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Abstract
Focusing on adult members of German households, this paper investigates the deter-
minants of public transit ridership with the aim of quantifying the effects of fuel pri-
ces, fares, person-level attributes, and characteristics of the transit system on transport 
counts over a five-day week. The reliance on individual data raises several conceptual 
and empirical issues, the most fundamental of which is the large proportion of zero 
values in transit counts. To accommodate this feature of the data, we employ mode-
ling procedures referred to as zero-inflated models (ZIMs), which order observations 
into two latent regimes defined by whether the individual never uses public transport. 
Our estimates reveal fuel prices to have a positive and substantial influence on transit 
ridership, though there is no evidence for a statistically significant impact of the fare. 
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1 Introduction

In Germany, as well as in many other industrial countries, substantial shares of the po-

pulation seldomly, if ever, use public transport systems. For example, many citizens of

rural areas suffer from the unavailability, or impracticability, of public transport sys-

tems, constraining them to the exclusive usage of cars for commuting. According to

a nationwide survey conducted in 2008, some 44% of the German population report

never using public transportation, with an additional 33% using it less than once per

week (MID, 2008). As a consequence, the outcome of count processes reflecting transit

ridership is typically characterized by an overwhelmingly large number of zero counts.

A basic question emerging in public transport patronage is whether a zero count

indicates an individual who never uses public transport, or alternatively the chance

event that the individual does not use public transport during the sampling period.

The so-called zero-inflated models (ZIMs) take particular account of this distinction

by ordering observations into two latent regimes defined by whether an individual

never uses public transport, and are therefore perfectly appropriate in this instance,

not least because zero-inflated modeling procedures were developed to cope with the

preponderance of zero counts. By contrast, the classical count data models, such as

the Poisson (PRM) and the negative binomial regression model (NBRM), rest on the

assumption that the probability for a positive value of public transit usage is non-zero

for every observation. With the exception of a handful of studies that mostly focus

on accident rates (SHANKER et al. , 1997, CHIN and QUDDUS, 2003), the feature of

unobservable membership in either of two groups – the group of never-users and its

complement – has rarely been addressed in the transportation literature.

Using household survey data fromGermany, this paper applies zero-inflatedmo-

deling approaches to the issue of public transport patronage, focusing on the determi-

nants of adult transit ridership. Specifically, we aim at quantifying the effects of fuel

prices and fares on public transport counts over a five-day week, while controlling for

the effects of person-level attributes and characteristics of the transit system. A large

empirical literature has emerged to address this issue, but, as with the literature on
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fuel price elasticities for automobile travel (GRAHAM and GLAISTER, 2002), elasticity

estimates for transit vary widely. Based on a comprehensive survey of the literature,

LITMAN (2004) finds short-run elasticity estimates with respect to the fare varying bet-

ween -0.2 and -0.5, with a subsequent meta-analysis by HOLMGREN (2007) finding the

short-run elasticity to reach -0.75 for Europe. The cross-price elasticity estimates of fuel

prices tend to be lower, but also highly variable, ranging from 0.05 (LITMAN, 2004) to

0.4 (HOLMGREN, 2007).

The most important factor accounting for the differences in transit estimates is,

according to NIJKAMP and PEPPING (1998), whether aggregate or disaggregate data

is used. As aggregate data makes no allowance for the large variation of individual

choices made in specific circumstances, it typically yields less precise estimates that

are, moreover, more subject to bias. To date, however, the majority of empirical att-

empts to estimate price effects have drawn on country-level data or data aggregated

at sub-national administrative districts, typically from the U.S., with a smaller pool of

studies relying on household-level data. Departing from this reliance, our analysis is

predicated on the notion that transit use is an individual decision, albeit one that is

dependent on intra-household allocation processes. This tack is in line with a growing

body of literature that has identified the importance of socioeconomic factors such as

employment status, gender, and the presence of children in determining mode choice,

distance traveled, and other aspects of mobility behavior (e.g. PICKUP, 1985, TURNER

and NIEMEIER, 1997, KAYSER, 2000, FRONDEL and VANCE, 2009, 2010, and VANCE and

HEDEL, 2007).

Contrasting with some other studies that use count data (e.g. SHANKER et al. ,

1997, and PETERS, VANCE, 2010), among the key findings of our analysis is that ZIMs

have superior predictive accuracy over the PRM and NBRM, and thus may serve as

the method of choice when the aim is to predict trip frequency for modes that a large

fraction of the population never uses. The model estimates reveal fuel prices to have a

positive and substantial influence on transit ridership, though we find no evidence for

a statistically significant impact of the fare. In this regard, our findings highlight the

importance of referencing both the coefficients and associated marginal effects when
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interpreting the results. Due to the non-linearity of the model, the magnitude and si-

gnificance level of these estimates can vary markedly from one another, requiring that

inferences be cast specifically according to whether the marginal effects or coefficients

are in question.

The following section presents contextual information on public transit policy in

Germany. Section 3 describes the data base used for estimating individual mobility

behavior of adults. Section 4 explicates the econometric methods and model specifica-

tions, followed by the presentation and interpretation of the results in Section 5. The

last section summarizes and concludes.

2 Policy Context

Alongside other measures, such as land-use planning and efficiency improvements,

the promotion of public transit is regarded byGermany’s Federal Environmental Agen-

cy as an integral component to reducing emissions from transport (UBA, 2010). Accor-

ding to figures compiled by BASSETT et al. (2008), the percentage of trips taken by pu-

blic transit in Germany is 8%, which, while considerably higher than the 2% share for

the US, is on par or slightly lower than that of many of its European neighbors, inclu-

ding the UK (9%), Sweden (11%), Switzerland (12%), and Spain (12%). Moreover, the

share of total travel undertaken with transit has been remarkably stable over the past

decades, hovering around 8.7% since the early 1990s, compared with slightly over 80%

by car (BMVBS, 2006). Thus, a persistent question confronting transport planners is

what measures can be undertaken to increase ridership given the fact that the demand

for car ownership has grown substantially in the last decades, with the number of re-

gistered cars per resident increasing by almost 25% between 1990 and 2005 (BUEHLER

et al., 2009).

While sociodemographic and service attributes are frequently cited as important

determinants of transit ridership, knowledge about the magnitude of these determi-

nants remains rudimentary. Further complicating an appraisal of transit demand and

6



its future trajectory in Germany are major sociodemographic changes currently un-

derway that could dramatically affect the composition of mode choice. According to

an energy forecast recently commissioned by the German government, the population

is expected to decrease by 3% between 2007 and 2030, from 82.3 to 79.7 million resi-

dents (BMWI, 2010). Despite this, the forecast expects an overall increase in individual

transport demand owing tomore single and dual-person households; by 2030, the total

number of households is projected to increase by nearly 6% from 39.7 to 42.0 million.

These trends will be paralleled by an increasingly older age structure of the Ger-

man population, as well as by a likely increase in the share of women in the pool of

license holders and in the labor force, with the latter having already risen from 55.1%

in 1994 to 59.2% in 2004 (EUROSTAT, 2006). While several studies have suggested

that these changes will have profound consequences for transport demand in Germa-

ny (LIMBOURG, 1999, JUST, 2004, ZUMKELLER, CHLOND, and MANZ, 2004), both the

contemporary and future impacts are largely speculative, since there have been few

attempts to quantify how the underlying variables affect travel behavior at the indivi-

dual level.

Of particular relevance in this regard is the impact of fuel prices and fares on the

demand for public transit. In 1999, the German government introduced an eco-tax that

incrementally increased taxes on motor fuel over a five-year period, resulting in fuel

taxes amounting to as much as two thirds of the gross prices at the gasoline station.

In contrast, fuel used for public transportation is taxed at one half the standard rate

(KOHLHAAS, 2000). While such tax-raising policies would conceivably increase the de-

mand for transit ridership, the actual impacts have been difficult to gauge due to a

dearth of information on cross-price elasticites from Germany. Given the highly varia-

ble shares of public transport in the modal split across countries, caution is warranted

in extrapolating the influence of pricing and service levels from one country to another

(HENSHER, 2008).
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3 Data

The main data source used in this research is drawn from the German Mobility Panel

(MOP 2010), an ongoing travel survey that is organized in waves, each comprising

a group of households whose members are surveyed for a period of one week over

each of three years. Our data set includes twelve waves of the panel, spanning 1996

through 2007, and is limited to adult individuals who are at least 18 years old. In total,

our data set contains 8,577 individuals, 2,904 of whom participated in one year of the

survey with the remaining 5,673 participating in two or three years. For this latter

group, we randomly selected a single year for inclusion in the data set to avoid repeat

observations on the same individual. In this regard, it bears noting that the use of

public transit and the variables that determine it vary little or not at all over the three

years of the survey, thereby allowing us to pool the data in model estimation due to

the relative homogeneity of the data over this short period of time.

Individuals that participate in the survey are requested to fill out a questionnaire

eliciting general household information and person-related characteristics, including

zip code of residence, gender, age, employment status and relevant aspects of every-

day travel behavior. In addition to this general survey, the MOP includes a separate

survey focusing specifically on vehicle travel among a 50% sub-sample of randomly

selected car-owning households. These households are drawn from the larger MOP-

data set used in the present analysis. This so-called “tank survey” takes place over a

roughly six-week period, during which time respondents record sundry automobile-

related information, including the price paid for fuel (Table 1).

As this variable is a potentially important determinant of transit pass ownership,

it was linked with the larger sample of households in the MOP by using a Geographic

Information System to create a coverage of spatially interpolated fuel prices (in real

terms) for all of Germany. The coverage was then overlaid onto a map of household

locations in the MOP data, thereby allowing for each household to be ascribed the lo-

cally prevailing fuel price. This process was repeated for each year of the data, yielding

a data set of fuel prices that varies over space and time. A crude accuracy assessment of
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Table 1: Descriptive Statistics of the Discrete and Continuous Variables

Variable Name Variable Definition Mean Std. Dev.

y # public transits during 5-day week 1.47 3.30

real fuel price Real fuel price in e per liter 1.01 0.12

fare Real fare for a monthly ticket in e 32.40 5.88

public transit density Density of the public transit service 35.44 51.05
in 1,000 service kilometers divided by
areal unit in squared kilometers

age Age of adult 48.38 16.00

income Real net monthly household income in 1,000 e 2.363 0.822

# children < 18 Number of children younger than 18 0.27 0.63

minutes Walking time to the nearest public 5.75 4.95
transportation stop in minutes

the data was undertaken by calculating the yearly average fuel prices and comparing

these with those published for the German market by the oil company Aral (2009). The

correspondence between the two sources is tight, deviating by an average of less than

1% over the 1996-2007 time interval (see FRONDEL and VANCE, 2010).

In addition to fuel prices, another important cost determinant of transit use is the

fare. Data on this variable was obtained by an internet-based survey that retrieved the

price for a single-trip and monthly ticket for each of the 90 regional transit authorities

in Germany. Each household was then assigned the fare of the transit authority to

which it belongs. Fares, as well as fuel prices, were converted into real terms using

a consumer price index published by the German Statistical Office (DESTATIS, 2010).1

From the same source, we also obtained a variable measuring the density of transit

service that was merged with the MOP data. This variable is constructed by dividing

the milage of transit travel for all modes by the area of the transit zone.

The remaining suite of variables selected for inclusion in the model measures the

1In the analysis that follows we use the monthly fare price, noting that our qualitative findings do

not change when using the trip-based fare.
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individual and household-level attributes that are hypothesized to influence the allo-

cation of travel expenditures in maximizing utility. Variable definitions and descriptive

statistics are presented in Tables 1 and 2. As many of these variables could either po-

sitively or negatively affect the use of public transit, it is not always possible to state a

priori which effects are expected to prevail.

Table 2: Descriptive Statistics of the Binary Variables

Variable Name Variable Definition Mean

high school diploma 1 if person has a high school diploma 0.35

license 1 if person has a driver license 0.87

employed 1 if person is employed in a
full-time or part-time job 0.54

female 1 if person is female 0.52

big city 1 if household resides in a large city 0.42

parking space at home 1 if household has a
private parking space or garage 0.76

parking space at work 1 if household has a
parking space at work 0.37

direct public 1 if there is a
transit to work direct transit connection to work 0.16

rail transit 1 if the nearest public transportation
stop is serviced by rail transit 0.13

enoughcars 1 if number of cars in a household is
at least equal to the number of licensed drivers 0.54

Negative signs are expected for the variables that either increase the opportunity-

and/or transaction costs of transit use or decrease these costs for automobile use, in-

cluding the distance to the nearest transit stop, the fare ticket price, and dummies in-

dicating driver-license holders and households in which the number of cars equals or

exceeds the number of licensed drivers. Positive signs are expected for variables that

are indicative of the availability or quality of public transit, including public transit

service density and the dummies for residence in a large city and for rail transit service

at the nearest transit stop. Higher fuel prices are also expected to have a positive effect,

as they encourage the substitution of public transit for private car travel. The inclusion
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of time dummies in the model was also explored, but as these were individually and

jointly insignificant, they were excluded from the final specification.

While the included explanatory variables afford reasonably broad coverage of

the determinants of transit use, we cannot completely rule out the possibility that they

are correlated with additional unobserved factors that impact travel. Such correlation

would give rise to endogeneity bias and preclude us from ascribing a causative inter-

pretation to the estimated coefficients. In this regard, it is plausible that decisions per-

taining to transit use and residential choice are jointly determined, implying that the

coefficients of the urban form variables are partially picking up the effects of neigh-

borhood preferences. ELURU and colleagues (2009), for example, find that features of

the surrounding vicinity may be an important determinant of residential relocation

for those who commute by public transit. Moreover, we lack information on potential-

ly important service attributes for transit itself and for competing modes, such as the

level of security and regional congestion, which may be correlated with some of our

explanatory variables. We consequently abstain from making claims about causality,

and instead apply a descriptive interpretation to the estimates.

4 Methodology

The reliance on individual data over a tightly circumscribed time interval raises sever-

al conceptual and empirical issues, the most fundamental of which is the presence of

zero values in the data. Slightly less than 75% of the adult individuals in the estimation

sample do not use public transport systems during a given week (see Table B1 in the

Appendix B) and for whom the observation on transit counts is consequently recorded

as zero. To accommodate this feature of the data, we employ modeling procedures re-

ferred to as zero-inflated models (ZIMs). There are two common ZIMs, referred to as

the zero-inflated Poisson (ZIP) and the zero-inflated negative binomial (ZINB) models,

both of which are generalizations of the Poisson regression model and negative bino-

mial regression model. As ZIMs build on these classical count data models, we start
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with a brief description of the Poisson and the negative binomial regression models

and highlight the differences between these classical and the zero-inflated models.

4.1 Classical Count Data Models

Fundamental to the understanding of count data models is the univariate Poisson dis-

tribution, which relates the mean E(y) = λ > 0 and the probability of observing any

count y = 0, 1, 2, ... by

Pr(y|λ) =
λy exp{−λ}

y!
. (1)

An inherent characteristic of this distribution, known as equidispersion, is that the

variance V ar(y) is identical to the expected value: V ar(y) = E(y) = λ. In practice,

though, the variance of many count variables is greater than their mean, a fact that is

called overdispersion.

The Poisson regression model (PRM) extends the Poisson distribution by allow-

ing for each observation i to have a different mean λi. The most common parameteri-

zation of the idiosyncratic means is the loglinear model (GREENE 2003: 740):

λi = E(yi|xi) = exp{xT
i β}, (2)

where β is a parameter vector to be estimated and observed heterogeneity is incor-

porated by the vector xi, which includes the observable characteristics that affect the

individual number of counts yi. Note that taking the exponential of xT
i β ensures that

the expected value λi is positive, which is a natural property of count data.

While being a useful starting point, the PRM suffers from at least four shortco-

mings. First, it underestimates the number of zero counts, as can be seen from our

empirical example presented in Section 5. Second, the standard errors pertaining to

the PRM estimates are biased downward, resulting in spuriously large z- and small

p-values (CAMERON, TRIVEDI, 1986:31). More general failings are, third, that the PRM

does not fit to real data in the case of overdispersion, i. e. if V ar(y) > E(y). Fourth, the

PRM does not account for unobserved heterogeneity.

12



These failures are circumvented by the negative binomial regressionmodel (NBRM),

which addresses the last point by adding an error term εi that is assumed to be uncor-

related with the factors included in xi:

λ̃i = E(yi|xi) = E(exp{xT
i β + εi}) = exp{xT

i β}E(δi), (3)

where δi := exp{εi}. By assuming that E(δi) = 1, which corresponds to the assumption

E(εi) = 0 of the classical linear regression approach, the model is identified. From

this assumption, it follows that in the NBRM the conditional distribution of the counts

yi given λ̃i is Poisson, that is, yi obeys equation (1) with λi = λ̃i. Without altering

the conditional mean, the NBRM improves upon the underprediction of zero counts

in the PRM by increasing the conditional variance. In contrast, zero-inflated models

(ZIMs) such as the ZIPM, which was introduced by LAMBERT (1992), change the mean

structure, thereby also increasing the probability of zero counts.

4.2 Zero-inflated Models

Zero-inflated models assume that there are two latent groups, for which membership

is unobservable: the Always-Zero Group A, for which

Pr(yi = 0|Ai = 1,xi) = 1, (4)

where Ai = 1 designates membership of individual i in Group A, and Ai = 0 indicates

membership in the complementary group. Group membership is a binary outcome

that can be modeled using standard logit or probit estimation procedures:

ψi := Pr(Ai = 1|zi) = F (zT
i γ), (5)

where ψi is the probability of being in Group A, F (.) stands for the cumulative distri-

bution function Φ(.) or Λ(.) of the normal or logistic distribution, respectively, γ is a

parameter vector to be estimated, and vector zi includes variables that inflate the num-

ber of zero counts. Hence, they are referred to as inflation variables and (5) is called the

inflation equation. The vector of inflation variables zi may differ from the determinants

xi of the number of counts yi, but may also be identical to xi.
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If we knew probability ψi, the probability of a zero count could be calculated as

follows:

Pr(yi = 0|xi, zi) = Pr(Ai = 1|zi) · Pr(yi = 0|Ai = 1,xi)

+Pr(Ai = 0|zi) · Pr(yi = 0|Ai = 0,xi) (6)

= ψi · 1 + (1− ψi) · Pr(yi = 0|Ai = 0,xi),

as Pr(Ai = 0|zi) = 1− ψi and the probability of zero counts is 100% in the Always-Zero

Group A (Pr(yi = 0|Ai = 1,xi) = 1. For outcomes yi = k > 0,

Pr(yi = k|xi, zi) = ψi · 0 + (1− ψi) · Pr(yi = k|Ai = 0,xi)

= (1− ψi) · Pr(yi = k|Ai = 0,xi), (7)

where, by definition, the probability of non-zero counts is 0% in Group A: Pr(yi =

k|Ai = 1,xi) = 0. The probabilities Pr(yi = 0|Ai = 0,xi) and Pr(yi = k|Ai = 0,xi) are

the outcomes of the PRM or NBRM in case of the ZIP or ZINBM, respectively.

On the basis of these probability expressions, the unknown parameter vectors β

and γ can be estimated using maximum-likelihood methods. For instance, the loglike-

lihood function of the ZIP reads:

lnLZIP =
∑
yi=0

log[ψi + (1− ψi) · exp{−λi}] +
∑
yi>0

[yi log(λi)− λi − log(yi!)] · log(1− ψi),

where λi := exp{xT
i β} and ψi := F (zT

i γ). It bears noting that one cannot separately

estimate the parameters γ in a first step, as we do not know those zero counts that

originate from members of Group A. Instead, both parameter vectors, β and γ, have

to be estimated simultaneously.

Expected counts are computed in a way similar to that of the probabilities:

E(yi|xi, zi) = ψi · E(yi|Ai = 1,xi) + (1− ψi) · E(yi|Ai = 0,xi)

= ψi · 0 + (1− ψi) · λi = (1− ψi) · λi, (8)

where for the Always-Zero Group A, it is E(yi|Ai = 1,xi) = 0 and E(yi|Ai = 0,xi) = λi

for the complementary group, since the PRM and NBRM have the same mean struc-

ture. Because 0 ≤ ψi ≤ 1, where in practice ψi > 0, the expected value given by (8) will
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be smaller than λi, so that the expected count resulting from ZIMs is generally lower

than that of the PRM and NBRM, thereby better fitting to the large number of zero

counts in the empirical evidence on transit usage.

5 Empirical Results

Along the lines of the previous section, we estimate both the classical as well as the

zero-inflated models and select the most appropriate approach both by comparing the

predicted probabilities for the range of public transit counts occuring in practice and

employing the hypotheses tests presented in Appendix A. The details of the compa-

rison are reported in Appendix B. While the existence of always-zero observations is

ignored by both the PRM and NBRM, the special treatment of this feature by the ZIMs

leads us to expect an improvement in the fit due to their employment.

Indeed, the observed frequency for zero counts is perfectly reproduced by both

the ZINBMandZIPmodel (Table B1 inAppendix B). Relative to theNBRM, the ZINBM

also provides for a substantially better fit for a single count, whereas the predictions of

the probabilities of 3, 4, and 5 counts are somewhat worse. Therefore, an ultimate deci-

sion on whether the ZINBM is superior to the NBR model requires a VUONG test (see

Appendix A), whose large positive value of 21.75 for the standard-normal distribu-

ted normal test statistic favors the ZINB model. Finally, the probability-by-probability

comparison of the ZIPM and ZINBM is clearly in favor of the ZINBM. This conclusi-

on is confirmed by the Likelihood-Ratio test on overdispersion (see Appendix A), for

which the test statistic amounts to about 1,679.

Turning to the estimation results of the inflation equation reported in Table 3,

among the most important factors that determine the membership in the always-zero

group are possession of a driver’s license and the existence of at least one car per licen-

sed driver in the household (indicated by enoughcars = 1), as well as the availability of

parking spaces both at home and at work. Likewise, all of the service attributes – inclu-

ding the availability of a direct transit connection to work, the availability of rail transit
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near the home, and the density of the local transit system – are statistically significant

determinants of the probability that the individual is a non-user of public transit, with

negative signs that are consistent with expectations. While income and the fare appear

to have no bearing on this probability, both fuel prices and residence in a large city de-

crease it, as do the sociodemographic attributes indicating females, employed persons,

and those with a high school diploma. Finally, age has a nonlinear effect that is initially

positive and peaks at an age of 39.

Table 3: Regression Results of the Inflation Equation

Coeff.s Robust Marginal Robust

Std. Errors Effects Std. Errors

female ∗∗ -0.242 0.059 ∗∗ -0.038 0.009

age ∗∗ 0.078 0.013 ∗∗ 0.013 0.002

age squared ∗∗ -0.001 0.000 ∗∗-1.2 ·10−4 0.2 ·10−4

employed -0.171 0.098 ∗ -0.039 0.015

high school diploma ∗∗ -0.478 0.067 ∗∗ -0.082 0.011

license ∗∗ 1.173 0.090 ∗∗ 0.232 0.019

employed×(parking space at work) ∗∗ 0.752 0.088 ∗∗ 0.124 0.013

parking space at home ∗∗ 0.516 0.081 ∗∗ 0.091 0.015

enoughcars ∗∗ 0.846 0.065 ∗∗ 0.145 0.010

minutes ∗∗ 0.036 0.008 ∗∗ 0.006 0.001

direct public transit to work ∗∗ -0.415 0.092 ∗∗ -0.078 0.017

big city ∗∗ -0.435 0.079 ∗∗ -0.076 0.013

rail transit ∗∗ -0.315 0.097 ∗∗ -0.056 0.017

# children < 18 ∗∗ 0.301 0.059 ∗∗ 0.053 0.009

income 0.062 0.046 0.013 0.007

real fuel price ∗-0.565 0.265 ∗ -0.095 0.042

fare 0.005 0.006 0.001 0.001

public transit density ∗∗ -7.4·10−3 0.8 ·10−3 ∗∗ -1.2 ·10−3 -1.2 ·10−4

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively. Number of

observations used in estimation: 8,577.

With respect to the coefficient estimates of the ZINBM reported in Table 4, the

majority are statistically significant and have signs that are consistent with intuition.

Two notable exceptions are the coefficients on fuel prices and fares: neither appear to
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be important determinants of the number of public transit trips over the 5-day week.

The statistically insignificant impact of fares persists when considering the marginal

effect (right-hand panel of Table 4).

Table 4: Estimation Results of the Zero-Inflated Negative Binomial Model (ZINBM)

Coeff.s Robust Marginal Robust

Std. Errors Effects Std. Errors

female -0.001 0.034 ∗∗ 0.173 0.050

age ∗∗ -0.031 0.007 ∗∗-0.086 0.010

age squared ∗∗ 2.1 ·10−4 0.8 ·10−4 ∗∗0.7 ·10−3 1.1 ·10−4

employed ∗∗ 0.380 0.056 ∗∗ 0.486 0.084

high school diploma ∗ 0.096 0.039 ∗∗ 0.465 0.066

license ∗∗ -0.225 0.043 ∗∗-1.440 0.131

employed×(parking space at work) ∗∗ -0.316 0.050 ∗∗-0.784 0.068

parking space at home -0.081 0.047 ∗∗-0.500 0.084

enoughcars ∗∗ -0.191 0.040 ∗∗-0.829 0.062

minutes ∗-0.010 0.005 ∗∗-0.036 0.007

direct public transit to work ∗∗ 0.167 0.049 ∗∗ 0.535 0.106

big city ∗ 0.098 0.045 ∗∗ 0.424 0.070

rail transit 0.083 0.049 ∗∗ 0.341 0.099

# children < 18 ∗-0.089 0.037 ∗∗-0.305 0.052

income ∗ -0.063 0.027 ∗∗-0.105 0.039

real fuel price 0.262 0.149 ∗∗ 0.663 0.230

fare 0.001 0.003 -0.003 0.005

public transit density ∗∗ 1.5 ·10−3 0.4 ·10−3 ∗∗ 0.007 0.001

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively.

Number of observations used in estimation: 8,577.

With reference to real fuel prices, however, a discrepancy emerges: the marginal

effect is highly significant in this case, and suggests that a 1e increase in fuel costs

increases transit counts by 0.66 trips over the course of a 5-day week. The unreported

corresponding elasticity estimate is of roughly the same magnitude at 0.7, but notably

higher than the upper-bound elasticity estimate of 0.4 presented by HOLMGREN (2007)

based on his meta-analysis of US data. Fuel cost increases may thus be an effective

instrument for encouraging transit ridership in Germany.
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That the effect of the fare does not mirror that of fuel prices might be attributed to

the fact that the majority of public transit users buy lump-sum tickets that allow for the

unlimited use of the transit system during their validation period. To explore whether

insignificant effects of the fare remain under alternative specifications, we estimated

models that included interaction terms and calculated the interaction effects, whose

derivation is presented in Appendix C. These specifications accommodated the possi-

bility of differential effects of fuel and fare prices by income level, residential location,

and car availability (LITMAN, 2004). In all cases, the interaction effects were found to

be statistically insignificant.

As with the fuel price, stark differences between the coefficient estimates and the

marginal effects are seen for the dummy variables indicating females, a private parking

space, and the existence of a rail transit stop near the home. Rail transit, for example,

which tends to afford greater speed and comfort, would be expected to positively af-

fect public transit use. While the coefficient estimate is statistically insignificant, the

estimate of the marginal effect is highly precise, and suggests that this service attribute

increases the number of transit counts by about 0.34.

Likewise, being female seems to be irrelevant when focusing on coefficients, but,

in fact, increases the number of transit counts by about 0.17, as is given by the marginal

effect. This result mirrors an estimate reported by VANCE and IOVANNA (2007), who

focus on the role of gender in determining car use. These authors find that women

have a lower probability of using the car than men and drive less when they do. Mo-

reover, FRONDEL and VANCE (2010) and VANCE and IOVANNA (2007) both uncover

an equalizing effect of employment status, the presence of children, and the distance

to the transit stop, with all three variables mitigating the negative effect of the female

gender dummy on the likelihood of car use. A similar analysis was undertaken here

by creating interaction terms with the female dummy. As in the case with the fare and

fuel prices, none of the gender interactions were found to be significant. This absence

of differential effects implies that many of the levers available to policy-makers for in-

fluencing transit patronage, such as fuel prices and the siting of transit stops, are likely

to have a roughly uniform impact among men and women.
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With respect to the remaining coefficients, age is seen to have a non-linear effect,

which is initially negative up to about an age of 72 after which it becomes positive.

The dummies for employed persons and those with a high school diploma both have

positive signs and are roughly the same magnitude, at least with respect to the mar-

ginal effects, suggesting that these individuals have transit counts that are about 0.49

higher than their counterparts. Likewise, those living in a big city and with a direct

transit connection from home to work are also more frequent users of public transport,

as are individuals who live in regions with a denser transit network. Consistent with

expectations, factors that increase the costs of transit use or that decrease the cost of car

use have negative effects. These include the dummies indicating license holders, those

with a parking space at work, and those who live in households with at least as many

cars as licensed drivers.

6 Conclusion

In Germany, the promotion of public transit use is a central policy tool in the mitigation

of pollution, congestion, and other automobile-caused externalities. Despite Germa-

ny’s relative success in capping emissions from transport, which rose by 1% between

1990 and 2005 compared to a 26% increase in the European Union (EEA, 2007), public

transit use has by most measures stagnated or been on the decline. Between 1994 and

2003, the percentage of trips traveled by transit dropped by 1%, contrasted by a 16%

increase in motor vehicle trips (DESTATIS, 2006). To counter this trend, the country’s

transport ministry has placed a high priority on improving the competitive position of

public transit relative to the automobile (BMVBS, 2009).

An important step in this endeavor is to identify the economic and structural

factors that draw or repel potential transit customers, thereby enabling the design of

measures to increase ridership among those segments of the population where the

scope for mode switching is greatest. From a planning perspective, one particularly

important factor is the responsiveness of transit riders to both gasoline prices and fares.
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This paper has investigated this issue with an analysis of the determinants of weekly

transit usage by drawing on household survey data from Germany.

To our knowledge, this is the first study to estimate the effects of fares and fuel

prices, as well as socioeconomic and geographic determinants, on the basis of individual-

level data. Although necessarily neglected in studies on the effects of fuel and fare pri-

ces using aggregated data, the discrete decision to occasionally or regularly use public

transit system appears to be of particular relevance in the analysis of individual data,

as fuel price peaks may trigger a reduction of car use, thereby fostering an occasional,

temporary, or even permanent switch to public transit.

We have addressed this issue by employing zero-inflated modeling approaches,

which is particularly appropriate when the question at hand requires distinguishing

between those who never use public transit from those who have some non-zero pro-

bability of a positive trip count. Our estimates suggest that a 1e increase in fuel prices

– that is, a rise in gasoline prices by about two thirds – increases transit use by almost

0.7 trips over a week, an effect that is statistically significant at the 1% level. Some-

what unexpectedly, we find that the effect of the fare, by contrast, is not significantly

different from zero, even when allowing for differential effects according to residential

location, car ownership, and the income of the household.

Taken together, these findings suggest that fuel prices are a more effective lever

than fares for influencing transit ridership, partly validating STORCHMANN’s (2001)

conclusion that higher fuel prices only increase peak-hour transit use, but not leisure

or off-peak transit. Moreover, given the relatively large fuel price elasticities found to

prevail in Germany (FRONDEL et al. , 2008), as well as the fact that revenue from the

eco-tax is employed to stabilize the contributions to the country’s pension insurance

system, increasing fuel taxes appears to afford promise for tackling demographic and

ecological problems simultaneously. This is all the more relevant as fuel taxes may be

raised centrally by the government, whereas the amount of fares is a decentralized

decision of local authorities and (semi-)private public transit suppliers.

As this is one of the few studies to be conducted on this topic using micro-level
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data in a European context, it would be of interest to see whether the qualitative fin-

dings presented here are corroborated by studies using other data sets from within

Germany and other European countries. A particularly useful line of inquiry would

focus on distinguishing short- and long-run price responsiveness using micro-level

data over a longer time interval, which is not subject to the aggregation problems that

commonly afflict regional-level temporal studies of transit use. Data constraints pre-

cluded such an analysis in the present study, but it is one that would further facilitate

the formulation of pricing strategies to encourage transit use.
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Appendix A: Hypotheses Tests

A basic assumption of the PRM is equidispersion, i. e. the conditional mean equals the

conditional variance:

V ar(yi|xi) = E(yi|xi) = λi. (9)

This rarely fulfilled assumption is relaxed in the NBRM, for which a variety of alterna-

tives to the constant-variance function given by (9) exist (see CAMERON and TRIVEDI,

1986). The most commonly used generalization is

V ar(yi|xi) = λi + αλ2
i . (10)

Testing Overdispersion

Equation (10) suggests examining the null hypothesis H0 : α = 0 in order to test for

overdispersion. If the null holds true, equidispersion according to (9) prevails and

the NBRM collapses to the PRM. It bears noting that testing the null requires pro-

cedures other than the typical symmetric t-tests, as α must be non-negative. Instead,

a Likelihood-Ratio (LR) test can be employed, where the test statistic follows a χ2-

distribution and is computed in the usual manner:

LR = 2 · (lnLNBRM − lnLPRM). (11)

lnLNBRM and lnLPRM denote the Loglikelihood functions of the NBRM and PRM,

respectively. The significance level of the test has to be adjusted to account for the

truncated sampling distribution of α̂.

VUONG Test of Non-Nested Models

Neither the NBRM is nested in the ZINBM, nor is the PRM nested in the ZIPM, as

is pointed out by GREENE (1995). While the ZINBM, for instance, would collapse to

the NBRM if ψi were identical to zero for all observations i, this equality cannot hold



in general and is, specifically, not fulfilled for γ = 0, as ψi = F (zT
i 0) = 0.5. To test

the superiority of the ZINBM over the NBRM, as well as of the ZIPM over the PRM,

GREENE consequently suggests using a test specified by VUONG (1989:319) for non-

nested models.

This test is based on the asymptotically normal distributed Vuong test statistic

given by

V :=
m̄

sm/
√
N
, (12)

where m̄ and sm designates themean and standard deviation of the logged relationship

of the predicted probabilities,mi, obtained from two Models 1 and 2, respectively:

mi := ln{ P̂1(yi|xi)

P̂2(yi|xi)
}. (13)

The Vuong test examines the null hypothesis H0 : E(mi) = 0. Large positive values

of V that exceed the well-known critical value of 1.96 of the normal distribution favor

Model 1, whereas negative values of V below the critical value of -1.96 are supportive

of Model 2.

Appendix B: Comparison of Competing Models

Beginning the discussionwith the PRM, our empirical example is another confirmation

for the fact that this most basic model typically underestimates the number of zero

counts:While 74% of the adult individuals in the estimation sample are observed not to

use public transport systems during a given week, the PRM predicts a markedly lower

probability of 40% for this outcome. Conversely, the PRM drastically overestimates the

probability for a single use and also overshoots for two to five transit counts a week.

The accordance of the observed frequencies and the predictions gleaned from the

NBRM is clearly superior to the PRM, particularly for the predicted non-use of public

transit systems. The superiority of the NBRM over the PRM is additionally confirmed

by the Likelihood Ratio test on overdispersion described in Appendix A, for which the

chi-squared test statistic amounts to 16,000.



Table B1: Comparison of Observed Frequencies with Predicted Probabilities Resulting

from Various Count Data Models

Observed ZINBM NBRM ZIPM PRM

Frequencies Predictions Predictions Predictions Predictions

P̂ (yi = 0): 0.740 0.740 0.721 0.740 0.400

P̂ (yi = 1): 0.028 0.034 0.103 0.011 0.280

P̂ (yi = 2): 0.065 0.036 0.048 0.022 0.144

P̂ (yi = 3): 0.019 0.034 0.029 0.033 0.073

P̂ (yi = 4): 0.025 0.030 0.019 0.038 0.039

P̂ (yi = 5): 0.013 0.025 0.013 0.038 0.023

P̂ (yi = 6): 0.019 0.020 0.001 0.033 0.014

P̂ (yi = 7): 0.012 0.016 0.008 0.026 0.009

P̂ (yi = 8): 0.013 0.013 0.006 0.020 0.006

P̂ (yi = 9): 0.014 0.010 0.005 0.014 0.004

Appendix C: Marginal and Interaction Effects

Given that E(yi|xi, zi) = (1 − ψi) · λi for the zero-inflated model, the marginal effects

can be readily calculated. For the case that the inflation regression is based on a logit

model, i. e. ψi = Λ(zT
i γ), where Λ(u) := 1/(1 + exp{−u}) is the logistic function whose

derivative is given byΛ′(u) = Λ(u)(1−Λ(u)), a marginal change in variable xk included

in both x and z yields the following variation of the expected counts:

∂E

∂xk

= (1− ψi) · λi · βk − ψi · (1− ψi) · λi · γk

= (1− ψi) · λi · (βk − ψi · γk) = E(yi|xi, zi) · (βk − ψi · γk), (14)

as ∂λi

∂xk
= ∂

∂xk
(exp{xT

i β}) = λi · βk. This marginal effect collapses to

∂E

∂xk

= E(yi|xi, zi) · βk (15)

if xk is not included in z, that is, if γk = 0.

For the case that the inflation regression is based on a probit model, i. e. ψi =

Φi := Φ(zT
i γ), where Φ(u) denotes the cumulative standard normal distribution and



Φ′(u) = φ(u) designates the density function of the standard normal distribution, the

marginal effect reads:

∂E

∂xk

= (1− Φi) · λi · βk − φi · λi · γk = E(yi|xi, zi) · βk − φi · λi · γk, (16)

with φi := φ(zT
i γ). If xk is not included in z, i. e. γk = 0, the marginal effect given by (16)

collapses to formula (15). The marginal effects are generally calculated at the mean of

the regressors and can be requested in the output of most statistical software packages.

Given the non-linearity of the ZIM, the formulas are a bit more complicated when

the model includes interaction terms. To explore whether the effect of an explanatory

variable z1 on the expected value E[y] of the dependent variable y depends on the

size of another explanatory variable z2, it is necessary to estimate the interaction effect

given by the second derivative ∂2E[y]
∂z2∂z1

. In this section, we follow FRONDEL and VANCE

(2010) and derive general formulae for the interaction effects resulting from ZIMs if

(a) z1 and z2 are both continuous variables, (b) z1 is continuous, while z2 is a dummy

variable, and (c) both are dummy variables.

To this end, we depart from the expected value (8),

E := E[y|z1, z2,w] = [1− F (u)] · exp{u} = [1− F (u)] · λ(u), (17)

where u := γ1z1 + γ2z2 + γ12z1z2 + wT γ, and vector w excludes z1 and z2. F (u) equals

the cumulative normal distribution Φ(u), when the inflation equation is specified as

a probit model and F (u) = Λ(u) = 1/(1 + exp{−u}) for the logit model. As in the

methodology section, we use the abbreviation λ(u) = exp{u}.

(a) If F (u) is a twice differentiable function, with the first and second derivatives

being denoted by F ′(u) and F ′′(u), respectively, the marginal effect with respect to z1

reads:

∂E

∂z1

= {[1− F (u)]− F ′(u)} · λ(u) · ∂u
∂z1

= {[1− F (u)]− F ′(u)} · λ(u) · (γ1 + γ12z2). (18)

The interaction effect of two continuous variables z1 and z2 is given by the second

derivative:

∂2E

∂z2∂z1

= = {[1− F (u)]− F ′(u)} · λ(u) · [(γ2 + γ12z1) · (γ1 + γ12z2) + γ12]



−[F ′(u) + F ′′(u)] · λ(u) · (γ1 + γ12z2)(γ2 + γ12z1)

(b) If z1 is a continuous variable and z2 is a dummy variable, the mixed interaction

effect Δ
Δz2

( ∂E
∂z1

) can be computed on the basis of the first derivative (18) as follows:

Δ

Δz2

(
∂E

∂z1

) :=
∂E

∂z1

|z2=1 − ∂E

∂z1

|z2=0

= {[1− F (u1)]− F ′(u1)} · λ(u1) · (γ1 + γ12)

−{[1− F (u0)]− F ′(u0)} · λ(u0) · γ1, (19)

where u0 := γ1z1 + wT γ and u1 := (γ1 + γ12)z1 + γ2 + wT γ.

(c) The interaction effect Δ2E
Δx2Δx1

of two binary variables z1 and z2 is obtained as follows:

Δ2E

Δz2Δz1

= {[E[y|z1 = 1, z2 = 1,w]− E[y|z1 = 0, z2 = 1,w]}
−{[E[y|z1 = 1, z2 = 0,w]− E[y|z1 = 0, z2 = 0,w]}

= [1− F (γ1 + γ2 + γ12 + wT γ)] · λ(γ1 + γ2 + γ12 + wT γ) (20)

−[1− F (γ2 + wT γ)] · λ(γ2 + wT γ)− [1− F (γ1 + wT γ)] · λ(γ1 + wT γ)

+[1− F (wT γ)] · λ(wT γ).

For the case that the inflation regression is based on a logit model, i. e. if F (u) =

Λ(u) := 1/(1+exp{−u}), F ′(u) = Λ′(u) = Λ(u)(1−Λ(u)) and F ′′(u) = Λ′′(u) = Λ(u)(1−
Λ(u))(1 − 2Λ(u)). For the case that the inflation regression is based on a probit model,

F (u) equals the cumulative standard normal distribution Φ(u), so that F ′(u) = Φ′(u) =

φ(u) is the density function of the standard normal distribution and F ′′(u) = φ′(u) =

−uφ(u).

If the expected value

E := E[y|z1, z2,w] = [1− F (v)] · exp{u} = [1− F (v)] · λ(u), (21)

differs from (17), because v := β1x1+β2x2+β12x1x2+wT γ does not include the variables

z1 and z2 occurring in u := γ1z1 + γ2z2 + γ12z1z2 +wT γ, the formulae for the interaction

effects simplify slightly.
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