — co as T' — o0,
the spectral window becomes more concentrated at the origin and 27, as we have
seen. The proof of part (b) effectively shows that intermediate frequencies may
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Figure 4: Spectral Window K, (\) of the Sharp Origin Kernel with p = O(T?%3)

be neglected as T' — oo and that a CLT follows in a manner analogous to what
happens when only a narrow band of frequencies is included (c.f., Robinson, 1995).

Next, we give a corresponding result for the feasible HAC estimator ﬁk ,» showing
that essential asymptotic properties are unaffected by the presence of the parametric

estimation error arising from the use of the regression residuals in vy = v(/3). In this
development, it is convenient to work with a truncated MSE as in Andrews (1991), viz.

MSEL(p, Qkp, Wr) = E min {pvec(ﬁkp - Q)'WTvec(SAlkp -Q), h} )

2 2

where Wr is a (possibly random) m*® x m* weight matrix that is positive semi-definite
(almost surely). The asymptotic form of M SE}, when T' — oo and h — o0 is given in the
following theorem. Use of MSFE} helps to avoid the effects of heavy tails in coefficient
estimation on the criterion. Some additional regularity conditions are needed in this case
and are based on those used in Andrews (1991). These are detailed in Assumption B
prior to the proof of the following theorem in the Appendix.

Theorem 3 Suppose A1 - A3 and B hold. Suppose p3/T? — 9 € (0,00) as T — oo.
Then:

(a) /P, — Q) = Op(1), /p(Qh, — ) —p 0; and

13



(b)

lim lim MSE(p,Qk,, W)

h—o0 T— o0

= lim lim MSE(p,Q,, W)

h—o0 T— o0

= lim MSE(p, U, W)

= O vec (Q(l))/ W vec (Q(l)> + tr{W (I + Kym)Q @ Q} . (24)

4.2 Optimal Power Parameters

As in optimal bandwidth selection in spectral density and HAC estimation, the criterion
MSE) can be used to determine a value of the power parameter p that is optimal in
the sense that it minimizes the asymptotic truncated MSE for some given sequence of
weight matrices W that converge in probability to a positive semi-definite limit matrix
W. Let

2vec (QMW) W vec (Q1)
Then, using (24), the optimal p is
2
- il Y ) 4 1
Pr arg min { Tzvec (Q ) W wvec (Q ) + ptr (W(I + Kpm)Q2 @ Q]
§Y3T23, (26)

When p = p,, the truncated MSE of ﬁkp,
Emin {vec(@kp - Q)'WTvec(ﬁkp —Q), h} ,

converges to zero at the rate O, (T*2/ 3) . This rate is the same as that of the MSE of the
conventional truncated Bartlett kernel estimate of {2 where the bandwidth (rather than
the power parameter) is chosen to minimize MSE (c.f., Hannan, 1970; Andrews, 1991).
Thus, Qkp} may be expected to have asymptotic performance characteristics similar to
those of conventional consistent HAC estimates with optimal bandwidth choices.

The selection p} will lead to HAC estimates ﬁkp that are preferred in this class,
at least in terms of asymptotic MSE performance. Of course, since pj. is an infeasible
choice because it depends on unknown parameters, practical considerations suggest the
use of a plug-in procedure that utilizes the form of (26) in conjunction with preliminary
estimates of Q and QW in §. The plug-in method used here is parametric and is based
on the use of simple parametric models for 2, as suggested in Andrews (1991), Andrews
and Monahan (1992) and Lee and Phillips (1994). Model selection methods such as
BIC and PIC can be used to assist in finding an appropriate parametric model whose
estimates are then used to compute Q and Q) which are then plugged into (25) and

(26) to produce the data-determined value py = 51/3T2/3, where § = § (ﬁ,ﬁ(l)> . Of

course, prefiltering is also an option in practical work.
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In applications, the AR(1) is a commonly used simple parametric model for the
plug-in method in bandwidth choice for conventional HAC estimation. In this case, if
the assumed models are m univariate AR(1) processes and Wy gives weight (w;) only to
the diagonal elements of €2, we have

SZZ 4/2“’1 4ai+a) (27)

=1
where . . )
& = thg Ut,ivtfl,i’ and 822 _ thz (Ut i — QU1 z) : (28)
ZtT:Q @2—1,1' T-1

Uy = (Y — LU;:B), Uy is i-th element of vy, and B is defined in (2). As in conventional
bandwidth estimation, we find that use of the AR(1) plug-in method produces very
reasonable results even when the true model is not an AR(1). The reason for some
robustness is that p4 still produces the optimal rate of expansion T%/3 of the power
parameter even when the approximating model is wrong. Further, investigation reveals
that the MSE functions are generally U-shaped functions of the sharp power parameter
p and this function is often fairly flat in the neighborhood of p%., so good performance in
HAC estimation is often achieved when the power parameter p is in the general vicinity
of p3. Similar behavior was found in Andrews’ (1991) exploration of the properties of
the plug-in method for bandwidth choice.
To illustrate this data-determined rule, we assume that the true model for v, is

vy =avi—1 + € +beq, €~ i’id(0702) (29)
for which we have
2
o ( b)202’ o (1 —Hﬂ;)( b) 2

and

2
s_ (2N _(A-a)(a+b)
oW ) T\ 2(1+ab)(a+D)
Note that when a = —b, (29) reduces to v; = ¢. Then, Q = 02, Q) =0, and 6§ = oo
As a consequence, p* approaches infinity and k,«(x) = 0 for all x # 0. In this case,
Q. = I'(0) and all sample covariances are given zero weight in the sharp origin HAC

estimator.
Using an AR(1) plug-in method as in (28) above, we get

) . E(vwvi—) (a+b)(1+ab)
| = = = ;
pimp_, oo & E (Ut2) 1+ b2 + 2ab @, say, (30)

and so the corresponding data-determined power parameter is pj. = Y3 12/3 14+0(1)]
where
- (1—a?)?
b= "5,
da
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o Ratio

Figure 5: Graph of (6/6) 1/3

from (27) and (30). The difference between the optimal choice of p, viz. pi = 6§/3T2/3,
and the data-determined value pf. therefore depends essentially on the difference between
6=10 (Q, Q(l)) and 6. In the present case, we get

s [ a-aya+vta \ [ - A+ r2a) )
6 \(1+ab)(a+b)(1—a?) ] = \ (142 +2ab)? — (a+b)2(1 + ab)?

Fig. 5 presents the surface plot of the ratio (5 /5) 1/3 against @ and b. When b = 0, we
have 6/6 = 1 for all a, as expected. The ratio 6/6 < 1 for b < 0 and is increasing in
b, taking very similar values for various @ > 0. When b > 0, the ratio §/6 > 1 and is
increasing with b but increases more slowly for larger values of a. Accordingly, we can
expect the plug-in value to be less (greater) than the optimal value of p when there are
positive (respectively, negative) moving average effects. When b — —1, the LRV Q2 — 0
and, correspondingly, §/6 — 0, so that the optimal rate for p%. is no longer O (TQ/ 3 ) when
Q) = 0, although the plug-in value remains O(T?/3). Hence, the plug-in rule becomes
progressively less satisfactory as b — —1. For the degenerate case 2 = 0 (or singular
Q in the matrix case), it is known that different asymptotics, bandwidth choices and
optimal rates apply in conventional HAC estimation (c.f., Lemma 8.1 and the following
discussion in Phillips, 1995). Similar considerations can be expected to be relevant for
sharp origin kernels without truncation when 2 = 0, although such a development is
beyond the scope of the present paper.

In finite samples, the optimal value, pé, of p may be calculated directly by simulation.
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Table 1 shows the values of p% calculated from 50,000 replications against those of the
plug-in estimate p7 and p., both of which are based on asymptotic theory, for various
parameter configurations and sample sizes?. Apparently, when b > 0 both 75 and P

underestimate ,0:’;, whereas pj- tends to overestimate ,o:’; and p7 when b < 0.

Table 1: Asymptotic p}., Plug-in p7, and Finite Sample p:’;
vy = avy_1 + € + bey 1, € ~ 1id(0,1)
T =250 T =100 T =200

a b pp Py b P Proph pp Pr g
01 01 28 25 42 44 39 64 71 62 92
0.1 03 22 16 30 35 25 44 95 39 65
0.1 05 20 12 26 32 19 40 50 30 60
01 09 19 10 24 30 16 37 48 25 57
0.1 —-03 16 25 18 25 40 28 40 64 44
01 —-05 6 17 ©6 10 26 10 16 42 16
0.5 0.1 11 10 16 17 15 23 28 24 35

05 03 11 8 15 17 12 22 2T 19 33
05 05 10 7 15 17 11 21 26 17 34
05 09 9 6 15 16 10 21 26 15 33
05 —-03 14 23 24 23 37 34 36 58 50
0.9 0.1 3 3 4 5 4 7 8 7 11
09 03 3 2 4 5 4 7 8§ 6 11
0.9 0.5 3 2 4 5 3 6 8§ & 11
09 09 3 2 4 5 3 6 8 & 11
09 -03 3 5 4 5 8 7 8§ 13 11
09 -05 3 8 5 5 13 7 8 21 11

Table 2 compares the MSE performance of the HAC estimates based on the plug-in
value, p7, the exact asymptotic value, p}., and the finite sample optimal value, pi}, of
p- The outcomes are given for 7' = 50 and show that the MSE’s are generally close,
especially when the moving average effect is small or when the autoregressive coefficient
is large. The final column of Table 2 gives the ratio MSE;: /MSE,_;. The ratio is small
over a wide range of parameter values, indicating that on a MSE criterion, use of a
sharp origin kernel with a data-determined power parameter will lead to considerable
improvements in HAC estimation over use of the Bartlett kernel. Only when b is large
and negative (b < —0.5) is the ratio greater than unity. In such cases, as remarked above,
pr tends to overestimate P{r: and it seems likely that use of model selection procedures
in finding an appropriate ARMA model for use in the plug-in rule (rather than the
mechanical use of an AR(1) model) would lead to improvements, although this has not
been investigated.

*When a = —b, both 6 and § are undefined and p = oc. In this case the estimate ﬁkp* = f‘(O), so the
sharp origin HAC estimate is well defined and is simply the sample variance. However, in this case both
MSE;,;;, and MSEp;,, which are based on asymptotic formulae, are undefined because py. = pi. = co. We

therefore do not include entries for parameter configurations in which a = —b in Tables 1 and 2.
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Similar results (not shown) were obtained for larger values of T. As is apparent from
Fig. 6, the MSE curve is quite flat around the optimal value, especially when T" = 200.
Fig. 7 shows that the MSE curves based on the asymptotic formula have the shapes
similar to those computed by simulation. The case shown in these figures for a = 0.5,
b = 0.3 is typical of other parameter configurations.

Table 2: Ratios of the MSE’s of HAC Estimators for
Different Choices of pwith 7" = 50.

0.1 01 1.16 1.02 0.05
0.1 0.3 1.25 1.11 0.08
0.1 0.5 1.43 1.22 0.09
01 09 1.56 1.34 0.11
0.1 -03 1.08 1.28 0.12
0.1 -0.5 2.02 247 0.58
0.5 0.1 1.13 1.02 0.14
05 0.3 1.21 1.10 0.16
05 0.5 1.34 1.18 0.17
05 09 1.46 1.26 0.18
0.5 —-0.3 1.00 1.28 0.13
09 0.1 1.03 1.01 0.49
09 03 1.13 1.08 0.53
0.9 0.5 1.14 1.15 0.56
09 09 1.13 1.20 0.59
09 -03 1.00 1.33 0.64
09 -0.5 1.079 2.69 1.29

5 Hypothesis Testing Using HAC Estimator with SO Ker-

nels

As in KV, we use a simple illustrative framework and consider regression tests of the
null hypothesis Hy : B3 = r against the alternative Hy : B3 # r. Using the estimate
Y, we can construct the F-ratio in the usual way

. ~ PN -1~
F* () = T(RB =) (RQ'0, Q'R (RB—r)/p, (31)
or, when p = 1, the t-ratio
. ~ o~ -1/2
#* (Qkp> = TY2(RB — 1) (RQAQ,%Q*RD . (32)
The limit distributions of F* and t* under the null hypothesis and local alternatives

when p is fixed are given in the following result, which is formulated in a general way
to allow for an arbitrary positive semi-definite kernel, thereby including cases where the
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Figure 7: Asymptotic MSE when v ~ ARMA(1,1) with a = 0.5 and b = 0.3
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kernel is continuously differentiable at the origin and those, like the Bartlett and sharp
origin kernels, where it has only one sided derivatives at the origin. Both statistics F™*
and t* lead to asymptotically similar tests as shown in the following result.

Theorem 4 Let A1 and A2 hold. If k(x) is positive semi-definite and p is fived, then:
(a) Under Hy

-1

(o) = w ([ [ - savome) wmom o)

t*(Qk :>W1 <// (r — 8)dVi( )dVl()> 1. (34)

(b) Under the local alternative Hy : R3 = r + ¢T'—1/?

F* () = (A le+ w1 <// r—s) )dX/;,(s))_l(A*—1c+wp(1))/p,
(35)
—1

¢ (8) = (r+mi (/ [ k= meavic ) (36)
where A*A* = RQ™'QQ'R’ and v = ¢(RQ™'QQ~'R)~1/2.

_ When p is sample size dependent and satisfies A3, we know from Theorem 2 that
(Y, is consistent. In this case, F™* and t* have conventional chi-square and normal limits.

Theorem 5 Let A1-A3 hold. Then:
(a) under the null hypothesis

pF* (ﬁk) = W) Wp(1) =4 X2, * (@k) = Wi (1) =4 N(0,1). (37)
(b) under the local alternative hypothesis Hy : R3 = r + ¢TI~ 1/?
PF* (D) = (A le+Wp(1)) (A e+ Wo(1), (D, ) = (v +MA(D).  (38)

Remarks From the form of (33)-(36), the statistics F™* and t* clearly have nonstandard
limit distributions arising from the random limit of the HAC estimate when p is fixed as
T — o0, just like the KV and Jansson (2002) tests. However, it is also apparent that as
p increases, the effect of this randomness diminishes. In particular, since

1 r=s

_ — _ _ P
byt =) = (=l =l = { § 720 asp—on,

we have

1 1 1
/ / ko(r — 5)dVy(r)dV,(s) —p / drl, =1, asp— oo, (39)
Jo Jo Jo
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in view of the fact that
dVy(r)dv, (r) = d[V], = drl,,

where [V,], is the quadratic variation (matrix) process of Vj,. It follows from (39) that
as p — oo the limit distributions under the null and the alternative approach those
of regression tests in which conventional consistent HAC estimates are employed. In
consequence, we can expect the tests based on ﬁkp with p large to have power similar to
that of conventional tests. When p — oo, these tests will have power functions equivalent
at the power envelope. Simulations, discussed below, show that these good properties
seem to be achieved for quite moderate values of p in the range p € [10,20].

Fig. 8 presents the asymptotic power curves computed by simulation. The Brownian
motion and Brownian bridge processes were approximated using normalized partial sums
of T'= 1000 iid N(0,1) random variables and the simulation involved 50,000 replications.
Asymptotic power was computed for the t* test at the 5% significance level using sharp
origin kernels with p = 1,2,4,8,16 and for v € [0,5]. Critical values of the test for
different p values (including the asymptotic case which is represented as p = O(T?/3))
are reported in Table 3.

Table 3: Asymptotic Critical Values of the t*-test
Power Parameter 90.0% 95.0% 97.5% 99.0%

p=1 2.735 3.767 4.796  6.195
p=2 2132 2881 3.630 4.600
p=4 1.761 2.339 2902 3.624
p=3_8 1.539 2.018 2469 3.040
p =16 1.418 1.840 2.232 2.694

p=0(T?3) 1.282  1.645 1.960 2.326

As is apparent from Fig. 8, the power curve moves up uniformly as p increases,
consonant with the asymptotic theory implied by (36) and (39). When p = 16, the
power curve is very close to the power envelope (the asymptotic power curve when the
true € or a consistent estimate is used). This is to be expected. When p is large, it may
be regarded as being roughly compatible with the rate condition in A3 (e.g., p = 16
and T = 1000 corresponds to 16 ~ 1000%4). In that case, the test statistic is effectively
constructed using a consistent estimate of 2 and Theorem 5 applies.

Comparing the asymptotic powers for different p in Fig. 8, it is apparent that tests
based on sharp origin kernels with p > 1 outperform those with the Bartlett kernel
(p =1). KV (2002b) show that the Bartlett kernel delivers the most powerful test within
a group of popular kernels (including the Parzen, Tukey-Hanning, and quadratic spectral
kernels) when the bandwidth is set to the sample size. Correspondingly, tests based on
sharp origin kernels will dominate these other commonly used kernels also.

The reason for the domination by the Bartlett kernel found by KV is related to
the argument given above for the sharp origin kernel domination. As is apparent from
the general form of the power functions given in (35) and (36), the effect of the choice
of kernel k on the power function is manifest in the quadratic functional _fol fol E(r —
s)dVy(r)dV,(s). Since k is generally decreasing away from the origin (for many kernels
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Figure 8: Asymptotic Local Power Function of the t*-test

it is monotonically decreasing), the major contribution to the value of this functional
comes from the neighborhood of the origin. Quadratic kernels (i.e. those kernels with
Parzen exponent ¢ = 2) have a quadratic shape at the origin with zero first derivative and
decay more slowly than the Bartlett kernel (or sharp origin kernels), thereby generally
increasing the value of the functional and reducing power (for any given realization of
the process Vp).

6 Finite Sample Properties of the t* Test

This section compares the finite sample performance of the t* test with a sharp origin
kernel for various values of the power parameter. The same data generating process
(DGP) as that in KV (2002b) is used here, viz.,

Yt = 1+ 25+ uy,

where p1 =0, uy = ayus—1 + agu_2 + ex, ©r = bxy_1 + 1, b = 0.5, e; and 7, are #id(0,1)
with cov(es,n;) = 0, and zg = ug = u_1; = 0. The simulation results are based on
50,000 replications. We consider the one-sided null hypothesis Hg : 3 < 0 against the
alternative Hy : 0 > 0. The regression parameter 3 is estimated by OLS and the t*
statistic is constructed as in (32). As a benchmark, we also construct the conventional
(i.e., bandwidth truncated) t-statistic using the Bartlett kernel which we label tgac-
SO(1). In computing ¢ 4c-SO(1), the bandwidth is chosen by the data driven procedure
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proposed in Andrews (1991). We also report ¢ 4¢ and t* using AR(1) prewhitening, as
suggested by Andrews and Monahan (1992).

We first consider the case that p is fixed (p = 1,2,4,8,16) and T' = 50,100 and
200. Tables 4a and 4b present the finite sample null rejection probabilities with no
prewhitening and with prewhitening, respectively. Rejections were determined using
asymptotic 95% critical values from Table 3. We draw attention to three aspects of
Tables 4a and 4b. First, in all cases the size distortions of the t* tests are less than
those of the t-test. This is true even for large p. Prewhitening reduces the difference
in the size distortion between the two tests but it does not remove it. Second, the size
distortion increases with p. (As stated in the previous paragraph, we only report the finite
sample size of HAC tests constructed using the Bartlett kernel, which we found in our
simulations have the least size distortion among HAC t-tests.) However, as T' increases,
the null rejection probabilities approach the nominal size for all cases. For T" = 200, the
increasing pattern of the size distortion as a function of p is hardly noticeable. Third,
when the errors follow an AR(1) process, the size distortion of ¢;74¢c becomes larger as
a1 approaches unity. Prewhitening greatly reduces the size distortion for both tests. In
short, the asymptotic null approximation of the t*-test is more accurate than that of the
conventional robust t-test, and prewhitening generally improves the quality of the null
approximation in both cases.

Figs. 9-10 show the finite sample (size adjusted) power of these tests in two cases
where comparisons with the results of KV (2002b) are possible. The typical pattern that
is evident in the figures is that the power of the t*-test increases as p increases, just as
asymptotic theory predicts. When p = 16, the power of the t*-test is equivalent to or
better than that of the conventional robust ¢-test using the Bartlett kernel.

Figures 9a and 9b depict the power for the DGP with a; = 0.85,a2 = 0.0. As in KV,
we found that the power of the ¢-test is not sensitive to the kernel used. So we present
the power of the ¢-test only for the Bartlett kernel. Evidently, the power of the t-test is
uniformly greater than that of the ¢*-SO(1) test, again as found in KV. However, when
the sharp origin kernel with p = 16 is used, the power of the t*-test (shown as the curve
t*-SO(16) in the figures) slightly exceeds that of the ¢-test, particularly in the case where
prewhitening is employed (Fig. 9b). This dominance is accentuated as p continues to
increase (but in that event size distortion also increases, although it is still less than that
of the t-test). Compared with Fig. 8, it seems that the finite sample power comparisons
mimics the asymptotic results well, with larger p leading to increases in power. Figs. 10a
and 10b show the power curves for the DGP with a; = 1.9,a2 = —0.95. The observations
made above continue to apply in this case, although the powers are closer, especially when
prewhitening is used (Fig. 10b).

Next, we consider the performance of the t* test when p is data-determined. Table 5
reports the asymptotic optimal p7., the finite sample optimal ﬁé, and the plug-in optimal
P for both models. Here, Q and Q) were obtained by direct computation, using their
series representations.
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Table 5: Asymptotic pj., Finite Sample pZ},
and Plug-in pp (50,000 repetitions) when 7' = 50
(a1,a2) = (0.85,0)  (a1,az) = (1.9, —0.95)

P 13 13
ph 44 27
ppi mean 31 21
P S.e. 193.6 68.1

Table 5 shows that for both models the plug-in estimate p} lies on average between
the asymptotic optimal p7. and finite sample optimal ,o:fp. However, the sampling distrib-
ution of p}. shows considerable dispersion when T is small, as is clear from the standard
errors given in Table 5 and kernel density estimates (not reproduced here). This vari-
ability decreases rapidly as T increases — when 7' = 200 the standard error is 14.9 for
the first model and 25.5 for the second.

Fig. 11 shows the effects on (size adjusted) power of using the plug-in data-determined
exponent py compared with that based on use of the optimal exponents p}. and p%. We
report only one case here for brevity, the other parameter configurations and models
giving very similar results. As is clear from the figure, the data-determined choice py
produces tests with essentially the same power functions. Thus, the variability in 5}
observed in Table 5 does not seem to adversely affect power. However, the variability
does affect size adversely. Simulations (not reported here) show that size distortion of
the t*-test using the plug-in exponent p7;. is comparable to that of the conventional ¢-test
(using data-determined consistent HAC estimates) for the various parameter configura-
tions in Table 4a and 4b. The explanation seems to be that both large and small choices
of pp can arise due to sampling variability and when p7 is small the nominal asymptotic
critical value is too small due to the greater variability in the denominator of the ¢*
statistic (c.f., Table 3).

In consequence, our findings indicate that use of the plug-in procedure with exponent
pr does not provide unambiguous improvements in size and power in hypothesis testing
over conventional robust procedures. Instead, fixed choices of p in the range [10,20]
for sample sizes T' € [50,500] seem well suited for most practical work in econometrics.
Simulations for the various parameter configurations of ai1,as and b suggest that the
finite sample power of the ¢*-test using sharp parameter values p € [10,20] is close to
that of the conventional robust ¢-test, while providing clear improvements in size with
or without prewhitening. Figs. 12 and Table 6 illustrate these effects for p = 10,16 and
20 with no prewhitening. Choices of the exponent in this range stabilize size and do not
give up power. Furthermore, in most cases p € [10,20] lies in the flat area of the MSE
curve, which suggest that it will generally be a good substitute for the optimal sharp
parameter in practical work with time series sample sizes that are typical in economics.
As T increases, it seems that larger p’s in the range are preferred, while smaller p is
sufficient when 7' is small. Unless T' is very small (less than 50) we have found that
p = 16 is a suitable choice.
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7 Conclusion

The new class of sharp origin kernels introduced in this paper permit consistent HAC and
LRV estimation without truncation and use an approach (based on a power parameter)
that is different from conventional bandwidth controls to downweight autocorrelations
at long lags. Within this class, the Bartlett kernel without truncation is the special case
in which the power parameter is fixed at unity. When asymptotically similar regres-
sion tests are constructed with such kernels, the size distortion that commonly arises
with conventional HAC estimation is reduced. Our findings indicate that as the power
parameter increases, test power is enhanced and is arbitrarily close to and sometimes ex-
ceeds that of conventional tests, while retaining improvements in size. Data-determined
choices of the power parameter are given which are easily implemented in practical work
and which lead to HAC estimates with a convergence rate of T/3, analogous to that of
a conventional truncated Bartlett kernel estimate with an optimal choice of bandwidth.
Simulations show that in practice a simple fixed choice of the exponent parameter around
p = 16 for the sharp origin kernel produces favorable results for both size and power in
regression testing with sample sizes that are typical in econometric applications.

The general approach given here of using sharp origin kernels that are formed by
taking power functions of conventional kernels without truncation or direct bandwidth
control is obviously applicable when the mother kernel is a function other than the
Bartlett kernel. It turns out, however, that some modifications of the approach (and the
proofs of the limit theory) are required in a more general setting. As one might expect
from conventional limit theory for spectral estimation, the optimal rates of divergence
for the power parameter and rate of convergence of the corresponding data-driven HAC
estimates depend on the choice of the mother kernel. Of course, extensions of the results
are also possible to estimation of a spectral density at frequencies other than zero. Details
of these extensions will be provided in subsequent work.
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Table 4a: Finite Sample Null Hypothesis Rejection Probabilities

DGP’s are the same as Table 3 in KV(2002)*, No Prewhitening

ap a tp:1 tz:l t;ZQ t2:4 t;:S tZ:lb'
T=50 -0.500 0.000 0.056 0.050 0.050 0.049 0.048 0.044
0.000 0.000 0.071 0.061 0.061 0.062 0.062 0.063
0.300 0.000  0.087 0.068 0.068 0.070 0.071 0.074
0.500 0.000  0.099 0.072 0.073 0.075 0.078 0.083
0.700 0.000  0.110 0.078 0.079 0.082 0.086 0.093
0.900 0.000 0.122 0.082 0.084 0.088 0.094 0.105
0.950 0.000 0.124 0.082 0.084 0.089 0.096 0.107
0.990 0.000  0.130 0.081 0.084 0.090 0.099 0.112
1.500  —0.750 0.109 0.073 0.074 0.078 0.084 0.094
1.900 —0.950 0.139 0.080 0.083 0.090 0.101 0.115
0.800 0.100  0.122 0.081 00.084 0.088 0.094 0.105
T =100
—0.500  0.000  0.050 0.050 0.050 0.050 0.049 0.047
0.000 0.000  0.061 0.055 0.055 0.056 0.056 0.056
0.300 0.000  0.076 0.058 0.060 0.061 0.063 0.064
0.500 0.000  0.085 0.063 0.065 0.065 0.067 0.070
0.700 0.000  0.093 0.067 0.068 0.070 0.071 0.076
0.900 0.000  0.100 0.070 0.072 0.073 0.077 0.084
0.950 0.000  0.104 0.073 0.074 0.075 0.079 0.086
0.990 0.000  0.105 0.069 0.070 0.073 0.079 0.086
1.500  —0.750 0.091 0.065 0.066 0.067 0.070 0.075
1.900 —0.950 0.101 0.065 0.066 0.067 0.074 0.084
0.800 0.100  0.100 0.071 0.072 0.073 0.077 0.083
T =200
—0.500 0.000 0.046 0.049 0.049 0.049 0.048 0.047
0.000 0.000 0.055 0.054 0.054 0.054 0.053 0.054
0.300 0.000  0.067 0.055 0.056 0.056 0.056 0.057
0.500 0.000  0.072 0.056 0.057 0.057 0.058 0.060
0.700 0.000  0.077 0.058 0.058 0.059 0.060 0.063
0.900 0.000  0.083 0.061 0.061 0.062 0.063 0.067
0.950 0.000  0.084 0.061 0.061 0.062 0.063 0.067
0.990 0.000  0.085 0.062 0.062 0.063 0.065 0.069
1.500 —0.750 0.072 0.055 0.056 0.057 0.057 0.060
1.900 —0.950 0.082 0.056 0.056 0.056 0.059 0.066
0.800 0.100  0.083 0.062 0.061 0.062 0.064 0.067

*50,000 Replications, DGP: y; = 2} + w;; 8 = 0; 2 = 0.5 1 + 1y, 20 = 0;
Up = a1u—1 + agug—z + eg, ug = u—1 = 0; 0y, e ~ iid(0, 1), cov(ny, er) = 0.
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Table 4b: Finite Sample Null Hypothesis Rejection Probabilities
DGP’s are the same as Table 3 in KV(2002)*, with Prewhitening

* * * * *

T=50 —-0500 0.000 0.067 0.054 0.056 0.058 0.059 0.060
0.000 0.000 0.076 0.060 0.063 0.064 0.066 0.068
0.300 0.000 0.083 0.065 0.067 0.069 0.071 0.073
0.500 0.000 0.086 0.067 0.070 0.071 0.074 0.076
0.700 0.000 0.091 0.070 0.07v3 0.075 0.077 0.079
0.900 0.000 0.097 0.071 0.075 0.078 0.080 0.084
0.950 0.000 0.099 0.070 0.075 0.078 0.082 0.085
0.990 0.000 0.104 0.067 0.074 0.079 0.085 0.088
1.500  —0.750 0.080 0.063 0.065 0.067 0.069 0.071
1.900 —-0.950 0.097 0.069 0.071 0.075 0.080 0.084
0.800 0.100 0.098 0.072 0.075 0.079 0.081 0.085

T =100
—0.500 0.000 0.059 0.052 0.054 0.055 0.055 0.056
0.000 0.000 0.063 0.054 0.055 0.056 0.058 0.058
0.300 0.000 0.068 0.056 0.059 0.060 0.061 0.061
0.500 0.000 0.071 0.060 0.062 0.062 0.064 0.064
0.700 0.000 0.073 0.062 0.063 0.064 0.065 0.065
0.900 0.000 0.076 0.064 0.065 0.065 0.066 0.068
0.950 0.000 0.078 0.065 0.065 0.066 0.068 0.069
0.990 0.000 0.081 0.089 0.063 0.065 0.068 0.070
1.500  —=0.750 0.062 0.059 0.089 0.089 0.060 0.060
1.900 —0.950 0.072 0.057 0.058 0.059 0.062 0.064
0.800 0.100 0.078 0.064 0.065 0.065 0.067 0.068
T =200

—0.500 0.000 0.053 0.050 0.050 0.051 0.051 0.051
0.000 0.000 0.056 0.053 0.054 0.054 0.054 0.054
0.300 0.000 0.058 0.054 0.055 0.055 0.054 0.056
0.500 0.000 0.060 0.054 0.055 0.055 0.055 0.056
0.700 0.000 0.061 0.056 0.056 0.056 0.056 0.057
0.900 0.000 0.063 0.057 0.057 0.057 0.057 0.058
0.950 0.000 0.063 0.057 0.057 0.057 0.057 0.056
0.990 0.000 0.065 0.056 0.057 0.058 0.058 0.058
1.500  —0.750 0.047 0.052 0.053 0.052 0.052 0.051
1.900 —0.950 0.058 0.052 0.052 0.051 0.052 0.054
0.800 0.100 0.064 0.058 0.057 0.057 0.058 0.058

*50,000 Replications, DGP: y; = 2} + w;; 8 = 0; 2 = 0.5 1 + 1y, 20 = 0;
U = aqup—1 + agui—2 + eg, up = u—1 = 05 1, e, ~ i1d(0, 1), cov(ny, e;) = 0.
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Table 6: Finite Sample Null Rejection Probabilities
Based on 50,000 Replications with No Prewhitening

@ a2 to=1  thowo  tp—1e  tp—m0
T=50 0.85 0.00 0.125 0.095 0.102 0.106
1.90 -0.95 0.139 0.105 0.115 0.121
T =100 0.85 0.00 0.101 0.077 0.081 0.084
1.90 —0.95 0.101 0.077 0.084 0.088
T =200 085 0.00 0.084 0.064 0.067 0.069
1.90 —0.95 0.082 0.061 0.066 0.069
T =500 0.85 0.00 0.070 0.055 0.057 0.058
1.9 —-0.95 0.071 0.054 0.055 0.057
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8 Appendix

Proof of Theorem 1 Using the definition of ﬁk, Mercer’s Theorem applied to k(-),

(5), and standard weak convergence arguments, we have

t —
Bek(— 3!

N 1 T T
Qk — ?Z —

t=1T1

S

T )UT

8 8
>a|H

>a|H

e
S

T
Z Befalt/T) fulr/T)E,

falt/T)0 ) ( 1T§jfn<7/T>6;>

= Z)\_A/ fn<7“>dvm<r>'/0 Fals)dVi (s)N

_ A/ / Fu(8)AVin (r)dV ()"

= A'/O /0 k(r — 8)dVip (r)dV,, (s)A!

So ﬁk = AZA’, as required. Next, it is easy to see that

. -1
= = /O /0 k(r — 5) (AW (r) — drWin(1)) (dWin(s) — dsWpn (1))

- /O 1 | /0 (1, ) AW ()W (),

where

1 1
E*(r,s) =k(r —s) — ‘/0 k(r —t)dt — ‘/0 k(T —s)dr + ‘/0 k(t — T)dtdr.

It follows that

ST
EZ = / / E*(r,r)drIy,

-1

- <1_// r—sdrds) Ly = plm.

Therefore, EA_A’ = S, giving part (b).
For part (c), we write E (vec(Z)vec(Z)') as

</ / / / E*(r, s)k*(p, q)vec (dW (r)dw) (s )) vec (dWm(p)dW,%(q)))

Some calculations show that E (vec (AW, (r)dW] (s)) vec (dW,,(p)dW,,(q))) is
vec(Ip,)vec(Iy,) drdp, ifr=s+#p=gq,

I,,2drds, ifr=p=#£s=gq,
Kpmdrds, ifr=q#s=p,
0, otherwise.
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Using the above result, we have

E (vec(E)vec(Z)')

_ / ' / ' K* (r, 7)k* (p, p)drdpvec(Ip)vec(In)'
/ / K* (r, 8)K* (r, 8)drdsI,» + / / K* (r, s)k* (r, 8)drds Ky
_ </0 k*(r,r)dr) vec(Im)vec(Inm / / (k% (r, )] drds (L2 + Kom) - (3)

Therefore
E (vec(Z;) vee(Z;)') = ptvec(In)vec(Ln) + v (L2 + Kmm) -

Some simple manipulations show that

v= /k(r —s)k(p—q) — 2'/.145(7’— s)k(r —q) —&—./k(r —s)%
Hence
var(vec(AZA")) = Evec(AZA )vec(AZA') — vec(AEZA)vec(AEZEN")

E(A® A) vec(E)vec(Z) (AN @ A') — pivec(AN )vec(AN)

12 (A ® A) vec(I,)vec(I,) (A @ A')
1 (A @A) (T2 + Kon) (N @ ) — pi?vec(AAN )vec(AA)
= v(A@A) (T2 + Kmm) (M @ A')
= v(AN) @ (AN) + vEmm (AA) @ (AA)

V(ImQ + Kmm)Q X Q,

giving the stated result.
Proof of Corollary 1  Some algebraic manipulations show that

By = 1—/ / 1—r—s|pdrds—1—2/ / (147r—s)Pdrds

pt+1
e [
0 ,0+1 ,0+2

92 2 9 .1 o .1 2
+ —2/ / 1—r+spds—|—/ 14+7r—s)Pds| dr

2 2_|_ 2 2/1 2—(1—7“)p+1—7“p+1 2d
— T

p+2 2p+2 Jo p+1
2
+

2+1_ 2 gy 2 8 T*p+2)
p+2 p+1  (p+1)>? 20+3 p+2 T(2p+4))°




Lemma K For \; = %, s =0,1,...,[T/2], and p = aT® with a >0 and 0 < b < 1,

we have
T

-1
h pz’)\h 1
;<1_T> ¢t = s Lo ()]

as 1T — oo.

Proof of Lemma K We introduce L such that 1L = + TlLib — 0. For example, set
T2

L =T Then, we split the sum into two parts as follows:

- AW . AW -« ANEW)
Y (g) = X 0og) e E (o)

h=0 h=L+1
= Aj + As, say. (4)
Consider each of these in turn, starting with
L L ) 12
A = Zeplogp—%}emh _ Ze—hp/T+0(T ;g) pirsh (5)
h=0 h=0
L .
= > e T 140(1)], (6)
h=0

as h?/T*" = O (L*/T*7") = 0(1) uniformly for h < L. Next consider

T-1 A P o
|A2| = Z (1 — T) es
h=L+1
T-1 h\? T—1 1—1/T
< > (1_T> :0(/ (1—h)pdh>:O(T/ (1—y)de>
h=L+1 JL+1 JL/T
o ([ Q= (e [a=R
B [_ p+1 L B p+1 TPl (p+1)

which is exponentially smaller than O (T _b) .
Now go back to consider A;. First define

T—1
A= 3 e, ®
h=L+1
noting that
T-1 ho/ T'—1 / ef;cabel =1
|A12] < e "IT = O (/ e P wa) =0
h:zL;rl JL al! L




which is exponentially smaller than O (T~) . Then, using (5)-(9) and for any d € (0,a),

we can write

L
A = Z hp/T iAs h +0(1)]
=0
T-1 o—al't’
- ZeihP/T AL +o(1)]+0 To—1
h=0
T-1 "
- S m oo (e )
T(Ms p/T) _ 1 1
= T 1 14+0(1)]+0O <edT71 >

e -1

_ _dT1
= ei/\s_p/T_l[l—Fo(l)]—FO(e >

Combining (4), (5) and (10), we have

T-1
AW e’—1 —dri?
1

= —— e,

as stated.

(10)

Proof of Lemma 1 Let p = aT® for some a > 0 and 0 < b < 1. We start by writing

K,(\) = Tzl <—|—§i|>pcos(Ash)

h=—T+1

T—1 B\ P
= 2 Z <1 - ?> cos (Ash) —
h=0
T—1 N
= 2Re{ Y <1 - :7) e h 1.
h=0
From Lemma K, we have

71 AN P b
—_—— J S — - - e
h=0 <1 T> ‘ eirs—p/T _ 1 l1+o(1)]+0O o1

1
= e

Direct evaluation gives

_ L
R < 1 ) 1—e Tcoszx
(§] " - 9
1— e~ % 1+e F - 2 (cosx) e T
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and so

1
R - . 0
’ <1—6”_%>

1—Cosx[1—ﬁ+

1
2
2= 2cosz |14 +3 (5)" +o((5)")] - %

1 —cosx {1—

L1
T2
2 —2cosx — 22 (1 — cos) + (%)2 (1 —cosx)

1
1—COS?L‘{1—%—|—§(
(1—cos:v)( —@—F(

1
ome (g !

It follows that

\)
|
\)
@)
@)
n
8]
—_
|
Sk
+
—
Sk
~—
(V]
_I_
Q
N7 N
—
Sk
~—
(]
S~—

20 —eosn) L= 43 (1)) + (1) 4o ((£))

]
2(1—cosz)[1+0(1)]+ (£)*[1+0(1)]
20T

T 2T2(1—cosa) + p2 [L+o (@),

which, when combined with (11) and (12), gives

_ 20T
272 (1 — cos As) + p?

Kp(As) [1+o(1)],
as stated.

Proof of Theorem 2: We prove the results for the scalar v; case, the vector case
follows without further complication.

Part (a) From (19)

_ 1 T—1
fvv(o) = T Z KP()‘S)IW(AS)- (13)
s=0

To find the asymptotic variance of ﬁm(O), we can work from the following standard
formula (e.g., Priestley, 1981, eqn. 6.2.110 on p. 455) for the variance of a weighted
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periodogram estimate such as (13)3, viz.,

T—1
Var {fuu(0)} = 2£u0 (0)° 7 3 bl o, (14)

—T+1

which follows directly from the covariance properties of the periodogram of a linear
process (e.g., Priestley, 1981, p. 426). To evaluate (14), we develop an asymptotic
approximation of

l Tzl k? ﬁ —l Tzl 1— |h| 2 le 1__ 2/’_1
T P\T) T T T
h=—T+1 h=—T+1 h=0

This can be accomplished by Euler summation, viz.,
kiog(k) - [Ms@ e+ 560 +om)+ [ (o=t =) o @ as
applied to g (z) = (1 — /T)* giving
Z:: <1 ) _>2p _ ./0T1 (1 - %)dex+%{1+ <1 - %>2P}
+ <—¥> ‘/O'Tl <x —fa] - %) (1- %)Q’H dr.  (15)

Note that

1+<1_%>2p:0(1), (16)
and
() [ -5
- [(1 _ y)ﬂ ;”T =0(1), (17)

Note that inversion of Iou(X) = 5= S0 1 T(h)e™™" gives T(j) = 7 Low(A\)e™dA so that

fou(0) = % Z kp( )D(h) = %/W { Z kp( 'w\h}

h=—T+1 h=—T+1

1 s
S /_W L(VE, (V) dA

is an alternate form of (13).
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whereas

T—1 2
/ (1—2) pdx
JO T

1-1/T T
o _ N\2p __*t |_ _ oN\2p+1
= T‘/O (1—-y)*dy 2p+1[ (1-y) }

T
2p+1

1-1/T
0

R A Lol L
T C2p+1 pT2e

It follows from (15) - (18) that

— T 2p+1
so that
T—1 2 T—1 2
1 hI\ ? 2 A\? 1
S (7)) =ix(7) 7
T T T T
h=—T+1 h=0
2 (Tl $\20 1
- =z 1——) ds + O(=
T Jo ( s+0(7)
1—1
=2 [ -y o)
J0
2 1
= = )==01 1
giving

Using (19) in (14) we have
Var {Fu(0} = 22f10 (0 1+ 0 (1)
and so B
pVar { fou(0} = 2fu (0)° [1 4 0 (1)] = 2/ 0)°,
which gives

lim pVar {ﬁkp} = 2(21)? fuu (0)2 = 202,

T—o0

as required. The stated result for the vector case follows in a straightforward way.

Part (b):  Since ﬁw(O) = %Zz:_ol K,(As)Ivw(As) and

T-1 T—1 h T—1 4
Ky = 30 k() D ™ =Th(0) = T,
5= h=—T4+1 s=0
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we can write the scaled estimation error as
\/ﬁ {ﬁw(o) - fvv (0)}
T—1
= Y KO M) — foo 0]

0
1

V)
Il

S

|
SS

Kp(As) [I’U’U(AS) - fv'v (As)] + \/?ﬁ KP(AS) [f’U’U()‘S) - fU’U (O)] N (21)

S

Il
o
vy
Il
o

Using Lemma 1, we have

K,(\) =0 <( 221 4o (1)}) . s=0,1,..,[T/2. (22)

oms)? + p2

By A2, [f5,(A)| < 52 X2 [B] T (R) ], so that

| fov(As) = fou (0)] < (% Z |h| T (h)]) As.

Hence, the second term of (21) can be bounded as follows:

T-1

g Z Kp(As) [fou(As) = fow (0)]
s=0
ik 7/2
= 2—1@ Z Kp(/\s) [fvv()\s) Jov (0)} =0 (\;ﬁ Kp(/\s))\s)
s=0 -
3/2 [1/2] 9T, B2 T/ N
- O( T o p2—|—(27r8)2) =0 (T/O p2+(27m:)2dx>
_ 0ﬁw2bﬁf+@mﬁﬂwj
T 2 (27)? .
= 0 (%) =0(1), (23)

since p = aT® with b < 2. Then, by (21) and (23), we have

_ \/ﬁTfl
VP {fvv(o) — fou (O)} = T Z Kp(As) (Low(As) = fou(As)) +0p (1)
s=0

In view of A2, we have vy = C(L)e; = )72 Cjer—j, where the g, are id(0, 0?) and have
finite fourth moment p,. The operator C(L) has a valid spectral BN decomposition
(Phillips and Solo, 1992):

C(L) = C(e™) + Cy(e™™ L) (e ™ L — 1),

39



where Cy(e~L) = > 520 CN’Aje_"j)‘Lj and é,\j = 010 e'** leading to the represen-
tation
UV = C(L)Et = C( z)\)éft +e /\6)\t,1 — g/\t (24)

where

~ i\
Ext = T L)eg = E Chje ey

is stationary. The discrete Fourier transform of v; has the corresponding representation

T
1 .
w(A = E vpetths
() V2rT = !

] 1 ~ N>
= C(QZAS)WE(/\S)-FW(éASo—e /\SgAsn)

= C(e™)we(Ns) + Op(T 7).

Thus, using the fact that Y7 |K,(\s)| = Y1y K,(\s) = T, we have

NG {ﬁM,(o) ~ fon <o>}

_ PN ;K Do) = FuolAs)) + 0p(1) (25)
_ 7 jZ:Kp(AS)(w(AS)w(AS)* — FuolA)) + 0p(1)
= $§K9<As){[0<ei*s)wg<m+0p<T‘1/2>}
O () £ 0T — (A} + 0501
- g:olm@sno%wuaus)—;ﬁ )+0, (YT ) + o)
= gj_:mxs){c%l)ugg(xs)—%(r?)Hop(D, (26)

where we have used p/T" — 0.
Let m; =0 and for t > 2,

t—1
my = &¢ E EjCt—j
Jj=1

where

2
6 = SRS (KO conlin).
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Then we can write

t=1

By the Fourier inversion formula, we have

_ )
T

(). (27)

PAT
2 2 p_1 1
2 k2( = L — O|=]. 28
“ TQZ <T2,0+1> <T> (28)
The sequence m; depends on T' via the coefficients ¢; and forms a zero mean mar-
tingale difference array. Then

Hence

T
Jj=

1

T 44
2) mi—a N <07 . ;2(1)> =N (0,2£5,(0))
t=1

by a standard martingale CLT, provided the following two sufficient conditions hold:

T
S BlF) - oW g, (20)

872
=1

where Fi_1 = 0(et—1,&¢—2, ...) is the filtration generated by the innovations €, and

T
> E(myf) —, 0. (30)

t=1

We now proceed to establish (29) and (30). The left hand side of (29) is

T t—-1 04
ZZ 87T2 2226@@ ej=h+h. (31

t=2 j= t=2 r#j
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The first term, I3, is

T-1 T—j

T-1T—-
(S-S e+ (o ZZ TCW) =y 4 he
=1 5=1

j=1 s=1

The mean of 177 is zero and its variance is of order
T 1 /T—j \ 2 T 2 1
0 )| =0|T(>. &) |=0 <—> :

using (28).
Next, consider the second term of (32). We have

T-1T-j T—lT—j

T
—04(1)£< ! > L (1+0(1))

42 T \2p+1) 2p+2
ci(1
= 8752) o(1).

T 4,4
9 9 9 a*C*(1)
L =0 E €5C_; — R —p 0.

So the first term of (31) is op(1).
Now consider the second term, Iz, of (31). Iz has mean zero and variance

7 min(p—1,q—1)

2 Z Z (¢q—rCq—jCp—rCp—j)

P,q=2 r#j
T p—-1 T p—1g-1

- 222 Cp—r p it § :E :E :(Cq—rcq—jcp—rcp—j)
p=2 r#j p=3 q=2 r#j

In view of (28), we have

(32)

(33)



For the second component in (33), we have, using (28) and the Cauchy inequality,

T p—1lp—1l,g-1 T p—1qg-1 q—1
2 2
4§ E E (cq—rCq—jCp—rCp—j) §4§ E Cq—r Cp—r
p=3q=2 r#j p=3 qg=2r=1 r=1
T T p—1g—-1 T T p-—1 p—1
< 4y d Z Gr 40D <)
> > G r
i=1 =3 q=2 r=1 i=1 p=3 q=2 r=p—q+1
T p—1 p-—-1 T—-2
= 0 lg E l=0 1 r(T'—r—1)c
T " T "
p:3 q:2 r:p—q-‘,—l r=1
T-2

Hence, I —, 0 and we have therefore established condition (29).
It remains to verify (30). Let A be some positive constant, then the left hand side of
(30) is

T i1
) BQ_escrs)’
—> 1

t—1t—1t—1t—1
< AZE ZZ €5ErEpEqCt—sCt—rCi—pCi—g
s=1r=1p=1q=1
T T T t—1t—1
A A S
t=2 s=1 t=2 s=1r=1
T 1 1
2\2 __ _

using (28), which verifies (30) and the CLT.
With this construction we therefore have

gca(l) z_: KP()‘S)[(IEE(/\S) - LO—Q)]
s=0
= 2> my+op(1) —a 2N <O’W
04 4
_ N(o,fTQ(”) — N(0,2/2,0)).
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This gives the required limit theory for the spectral estimate at the origin, viz.,

V3 {0~ fun0)} =23 ZK ~ Fun)) + 0p(1)
—a N (0,2/5,(0))
from which we deduce that
VP, — Q) —q N (0,20%).
The stated result for the vector case follows directly by standard extensions.
Part (c): By definition,

Lﬁv()—-ﬁw())
:2W§:k E@——Zr

—T+1
T—1 p+1 e’}
- 5 > O-@) D)~ 5 ST ()
h=_T+1 =
-1 p+1
~ Ly [<1_|;|> _1]1“(}1)—%21“01)
h=—T+1 |n|>T

T/(plogT) p+1
_ % 3 [O-%) —4r@

" h——T/(plogT)

pt+1
S [(1_'—;') —1]r<h>+%§jr<h> (34)

7r
T—12|h|>T/(plogT)

where the second equality follows from the fact EC), = (1 — J%l) I'(h). Now

T YT <5 X Wk =o () o),

[>T Pihsr
by virtue of A2, and
T—1

R SN ()

T—12|h|>T/(plogT)

T—1 +1
T 1[)*
< — 1—(1-2 T (h
<Y (-3) Jire
T—12|h|>T/(plogT)
T—1 14+A T—1
T T (plogT 14A
< — L)<= (—— RTAT (B
S T MR G 5 T (n)
T—12|h|>T/(plogT) T—12|h|>T/(plogT)
= o(l),
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for some small A > 0, in view of A2.
The first term of (34) can be written as

1 T/(iogT) i ) p+1_1
27 T

h=-T/(plogT) L

T (h)

T/(plogT) 21112
_ 1 (p+1)|h| (p+ 1A
= 3 > l--——=—+0 = —1| T (h)
h==T/(plogT) -
T/(plogT)

2 T/(plogT)

h=—T/(plogT) h=—T/(plogT
T/(plogT) 2 T/(plogT)
1 (p+1)Ih] (p+1)° T
- W )My, W) L h||T (h
h==T/(plogT) h==T/(plogT)

T/(plogT)

1 (p+ DI ’
= 0 2 T F(h)+O<TlogT>'

h==T/(plogT)

Therefore

T, T/(plogT)
dm (P, —0) = i (= 5 T

h==T/(plogT
= —2nfW =_QW),

as required.
Part (d) Since p3/T? — 9 € (0,00), we have p ~ 9373 and then
P 9STH 0F VO

It follows from (35) that
]\/[SE(/)’QI%’ W)

- / -
= pE {vec (Qkp — Q) W vec (Qkp — Q)}
= pE {vec (ﬁkp - Eﬁkp + Eﬁkp — Q)/ W vec (SN)kp — Eﬁkp + Eﬁkp — Q)}
) (%>2E {Uec (Eﬁk - Q)'erc (Eﬁk - Q)} [1+0(1)]
+ptr {WE {vec (ﬁk,, — Efwlkpﬂ vec ((NZKP — E(NZKP>,} .

Using parts (b) and (c), we obtain

= 9 vec (Q(l)),erc (Q(l)) +tr {W({I + Kpm)Q @ Q}.
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The corresponding result for the spectral density estimate is
lim MSE(p, f (0), W)
T—oo

= 9 vec (f(1)>,WU€C (f(1)> +tr (WU + Kmm)f® f)}.

Proof of Theorem 3: Assumption B below is based on corresponding conditions in
Andrews (1991). It allows for the effect of using 3 in the HAC estimate and is sufficient
for the consistency of (AZ;CP and for ﬁkp to have the same asymptotic distribution as (NZ‘;CP
Let s¢ denote some convex neighborhood of (3, the true value of 3. Let v, denote the
a’th element of v;. Let Kq,..ag(0, j1, J2,--., j7) denote the cumulant of (vq,0, -..Vag j;), Where
ai,...,ag are positive integers less than p 4+ 1 and j1, ..., j7 are integers.

Assumption B: (1) VT(3 - 3) = Op(1).
(2) supy>1 B || v < oo,
3) sup;>y B supge,, || (0/98)ve(B) ||*< oo
4) Assumption A2 holds with v; replaced by (v}, vec(:2 8ﬂ’ ve(B) — Eaﬂ’ ve(06))").
5) sup;>y B supge,, || (9/08 )var(B) |P< o0, Va = 1, ...
) {4} is eighth order stationary with summable cumulant function Kay...as (0,71, J2,--, 37,

Le, Yo o Yoo [Ka.as (051, 52,5 §7)| < 00
(7) Wy —, W.

(
(
(
(6

Proof of Part (a) A Taylor expansion gives

Vi@, ~0u) = oTo, 57 4 (VT (B =)
VTG - 3/l By Or INT(3 - ),

for some B lies between B and . Manipulations similar to those in the proof of theorem
1 of Andrews (1991) lead to

0? ~
\/%W%(ﬂ)

Pl T 52
- \/7—T+1 < ) ?tzh:ﬂzlég | W%(ﬁ)vt_w(ﬁ) |
- v = |- Y o

—-T+1
= Op(1)7

where the last equality follows from the fact, shown earlier, that T}}H |(1—-7F)°| =

O(3).

p

The proof of the rest of the theorem involves calculations similar to those given above
and in Andrews (1991) and is therefore omitted.
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Proof of Theorems 4 and 5 These results follow directly from standard weak con-
vergence arguments.

9

0a.5.(1)  tends to zero almost surely Kpyn m2 xm

Notation

2

O, 8(1) bounded almost surely & Kronecker product

—4,—> Wweak convergence vec(A) vectorization by columns

—

p—a.s. convergence in probability, almost surely [] integer part

101 f ]01 f(r)dr tr{A} trace of A

Wp
Vi (

(r)  p— dimensional standard Brownian motion Zthl
T) p — dimensional standard Brownian bridge R (—00, 0)

KVB Kiefer, Vogelsang and Bunzel (2000) OLS Ordinary least squares

KV

Kiefer and Vogelsang (2002a, 2002b) LRV Long run variance
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