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Abstract

This paper develops a linearity test that can be applied to cointegrating relations. We
consider the widely used RESET specification test and show that when this test is applied
to nonstationary time series its asymptotic distribution involves a mixture of noncentral χ2

distributions, which leads to severe size distortions in conventional testing based on the cen-
tral χ2. Nonstationarity is shown to introduce two bias terms in the limit distribution, which
are the source of the size distortion in testing. Appropriate corrections for this asymptotic
bias leads to a modified version of the RESET test which has a central χ2 limit distribution
under linearity. The modified test has power not only against nonlinear cointegration but
also against the absence of cointegration. Simulation results reveal that the modified test
has good size in finite samples and reasonable power against many nonlinear models as well
as models with no cointegration, confirming the analytic results. In an empirical illustra-
tion, the linear purchasing power parity (PPP) specification is tested using US, Japan, and
Canada monthly data after Bretton Woods. While commonly used ADF and PP cointegra-
tion tests give mixed results on the presence of linear cointegration in the series, the modified
test rejects the null of linear PPP cointegration.
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1 Introduction

Economic time series are often believed to exhibit nonlinear behavior and economists usually
formulate this nonlinearity in one of the following two ways: (i) by building nonlinear dynamics
into the model for an individual time series; or (ii) by allowing for nonlinearity in the relationship
between time series. This paper investigates issues associated with the second approach and does
so from a model specification perspective. Since the introduction of the cointegration concept,
linear models have dominated practical work in cointegration analysis. This emphasis has arisen,
not so much because the underlying economic theory suggests linearity, but rather because the
cointegration concept and associated econometric methodology has been developed very largely
for linear models of integrated processes. Correspondingly, the tools of econometric analysis are
available in this case and there is great convenience in computation for applied work. In contrast,
until recently, there has been a lack of appropriate analytic tools for considering nonlinearly
transformed integrated time series and an absence of an asymptotic theory of inference.

Empirical applications often stimulate an interest in nonlinear specifications and, in conse-
quence, many nonlinear models (and almost as many specification tests) have been developed
for stationary time series modeling. Many recent nonlinear model applications of nonstationary
time series have focused on nonlinear short-run dynamics around linear long-run equilibria in
error correction models (ECM), as in Berben & Dijk (1999), Lo & Zivot (2001), and Teräsvirta
& Eliasson (2001) among others. Few attempts have been made to study nonlinear cointegrating
relations directly and the methods that have been tried in practical work often require restrictive
conditions on the DGP (e.g. Basher & Haug, 2003). Such extensions also await a corresponding
development in tests of specification.

Neglecting the possibility of nonlinearity in a long-run relationship can be particularly detri-
mental in nonstationary cases. For stationary time series, linear models can often provide
workable approximations at least locally to nonlinear models. Unlike mean-reverting stationary
processes, nonstationary time series have a tendency to wander with no fixed mean or locality
in the sample space and, like random walks, revisit points distant from the origin an infinite
number of times. In such cases, local linear approximations can only poorly represent the global
characteristics of the process, producing a high risk of faulty inference about a misspecified
long-run equilibrium.

Considerations of the possibilities suggest three cases – linear cointegration, some form of
nonlinear cointegration, or complete absence of cointegration. Existing cointegration tests essen-
tially presume a form of linear cointegration and do not effectively distinguish between linear and
nonlinear cointegration (Granger & Hallman, 1989). So, linear cointegration analysis requires
an additional test of specification to address this particular issue. Existing linearity tests also
fail to provide any guidance concerning the type of relationship that may be present between
nonstationary time series if it were nonlinear (Granger, 1995). Accordingly, it is not surprising
to find that linearity tests which have been developed for stationary processes work poorly with
nonstationary time series. This was well recognized earlier in the case of the RESET test.

The RESET test (Ramsey, 1969) is a convenient device for testing general misspecification
(e.g. Vitaliano, 1987; Baghestani, 1991; Peters, 2000, among others), but is known not to be ro-
bust to autocorrelated disturbances, especially when the regressor is itself highly autocorrelated
(Porter & Kashyap, 1984) or contains a deterministic time trend (Leung & Yu, 2001). Using
simulation experiments, Porter & Kashyap (1984) show that the presence of serially correlated
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disturbances combined with an AR(1) regressor leads to size distortions, and the more autocor-
related is the regressor the less robust the RESET test is to error autocorrelation. Naturally,
we might expect this size distortion problem to become worse in the cointegrating case where
the regressor has an autoregressive unit root and the errors are typically serially dependent.

In the absence of more appropriate specification tests, applied economists have treated ex-
isting cointegration tests as tests for linear cointegration. In other words, if evidence for coin-
tegration is found, it is conventionally assumed without further testing that such cointegration
is linear in nature and all subsequent analysis rests on this assumption. The present paper
develops a direct testing method that can answer the simple but important question: do the
data support a linear cointegrating specification? To do so, we modify the widely used regres-
sion error specification test (RESET), which is a linearity test based on general approximation
theory. The RESET test implicitly uses a Taylor series approximation to capture unspecified
nonlinear forms by seeking to detect nonlinearities that remain in the linear regression residuals
using a linear combination of polynomial functions. Our approach here is to use recently devel-
oped asymptotic tools for nonlinearly transformed integrated time series from Park & Phillips
(1999, 2001) to modify the RESET test in an appropriate manner so that it can be applied to
nonstationary time series to test directly for linearity in cointegrating relations.

The rest of this paper is organized as follows. The next section introduces the model and the
maintained assumptions and shows how the testing method is related to an underlying theory of
nonlinear approximation. In addition, we show how the nonstationarity of the data changes the
limiting theory of the existing test using sample covariance asymptotics of nonlinearly trans-
formed integrated processes. Section 3 discusses the modifications that are needed when the
RESET test is applied to cointegrating relations. The asymptotic distribution of the modified
test statistic is discussed both for the null and various alternative hypotheses. Simulation results
on the finite sample size and the power of the modified test are reported in Section 4. Section
5 presents an empirical application of the modified test to purchasing power parity (PPP). Sec-
tion 6 concludes and additional assumptions, lemmas and proofs are collected together in the
Appendix.

2 Model and Background Ideas

The RESET test utilizes an approximate representation based on a power series expansion to
determine whether the linear specification leaves anything unexplained in the regression residuals
that can be detected by a linear combination of polynomial basis functions. The idea can be
naturally extended to other families of basis functions and, as we will show, utilized in the
context of nonstationary data applications.

For an arbitrary function f(x) lying in a suitably defined L2 function space over a certain
domain, it is possible to construct an orthogonal series representation of the following form

f(x) ≈
∞∑

j=1

βjFj(x) or in two parts f(x) ≈
k∑

j=1

βjFj(x) +
∞∑

j=k+1

βjFj(x)

= f̂k(x) + error

in terms of some basis functions {Fj(x)} that form a complete set and where ≈ signifies L2

convergence. In the special case of a convergent power series (Taylor) representation, we may
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use simple polynomials as a basis. Given f(x), the accuracy of the finite sum approximation
f̂k(x) =

∑k
j=1 βjFj(x) or the size of the “error” term depends on the number of terms (k)

included in the sum and the properties of the function f, on which there is a huge literature in
Fourier series analysis (e.g. Tolstov, 1976).

Suppose that we want to test the linear conditional mean specification H0 : P [E(Yt|Xt) =
θ1Xt] = 1 , ∀t using a regression specification

Yt = θ1Xt + θ2f(Xt) + ut. (1)

If one has a specific nonlinear alternative model in mind, such as (1) for some given f (Xt),
and wants to test that specific model against the linear model, then one can use tests such as a
Wald or LM test of H0 : θ2 = 0 to decide which model fits the data better. In many practical
cases, however, theory fails to provide a specific functional form, and while it is possible to
come up with alternate nonlinear models, these often seem rather arbitrary. Also, if the focus
of attention is some convenient linear model (such as that implied by purchasing power parity
considerations) with no specific nonlinear alternative, then it is of particular interest to test
whether the linear specification is “acceptable”. A linearity test based on approximation theory
seems appropriate in these situations.

Replacing the unspecified nonlinear function f(Xt) with a partial sum approximation f̂k(Xt),
we may proceed to test the validity of the linear specification by testing whether a linear combi-
nation of a finite number of suitable basis functions {Fj(·)}k

1 can detect any nonlinearity in the
regression residuals. This procedure involves testing H0 : βj = 0, ∀j in the regression

Yt = θXt + ut and ût =
k∑

j=1

βjFj(Xt) + et, (2)

where the ût are the regression residuals and the basis functions are chosen to be Fj(Xt) = Xj+1
t

for the RESET test1. As is apparent, using this approach there can be as many tests of linearity
as there are approximation methods2. Here we will focus on the RESET test in view of its
popularity in applied work.

Note that estimation of (2) involves working with the sample moments of nonlinearly trans-
formed integrated time series of the form

∑
t Fj(Xt)ût and

∑
t Fj(Xt)Fi(Xt), whose asymptotic

behavior must be characterized. Before examining these quantities, we first specify the data
generating processes and some assumptions that will facilitate the development of a limit the-
ory.

Assumption A: Let 4Xt = vt and ut be general linear processes satisfying the following
1While the original test by Ramsey (1969) and the similar tests by Keenan (1985) and Tsay (1986) use the

fitted value Ŷt, Thursby & Schmidt (1977) propose using the polynomials of Xt instead for a higher power.
2For example, DeBenedictis & Giles (1998) use a Fourier series approximation idea that has better global

fitting capability than a Taylor series approximation, while Keenan (1985), Tsay (1986) and Barahona & Poon
(1996) use variations of Volterra series expansions. White (1989) presents a neural network (NN) test based on
the cdf of the logistic distribution and Blake & Kapetanios (2000) develop another NN test using radial basis
functions for artificial neural networks.
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conditions.

ut =
∞∑

j=0

cjεt−j = C(L)εt vt =
∞∑

j=0

djηt−j = D(L)ηt

ζ̃t =
(

ηt+1

εt

)
is a stationary and ergodic martingale difference sequence

with natural filtration Ft = σ
(
{ζ̃s}t

−∞
)

and variance matrix Σ =
(

σ11 σ12

σ21 σ22

)

and where {cj , dj} satisfy the conditions

D(1) 6= 0 ,
∞∑

j=0

j|dj | < ∞ , and
∞∑

j=0

j1/2|cj | < ∞

These assumptions on the innovation processes are fairly standard, although in some cases
below the linear process Xt is assumed to be predetermined in the sense that E(Fj(Xt)|Ft−1) =
Fj(Xt). Conditions similar to these assumptions and Assumption A1 in the Appendix (an
additional technical moment condition) are employed in deriving the results of Park & Phillips
(1999, 2000, 2001) and Chang, Park & Phillips (2001). However, De Jong’s (2002) more relaxed
conditions are sufficient for the modification of the RESET test presented in this paper.

Under Assumptions A and A1, the following invariance principle holds

1√
n

[nr]∑

t=1

ζ̃t ⇒d W (r) ≡
(

W1 (r)
W2 (r)

)
≡ BM (Σ) ,

and using the Beveridge-Nelson decomposition (Phillips & Solo (1992)), we can show that a
similar result holds for the time series ζt = [ vt, ut]′.

1√
n

[nr]∑

t=1

ζt ⇒d B(r) ≡
(

Bx (r)
Bu (r)

)
≡ BM (Ω) .

Here the covariance matrix Ω =
∑∞

h=−∞ Γζ(h), where Γζ(h) = E(ζ0ζ
′
h). It is convenient to

partition Ω conformably with ζt as

Ω =
(

Ωvv Ωvu

Ωuv Ωuu

)
, (3)

and to define and partition the one-sided long-run covariance matrix

Λ =
∞∑

h=1

Γζ(h) =
(

Λvv Λvu

Λuv Λuu

)
, (4)

4 = Γζ(0) + Λ =
(

∆vv ∆vu

∆uv ∆uu

)
. (5)

Among the wide variety of possible nonlinear functions, Park & Phillips (1999, 2001) pro-
vide asymptotic tools for certain classes of functions (of integrated processes) satisfying some
regularity conditions. The simple basis functions {Xj

t } of a Taylor series expansion fall within
the H-regular (or Class H) class, which is defined as follows.
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Definition 1 A transformation F (·) is said to be H-regular iff

F (λx) = κ (λ) H (x) + R (x, λ)

where H (·) is locally integrable, and R (·, ·) is such that

• |R (x, λ)| ≤ a (λ) P (x), where lim supλ→∞ a (λ) /κ (λ) = 0 and P (·) is locally integrable,
or

• |R (x, λ)| ≤ b (λ) Q (λx), where lim supλ→∞ b (λ) /κ (λ) < ∞ and Q (·) is locally integrable
and vanishes at infinity, i.e. Q (x) → 0 as |x| → ∞

Functions in this class have homogenous, asymptotically dominating components κ(λ)H(x)
that are locally integrable. H(x) is referred as the asymptotic homogenous function of F (x) and
κ(λ) as the asymptotic order of F (x). Park & Phillips (1999) provide various examples that
belong to this class, such as finite order polynomials, logarithmic functions, and distribution-like
functions, including their linear combinations and products. The basis functions {Fm = Xm+1}
from a Taylor series expansion belong to this class with H(x) = xm+1 and κ(λ) = λm+1.

Another important class of nonlinear transformation is the I-regular (or Class I) transforma-
tion. Roughly speaking, functions in this class are bounded, integrable and (piecewise) smooth
(see Park & Phillips (1999) for further details). All pdf-like functions belong to this class.

2.1 A Linearity Test and Sample Covariances of Nonlinearly Transformed Xt

As a first step in the development, consider the simplest case where Xt is strictly exogenous
so that Assumption A holds with E(vtus) = 0 for all t, s and the long-run covariances Ωuv =
Λuv = 0. Both OLS and FM-OLS (Phillips and Hansen, 1990) estimators of θ in (2) then yield
consistent and asymptotically mixed normally distributed θ̂, and the RESET test statistic for
H0 : βj = 0, ∀j follows a limiting central χ2(k) distribution, as we now show. That is

Rn =

(
n∑

t=1

ûtFt

)′(
Ω̂uu.v

n∑

t=1

F̃tF̃
′
t

)−1 (
n∑

t=1

ûtFt

)
A∼ χ2(k), (6)

with

F̃t = Ft −Xt

(∑
t

FtF
′
t

)−1 ∑
t

XtFt for Ft =
[

X2
t · · · Xk+1

t

]′
, (7)

and where Ω̂uu.v is a consistent estimator of Ωuu under exogeneity. The test statistic Rn is a
quadratic form of sample covariances between a nonlinearly transformed integrated process and
the fitted residuals, viz.,

n∑

t=1

(
Xt√

n

)m ût√
n

=
n∑

t=1

˜(
Xt√

n

)m ut√
n
⇒d

∫
B̃m

x dBu, (8)

where the tilde over a variable implies that it is the residual from a linear regression of that
variable on Xt for a finite sample, and equivalently for the limit processes where we write the
projection residuals as B̃m

x = Bm
x −Bx(

∫
B2

x)−1
∫

Bm+1
x , where

∫
denotes integration over [0, 1]
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with respect to Lebesgue measure. The latter notation is used throughout the paper. The limit
(8), conditional on Fx = σ(Bx(r), 0 ≤ r ≤ 1), is a mean-zero Gaussian mixture

∫
B̃m

x dBu

∣∣∣∣
Fx

∼ N
(

0, Ωuu

∫
B̃m

x

2
)

,

so that, combined with the limit of the sample variance

1
n

n∑

t=1

˜(
Xt√

n

)m ˜(
Xt√

n

)m

⇒
∫

B̃m
x

2
,

and a consistent estimator for Ωuu, the RESET test statistic (6) has the following limit

Rn ⇒d

(∫
B̃m

x dBu

)′(
Ωuu

∫
B̃m

x

2
)−1 (∫

B̃m
x dBu

)∣∣∣∣∣
Fx

∼ χ2(k)

conditional on Fx. Since the limit distribution is independent of Fx, we deduce that Rn ⇒ χ2(k)
unconditionally.

Next, we discard the “strong exogeneity” condition on Xt so that Assumption A holds with
Ωuv 6= 0. Abandoning the strong exogeneity condition changes the previous result in several
ways. First, the least squares estimator of θ now has two second order bias terms in the limit,
viz.,

n
(
θ̂ − θ

)
=

(
1
n2

n∑

t=1

X2
t

)−1
1
n

n∑

t=1

Xtut

⇒d

(∫
B2

x

)−1 {∫
Bx dBu.x + ΩuvΩ−1

vv

∫
Bx dBx +4uv

}
, (9)

where the Brownian motion Bu.x = Bu − ΩuvΩ−1
vv Bx is independent of Bx and has variance

Ωuu.v = Ωuu−ΩuvΩ−1
vv Ωvu. In (9) the term

∫
Bx dBu.x is a mean zero Gaussian mixture, but the

other two terms in braces shift the mean of the limit distribution away from zero. These terms
correspond to the so-called endogeneity bias and serial correlation bias of linear cointegration
theory (Phillips & Hansen, 1990), and stem from the nonstationarity of Xt. Similar effects
also generally arise with the sample covariance of ut with nonlinear transformations of Xt.
The following lemma summarizes the effects when the sample covariances involve polynomial
functions.

Lemma 2 Under Assumptions A and A1, the sample covariance between Xm
t and ut satisfies

1
n(m+1)/2

n∑

t=1

Xm
t ut ⇒d

∫
Bm

x dBu.x + ΩuvΩ−1
vv

∫
Bm

x dBx + m∆vu

∫
Bm−1

x (10)

with ∆vu =
∑∞

h=0 E (v0uh) .
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Lemma 2 shows that, as in the linear cointegration case (9), sample covariances of nonlinear
functions and stationary processes have limits that also involve two bias terms that produce
nonzero location effects in the limit distribution of {β̂j} in (2). We refer to these effects as
“bias” terms because both terms shift the location of the limit distribution of β̂j away from the
true value βj . The three components in the limit distribution in (10) are a mean-zero Gaussian
mixture and two bias terms stemming from endogeneity and serial correlation effects, the latter
being random when m > 1.

De Jong (2002) examines this nonlinear sample covariance asymptotics under conditions
that are less strict on the innovation processes, but more restrictive in terms of functional
forms. He shows that for an H-regular function F (·) with continuously differentiable asymptotic
homogeneous function H(·), the sample covariance of F (Xt) with ut satisfies

1
n1/2κn

n∑

t=1

F (Xt)ut ⇒d

∫
H(Bx)dBu +4uv

∫
H ′(Bx) (11)

where the asymptotic order of H (·) is κn = κ (
√

n). With F (z) = zm, we have H(z) = zm and
κn = nm/2, so that (11) then reduces to (10) in Lemma 2. A recent and much more general
semimartingale approach to establishing limit results such as (11) is developed in Ibragimov and
Phillips (2004).

The effects from the bias terms in Lemma 2 can be substantial in the RESET test statistic (6).
As is well known (e.g., Muirhead, 1982, theorem 1.4.5), a necessary and sufficient condition for
the quadratic form x′Ax in the Gaussian random vector x ≡ N (ξ, V ) , where V is nonsingular, to
follow a noncentral χ2 distribution is that AV be idempotent. In this event x′Ax is noncentral
χ2(k, ν), where k = rank (AV ) is the degrees of freedom and ν = ξ′Aξ is the noncentrality
parameter. Here, we can replace x with the limit of

∑n
t=1 ûtFt after an appropriate normalization

and suitable conditioning, and thereby show that the test statistic Rn in (6) follows a mixture
of noncentral χ2 distributions, giving the following asymptotic result for the test when the
exogeneity condition on Xt does not hold.

Theorem 3 Under Assumptions A and A1, the RESET test statistic Rn has asymptotically a
mixture noncentral χ2 distribution with k degree of freedom and random noncentrality parameter
ν = ξ′Aξ. That is,

Rn =

(
n∑

t=1

ûtFt

)′(
Ω̂uu.v

n∑

t=1

F̃tF̃
′
t

)−1 (
n∑

t=1

ûtFt

)

= û′F
(
Ω̂uu.vF̃

′F̃
)−1

F ′û A∼ χ2 (k, ν)

for F̃t defined in (7), F = [ F1, · · · , Fn]′ , F̃ =
[

F̃1, · · · , F̃n

]′
, and where Ω̂uu.v is a consistent

estimator of Ωuu.v. The random noncentrality vector ξ is k × 1 with (m − 1)th element defined
as

ξ(m− 1) = ΩuvΩ−1
vv

∫
Bm

x dBx + m4vu

∫
Bm−1

x − Λvu

(∫
B2

x

)−1 ∫
Bm+1

x ,
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and A is a k × k covariance matrix

A =


Ωuu.v




∫
B̃2

x

2 · · · ∫
B̃2

xB̃k+1
x

...
. . .

...
∫

B̃k+1
x B̃2

x · · · ∫
B̃k+1

x

2







−1

with B̃m
x = Bm

x −Bx(
∫

B2
x)−1

∫
Bm+1

x .

Remarks

1. In general, the mean and variance of a quadratic form x′Ax with a noncentral χ2(k, ν)
are (e.g., Johnson & Kotz, 1978)

E(x′Ax) = k +
1
2
ξ′Aξ and var(x′Ax) = 2(k + ξ′Aξ).

So, conditional on Fx = σ(Bx(r), 0 ≤ r ≤ 1), the first two moments of Rn can be written
as k + 1

2ν and 2(k + ν) respectively, and they are greater than the central χ2(k) coun-
terpart. This implies a higher probability of Type I errors, which explains the large size
distortions observed in the simulation work by Porter & Kashyap (1984). We can check
this by approximating the noncentral χ2(k, ν) distribution by a multiple of a central χ2

distribution, aχ2(b), where the two constants are given by (see Johnson & Kotz, 1978)

a = 1 +
ν

k + ν
≥ 1 and b = k +

ν2

k + 2ν
≥ k.

Therefore, conditional on Fx, the probability of rejecting the linearity null hypothesis can
be written approximately as

P [Rn > χ2
α] ∼ P

[(
1 +

ν

k + ν

)
χ2(b) > χ2

α

]
≥ P

[
χ2

(
k +

ν2

k + 2ν

)
> χ2

α

]
≥ α,

which is always at least as great as the nominal size α.

2. Originally, Ramsey (1969) introduced the RESET test as an F -test, where the test statistic
can be written as

Fn =
(û′û− ê′ê)/k

ê′ê/(n−K − k)
=

û′ (I −MF ) û/k

û′MF · û/(n−K − k)
, (12)

where û and ê are the vectors of regression residuals from (2), K is the column number
of Xt, and the k × k projection matrix MF = I − MXF (F ′MX F )−1F ′MX with MX =
I−X(X ′X)−1X ′ and X = [X ′

1, · · · , X ′
n]′. The numerator in (12) is equal to the χ2 version

of the RESET test Rn in Theorem 3 multiplied by Ω̂uu.v/k. That is,

1
k
û′ (I −MF ) û =

Ω̂uu.v

k
û′F

(
Ω̂uu.vF

′MXF
)−1

F ′û A∼ Ωuu.v

k
· χ2(k, ν).
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The denominator of (12) also can be shown to converge to Ωuu.v/(n − K − k) times a
mixture of noncentral χ2 random variable χ2(n−K − k, ν ′) with noncentrality parameter
ν ′ = E(û′MF û|X). Therefore, conditional on Fx, the ratio of two normalized noncentral
χ2 random variables follows a doubly noncentral F -distribution, denoted as F (k, n−K −
k; ν, ν ′), and

Fn ⇒ F (k, n−K − k; ν, ν ′) with ν = ξ′Aξ and ν ′ = ξ′(I −A) ξ, (13)

for ξ and A defined in Theorem 3. Johnson & Kotz (1978) show that this doubly noncentral
F -distribution can be approximated by a central F -distribution

F (k, n−K − k; ν, ν ′) ≈
(

1 + ν/k

1 + ν ′/(n−K − k)

)
F (df1, df2),

with two degrees of freedom defined by

df1 =
(k + ν)2

k + 2ν
and df2 =

(n−K − k + ν ′)2

n−K − k + 2ν ′
.

Using this approximation, the probability of rejecting the linearity null hypothesis can be
written as

P [Fn > Fα] ∼ P [F (df1, df2) > Fα/C] with C =
(

1 + ν/k

1 + ν ′/(n−K − k)

)
,

with random noncentrality parameters ν and ν ′. Note that as long as ξ 6= 0, C ⇒ 1 + ν/k
as n →∞ and the noncentrality can therefore produce a substantial size distortion in the
test.

3 Bias Correction and a Modified RESET Test

The previous section shows that nonstationarity of Xt introduces two bias terms in the limit
distribution of the sample covariance between Xm

t and ût, so that the RESET statistic Rn is
a limiting mixture of noncentral χ2 distributions. These bias terms are the main source of the
large size distortions in the test and we now present a method to remove them, leading to the
modified RESET test whose limit distribution is central χ2. The correction method is similar
to that used in FM regression (Phillips and Hansen, 1990). After identifying sample quantities
that converge to the bias terms, nonparametric corrections are implemented in the test statistic
to eliminate them. For the first step, the following lemma introduces sample quantities that
have the same limits as the bias terms.

Lemma 4 Let Assumptions A and A1 hold. For m ≥ 1,

4̂vu
m

n

n∑

t=1

(
Xt√

n

)m−1

⇒d m4vu

∫
Bm−1

x , (14)

and
n∑

t=1

(
Xt√

n

)m vt√
n
− 4̂vv

m

n

n∑

t=1

(
Xt√

n

)m−1

⇒d

∫
Bm

x dBx, (15)

where 4̂vu and 4̂vv are consistent estimates of the long run covariance quantities 4vu and 4vv.
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Remarks

1. Lemma 4 provides sample quantities that converge to the asymptotic bias terms shown in
Lemma 2. In linear cointegration, the corresponding terms for the two biases in (9) are
given by

Ω̂uvΩ̂−1
vv

(
1
n

n∑

t=1

Xtvt − 4̂vv

)
⇒d ΩuvΩ−1

vv

∫
BxdBx and 4̂uv ⇒p 4uv

Denoting these two components as En and Sn, respectively, the sample covariance now
becomes a mean zero Gaussian mixture in a linear case

1
n

n∑

t=1

Xtut −En − Sn ⇒d

∫
BxdBu.x,

and FM estimation simply applies these corrections, giving

n
(
θ̂FM − θ

)
=

(
1
n2

n∑

t=1

X2
t

)−1 {
1
n

n∑

t=1

Xtut −En − Sn

}

⇒d

(∫
B2

x

)−1 ∫
Bx dBu.x

∣∣∣∣∣
Fx

∼ N
(

0, Ωuu.v

(∫
B2

x

)−1
)

(16)

We will use the same idea here to correct the bias terms in the test statistic Rn.

2. De Jong (2002) also recognizes the presence of two biases in nonlinear cointegrating re-
gressions and gives the same expression as ours for the serial correlation bias correction
in (11), but takes a different approach to correct the endogeneity bias. Noting that FM
regression corrects the endogeneity bias by replacing

∫
BxdBu with

∫
BxdBu.x, De Jong

suggests a direct correction to the regression errors by using ut − Ω̂uvΩ̂−1
vv vt instead of ut.

The sample quantities and their limits shown in Lemma 4 are closely related to the noncen-
trality vector ξ defined in Theorem 3. Since the test statistic Rn is a quadratic form involving
sample covariances of nonlinear functions, and the noncentrality parameter of its limit distri-
bution correspondingly involves a quadratic form of ξ, we may eliminate the noncentrality by
subtracting the sample quantities that converge to ξ from the nonlinear sample covariances. The
following theorem explains how to accomplish this modification of the RESET test and remove
the noncentrality.

Theorem 5 Suppose Assumptions A and A1 hold. If {Xt, Yt} are linearly cointegrated, the
following modified RESET statistic has a limiting central χ2 distribution with degrees of freedom
k

MRn =
{
û′F ·Dn − E′

n − S′n
}(

Ω̂uu.vD
′
nF̃ ′F̃ ·Dn

)−1 {
Dn · F ′û−En − Sn

} A∼ χ2(k),
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where û is n × 1 vector of residuals from the linear cointegration regression (2), F is an n × k
matrix with the (m, t) element Xm+1

t , and F̃ is the regression residual from regressing F on Xt

as in Theorem 3. The k × k normalization matrix Dn and the (m − 1)th elements of the two
k × 1 correction vectors En = [ En(1), · · · , En(k)]′ and Sn = [ Sn(1), · · · , Sn(k)]′ are defined as

Dn = diag(n−3/2, n−4/2, · · · , n−(k+2)/2)

En (m− 1) = Ω̂uvΩ̂−1
vv

[{
n∑

t=1

(
Xt√

n

)m vt√
n
− 4̂vv

m

n

n∑

t=1

(
Xt√

n

)m−1
}

−
(

1
n

n∑

t=1

Xtvt − 4̂vv

)(
1
n2

n∑

t=1

X2
t

)−1 (
1
n

n∑

t=1

(
Xt√

n

)m+1
)

 ,

Sn (m− 1) = 4̂vu
m

n

n∑

t=1

(
Xt√

n

)m−1

− Λ̂vu

(
1
n2

n∑

t=1

X2
t

)−1
1
n

n∑

t=1

(
Xt√

n

)m+1

.

Remarks

1. Although the RESET test is usually thought of as a general linearity test without specific
alternatives, it also can be interpreted as an LM test, where the basis functions are treated
as possible alternative nonlinear specifications. By construction, the test has highest power
against such alternatives. Furthermore, if the test rejects linearity, the estimated nonlinear
cointegration relationship provides an alternative nonlinear model, or more specifically a
partial approximation to an alternative nonlinear model for the data, at least when the
relationship is not spurious.

2. Since this type of test is based on a finite approximation method, power naturally depends
on the adequacy of the approximation under the alternative. Note that the goodness of ap-
proximation depends on the given nonlinear functional form that is approximated, and the
two components that can be controlled – the type and number of basis functions included
in the augmented regressors. A good approximation will help in detecting nonlinearity
when it is present, but even poor approximations can be effective. This is because the null
hypothesis requires that all k coefficients be zero, βj = 0 for j = 1, · · · , k, and the test
will reject if at least one coefficient deviates enough from zero, i.e. if one basis function is
able to catch some “part” of the nonlinearity.

Therefore, RESET test results should be interpreted conservatively: failure to reject the
linearity hypothesis H0 does not necessarily confirm a linear specification but rather that
the relationship does not contain any nonlinearity that can be detected through the basis
functions {Fj : j = 1, ...k}. The relationship between the power of the test and the choice
of k is examined in the next section using Monte Carlo simulation.

3. The F -test version of the RESET test asymptotically follows a mixture of doubly noncen-
tral F -distributions as in (13), where both random noncentrality parameters are quadratic
forms in ξ. Since our modified test statistic in Theorem 5 implies that En + Sn ⇒ ξ, the
bias correction method given above again can be used to construct a modified version of
the F -test that has a limiting central F -distribution in a similar way.
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In practice, the regressor set
{

Xj+1
t

}k

j=1
may suffer from multicollinearity, so that it is a

common practice to use their principal components as the regressors.3 In this case, the bias
correction terms need to be adjusted accordingly, and the modified test statistic using principal
components can be constructed as in the following corollary.

Corollary 6 Suppose the conditions in Theorem 5 hold. Let G be the k× k̃ matrix with k̃ eigen-
vectors of F ′F in its columns, after dividing by the corresponding eigenvalues. The modified test
statistic MRn based on these principal components follows a limiting central χ2(k̃) distribution
as follows

{
û′F ∗

n − E′
nG− S′nG

}(
Ω̂uu.vF̃

∗′
n F̃ ∗

n

)−1 {
F ∗′

n û−G′En −G′Sn

} A∼ χ2(k̃),

where F ∗
n = F ·Dn · G is n × k̃ normalized matrix with the jth principal component in the jth

column. The k̃ eigenvectors are chosen such that the corresponding eigenvalues are the k̃ biggest
ones.

3.1 The Modified RESET Test under Alternatives

As discussed earlier, considering nonlinearity together with nonstationarity gives rise to three
possible scenarios. Our modified test tests the null hypothesis of linear cointegration against
both nonlinear cointegration and the absence of cointegration, the latter incorporating both the
conventional spurious regression case and omitted variable cases. As shown above, the test has
a limiting central χ2 distribution under linearity, and this subsection examines test power in
these alternative scenarios.

3.1.1 The Case of No Cointegration

Kim, Lee, & Newbold (2003) show that many existing linearity tests tend to find spurious
nonlinearity when they are applied to two independent I(1) processes. They examine six widely
used linearity tests–Ramsey’s (1969) RESET test, White’s (1989) NN test, the Keenan (1985)
test, the McLeod and Li (1983) test, the White (1992) dynamic information matrix test, and
Hamilton’s (2000) flexible nonlinear test–and find that evidence of spurious nonlinearity increases
with the sample size. The following Theorem shows that our modified test statistic also diverges
when it is applied to two independent I(1) processes. However, divergence of the test should
not be interpreted as evidence of spurious nonlinearity but rather simply a rejection of the
linear cointegration specification with two possible alternative cases. For nonstationary time
series, a linearity test tests the linear (cointegration) specification against not only nonlinear
cointegration models but also absence of cointegration. Therefore, a diverging test statistic in
the no-cointegration case correctly points out the absence of linear cointegration. A further
specification test is needed to determine if the rejection is due to nonlinearity.

3While this procedure is often necessary when the test is applied to stationary Xt, multicollinearity seldom
arises when Xt is nonstationary. In contrast to mean-reverting stationary time series for which the variation of
Xt around zero are dampened by polynomial transformations, integrated Xt spend little time around the origin
and their variations are typically magnified by polynomial transformations as n increases.
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Theorem 7 Suppose Xt and Yt are not cointegrated so that

Yt = θ Xt + ut t = 1, · · · , n

with the I(1) process ut satisfying n−1/2ut=[n·] ⇒d Bu(·). In this case the modified RESET statis-
tic diverges at the rate of n/M , where M is the bandwidth parameter used in kernel estimation
of the long-run (co)variances.

This result is of some practical interest. The RESET test was originally developed for testing
linearity of the model but, when applied to cointegrating relations, the test has power against
lack of cointegrating as well. Thus, the modified RESET test can serve as an omnibus test for
the null of linear cointegration against the alternatives of both no cointegration and nonlinear
cointegration.

A similar idea in the context of detecting unit roots is present in Park(1990)’s unit root
test by variable addition. This test uses polynomials of a deterministic process as added vari-
ables to detect the presence of leftover stochastic trend(s), the RESET test uses polynomials
of the stochastic regressors instead, which have a natural advantage when there is nonlinear
cointegration involving these variables.

Since the rate of divergence depends on the relative size of the bandwidth parameter and
the number of observations, the choice of M can greatly affect the power of the test against the
lack of cointegration. Similar issues arise in other tests that rely on nonparametric estimates,
such as the KPSS test for stationarity. We will discuss this issue in the next section together
with other practical issues related to applying the modified RESET test.

3.1.2 The Nonlinear Cointegration Case

Among the many types of possible nonlinearities in cointegrated systems, we consider here
models that involve transformations belonging to the H-regular and I-regular classes introduced
earlier. In particular, we suppose the true cointegrated system has the following nonlinear form

Yt = f(Xt) + ut , t = 1, · · · , n (17)

where Xt and ut satisfy Assumptions A and A1 with f(·) belonging either to the H-regular or
I-regular nonlinear transformation class.

Theorem 8 If the true model has the nonlinear form (17) and {Xt, ut} satisfy the conditions of
Theorem 5, then the modified test statistic MRn diverges at the rate n

M in the H-regular nonlinear
case, but does not diverge in the I-regular nonlinear case.

Thus, the power of the modified RESET test depends on the nonlinear functional form. For
H-regular nonlinearities, the test statistic diverges at the rate Op

(
n
M

)
, just as in the case of no

cointegration. Note that this result includes the case of a threshold model alternative, where
the H-regular transformation is based on indicator functions. The asymptotic order in this case
is κ = 1, as in the case of linear cointegration, but the test statistic still diverges in this case at
the rate n/M .

Contrary to the H-regular case, the modified test has particularly low power against I-
regular type nonlinearity. This is because the variations from the I-regular type nonlinear
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transformation of Xt that remain in the linear cointegration residuals {ût} become negligible
relative to the variations of Xt as n increases, while the variations in the basis functions Fj(Xt)
remain significant regardless of n.

Since H-regular and I-regular classifications do not exhaust all types of nonlinear transfor-
mations, there will be other types of nonlinear transformations that the modified test fails to
detect. Whether a certain type of nonlinear cointegration is well detected by the modified test
or not is related to the effectiveness of the partial sum approximation reflected in the augmented
regressors {Fj}k

j=1. Again, however, this test does not require a “good” fit to detect nonlinearity.
If any polynomial term catches enough of the nonlinearity to make at least one of the fitted βj

coefficients significant, the modified test will have power in that direction to reject the null of a
linear cointegration relationship.

3.2 Implications for Nonlinear Regression with Integrated Processes

The two bias terms in the linear cointegration regression (9) are called “second-order” in the
sense that they cause bias only in the limit distribution, without affecting the consistency of LS
estimator. The same argument applies to nonlinear cointegration case.

As FM regression (16) corrects the two biases using sample moments and sample estimates
of the long-run (co)variances, Theorem 5 can be applied to correct the two biases in the LS
coefficient estimator in the nonlinear cointegration regression. Suppose we estimate a nonlinear
regression of the following form

Yt = θf(Xt) + ut t = 1, · · · , n

where f(Xt) = Xm
t . From Lemma 2 and Lemma 4 we can correct the second-order biases

n(m+1)/2
(
θ̃m − θ

)
=

(
1

nm+1

∑
X2m

t

)−1 {
1

n(m+1)/2

∑
Xm

t ut − En (m)− Sn (m)
}

⇒d

(∫
B2m

x

)−1 ∫
Bm

x dBu·x

so that the modified estimator has a Gaussian asymptotic distribution around the true value.
The two correction terms are defined as follows

En (m) ≡ 4̂vu
m

n

n∑

t=1

(
Xt√

n

)m−1

, Sn (m) ≡ Ω̂uvΩ̂−1
vv

{
n∑

t=1

(
Xt√

n

)m vt√
n
− 4̂vv

m

n

n∑

t=1

(
Xt√

n

)m−1
}

.

When m = 1, θ̃m is simply the FM estimator in a typical linear cointegration model and the
two correction terms En (m) and Sn (m) reduce to the usual form that appear in (16).

4 Simulations

Monte Carlo results are presented in this section to show the size distortion of the RESET test
caused by nonstationarity and to investigate how satisfactory the suggested modifications are
in achieving the nominal asymptotic size in finite samples. We also report some simulations
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on the power of the modified RESET test against some specific nonlinear models, choosing the
following four models in addition to the linear cointegration model:

(1) : Yt = 1.1Xt + ut

(2) : Yt = log(|Xt|+ 1) + ut

(3) : Yt = X2
t + ut

(4) : Yt = 1.2 exp(−X2
t ) + ut

(5) : Yt = 1.1Xt I{|n−1/2Xt|≥0.6} − 0.8Xt I{|n−1/2Xt|<0.6} + ut

Here, the linear model (1) is used as the reference case, (2) is a monotonically increasing, concave
transformation in <+ that is symmetric about the origin, (3) is an H-regular type nonlinear
transformation that is often used to check the power of a certain test against nonlinear models,
(4) is bell-shaped I-regular type nonlinear transformation, and (5) is a threshold model of a type
that is commonly used in practical models of economic time series.

The regression error {ut}n
t=1 and the integrated regressor Xt are generated from the design

4Xt = vt = e2,t−1 + 0.4e2,t−2,

ut = ρut−1 +
1√
2

(e1,t + e2,t) ,

where ρ ∈ [0.2, 0.4, 0.6, 0.8] controls the level of serial correlation in the error term, and {(e1,t, e2,t)}n
t=1

are independently and identically distributed as
(

e1,t

e2,t

)
∼ N (0, I2) . (18)

Note that the innovation processes are constructed in such a way that Xt is predetermined, as
specified in Assumption A. Samples of 5 different sizes (n = 50, 100, 250, 500, 1000) are drawn
with 10,000 replications to examine both small sample properties and rate of convergence to the
limit

4.1 Size of the Test

Fig. 1 compares two RESET tests–before and after bias corrections–when Xt and Yt are linearly
cointegrated. The four graphs summarize the test performance under H0 from Table 1 with (a)
varying number of observations for a given level of serial correlation and (b) varying level of
serial correlation for a given number of observations. As shown in the upper panels (a), with a
moderate level of serial correlation (AR coefficient is 0.6) in the regression error, the RESET test
without correction terms shows severe size distortions that become even worse as the sample size
increases.4 For a nominal asymptotic 5% size, the actual probabilities of a type I error are 0.1058
(n=50), 0.1837 (n=100), 0.2817 (n=250), 0.3287 (n=500) and 0.357 (n=1000). This weakness
of the RESET test is already well known in the stationary and highly autocorrelated Xt case
from work of Porter & Kashyap (1984), and the results here for the case of a cointegrating

4The probability of a type I error increases when the regression errors are more serially correlated as shown
in (b). In the extreme case of (independent) I(1) errors, the test statistic diverges, as reported in Kim, Lee &
Newbold (2003).
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relation may be regarded as an extreme version of these earlier findings. While the test without
correction terms suffers from increasing type I errors, the modified RESET test in the right
panel of Fig. 1 (a) exhibits only a small size distortion, which vanishes as n increases, and at
the same time, shows a relatively fast convergence to the limit distribution. The probabilities of
the type I errors for the nominal 5% test are 0.1932 (n=50), 0.0926 (n=100), 0.0483 (n=250),
0.0496 (n=500) and 0.0491 (n=1000).

Fig. 1 (b) shows how the bias correction terms work for different ρ values. The left panel
confirms the severe size distortions due to the serially correlated errors. For a nominal asymptotic
5% size, the probability of a type I error reaches up to 70% for ρ = 0.8, while including two
correction terms bring it back to 4.99%. These figures are based on Table 1 which compares two
tests for different ρ’s and n’s with k = 3.

4.2 Power of the Test

Table 1 also reports the power of the modified RESET test against some specific nonlinear
models. With linear cointegration as the reference case in (1), simulation results show that the
modified RESET test is quite sensitive to all the nonlinearities except (4) for a wide range of ρ
values. The probabilities of rejecting the linearity null are over 90% in most cases except for (4).
As expected, the modified RESET test is most powerful against polynomial type nonlinearity
(always higher than 99% in case (3)) but also shows good powers against logarithmic (2) and
threshold (5) nonlinearities. Note also that the original RESET test in the second part also
shows the similar pattern.

The low power against (4) is due to fact that the regression function is an integrable transform
of Xt, which is poorly captured by the polynomial basis terms in the RESET test. In particular,
the asymptotic form of the function e−X2

t when Xt = Op

(√
t
)

for large t is not captured by the
asymptotic form of the polynomial terms Xj

t = Op

(
tj/2

)
in the RESET basis.

Table 2 shows the probability of rejecting the linear cointegration null hypothesis when the
modified test is applied to two I(1) variables that are not cointegrated, i.e.

Yt = 1.1Xt + ut with ut ∼ I(1)

As discussed in Theorem 7, the modified test statistic diverges at the rate n/M so that the
rejection rate is sensitive to the choice of the bandwidth parameter M . We report five cases,
corresponding to M = n1/5, M = n1/4, M = n1/3, M = n1/2 and the usual data-dependent
automatic bandwidth (Andrews, 1991) for a Parzen kernel in Table 2. Two aspects of the results
in Table 2 confirm Theorem 7. First, the rejection probability tends to higher for the smaller
bandwidth choices for given k and n. Second, the rejection probability increases with n as well
as with the number of augmented regressors k in general, espeically for smaller bandwidths. For
M = n1/3, the effect of increasing k on the rejection probability is not as large as in the case of
M = n1/5, and even decreases for M = n1/2. When an automatic bandwidth rule is employed,
increasing k has a more significant effect on power for a given n than increasing n for a given k.

4.3 Limitations and Practical Issues

The limitations of the modified RESET test are related to the approximation method that the
test is based on and the nature of the nonlinear cointegration functional forms. As mentioned
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previously, once the nonlinear cointegrating function is given, the size of the approximation
error is determined by the type and number of the basis functions {Fj}k

j=1. These choices
determine how well a linear combination of the basis functions can approximate some nonlinear
cointegrating function of Xt. If there exists a set of coefficient

{
βj

}k

j=1
such that

∑k
j=1 βjFj (Xt)

is close to f (Xt) over a wide enough domain (since an I (1) process like Xt visits all points of
the space an infinite number of times), then we can expect the test to reject linear cointegration
in favor of some form of nonlinear cointegration, corresponding to the non-zero

{
βj

}
estimates.

Once the basis functions {Fj}k
j=1 are selected, k needs to be chosen. While larger k may

produce an improved approximation to f(·), in a finite sample testing framework there exist
some trade-offs. On the one hand, larger values of k will, at least to a certain point5, generally
increase the power of the test by virtue of their improved approximation capability. On the
other hand, larger k increases the risk of spurious nonlinearity resulting in a higher probability
of a type I error under the null. Moreover, to reject the null hypothesis H0 : β1 = · · · = βk = 0,
at least one significant coefficient will suffice, a condition that is less restrictive than requiring
a good fit to f (Xt) by

∑k
j=1 β̂jFj (Xt) . Simulations (not reported here) suggests that the use

of k = 2 or 3 generally produces good size and reasonable power, while increasing k to k = 3 or
4 adds power without too much compromise in size.

Although not shown explicitly in the regression equation (2), the choice of bandwidth pa-
rameter M for kernel estimation of long-run (co)variance can be another important element that
affects the size and the power of the test, especially in small sample. As discussed in Theorem
7 and shown in Table 2, the power against the no-cointegration alternative depends on n/M .
The test statistic under the some alternatives diverges faster as M/n becomes smaller, but this
makes the test statistic under the null converge to the asymptotic distribution at a slower rate.
Therefore, in addition to the choice of k, it is recommended to apply the test with different
combinations of k and M to get more a concrete result.

One popular choice for the bandwidth selection is the data dependent method in Andrews
(1991). He proposes the automatic bandwidth choices for various kernels, and for the Parzen
kernel we use, the automatic bandwidth is

M = 2.6614
[
n ·

(∑ 4ρ̂2σ̂2

(1− ρ̂)8

)
�

(∑ σ̂4

(1− ρ̂)4

)]1/5

where ρ̂ is the AR(1) coefficient estimate in ût = ρût−1 + et and σ̂2 is the variance estimate of
et.

Another important factor that affects the power of the test is the actual nonlinear functional
form. Although general approximation methods, including the power series approximations that
underlie the RESET test, can provide reasonable approximations to a wide class of nonlinear
functions, there are nonlinear transformations that cannot be well approximated by these meth-
ods. In particular, certain extensions to polynomial (or rational) approximants are generally
needed in order to produce global approximations to functions over the whole real line. Phillips
(1983) suggested a class of extended rational approximants that have good global approximant

5For k very large, the regressor matrix F can manifest multicollinearity and principal components may be
used. In many cases, the first few principal components tend to explain most of variation in F and increasing
k then leads to little improvement in the power of the test. Note that increasing k also leads to a decrease in
degrees of freedom in the regression.
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performance over the whole real line to integrable functions. One has to keep in mind that ac-
cepting the null of linear cointegration leaves open the possibility of some undetected nonlinear
effects (especially if these are of the ‘small’ type that would be delivered by integrable transfor-
mations). Rejecting the null suggests that there may be nonlinear models that outperform the
linear model or that there may be no meaningful cointegrating relation.

Estimated linear combinations of the basis functions can suggest a possible nonlinear alter-
native if the true relationship is nonlinear. In this case, as discussed in the previous section,
the modified RESET test can be interpreted as an LM test which compares a linear cointegra-
tion model against an estimated approximation to some unknown nonlinear cointegration model.
When the test rejects the null, we can write down an alternative nonlinear model with additional
basis functions and re-estimate this model using FM regression. This leaves the remaining issues
of choosing a suitable value of k for the regression so that the approximation error is reduced
while not attempting to overfit the data. These issues are complex and are beyond the scope of
the present paper.6

5 Empirical Application to PPP

The introduction of unit root limit theory and cointegration methods have led to a vast number
of empirical studies with nonstationary time series, many of them conducted without further
attention to specification testing beyond what is implied by unit root and cointegration tests.
This section considers the purchasing power parity (PPP) relationship between nominal exchange
rates and the foreign-domestic price ratio and applies the modified RESET linearity test to check
whether the traditional linear cointegration specification is appropriate in this context.

5.1 PPP Models

PPP is a simple, intuitively appealing empirical proposition dated at least to the sixteenth
century in Spain (Dornbusch, 1987). The theory postulates that once converted to a common
currency, the price level of traded goods should be equalized across countries due to arbitrage.
In this strict sense, the idea is sometimes understood as an extension of the law of one price
(LOP). For a nominal exchange rate, St, a domestic price of a traded good i at time t, Pi,t, and
the foreign price for the same good, P ∗

i,t, the LOP states that the same good should be sold at
the same price in different countries if prices are converted into a common currency (Rogoff,
1996)

Pi,t = St · P ∗
i,t.

Aggregating this relationship over traded goods, PPP states that
∑

i

Pi,t = St ·
∑

i

P ∗
i,t.

For a variety of reasons, this exact form of PPP, the so-called absolute PPP, does not hold and
a weaker version of PPP is commonly used to provide a definition of the real exchange rate as

qt = st + p∗t − pt,

6Of course, rejecting the null of linear cointegration may be due either to nonlinearity or to lack of cointegra-
tion. Developing an approximate nonlinear cointegrated system will be valid only when the rejection is due to
nonlinearity.
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where qt and st are log transforms of real and nominal exchange rates, and p∗t and pt are log
transforms of foreign and domestic price levels.

Intuitively accepted as providing a long-run equilibrium relationship among price levels and
exchange rates, PPP has been tested in various frameworks, leading to some mixed empirical
findings.7 There have been many attempts to explain, using both economic and statistical
arguments, the failure to find concrete empirical evidence for PPP.8 For example, in the weaker
version of PPP, the log of the real exchange rate qt is usually divided into two parts: a traded
goods component and a bilateral difference between the relative price of traded to non-traded
goods, viz.,

qt = st + p∗t − pt =
{
st + pT∗

t − pT
t

}
+

{
α∗(pN∗

t − pT∗
t )− α(pN

t − pT
t )

}

where the superscripts ‘T’ and ‘N’ stand for ‘traded’ and ‘non-traded’ respectively. The price
indices are generally assumed to be geometric averages of traded and non-traded goods,

pt = (1− α)pT
t + αpN

t and p∗t = (1− α∗)pT∗
t + α∗pN∗

t ,

and, defining

P1 = st + pT∗
t − pT

t and P2 = α∗(pN∗
t − pT∗

t )− α(pN
t − pT

t ),

the real exchange rate is stationary either if P1 and P2 are stationary, or if P1 and P2 are
nonstationary but cointegrated. Accepting PPP as a long-run equilibrium relationship, P1 is
stationary and it is not at all surprising that many find the real exchange rate to be nonstationary
considering the presence of the possibly nonstationary component P2.

Traditional unit root/cointegration approaches have been the most widely used method in
PPP empirical studies, but these methods have often failed to find any strong support for
PPP. These failures have led to the use of many new methods in searching for evidence of PPP,
including longer datasets, panel unit root evaluations, and the use of nonlinear models. Noticing
the low power of unit root tests in small samples, researchers have tested PPP using long-
horizon data, finding stronger support for PPP (e.g. Lothian & Taylor, 1995) by this method.
Many empirical researchers have found that the floating exchange rate system introduced with
the Bretton Woods system has led to larger deviations from PPP (e.g. Taylor, 2002). Using
cross-country data to improve the power of unit root tests has also tended to produce stronger
support for PPP, but these methods have also been criticized by O’Connell (1998) and others
for neglecting cross country dependence. While these first two methods have involved the use of
different datasets to improve tests of PPP, the last approach takes into account the possibility of
different model specifications. Nonlinear specifications are often obtained from market frictions
like transaction costs, e.g. Dumas (1992), Sercu, Uppal & van Hulle (1995), and Michael, Nobay
& Peel (1997). Because of market frictions, there exists an inactive range around parity in which
international arbitrage does not work and adjustments to parity start to occur only when the
exchange rate moves out of this range. This nonlinear adjustment to parity can be formulated
using variations of the threshold model (e.g. STAR, ESTAR) and some significant empirical

7Froot & Rogoff (1995) provide a discussion of the evolution of PPP tests and Rogoff (1996) surveys empirical
studies in the area.

8See Grilli & Kaminsky (1991), Pedroni (2001) and Ng & Perron (2002) for some statistical arguments and
Sercu, Uppal & van Hulle (1995) and Rogoff (1996) for popular economic explanations.
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evidence has been found in support of these models, a recent contribution being Saikkonen and
Choi (2004) who use smooth nonlinear transitions.

In addition to the nonlinear short-run “adjustment” terms included in long-run linear equi-
librium, Basher & Haug (2003) posit a nonlinear PPP relationship and apply a nonlinear cointe-
gration test developed by Breitung (2001), but fail to find any linear and nonlinear cointegration
relationship among the G10 countries. We use their model

St = α + f

(
P ∗

t

Pt

)
+ ut (19)

and test for linearity in this cointegrating relationship between the nominal exchange rate and
the ratio of foreign and domestic prices.

Not having a specific functional form for f(·) offers some advantages. First, even if the
threshold model had strong theoretical justification for one tradable good, aggregating over all
goods and using a general price level inevitably obscures the form of the implied nonlinearity for
the aggregate relationship (for instance, because of the manifold threshold points that appear
in the aggregation). Setting a regression equation in the general form of (19) allows for a more
flexible interpretation. Apart from providing a testable form of PPP, (19) can be thought of
as a general model of nominal exchange rate determination in terms of economic fundamentals.
Although Meese & Rogoff (1983) find that no existing structural model outperforms a simple
random walk model in prediction, the monetary model has been the standard model for ex-
change rate determination. This model’s main implication is that the nominal exchange rate is
determined by some economic fundamentals like money (m) and output (y) of the two countries,
and the risk premium (ρ). Frankel & Rose (1994) show the following expression, first given by
Mussa (1976), can be derived using money market equilibrium, PPP, and uncovered interest
parity:

st = [(m−m∗)t − β(y − y∗)t + ρt] + α
Et(4st)

dt
+ εt

Using the price ratio to reflect the economic fundamentals, (19) can be regarded as expressing
nominal exchange rates as some unknown function of underlying fundamentals.

In addition to the PPP in levels (or absolute PPP), we also test relative PPP which can be
written as (Rogoff, 1996)

Pt

Pt−1
=

(
St

St−1

)
· P ∗

t

P ∗
t−1

Since the price index is the relative value to a base year and we do not know how big the
deviation from absolute PPP was at the base year, this relative version of PPP requires the
relationship to hold only in terms of changes. In this case, since the logarithms of the price and
exchange rate ratios are stationary, we need to interpret empirical results appropriately.9

5.2 Data and Empirical Results

We consider three countries (US, Japan and Canada) forming the two pairs: US-Japan and US-
Canada. We focus on these two pairs, which represent respectively a relationship between two

9Note that if the variables are stationary, our modified test becomes equivalent to the traditional RESET test
as the bias and correction terms vanish asymptotically.
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big economies and a relationship between countries with fewer trade barriers and transportation
costs.

Our US, Japan and Canadian dataset is taken from the IMF’s International Financial Statis-
tics (IFS) CD-ROM and contains nominal exchange rates, the consumer price index (CPI) and
producer price index (PPI) at a monthly frequency. The data spans the period from 1971:1 to
2004:12, yielding 34 years or 408 monthly observations. A monthly average market rate is used
for the nominal exchange rate and both the CPI and PPI are used to calculate price ratios.
The data are plotted in Figure 2. The left column shows the US-Canada: nominal exchange
rate (solid), CPI ratio (dashed) and PPI ratio (dash-dotted), and the right column shows the
US-Japan in the same manner. The upper panels plot the nominal exchange rates, CPI ratios
and PPI ratios in levels (not in logs). The lower panels plot the same series but in changes
calculated by year-to-year ratios, i.e. for the nominal exchange rate (St), St/St−12 and for the
CPI or PPI (Pt), (Pt/Pt−12)/(P ∗

t /P ∗
t−12).

First, we apply augmented Dickey-Fuller (ADF) tests to determine whether the time series
plotted in Figure 2 are integrated processes (the Phillips-Perron test gave similar results). Test
results (not reported here) indicate that the nominal exchange rate, CPI, and PPI are all unit
root nonstationary in levels (for absolute PPP) and stationary in changes (for relative PPP).
Second, we apply ADF and KPSS tests to the regression residuals with varying sample periods,
to check whether these tests find any meaningful linear cointegration relationship. As much
previous research has reported, conventional (linear) cointegration tests show somewhat mixed
results (Table 3).

1. We first consider the whole sample period (1971M1–2004M12: Period 1) and then the
post-Volcker period (1983M1–2004M12: Period 2).

2. The ADF test applied to US-Canada and US-Japan does not find evidence of any (linear)
cointegration relationship between nominal exchange rate and the ratio of price levels
(absolute PPP) with neither CPI nor PPI.

3. The KPSS test finds linear cointegration relations for the whole sample period but some
of these are not supported by tests for the different sample period. Although not reported
here, it is not hard to find a subsample period where the ADF test finds evidence of a
cointegration relation.

4. Depending on the type of cointegration test and the sample period, you may or may not
find the cointegration relationship for the same sample.

Since these two popular residual based cointegration tests produce ambiguous findings, we
apply our modified RESET test to check whether the relationship is linear. The modified test
is used for both absolute PPP and relative PPP with varying bandwidths M and numbers of
polynomial terms k. Table 4 summarizes the results from the modified test as well as the original
RESET test before modification. While the original RESET test tends to suggest support for
a linear relationship much of the time (except for absolute PPP using the CPI), the modified
RESET test shows little support for a linear cointegration specification (except in the case of
absolute PPP with PPI and k = 2 in Japan-US).

These findings corroborate some existing empirical work on real exchange rates reported in
Froot & Rogoff (1995). First, according to that work, cointegration is rejected more often in
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the floating exchange rate system, and our data, which cover the post Bretton Woods period,
also show little support for linear cointegration using the modified RESET test. Second, past
work with existing tests has found evidence of cointegration with PPI data more often than
with CPI data. Correspondingly, our modified RESET test results indicate that (absolute) PPP
with PPI data is closer to a linear relationship than the PPP using CPI data. Third, using Pt

and P ∗
t separately instead of the ratio Pt/P ∗

t tends to lead to linear cointegration more often,
partly of course because use of Pt/P ∗

t is equivalent to restricting one part of cointegration vector
and thereby this specification loses some flexibility. On the other hand, restricting this part of
cointegration structure may partly be compensated for by allowance for an unspecified nonlinear
form f(·).

6 Conclusion

Using some recently developed asymptotic tools in Park & Phillips (1999, 2001), this paper
presents a specification test that can be applied to nonstationary time series. Neither con-
ventional cointegration tests nor regression tests of linearity can effectively discriminate linear
cointegration from both nonlinear cointegration and lack of cointegration. In contrast, the mod-
ified RESET test is a specification test that can be used to assess the adequacy of a linear
cointegrating relation against certain forms of nonlinear cointegration and the alternative of no
cointegration. We note that the conventional RESET test suffers from severe size distortion
when it is applied to unit root nonstationary data and is therefore unsuitable for empirical
application. The modifications to the RESET test developed here eliminate the biases that
cause these size distortions and lead to a corrected test statistic that has a limiting central χ2

distribution that is well suited for empirical work and which has good power against both non-
linear cointegration and no cointegration alternatives. When this test is applied to study PPP
relationships for the US, Japan and Canada, the test strongly rejects the linear cointegration
hypothesis in most PPP relationships, but the test finds that a PPI based PPP relationship is
much better approximated by a linear specification than when CPI data is used.

Some related work is in progress. Since the power of the test depends on the choice of
basis functions, we are developing a set of linearity tests using different basis functions. This
seems particularly appropriate when we want to allow for functions whose behavior is poorly
approximated by polynomials, such as integrable functions which attenuate the influence of
integrated regressors. At the same time, there is scope for developing a linearity test that is
not based directly on an approximating family, so that the power and the size of the test do
not depend on so many choices such as the basis functions, the number of basis functions and a
bandwidth parameter.
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A Appendix

A.1 Additional Assumptions

Assumption A1:
For ζ̃t = (ηt+1, εt)′ and the sigma field Ft = σ({ζs}t−∞),

1. supt≥1 E(‖ζ̃t‖r |Ft−1 ) < ∞ a.s. for some r > 4

2. E(ζ̃
2
i,tζ̃j,t−l) = 0 for all i, j and for all l ≥ 1

3. εt is iid with E|ε|r < ∞ for some r > 8 and its distribution is absolutely continuous with
respect to Lebesgue measure and has characteristic function ϕ for which ϕ(λ) = o(‖λ‖−δ)
as λ →∞ for some δ > 0.

These additional moment conditions for the innovation processes correspond to those in
Chang, Park & Phillips (2001) and are used to apply some of their results given in Lemma 10
below. While the first two conditions are fairly general moment conditions, the last condition
on the distribution of the innovation process of Xt is somewhat strong than usual. However, it
is still satisfied by a wide class of processes, for example all invertible Gaussian ARMA models.

A.2 Lemmas

The following lemma concerns the asymptotic orders of kernel estimators of long-run (co)variance
matrices when {Xt, Yt} are not cointegrated and is proved in Lemma 1 of Xiao & Phillips (2002).

Lemma 9 Suppose ut is I(1) and Xt satisfies Assumption A. As n → ∞, M → ∞, and
M/n → 0,

1
M

Ω̂uv ⇒ 2πw̃(0)
(∫

dBxQ

)
+ Ω∗,

1
M

Λ̂uv ⇒ 2πw̃1(0)
(∫

dBxQ

)
+ Λ∗,

1
nM

Ω̂uu ⇒ 2πw̃(0)
∫

Q2,

where M is bandwidth parameter, Q = By − β∗Bx for (
∑

X2
t )−1

∑
XtYt ⇒ β∗,

w̃(0) =
1
2π

∫ 1

−1
K(a) da and w̃1(0) = lim

M→∞
1

2πM

M∑

h=0

K

(
h

M

)
=

1
2π

∫ 1

0
K(a) da,

and

Ω∗ =
∞∑

h=−∞
E(vtqt+h) and Λ∗ =

∞∑

h=1

E(vtqt+h),

with qt = yt − β̂xt and n−1/2
∑[nr]

1 qt ⇒ Q(r).
¤
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Lemma 10 below is from Chang, Park & Phillips(2001). It summarizes the limits of the
sample moments of nonlinearly transformed time series for I-regular and H-regular nonlinearities.

Lemma 10 Let ai(·) be I-regular, bi(·) be H-regular with asymptotic order κi and limit homo-
geneous function hi(·) which is piecewise differentiable with locally bounded derivative. Then, as
n →∞,

(1)
1

n1/2

n∑

t=1

ai(xt) ⇒d L(1, 0)
∫ ∞

−∞
ai(s)ds

(2)
1

n · κi

n∑

t=1

bi(xt) ⇒d

∫ 1

0
hi(Bx(r))dr

(3)
1

n1/4

n∑

t=1

ai(xt)ut ⇒d

(
L(1, 0)

∫ ∞

−∞
ai(s)ai(s)′ds

)1/2

W (1)

(4)
1

n1/2 · κi

n∑

t=1

bi(xt)ut ⇒d

∫ 1

0
hi(V (r))dU(r)

(
=d

(∫
hi(Bx)hi(Bx)′

)1/2

W (1)

)

(5)
1

n1/2

n∑

t=1

ai(xt)ai(xt)′ ⇒d L(1, 0)
∫ ∞

−∞
ai(s)ai(s)′ds

(6)
1

n1/2

n∑

t=1

ai(xt)aj(xt)′ ⇒p 0 for i 6= j

(7)
1

n1/2 · κi

n∑

t=1

ai(xt)bj(xt)′ = Op(1)

(8)
1

n · κi · κj

n∑

t=1

bi(xt)bj(xt)′ ⇒d

∫ 1

0
hi(Bx(r))hj(Bx(r))′dr

where n−1/2xt = n−1/2
∑

vj ⇒ Bx(r), n−1/2
∑

ut ⇒ Bu(r), and {vt, ut} satisfy Assumption
A and Assumption A1. W (r) is another Brownian motion independent of Bx(r) and Bu(r)
with the same variance as Bu(r). The equality in the parenthesis of (4) holds only if Bx(r) is
independent of Bu(r).

¤

A.3 Proofs

Proof. [Lemma 2] Applying the Beverage-Nelson (BN) decomposition to ut as in Phillips and
Solo (1992) we can write

n∑

t=1

(
Xt√

n

)m ut√
n

=
n∑

t=1

(
Xt√

n

)m εt√
n

C(1)−
n∑

t=1

(
Xt√

n

)m 4ε̃t√
n
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with ε̃t =
∑∞

j=0

(∑∞
s=j+1 cs

)
εt−j and the difference operator 4. The first term converges to∫

Bm
x dBεC(1) and the second term becomes

n∑

t=1

(
Xt√

n

)m 4ε̃t√
n

=
(

Xn√
n

)m ε̃t√
n
−

n∑

t=1

4
(

Xt√
n

)m ε̃t−1√
n

= op(1)− m√
n

n∑

t=1

(
Xt√

n

)m−1 vtε̃t−1√
n

= −m

n
· E(wt)

n∑

t=1

(
Xt√

n

)m−1

− m

n

n∑

t=1

(
Xt√

n

)m−1

[wt −E(wt)]

⇒ −m · E(wt)
∫

Bm−1
x + op(1)

where E(wt) = E(vtε̃t−1) = 4vu, a one-sided long-run covariance10, and where we use the
binomial expansion of Xm−1

t = (Xt−1 + vt)m−1,

Xm−1
t = Xm−1

t−1 +
m−1∑

k=1

(
m− 1

k

)
Xm−1−k

t−1 vk
t ,

and Lemma 10.

¤

Proof. [Theorem 3] See the proof for Theorem 5. All steps are the same except the fact that
the second order bias terms are not corrected but are collected together to form the noncentrality
parameter.

¤

Proof. [Lemma 4] The serial correlation correction term (14) follows from the sample moment
asymptotics for H-regular nonlinear functions in Theorem 3.3 of Park & Phillips (2001). For the
endogeneity correction term (15), note that

n∑

t=1

(
Xt√

n

)m vt√
n

=
n∑

t=1

(
Xt−1√

n

)m vt√
n

+
n∑

t=1

{
m∑

k=1

(
m

k

)(
Xt−1√

n

)m−k (
vt√
n

)k+1
}

= P1 + P2

⇒d

∫
Bm

x dBx + m4vv

∫
Bm−1

x , (20)

10Note that for ut and vt satisfying Assumption A, we have

E(vtε̃t−1) = E

" ∞X
j=0

djηt−j

!( ∞X

k=0

 ∞X

s=k+1

cs

!
εt−1−k

)#
= σ12

( ∞X
j=0

dj

 ∞X
s=j+1

cs

!)

∞X

h=0

E(v0uh) =

∞X

h=0

E

" ∞X
j=0

djη−j

! ∞X
i=0

ciεh−i

!#
= σ12

∞X

h=0

∞X
j=0

djch+j+1 = σ12

∞X
j=0

dj

∞X
s=j+1

cs

and, therefore, E(vtε̃t−1) = 4vu.
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with

P1 =
n∑

t=1

(
Xt−1√

n

)m vt√
n

=
n∑

t=1

(
Xt−1√

n

)m ηt√
n

D(1)−
n∑

t=1

(
Xt−1√

n

)m 4η̃t√
n

≈
n∑

t=1

(
Xt−1√

n

)m ηt√
n

D(1)−
{(

Xn√
n

)m η̃n√
n
− m

n

n∑

t=1

(
Xt√

n

)m−1

vtη̃t

}

⇒d

∫
Bm

x dBx −
{

op(1)−m · E(vtη̃t)
∫

Bm−1
x

}
,

using the Phillips-Solo (1992) device, and

P2 =
n∑

t=1

{
m

(
Xt−1√

n

)m−1 (
vt√
n

)2

+
m(m− 1)

2

(
Xt−1√

n

)m−2 (
vt√
n

)3

+ · · ·+
(

vt√
n

)m+1
}

⇒d m · E(v2
t )

∫
Bm−1

x + op(1),

where E(vtη̃t) =
∑∞

h=1 E(v0vh) = Λvv. Use of the consistent estimator 4̂vv and (20) now leads
to the required result

n∑

t=1

(
Xt√

n

)m vt√
n
− 4̂vv

m

n

n∑

t=1

(
Xt√

n

)m−1

⇒d

∫
Bm

x dBx.

¤

Proof. [Theorem 5]
The test statistic is a quadratic form in û′F · Dn and the bias terms, with the weight

matrix (Ω̂uu.vD
′
nF̃ ′F̃ ·Dn)−1 as metric in the form. We show that this quadratic form statistic

converges to a random variable that follows a χ2(k) distribution in two steps. First, conditional
on Fx = σ(Bx(r), 0 ≤ r ≤ 1), we show that û′F · Dn becomes a zero mean Gaussian vector
after bias corrections in the limit; and second, that its variance matrix is the limit of the weight
matrix.

Start by writing

n∑

t=1

Fm(Xt)ût =
n∑

t=1

F̃m(Xt)ut

=
n∑

t=1

Fm(Xt)ut −
n∑

t=1

Xtut

(
n∑

t=1

X2
t

)−1 n∑

t=1

Fm(Xt)Xt,

where F̃m(Xt) is the regression residual when Fm(Xt) is regressed on Xt, and the first term is
examined in Lemma 2 and Lemma 4.
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In the RESET test, Fm−1(Xt) = Xm
t and using Lemma 2

1
n(m+1)/2

n∑

t=1

X̃m
t ut =

1
n(m+1)/2

n∑

t=1

Xm
t ut − 1

n(m+1)/2

n∑

t=1

Xtut

(
n∑

t=1

X2
t

)−1 n∑

t=1

Xm+1
t

⇒
∫

Bm
x dBεC(1) + m4vu

∫
Bm−1

x −
(∫

BxdBu + Λvu

)(∫
B2

x

)−1 ∫
Bm+1

x

=
∫

B̃m
x dBu + m4vu

∫
Bm−1

x − Λvu

(∫
B2

x

)−1 ∫
Bm+1

x ,

with B̃m
x = Bm

x − Bx

(∫
B2

x

)−1 ∫
Bm+1

x . The last two terms carry the effects of the serial
correlation bias. With consistent estimation of 4vu and Λvu, Lemma 4 gives the correction for
the first bias term and the second bias term is a direct application of Lemma 10. So the serial
correlation bias correction term for the (m− 1)th element is given by

Sn(m− 1) = 4̂vu
m

n

n∑

t=1

(
Xt√

n

)m−1

− Λ̂vu

(
1
n2

n∑

t=1

X2
t

)−1
1
n

n∑

t=1

(
Xt√

n

)m+1

,

and the (m−1)th element of the sample covariance û′F ·Dn with the serial bias correction terms
satisfy

1
n(m+1)/2

n∑

t=1

X̃m
t ut − Sn(m− 1) ⇒d

∫
B̃m

x dBu.

Note that this limit can be decomposed into two parts – a zero mean Gaussian mixture with
variance matrix Ωuu.v

∫
B̃m

x B̃m
x

′
and the endogeneity bias term –as follows.

∫
B̃m

x dBu =
∫

B̃m
x dBu.x + ΩuvΩ−1

vv

∫
B̃m

x dBx.

The endogeneity bias term has the following two components

ΩuvΩ−1
vv

∫
B̃m

x dBx = ΩuvΩ−1
vv

[∫
Bm

x dBx −
∫

BxdBx

(∫
B2

x

)−1 ∫
Bm+1

x

]
.

The second part can be quite easily corrected by
(

1
n

n∑

t=1

Xtvt − 4̂vv

)(
1
n2

n∑

t=1

X2
t

)−1 (
1

n(m+3)/2

n∑

t=1

Xm+1
t

)
⇒d

∫
BxdBx

(∫
B2

x

)−1 ∫
Bm+1

x ,

and (15) in Lemma 4 gives the correction term for the first part. Therefore, with the endogeneity
bias correction term defined as follows

En(m− 1) = Ω̂uvΩ̂−1
vv

[{
n∑

t=1

(
Xt√

n

)m vt√
n
−m4̂vv

(
1
n

n∑

t=1

(
Xt√

n

)m−1
)}

−
(

1
n

n∑

t=1

Xtvt − 4̂vv

)(
1
n2

n∑

t=1

X2
t

)−1 (
1

n(m+3)/2

n∑

t=1

Xm+1
t

)
 ,
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the (m− 1)th element of the sample covariance û′F ·Dn with two correction terms, becomes

1
n(m+1)/2

n∑

t=1

X̃m
t ut − En(m− 1)− Sn(m− 1) ⇒d

∫
B̃m

x dBu.x, (21)

which follows a N
(
0,Ωuu.x

∫
B̃m

x B̃m
x

′)
distribution conditional on Fx = σ(Bx(r), 0 ≤ r ≤ 1).

Next consider the weight matrix. Using Lemma 10, the (i, j) element of
(
D′

nF̃ ′F̃ ·Dn

)
has

the following limit
1
n

1
n(i+j+2)/2

n∑

t=1

X̃i+1
t X̃j+1

t ⇒d

∫
B̃i+1

x B̃j+1
x

′
. (22)

From (21) and (22), it follows that the modified RESET statistic is a quadratic form with a
limiting χ2 distribution as

{
û′F ·Dn −E′

n − S′n
}(

Ω̂uu.vD
′
nF̃ ′F̃ ·Dn

)−1 {
Dn · F ′û−En − Sn

}

⇒d




∫
B̃2

xdBu.x
...

∫
B̃

(k+1)
x dBu.x




′ 
Ωuu.v




∫
B̃2

xB̃2
x

′ · · · ∫
B̃2

xB̃k+1
x

′

...
. . .

...
∫

B̃k+1
x B̃2

x

′ · · · ∫
B̃k+1

x B̃k+1
x

′







−1 


∫
B̃2

xdBu.x
...

∫
B̃

(k+1)
x dBu.x




A∼ χ2(k),

using Muirhead (1982).11 Note that the test statistic follows a central χ2(k) unconditionally.

¤

Proof. [Corollary 6] Remember that G is the k × k̃ matrix with k̃ eigenvectors of F ′F in
its columns, after divided by corresponding eigenvalues. Using G, the principal components of
the normalized regressors F · Dn can be written as F ∗

n = F · Dn · G (Theil, 1971). Note that
(21) implies that conditional on Fx = σ(Bx(r), 0 ≤ r ≤ 1), the sample covariance of nonlinearly
transformed Xt with two correction terms follows mean zero Gaussian distribution. Multiplying
this by G gives {

û′F ·Dn ·G− E′
nG− S′nG

}
=

{
û′F ∗

n −E′
nG− S′nG

}

and this converges to

N
(
0, Ωuu.v

[
lim

n→∞G′DnF̃ ′F̃DnG
])

= N
(
0, Ωuu.v

[
lim

n→∞ F̃ ∗′
n F̃ ∗

n

])

conditional on Fx. With the consistent estimator of Ωuu.v, Ω̂uu.vF̃
∗′
n F̃ ∗

n converges to the variance,
and the modified test statistic with principal components follows χ2(k̃) asymptotically.

11Denoting Z as the limit of weight matrix and Σ as the variance of the limit of û′F · Dn − En − Sn, the
necessary and sufficient condition for the limit of the test statistic to be χ2 is that either one of the following
holds

(1) ZΣZΣ = ZΣ or (2) ZΣZ = Z,

which is equivalent to the idempotency of ZΣ.
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Proof. [Theorem 7] Note that the sample covariance of nonlinearly transformed Xt and the
integrated process ut diverges at the rate of n, as

1
n

[
n∑

t=1

(
Xt√

n

)m ut√
n

]
⇒d

∫
Bm

x Bu.

The two correction terms diverge at the rate of M because

1
M

En(m− 1) =
1
M

Ω̂uvΩ̂−1
vv

[{
n∑

t=1

(
Xt√

n

)m vt√
n
− 4̂vv

m

n

n∑

t=1

(
Xt√

n

)m−1
}

−
(

1
n

n∑

t=1

Xtvt − 4̂vv

)(
1
n2

n∑

t=1

X2
t

)−1 (
1
n

n∑

t=1

(
Xt√

n

)m+1
)



⇒d

[
w̃(0)

∫
dBxQ + Ω∗

]
Ω−1

vv

[∫
Bm

x dBx −
∫

Bx dBx

(∫
B2

x

)−1 ∫
Bm+1

x

]
,

and

1
M

Sn(m− 1) =
1
M


4̂vu

m

n

n∑

t=1

(
Xt√

n

)m−1

− Λ̂vu

(
1
n2

n∑

t=1

X2
t

)−1
1
n

n∑

t=1

(
Xt√

n

)m+1



⇒d

[
w̃1(0)

∫
dBxQ +4∗

]
m

∫
Bm−1

x −
[
w̃2(0)

∫
dBxQ + Λ∗

](∫
B2

x

)−1 ∫
Bm+1

x ,

using Lemma 9 in the Appendix. Therefore, the sample covariance augmented by the correction
terms diverges at the rate of n, so that

û′F ·Dn −E′
n − S′n = Op(n)−Op(M)−Op(M).

The variance matrix term in the statistic diverges at the rate of nM so that

Ω̂uu.vDnF̃ ′F̃Dn = Op(nM)

using Lemma 9. Thus, the modified RESET test statistic quadratic form diverges at the rate of
n/M .

¤

Proof. [Theorem 8] Under the alternative specification, the modified test statistic changes
only through û, i.e. through û′F ·Dn, 4̂vu, Ω̂uv and Ω̂uu.v. We will examine the changes in the
statistic by checking the orders of each of these terms.

First, suppose we estimate the following misspecified linear regression is fitted by least
squares

Yt = θXt + et.
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Using Lemma 10, we can show that the coefficient estimate θ̂ becomes either convergent to zero
in the I-regular case (assuming xkf (x) is integrable) or of the order of n−1/2κn for the H-regular
case. Using affixes I and H to designate these cases, we have

θ̂
(I) ≈ 1

n

(∫
B2

x

)−1 (
op(1) +

∫
BxdBu + Λvu

)
≡ θ(I),

θ̂
(H) ≈ κn√

n

(∫
B2

x

)−1 (∫
H(Bx)Bx +

1
κn
√

n

∫
Bx dBu +

Λvu

κn
√

n

)
≡ θ(H),

where κn = κ (
√

n) is the asymptotic order and H(·) is the asymptotic homogenous function
of f(·). Note that when the true model is linear cointegration we have H (Bx) = θBx and then

θ̂
(H) − θ = Op

(
n−1

)
, as usual.

We first consider the H-regular case. The (m − 1)th element of the normalized nonlinear
sample covariance û′F ·Dn becomes

1
κn
√

n

{
n∑

t=1

(
Xt√

n

)m ût√
n

}
=

1
κn
√

n

{
1√
n

n∑

t=1

(
Xt√

n

)m [
f(Xt) + ut − θ̂

(H)
Xt

]}

≈
∫

Bm
x h(Bx) + Op(n−1/2κ−1

n )− θ(H)

∫
Bm+1

x (23)

so that the maximum order of û′F ·Dn is κn
√

n. Again, note that for the linear cointegration
case, the first and third terms of (23) cancel and we are left with n−1

∑n
t=1 Xtut = Op (1) , as

usual for linear cointegration.
The orders of the two bias correction terms Sn and En in Theorem 5 depend on the asymp-

totic order of the kernel estimators 4̂vu, Λ̂vu and Ω̂uv. Letting K (j/M) be the lag kernel, we
may decompose each of these estimates as follows

Ω̂uv =
M∑

j=−M

K

(
j

M

){
1
n

∑
t

ût+jvt

}

=
M∑

j=−M

K

(
j

M

){
1
n

∑
ut+jvt +

1
n

∑
f(Xt+j)vt − θ̂

(H) 1
n

∑
Xt+jvt

}
. (24)

The first term in braces in (24) is Op(1) and the other two are Op(n−1/2κn), so that the overall
maximum asymptotic orders of 4̂vu, Λ̂vu and Ω̂uv are all n−1/2Mκn. Again, when linear cointe-
gration holds the leading term dominates and is Op (1) . Thus, combining (24) and (23) we find
that

û′F ·Dn − En − Sn = Op(n1/2κn)−Op(n−1/2Mκn)−Op(n−1/2Mκn)

has order Op(n1/2κn) since M/n → 0.
For the variance term Ω̂uu.vDnF̃ ′F̃Dn, the order now depends on the order of Ω̂uu.v =

Ω̂uu−Ω̂uvΩ̂−1
vv Ω̂vu, since the remaining factor is of order Op(1) under both the null and alternative

hypotheses. The kernel estimator Ω̂uu can be shown to be of the maximum order of Mκ2
n (but
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Op(1) as usual under the null hypothesis). In particular,

Ω̂uu =
M∑

j=−M

K

(
j

M

) [
1
n

∑
t

ûtût+j

]

=
M∑

j=−M

K

(
j

M

) [
1
n

∑
t

f(Xt)f(Xt+j) +
1
n

∑
t

f(Xt)ut+j − θ̂
(H) 1

n

∑
t

f(Xt)Xt+j

+
1
n

∑
t

f(Xt+j)ut +
1
n

∑
t

utut+j − θ̂
(H) 1

n

∑
t

Xt+jut

−θ̂
(H) 1

n

∑
t

f(Xt+j)Xt − θ̂
(H) 1

n

∑
t

Xtut+j + θ̂
(H)2 1

n

∑
t

XtXt+j

]

= Op(Mκ2
n),

since, using Lemma 10, the maximum order of each term in the square bracket can be determined
as follows.

1. The order of n−1
∑

t f(Xt)f(Xt+j) is at most of order κ2
n by virtue of the Cauchy inequality

(
1
n

∑
t

f(Xt)f(Xt+j)

)2

≤
(

1
n

∑
t

f(Xt)2
)(

1
n

∑
t

f(Xt+j)2
)

= Op(κ2
n) ·Op(κ2

n).

2. The orders of n−1
∑

t f(Xt)ut+j and n−1
∑

t f(Xt+j)ut are n−1/2κn.

3. The maximum orders of θ̂
(H) 1

n

∑
t f(Xt)Xt+j and θ̂

(H) 1
n

∑
t f(Xt+j)Xt are κ2

n since
(

1
n

∑
t

f(Xt)Xt+j

)2

≤
(

1
n

∑
t

f(Xt)2
)(

1
n

∑
t

X2
t+j

)
= Op(κ2

n) ·Op(n).

from Cauchy inequality and θ̂
(H)

= Op(n−1/2κn).

4. n−1
∑

t utut+j = Op(1).

5. θ̂
(H) 1

n

∑
t Xt+jut and θ̂

(H) 1
n

∑
t Xtut+j are of the order of n−1/2κn since

θ̂
(H)

[
1
n

∑
t

Xt+jut +
1
n

∑
t

Xtut+j

]

= θ̂
(H)

[
1
n

∑
t

Xtut +
1
n

∑
t

Xt+jut+j +
1
n

∑
t

(vt+1 + · · ·+ vt+j)ut

− 1
n

∑
t

(vt+1 + · · ·+ vt+j)ut+j

]

≈ Op(n−1/2κn)

[
2

(∫
Bx dBu + Λvu

)
+

j∑

h=1

Γuv(h)−
j∑

h=1

Γuv(−j)

]
= Op(n−1/2κn).
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6. θ̂
(H)2 1

n

∑
t XtXt+j = Op(n−1κ2

n) ·Op(n) = Op(κ2
n).

Putting these together, the modified RESET test statistic is a quadratic form in a vector of
Op(n1/2κn) elements with matrix in the form whose elements are of order Op(M−1κ−2

n ), so that
the overall order of the test statistic is at most Op(n/M).

For the I-regular case, we can show that the sample covariance does not diverge

1√
n

n∑

t=1

(
Xt√

n

)m [
f (Xt) + ut − θ̂

(I)
Xt

]
≈ Op (1) +

∫
Bm

x dBu − θ(I)

∫
Bm+1

x = Op (1)

using Lemma 10. The kernel estimator of long-run (co)variance is

Ω̂uv =
M∑

j=−M

K

(
j

M

)[
1
n

∑
ût+jvt

]

=
M∑

j=−M

K

(
j

M

)[
1
n

∑
ut+jvt +

1
n

∑
f(Xt+j)vt − θ̂

(I) 1
n

∑
Xt+jvt

]

≈ Ωuv + Op(M/n3/4)−Op(M/n) = Op(max{1,M/n3/4})

so that the two correction terms En and Sn do not diverge either as long as M/n3/4 → 0.
Therefore,

û′F ·Dn − En − Sn = Op(max{1,M/n3/4})
Now consider the variance term. As in the H-regular case, we can show that

Ω̂uu ≈ Ωuu + Op(M/n3/4) + Op(M/n) = Op(max{1,M/n3/4})

so that with Ω̂uu.v = Ω̂uu − Ω̂uvΩ̂−1
vv Ω̂vu the test statistic becomes Op(1) variable.
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Figure 1: The RESET Test Statistics Before and After Modification under H0
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(a) Varying Number of Observations with ρ = 0.6 and k = 3
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(b) Varying Serial Correlation with n = 1000 and k = 3

[ Note] Empirical distributions of the test statistic shown above are from 10,000 simulated samples with
k = 3. The bandwidth for the kernel estimator of long-run (co)variance is chosen automatically
following Andrews (1991). χ2-distribution in a thick solid line represents the limit distribution of test
statistic from a central χ2(k) distribution.
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Figure 2: Nominal Exchange Rates and Price Ratios:US-Canada and US-Japan
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[Note] The sample spans from 1971:1 to 2004:12. Upper figures plot dataset in levels and lower figures
plot in the changes, St/St−12 and (Pt/Pt−12)/(P ∗t /P ∗t−12) where the nominal exchange rate is plotted in
the solid line, CPI ratio in the dashed line and PPI ratio in the dash-dotted line.
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Table 1: Probability of Rejecting H0 of Linear Cointegration

Modified RESET Test Original RESET Test
Function Type (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ρ=0.2:
n=50 24.08 50.89 99.72 41.12 94.10 6.51 48.17 100.00 33.20 94.97

n=100 15.30 71.77 99.83 39.02 96.19 7.87 76.85 100.00 42.45 96.72
n=250 10.64 94.38 99.75 41.47 97.70 9.54 96.68 100.00 49.52 98.05
n=500 8.39 99.16 99.76 42.64 98.33 10.19 99.81 100.00 51.87 98.64

n=1000 8.27 99.98 99.69 45.35 98.63 10.04 99.99 100.00 54.05 98.89
ρ=0.4:

n=50 19.14 41.37 99.83 33.38 93.74 7.64 44.80 100.00 31.50 95.08
n=100 11.27 59.64 99.68 28.19 96.03 11.38 75.84 100.00 41.36 96.75
n=250 7.06 88.61 99.73 27.67 97.25 15.50 95.24 100.00 49.68 97.73
n=500 6.39 98.36 99.77 28.85 98.09 17.09 99.59 100.00 51.70 98.44

n=1000 6.10 99.91 99.68 31.13 98.60 17.96 99.99 100.00 54.66 98.94
ρ=0.6:

n=50 19.32 34.50 99.80 28.04 92.79 10.58 41.27 100.00 30.58 94.94
n=100 9.26 39.57 99.76 18.45 95.72 18.37 71.01 100.00 41.60 96.81
n=250 4.83 70.03 99.72 14.44 97.23 28.17 92.72 100.00 51.63 98.13
n=500 4.96 90.88 99.82 14.46 98.06 32.87 98.72 100.00 55.59 98.71

n=1000 4.91 98.69 99.85 15.83 98.79 35.70 99.93 100.00 58.22 99.16
ρ=0.8:

n=50 25.82 33.89 99.55 29.09 89.83 17.57 39.14 100.00 31.07 94.77
n=100 10.69 23.99 99.68 13.18 94.86 34.15 65.00 100.00 46.04 97.05
n=250 4.31 30.10 99.66 6.71 97.19 53.39 88.12 100.00 61.15 98.74
n=500 4.07 53.04 99.76 6.19 97.83 63.72 95.72 100.00 69.85 99.06

n=1000 4.99 80.01 99.67 7.22 98.46 70.18 99.02 100.00 74.64 99.57

[Note] (1)-(5) denote the functional forms defined in the beginning of simulation. The probabilities are
calculated from 10,000 simulated samples with k=3 and the bandwidth is chosen automatically following
Andrews (1991).
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Table 2: Probability of Rejecting Linearity/Cointegration When Xt and Yt are not cointegrated

Number of Basis Functions (k)
Bandwidth 1 2 3 4 5
M = n1/5

n=50 15.94 13.02 10.64 8.92 6.92
100 25.62 25.06 22.68 19.88 16.88
500 54.00 64.96 67.58 67.92 67.26

1000 64.40 78.88 82.46 84.12 84.54
M = n1/4

n=50 13.84 10.14 8.10 6.52 4.98
100 22.16 19.94 17.24 14.46 11.96
500 48.72 57.90 59.38 58.00 56.76

1000 59.40 73.08 76.26 76.72 76.98
M = n1/3

n=50 10.10 5.91 4.35 3.99 3.96
100 14.52 10.50 8.07 5.73 4.13
500 37.53 42.76 41.06 39.05 36.54

1000 49.16 58.31 59.39 58.85 57.05
M = n1/2

n=50 6.09 3.81 3.41 5.33 6.31
100 6.73 3.05 2.10 1.54 1.41
500 16.59 12.98 9.84 7.68 5.25

1000 23.68 21.70 18.14 15.13 11.93
Automatic

n=50 26.02 36.87 42.42 54.43 57.14
100 23.08 30.36 33.89 42.31 45.01
500 17.77 21.40 23.60 27.23 28.63

1000 17.30 19.30 20.65 22.90 24.10

[ Note] The rejection probabilities are calculated from 10,000 replications for the nominal 5% test. The
automatic data-determined bandwidth choice in the bottom panel is based on Andrews (1991).
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Table 3: Linear Cointegration Tests of Absolute PPP: ADF and KPSS

ADF Test KPSS Test
Number of Lags 1 2 3 4

Period 1:
PPP with Consumer Price Index

US-Canada (1) -0.9850 -0.8228 -0.9342 -1.0758 0.1295
(2) -0.9468 -0.7698 -0.8726 -1.0081

US-Japan (1) -2.4526 -2.2983 -2.4672 -2.6947 0.3389∗∗∗

(2) -2.4486 -2.2951 -2.4646 -2.6927
PPP with Producer Price Index

US-Canada (1) -2.3966 -2.2435 -2.1414 -2.1075 0.1895
(2) -2.3910 -2.2365 -2.1335 -2.0994

US-Japan (1) -3.0016 -2.9066 -3.0173 -3.2448 0.1853
(2) -3.0020 -2.9119 -3.0809 -3.2589

Period 2:
PPP with Consumer Price Index

US-Canada (1) -1.7996 -1.3970 -1.5988 -1.7630 0.0732
(2) -1.7400 -1.3175 -1.5032 -1.6614

US-Japan (1) -2.5091 -2.1480 -1.9787 -1.8106 0.3227∗∗∗

(2) -2.5051 -2.1459 -1.9786 -1.8106
PPP with Producer Price Index

US-Canada (1) -2.3776 -2.2044 -2.1072 -1.9968 0.2354∗∗∗

(2) -2.3778 -2.2051 -2.1098 -2.0010
US-Japan (1) -2.3365 -2.2941 -2.5456 -2.5605 0.2610∗∗∗

(2) -2.3271 -2.2834 -2.5344 -2.5496

[ Note] The cointegration regression is estimated for Period 1 (1971M1–2004M12) and Period 2
(1983M1–2004M12) with a constant and a linear trend. The number of lags in the column shows the
number of lagged terms in the Dickey-Fuller regression for the regression residuals. The ADF test
statistics with a constant term are reported in (1) and statistics with both a constant and a linear time
trend are tabulated in (2). *’s show the null hypothesis rejected. One asterisk means rejection at a 10%
significance level, two and three asterisks imply 5% and 1% respectively.
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Table 4: P-values of the Modified and Unmodified RESET Tests

Modified RESET Test Original RESET Test
Choice of k 2 3 4 2 3 4

PPP with Consumer Price Index
[A] Absolute PPP Bandwidth

US-Canada M = n1/3 0.000 0.000 0.000 0.000 0.000 0.000
M = n2/3 0.000 0.000 0.000 0.107 0.165 0.278

Auto 0.000 0.000 0.000 0.000 0.000 0.001
US-Japan M = n1/3 0.000 0.000 0.000 0.000 0.000 0.000

M = n2/3 0.000 0.000 0.000 0.033 0.058 0.039
Auto 0.150 0.000 0.000 0.003 0.005 0.002

[B] Relative PPP
US-Canada M = n1/3 0.000 0.000 0.000 0.473 0.680 0.591

M = n2/3 0.000 0.000 0.000 0.766 0.910 0.910
Auto 0.000 0.000 0.000 0.597 0.792 0.749

US-Japan M = n1/3 0.000 0.000 0.000 0.127 0.228 0.344
M = n2/3 0.000 0.000 0.000 0.307 0.479 0.632

Auto 0.000 0.000 0.000 0.104 0.190 0.294

PPP with Producer Price Index
[A] Absolute PPP Bandwidth

US-Canada M = n1/3 0.000 0.000 0.000 0.000 0.000 0.000
M = n2/3 0.000 0.000 0.000 0.110 0.215 0.273

Auto 0.000 0.000 0.000 0.078 0.162 0.205
US-Japan M = n1/3 0.002 0.005 0.000 0.001 0.002 0.004

M = n2/3 0.447 0.015 0.000 0.151 0.253 0.392
Auto 0.000 0.000 0.000 0.048 0.088 0.160

[B] Relative PPP
US-Canada M = n1/3 0.000 0.000 0.000 0.190 0.198 0.311

M = n2/3 0.000 0.000 0.000 0.300 0.337 0.483
Auto 0.000 0.000 0.000 0.226 0.244 0.370

US-Japan M = n1/3 0.005 0.000 0.000 0.717 0.866 1.000
M = n2/3 0.000 0.000 0.000 0.832 0.939 1.000

Auto 0.000 0.000 0.000 0.756 0.893 1.000

[ Note] The modified RESET test results with bandwidths M = n1/3 and M = n2/3 and automatic
bandwidth are reported. The p-values from the original RESET test without bias corrections are reported
in the right panel for comparison.

44


