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Abstract 

 

In the midwestern United States, ethanol produced from corn is mixed with gasoline to meet 

clean air standards. Allocating land to produce clean fuel means taking away land from farming. 

We examine a model in which a scarce fossil fuel (e.g., oil) causes pollution but may be 

substituted by a clean fuel produced from land. Methodologically, we extend the Hotelling model 

to consider a substitute produced in the agricultural sector. We discover a range of prices within 

which the land-based fuel may substitute for the fossil fuel. When land is abundant, the supply of 

the clean fuel may exhibit multiple discontinuities. Environmental regulation may cause food 

production and farm prices to remain constant for a period of time. 
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1. Introduction 

The Ford Motor Company has introduced several types of Flexible Fuel Vehicles (FFVs) that run 

on E85, a mixture of 85% ethanol (made from corn) and 15% gasoline. There are 3.5 million 

FFVs already plying on US highways but only 400 fuelling stations that supply E85. A bill 

passed by the US Senate provides tax credits for building E85 fueling stations. After the bill’s 

passage, United States Sen. Barrack Obama said: “a fuel made of 85 percent Midwestern corn is 

a lot more desirable than one made from 100 percent Middle Eastern Oil.” 

 

The US Environmental Protection Agency is considering regulating a renewable energy standard, 

by which a designated fraction of all gasoline must come from renewable energy sources such as 

ethanol. These trends towards meeting clean energy goals through fuels produced from land 

imply an increased competition for scarce land resources, especially in agriculture. Policy makers 

in the US Midwest, for example are already worried about the effect of rising ethanol 

consumption for energy on food prices (The New York Times, 2006).4 

 

In this paper, we develop a dynamic model that examines this trade-off between producing clean 

energy and using land for food production. The clean energy substitutes for a polluting non-

renewable resource such as oil. We derive an equivalence between Ricardian land rent and the 

Hotelling rent for the nonrenewable resource. We show that the price of the clean fuel produced 

from land must lie within precise bounds dictated by the amount of available land and the 

demands for food and energy. These bounds determine the trigger price at which the land fuel is 

used for energy and the price at which the nonrenewable resource is completely exhausted. 

Supply of the land based fuel may occur in a discontinuous fashion when land is relatively 

abundant. Ricardian rents to land as well as Hotelling rents to oil may increase over time.  

 

We examine how environmental regulation imposed in the form of a limit on the stock of 

pollution may affect the substitution to a land-based fuel. Unlike abatement technologies which 

                                                 
4 “High oil prices are dragging corn prices up with them, as the value of ethanol is pushed up by the value of the fuel 
it replaces,” The New York Times (2006).  
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may be used only when regulation is binding, the land-based fuel may be deployed before the 

pollution stock is binding or later in time when pollution is no longer an issue.    

 

There is a large literature on nonrenewable resources and pollution, including Forster (1980), 

Sinclair (1994), Ulph and Ulph (1994), Farzin (1996), Hoel and Kverndokk (1996), Tahvonen 

(1997) and Toman and Withagen (2000). The focus of these studies has largely been on the time 

path of pollution and carbon taxes. Hoel (1984) examines a model in which a nonrenewable 

resource has a perfect substitute in some of its uses but no substitute in others. He notes that 

resource prices may jump at the time when the substitute production comes into play. The focus 

of his paper is on market structure and price discrimination, not on the relationship between land 

and energy use. Chakravorty, Magne and Moreaux (2006) extend a Hotelling model to explore 

the allocation of a polluting nonrenewable resource and a clean backstop. This paper is an 

extension of their approach, in which we explicitly model land allocation in an agricultural sector 

that may produce both food and clean energy. The land endowment and magnitude of demands 

for food and energy affect substitution between the fossil fuel and the land fuel. On the other 

hand, pollution regulation in the energy sector affects the allocation of land in food production. In 

general, the main contribution of this paper in the literature following Hotelling (1931) is in 

explicitly linking the use of a nonrenewable resource over time to the allocation of land.  

 

Section 2 outlines the basic dynamic model with land. In section 3 we develop intuition by 

examining polar cases of the model in which land is allocated for food alone, for both food and 

fuel after oil is completely depleted, and finally when both food and both sources of energy are 

produced. In section 4, we integrate this land market equilibrium with the dynamic equilibrium in 

the oil market. In section 5, we impose environmental regulation and consider when costly 

pollution control technologies may be deployed. Section 6 concludes the paper.   

 

2. The Model 

We consider an economy in which utility U at any given time t is produced from food and 

energy, denoted respectively by fq and eq .5 Utility is additive and given by the sub-utility 

                                                 
5 In order to prevent notational clutter, we avoid writing the time argument explicitly wherever possible.   
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functions ef uuU += . We further assume that { } RR:e,fi,ui →∈ +  is of class 2C , strictly 

increasing and strictly concave, satisfying the Inada conditions +∞=′
+∞↓

)( lim iiq
qu

i

, where 

i

i
ii dq

du)q(u =′ . Under these assumptions, the second derivative 2
i

i
2

ii dq
ud)q(u ≡′′  is negative. Denote 

by pi the marginal surplus function and by di its inverse, i.e., )p(u)q(p)p(d i
'1

i
1

iii
−− ≡≡ .  

 

There are two primary factors, land and a fossil fuel which we call oil. Land is assumed to be 

homogenous in quality, and its endowment is denoted by L . It can be used to produce food or an 

energy crop such as corn that when converted to ethanol, serves as a clean substitute for oil.6 

Let { }y,fi,Li ∈ , be the portion of land dedicated to producing food and energy, respectively. 

Then the residual land 0LLL yf ≥−−  is fallow. Denote by f and y the yield of food and the 

land-based fuel per unit land which is assumed fixed. Their production at any instant of time is 

given by fLf)t(f = and yLy)t(y = . The cost of inputs per unit land area is denoted 

by { }y,fi,ci ∈ . These costs may include the cost of conversion of grain to ethanol. We assume 

that they do not vary with the volume of food or land fuel produced. The average cost per unit 

output is then given by fc f /  and ycy /  respectively. These commodities are not storable, 

except at a prohibitive cost.  

 

Energy can also be produced by using oil. Let )0(X be its initial stock, )t(X the residual stock at 

time t and )t(x its rate of consumption so that )t(x)t(X −=
•

. Let xc be its average cost7 assumed 

to be constant and lower than the unit cost of the land fuel, ycc yx /< . The land fuel and fossil 

fuel are assumed to be perfect substitutes in final demand so that the total consumption of energy 

at time t is equal to the sum of their extraction rates: )t(x)t(y)t(qe += .8 The land fuel is costly 

                                                 
6 The model may need to be significantly modified to consider energy sources such as wood from tree production 
because harvests tend to be discrete in time. 
7 including the cost of extraction, processing and delivery. 
8 Strictly speaking, this is not an accurate depiction of E85. That would imply strict complementarity of both fuels in 
clean energy production, so that ethanol and oil will be produced in fixed proportions. That is, oil will be directly 
used in the production both fossil and clean energy. As will be clear later, such an extension will make the model 
complicated but may not yield many fresh insights. Both oil and ethanol production must go down over time at 



 5

and produces no emissions. Letθ be the quantity of pollution (e.g., carbon) released into the 

atmosphere per unit of fossil fuel consumed and )t(Z be this stock at time t, with )0(Z the initial 

stock. As is standard in the literature we assume that there is some natural dilution of pollution 

that is proportional to the stock of pollution, )t(Z . Let 0>α be the natural rate of decay. To keep 

the model simple, we abstract from considering costly pollution abatement policies, but discuss 

this issue later in the paper. The dynamics of pollution is given by )t(Z)t(x)t(Z αθ −=
•

. 

 

Let Z be the pollution stock quota exogenously imposed by say, an international agreement, so 

that 0)t(ZZ ≥−  at any time t. We define x as the maximum extraction rate of oil when this 

constraint is tight. From 0)t(Z =
•

and Z)t(Z = , we get θα /Zx = . The objective of the social 

planner is to maximize net aggregate surplus discounted at some constant rate .0>ρ  The planner 

allocates land for food and fuel production, and the scarce fossil fuel to solve the following 

problem (P): 

 

{ } dtexcLcLcyxufuMax t
xyyffefxLL yf

ρ−
+∞

−−−++∫ )()(
0

},,{
    (P) 

 

subject to 

fLf)t(f =  

yLy)t(y =  

,0LLL yf ≥−− 0Ly ≥ , 

0  given, X)0(   , 0 ≥=−=
•

XXxX , 0≥x , and       

0  given, )0(  , 0 ≥−<=−=
•

ZZZZZZxZ αθ .     

 

 

                                                                                                                                                              
constant rates until infinity. Here we implicitly assume that ethanol can be used independently of oil, which may be 
justified as technological improvements increase the content of ethanol to higher than the current 85% or what is 
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The current value Lagrangian is: 

 

[ ] [ ] [ ] ,    

)()(

xLLLLZZZx

xxcLcLcyxufu

xyyyf

xyyffef

γγπναθµ

λ

++−−+−+−+

−−−−++=l
 

 

and the first order conditions are: 

 

f
c

)f(u        0
L

f
f

f

π+
=′⇔=

∂
∂l

        (1) 

y
c

)yx(u        0
L

yy
e

y

γπ −+
=+′⇔=

∂
∂l        (2) 

xxe c)yx(u        0
x

γθµλ −−+=+′⇔=
∂
∂l       (3) 

 

together with the complementary slackness conditions: 

 

0L  ,0 yyy =≥ γγ ,          (4) 

0x  ,0 xx =≥ γγ ,           (5) 

0)LLL(,0 yf =−−≥ ππ ,         (6) 

 

where xy ,γγ and π are the relevant Lagrangian multipliers. Because of the Inada assumptions, we 

do not need a multiplier for the condition 0Lf ≥ since it will never be binding. There will always 

be land under food production. The dynamics of the costate variables are determined by: 

 

te
x

ρλλρλλρλλ 0              =⇒=⇔
∂
∂

−=
•• l ,       (7) 

( ) ,        νµαρµρµµ ++=⇔
∂
∂

−=
••

Z
l

 and       (8) 

                                                                                                                                                              
more likely, is that another resource abundantly available, such as coal can be converted to oil and used jointly with 
ethanol.    



 7

[ ] 0   and  ,0 =−≥ ZZνν          (9) 

 

where )0(0 λλ = . The costate variableµ is non-positive. If ZZ < over some time interval [ ]10 t,t , 

then 0=ν  and ( )( )0tt
0 e)t()t( −+= αρµµ , [ ]10 t,tt∈ . Lastly, the transversality conditions at infinity 

are: 

 

,0)t(Xlim)t(X)t(elim
t0

t

t
==

+∞↑

−

+∞↑
λλρ         (10) 

.0)t(Z)t(elim t

t
=−

+∞↑
µρ           (11) 

 

We will use the term “full marginal cost” to mean the monetary cost of a good augmented by the 

relevant shadow price. The full marginal costs are 
f

c f π+
 for food, 

y
cy π+

 for the land fuel, and 

θµλ −+xc  for oil. 

 

3. Land Allocation between Competing Uses 

In this section we determine optimal land use and the supply of food and energy. To develop 

intuition, we first examine two polar cases: (i) land is used only for food production and (ii) land 

is used for food and energy when oil is completely exhausted. Finally we consider the general 

case when land is used both for food and energy, in which the latter may be supplied by oil and 

the land fuel simultaneously. 

 

Land is Used only for Food 

Define LLf
f ≤ as the land parcel under food production if no energy is being produced from land. 

We use the superscript f to denote equilibrium values in this food only model. Then the remaining 

land 0LL f
f ≥−  will be fallow. Let fπ be the corresponding rent to land. Then 

fffff c)Lf(uf)L( −′=π . If 0)( >Lfπ , all the land must be in use, so that LLf
f = . When land is 

abundant or demand for food is low, f
fL  solves ( ) 0=−′ fff cLfuf  and equilibrium land rent fπ is 
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zero. We will ignore the degenerate case in which rents go to zero exactly when all available land 

is used. We assume that if 0=fπ , then LLf
f < , some land is always left fallow. 

 

Define f
yp  as the full marginal cost of the land fuel when land rents equal fπ , i.e., 

( ) y/cp f
y

f
y π+≡ . Then ycp y

f
y /≥ . If the price of energy is less than f

yp , land is more 

productive in food production. Hence no clean fuel will be produced and only oil must be used 

for energy. The price f
yp thus serves as a lower bound for the price of energy at which land fuel 

production becomes competitive. If fπ is zero, then ycp y
f
y /= . The trigger price for the land 

fuel is its average cost. 

 

The choice of f
fL  is shown in Fig.1. The function 1

fπ corresponds to a situation of low marginal 

product or high marginal cost in which some land is left fallow, and 2
fπ  represents the case in 

which all land is used in food production.  

 

[Figure 1 here] 

 

Land Use when Oil is Exhausted  

When oil is exhausted, only the land fuel must supply energy. Let y
fL  and y

yL  be land parcels 

allocated for the production of food and fuel, and yπ the corresponding equilibrium land rent, 

where the superscript ‘y’ denotes equilibrium values for this model. With no oil, pollution is a 

non-issue since emissions are zero. The maximization problem (P) reduces to: 

 

{ } dteLcLc)y(u)f(uMax t
yyffef

0
}L,L{ yf

ρ−
+∞

−−+∫       (P1) 

         

subject to  

 

fLf)t(f = , yLy)t(y = , 0LLL yf ≥−− and 0Ly ≥ .        
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The necessary and the complementary slackness conditions are: 

 

π+=′ ff c)f(uf , 

yye cyu γπ −+=′ )(y , 

0≥π  and ,0)LLL( yf =−−π 0≥yγ  and 0=yy Lγ .  

 

With no stock dynamics, (P1) is a static problem. Under the Inada conditions, 0Ly
f >  and when 

oil is exhausted, the land fuel must supply energy so that 0Ly
y >  and 0=yγ . Let )( yy Lπ  be the 

rent to land allocated for land fuel production, i.e. yyyyy cLyuyL −′= )()(π . All the available 

land will be used for food and energy production if equilibrium land rents are equal and strictly 

positive, i.e., ( ) ( ) 0LLL fyff >−= ππ . This is shown in Fig. 2, in which the equilibrium rent yπ is 

strictly positive. When land is abundant or demands are small, each marginal product may be 

zero, i.e., y
fL  solves 0)L( ff =π  and f

f
y
f LL = . In this case land allocated for food is exactly the 

same as in the previous model with no energy production, and y
yL solves 0)( =yy Lπ , with 

LLL y
y

y
f <+  and the common land rent 0y =π . Some land is left fallow. If equilibrium land rents 

are zero in the model with the land fuel, it can not be strictly positive in the food only case when 

there is no competition for land. That is, we can not have 0y =π and 0>fπ . 

 

[Figure 2 here] 

 

Land Use for Food and Energy when Oil is Available 

We now consider land allocation when oil is still available. Define y
yp as the full marginal cost of 

the clean fuel when the land rent is equal to yπ , i.e., 
y

c
p

y
yy

y

π+
≡ . Rents must be higher in the 

presence of competing uses, hence fy ππ ≥ . This implies that 
y

c
pp yf

y
y
y ≥≥ . We then have 
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y
c

p yf
y >  if 0>fπ  and f

y
y
y pp >  if fy ππ > . We will see below that the price of energy is at 

most equal to y
yp , the highest price reached once oil is exhausted. If rents are zero both in the 

food only and food and land fuel only models, 0fy == ππ , then some land must be fallow, i.e., 

LLL y
f

y
y <+ .9 In the food only model, there is no competition for land, hence rents will achieve 

some lower bound, while in the model with no oil, all energy must come from the land fuel, 

hence rents achieve some upper bound.  

 

Consider energy supply for given energy prices y
ye pp ≤ . Define )(ˆ epπ  as the land rent for which 

the full marginal cost of the land fuel is equal to the price of energy ep . This price must be at 

least equal to the unit cost of the land fuel, ycy : 

 

⎪⎩

⎪
⎨
⎧

≤<−
≤

= y
yeyye

ye
e ppyccpy

ycp
p

,
,0

)(π̂  

 

Below we examine three possible cases: 0>fπ ; 0=fπ  and 0>yπ  and finally, 0== yf ππ . 

 

(a) All Available Land is Used under Food Production, 0>fπ : 

When 0>fπ , the demand for food is high or the endowment of land is low. Then 
y
y

f
yy ppyc ≤< . For energy prices f

ye pp < , we have f
ep ππ <)(ˆ . Since the rent under food 

production is higher than in fuel production, all the available land must be used to grow food and 

there will be no land fuel supplied to augment the use of oil. For higher energy 

prices [ ]y
y

f
ye ppp ,∈ , we have f

ep ππ >)(ˆ . The land fuel is competitive in the allocation of land, 

hence 0>y  and 0=yγ . Equalisation of land rents implies 

 

yeffp cpycLfuf
e

−=−′ )(          (12) 

                                                 
9 We neglect the degenerate case when 0fy == ππ  and LLL y

f
y
y =+ . 
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so that 

 

0
)(²
<

′′
=

fe

f

Lfuf
y

dp
dL

.         (13) 

 

A higher price of energy induces a decrease in the land allocated to food and because 

fy LLL −= , an increase in the land allocated to fuel. Let )(ˆ
ef pL  be the solution to (12) for 

[ ]y
y

f
ye ppp ,∈  and equal zero for f

ye pp ≤  . Then the supply of landfuel as a function of ep  given 

by )(ˆ epy , is 

 

[ ])p(L̂Ly)p(ŷ efe −= .         (14) 

 

Let the portion of energy supplied by oil be denoted by )( ex pd . It must equal the aggregate 

demand for energy net the quantity supplied by the land fuel, )(ˆ)( eee pypd − . To see that 

0)( ≥ex pd , note that because 0>fπ , when f
ye pp = , we have 0)( >f

yx pd  and 0)(ˆ =f
ypy  and 

when y
ye pp = , )(ˆ)( y

y
y
ye pypd = . Since )( ee pd  is decreasing while )(ˆ epy  is increasing we 

conclude that 0)( ≥ex pd  and )( ex pd  must be decreasing from )( f
ye pd  at f

ye pp =  down to zero 

at y
ye pp = . Furthermore )( ex pd  is continuous at f

ye pp =  although nondifferentiable. The 

derived demand function for oil, )( ex pd  is illustrated in Fig. 3 

 

[Figure 3 here] 

 

(b) Land is Fallow under Food Production but not for both Food and Energy, 0=fπ , 0>yπ : 

This case may arise if there is enough land for food production but not for producing both food 

and energy. Or if the demand for food is low relative to the demand for energy. The land rent 

under food production is zero, but not when both food and energy are being produced after the 

exhaustion of oil. Then ycp y
f
y =  and xy

f
y

y
y cycpp >=> . This case was illustrated in Fig. 2 
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where the trigger price for land fuel is the unit cost of production ycy . At prices 

ycpp y
f
ye =>  a strictly positive quantity of land fuel is supplied because f

ey p ππ >)(ˆ . The 

value of Lf  that solves (12) is strictly positive and bounded from above by LLf
y < , so that 

( ) 0)p(L̂Llim efycp ye
>−↓ implies )p(d)p(ŷlim f

yeeycp ye
<↓ . When f

ye pp < , 0)(ˆ =epy . Thus at 

ycp ye = , 0)( =epy  jumps from 0 to ( ) ( ) 0)(ˆlim >−=−↓
f
fefycp LLypLL

ye
. The case is 

illustrated in Fig. 4 below. 

 

[Figure 4 here] 

 

(c) Land is Abundant both for Food and Energy, 0yf == ππ : 

Finally suppose land is abundant or the demand for food and energy is small. Then 

ycpp y
y
y

f
y == . For any price of energy ep  that is higher than the trigger price ycy , all energy 

has to be supplied by land and the demand for oil decreases from )( ycd ye  to a value that is 

indeterminate within the interval [ ])(,0 ycd ye . This is the case in which the land fuel acts as a 

pure backstop at the price ycy , as shown in Fig. 5. 

 

[Figure 5 here] 

 

4. The Land Fuel in a Hotelling Model 

In this section we impose dynamics on the above Ricardian framework. First we consider the 

Hotelling model without any environmental regulation. This is problem (P) without the 

constraint 0≥− ZZ . The modified condition (3) now becomes ( ) xxcyxu γλ −+=+′  and 

conditions (8), (9) and (11) no longer hold. 

 

Since y
y

f
yyx ppycc ≤≤< , the interval [ )y

yx p,c  is nondegenerate. For any ( )x
y
y0 cp,0 −∈λ  let 

( )0xp λ  be the Hotelling price of oil which must equal the marginal extraction cost augmented by 

the scarcity rent of the resource, i.e., t
0x0x ec)(p ρλλ += . Let ( )0

y λΓ be the time at which this 
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price is equal to y
yp , i.e., ]ln)cp[ln()( 0x

y
y

1
0

y λρλΓ −−= − . Then we must have 0
d
d

0

y

>
λ
Γ , 

0lim y

cp x
y
y0

=
−↑

Γ
λ

 and +∞=
↓

y

00

lim Γ
λ

. A higher initial Hotelling rent will shorten the date of 

exhaustion of oil.  

 

Let ( )0X λ  be the cumulative consumption of oil over the time interval )](,0[ 0
y λΓ along this 

Hotelling price path. The aggregate supply of oil is ( )
( )

∫=
0

y

0
0xx0 dt))(p(dX

λΓ

λλ . We have 0
d
dX

0

<
λ

, 

0Xlim
x

y
y0 cp

=
−↑λ

 and +∞=
↓

Xlim
00λ

 which suggests that the equation ( ) 0
0 XX =λ  has a unique 

solution given by the optimal value of the Hotelling rent of oil, absent environmental regulation. 

As a function of 0X , the equilibrium rent is decreasing with 0lim 0X 0

=
∞↑
λ  and x

y
y0

0X
cplim

0
−=

↓
λ . 

 

Let ( )0x λ and ( )0y λ denote the oil and land fuel consumption paths corresponding to the Hotelling 

price path ( )0xp λ . For ( )x
f
y0 cp,0 −∈λ , define ( )0

f λΓ  as the time at which ( ) f
y0x pp =λ , that 

is ( ) ]ln)cp[ln( 0x
f
y

1
0

f λρλΓ −−= − . Then for 0y >π , that includes the two cases 

0fy >> ππ and 0fy => ππ , if )cp,0( x
f
y0 −∈λ , we have 

 

( )
( )( ) ( )( )
( )( ) ( )( )

⎪
⎩

⎪
⎨

⎧

≤
<<<

<≤=
=

t)(,0
)(t)(,pdpd

)(t0,pdpd
x

0
y

0
y

0
f

0xe0xx

0
f

0xe0xx

0

λΓ
λΓλΓλλ

λΓλλ
λ ,  

( ) ( )( ) ( )( )
⎪
⎩

⎪
⎨

⎧

≤
<<−

<≤
=

t)(,y
)(t)(,pdpd

)(t0,0
y

0
yy

0
y

0
f

0ex0ee

0
f

0

λΓ
λΓλΓλλ

λΓ
λ  

 

where y
y

y Lyy = . For ( )x
y
yx

f
y0 cp,cp −−∈λ , the phase during which oil supplies all energy 

consumption disappears. The unit cost of the land fuel is lower than the full marginal cost of oil. 

When 0f >π , the case shown in Fig. 3, oil supplies all the energy until the Hotelling price equals 
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the trigger price f
yp . Above this price, the supply of oil is augmented by fuel from land. The 

supply of the land fuel increases until oil is completely exhausted at price y
yp , as shown in Fig. 6. 

When 0f =π  but 0y >π , the supply of the land fuel is as shown in Fig.4. Oil supply is positive 

in the entire price range ( )y
y

f
y pp , . Oil is exhausted when the price reaches y

yp . Finally, when 

0y =π , then ycpp y
f
y

y
y == , the land fuel acts as a pure backstop resource. Only oil is supplied 

until time yf ΓΓ = , shown in Fig. 7. The intermediate phase of simultaneous extraction that 

occurred previously disappears. 

 

[Figures 6 and 7 here] 

 

5. Use of the Clean Energy under Environmental Regulation 

Consider a cap on the stock of emissions. This constraint can be relaxed either by reducing the 

use of oil, supplying energy from land or by costly pollution abatement. The land fuel is more 

costly than oil, and supplying it reduces the consumption of food when land is scarce. We first 

examine a model with no pollution abatement. 

 

We distinguish between the solution values of the variables in the model absent any regulation 

and the model with regulation. Let H
0λ be the optimal scarcity rent in the regulation free model. 

Then ( )H
0

HZ λ  is the time path of the pollution stock induced by oil extraction rate ( )H
0x λ  when the 

initial stock is 0Z and there is no pollution cap.10 We assume that the ceiling constraint is binding 

along this standard Hotelling path. Beyond ( )H
0

y λΓ , no fossil fuel is used and HZ falls smoothly 

to zero. The binding constraint may be stated as ( ) ( )[ ]{ } .,0, 00 ZtZMax HyHH ≤Γ∈ λλ  

                                                 
10 Formally HZ solves the differential equation ( ) ( ) .ZZ , Z x

dt
dZ 0H

0
H
0

HH
0

H

=−= λαλθ  For x
f
y

H cp −<0λ , the 

extraction rate ( )H
0x λ  is not differentiable (is discontinuous) at time fΓ when the price of oil is f

yp  and 0>fπ  

(=0). Then we must first solve this differential equation over the time interval [ ))(,0 H
0

f λΓ . Let H
)( H

0
fZ
λΓ

 be the 

limit of HZ as )(t H
0

f λΓ↑ . Next solve the same equation over the time interval [ )∞),( H
0

f λΓ  taking H
fZ

Γ
 as 
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If τ is the final instant of time at which the constraint is tight, then 0)t( =µ  beyond time τ . 

Beyondτ  the environmental constraint no longer binds and resources are allocated as in a 

Hotelling model. Let τ  be the first time instant at which the ceiling constraint is binding 

( ZZ 0 < implies 0>τ ). Over the time interval [ )τ,0  the constraint is not binding but will later in 

time. Since 0>− ZZ  then 0=υ  so that ( )te αρµµ += 0  with 00 <µ  and the full cost of the fossil 

fuel is denoted by ep(  such that ( )t
0

t
0x00e eec),(p αρρ µλµλ +−+=( . Let ),(Z 00 µλ

(
be the path of the 

stock of pollution corresponding to the price path ),( 00 µλep( , i.e., the path defined by 

( )( ) .  ,  , 0
000 ZZZpd

dt
Zd

ex =−=
(((

(

αµλθ  

 

The land fuel may be economically feasible according to whether the constrained oil extraction  

at the ceiling x ( )θα /Z=  is higher or lower than demand at the trigger price given by ( )f
ye pd . 

The intuition is that if ( )f
ye pdx > , then the constraint is not tight enough or the opportunity cost 

of the land fuel is relatively high so that using land to provide supplementary clean energy in 

order to satisfy the constraint is cost prohibitive. In other words, the price at which the 

consumption of oil is constrained is lower than the lowest opportunity cost of the land fuel f
yp . 

We re-examine the three cases discussed earlier from the point of view of environmental 

regulation:  

 

(a) All Available Land is Used under Food Production, 0>fπ : 

Here xy
f
y

y
y cycpp >>>  and the demand for oil xd is continuous at the trigger price f

yp . The 

price ep  at which ( ) xpd ex =  is well defined. If f
ye pp > , as shown in Fig. 8, the land fuel is 

competitive at prices ( )e
f
ye ppp ,∈ . It is used along with oil before regulation becomes binding. 

Both fuels are also used at the ceiling. There is an initial phase during which the stock is lower 

than the ceiling and the price of fuel is given by ),(p 00e µλ( . This phase may include a segment 

                                                                                                                                                              
the initial condition and ( )ex

pp
pdlim

f
ye ↓

 as the initial demand. The path HZ is continuous at time )(t H
0

f λΓ= but 
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during which both fuels are used simultaneously. At time 0t = , f
y00e p),(p <µλ( , as shown in the 

figure. If f
y00e p),(p >µλ( then both fuels must be used from the beginning. During this initial 

phase the pollution stock Z
(

is increasing. The ceiling is attained at timeτ at which ZZ =),( 00 µλ
(

 

and ee pp =),( 00 µλ( . 

 

At the ceiling, the price of fuel is constant at ep . Oil consumption is constrained at x and land fuel 

consumption is given by ( ) ( ) 0pdpdy exee >−= . During this time µ is increasing, i.e., decreasing 

in absolute value. At the end of this phase at τ=t , pollution is no longer an issue and 0=µ for 

the rest of the planning horizon. The next phase is a pure Hotelling phase during 

which )(pp 0xe λ= . Oil consumption is decreasing but land fuel supply is increasing in response 

to the rise in prices. At time )(t 0
y λΓ= , oil is exhausted. Beyond this time, the land fuel is the 

only source of energy.11 

 

[Figure 8 here] 

 

Before the land fuel is produced, land is allocated only for food. When supply of the land fuel 

begins, land allocated to food production declines until the pollution stock hits the ceiling. At the 

ceiling, the supply of the clean fuel is constant, hence food production and prices are also 

constant. Once the ceiling is no longer constrained, food production continues to decline until it 

reaches a steady state at )(t 0
y λΓ= . Environmental regulation leads to constant food output and 

prices for a time period. If there was no regulation, the decline in food production would be 

gradual until oil was exhausted and land fuel supply was at its maximum level.  

When the price at the ceiling is lower than the minimum price at which land fuels become 

economical, only oil is consumed at the ceiling and the land fuel is supplied after the ceiling 

period is completed.12  

 

                                                                                                                                                              
not differentiable.   
11 See Appendix A for technical details of this solution. 
12 For reasons of space, this case is not illustrated in the paper.  
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(b) Land is Fallow under Food Production but not for both Food and Energy, 0=fπ , 0>yπ : 

In this case if ( )ex
pp

pdlimx
f
ye ↓

< , then f
ye pp > , so the land fuel is used at the ceiling. But if 

( )f
ye pdx > , then f

ye pp <  and the clean fuel is used only in the post-ceiling period. However, 

if ( ) ( )f
yeex

pp
pdxpdlim

f
ye

<<
↓

 and ( )f
yx pd is not well defined at f

ye pp = , there is a jump discontinuity 

when the energy price equals f
yp . As shown in Fig. 9, at the end of the first phase oil 

consumption is discontinuous and falls from )p(d f
ye to x . The deficit is supplied by land fuel. 

There is no impact on food production because aggregate production of the land fuel is less than 

what available land can produce, given by )p(dlim)p(d ex
pp

f
ye f

ye ↓
− . Part of the land is fallow from 

the beginning until time τ  when oil consumption falls again from x to )p(dlim ex
pp f

ye ↓
and clean fuel 

consumption jumps up by the same amount. The land constraint now becomes binding. Oil is 

exhausted and the supply of the land fuel increases to yy , with aggregate energy consumption 

declining due to the increase in the price of energy. Food consumption decreases from ff to yf .13 

There are two jumps in the supply of the clean fuel, at time τ andτ . 

 

(c) Land is Abundant both for Food and Energy, 0yf == ππ : 

The analysis is the same as before except when 0)p(d ex =  for y
y

f
ye ppp => . See Fig. 10 for the 

case )p(dx f
ye< . Supply of the land fuel starts exactly at the ceiling and there is no Hotelling 

phase after the ceiling. Oil supply exhibits a discontinuity from )p(d f
ye  to x . The difference is 

supplied by the clean fuel but all available land is not utilized. Oil is exhausted exactly at 

                                                 
13 The optimal values of 0λ , 0µ ,τ ,τ and yΓ  are determined as in the previous case. The cumulative 
consumption/supply balance equation of the fossil fuel can be written as 

[ ] 0
0

0
00 ))(()),(( Xdtpdxdtpd

y

xxee =+−+ ∫∫
Γ

τ

τ

λττµλ(
. 
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timeτ when the land fuel supply jumps up from x)p(d f
ye −  to ff

ye y)p(d = , which lasts until 

infinity.14 

 

[Figure 10 here] 

 

The clean fuel may work as a textbook backstop resource and may not supplement the fossil fuel, 

as illustrated in Fig. 11 where )()( ycdpdx ye
f

ee => . Define ep  as the price at which 

xpd ee =)( . At time yΓ , oil is exhausted, its consumption falling from )()( ycdpd ye
f
yx =  to 

zero and is completely replaced by the land fuel.  

 

[Figure 11 here] 

 

The Clean Fuel and Costly Pollution Control 

In this section, we investigate the relationship between using land to produce clean energy and 

alternative pollution control policies such as through more efficient appliances (e.g., scrubbers). 

We focus only on the intuition.15 Suppose the stock of pollution can be reduced through costly 

abatement, denoted by a . The average abatement cost, denoted by ac , is assumed constant. Then 

the total instantaneous abatement cost is equal to aca and the new dynamics of the pollution stock 

is given by ZaxZ αθ −−=
•

. With abatement, the new maximum extraction rate of oil at the 

ceiling will be )(ax where θα )Za()a(x += . When 0=a , we get back the original extraction 

rate .x The optimization program (P) must now be modified by including abatement a as a choice 

variable. This new program (P2) yields the following additional conditions:  

 

                                                 
14 This solution is characterized by the values of the variables 0λ , 0µ ,τ andτ  that solve the following system of 

four equations: the cumulated demand/supply balance equation 0

0
00ee X][xdt)),(p(d =−+∫ ττµλ

τ
(

; the 

pollution stock continuity equation at τ : Z),(Z 00 =µλ
(

; the price continuity equations at τ , τ  :  

)(),( 00 ycppp y
y
y

f
ye ===µλ(

 at τ=t  and )()( 0 ycppp y
y
y

f
yx ===λ  at τ=t . 

15 Technical details are provided in Appendix B. 
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aac        0
a

γµ −=−⇔=
∂
∂l          (15) 

0≥aγ  and 0 =aaγ ,          (16) 

 

where aγ is a Lagrangian multiplier. Define )(p~ 0e λ as the full marginal cost of the clean fossil 

fuel including the marginal cost of abatement but excluding the shadow cost of the ceiling 

constraint: a
t

0x0e cec)(p~ θλλ ρ ++= . Abatement will not occur if the full marginal cost with 

abatement is higher than the one with no abatement. There is no benefit from abating when the 

stock of pollution is strictly below the ceiling. Suppose, abatement occurs at time τ<t , before 

attaining the ceiling. Then ( )te αρµµ += 0 , ),0[t τ∈ . Since 0>a , ),0[t τ∈ , then 0a =γ  over this 

interval. Together with (15) this implies that ac=− µ . Both ( )t
0e)t( αρµµ +=  and ac−=µ , 

[ )τ,0t∈  cannot be true, hence we arrive at a contradiction. Abatement must occur only at the 

ceiling. Abatement is costly and reducing pollution when the constraint is not binding confers no 

additional benefit.  

 

Abatement must also occur only at the beginning of the ceiling period, if at all. By definition, the 

marginal cost of oil under abatement )(p~ 0e λ is upward sloping, since it depends upon the price of 

oil. If abatement were optimal, then this graph must cut the horizontal ceiling price ep at some 

time period, sayτ~ . Before this time, the abatement marginal cost is below ep hence abatement is 

economical, and afterτ~ , the marginal cost is above ep , hence abatement becomes too expensive. 

Given that the unit cost of pollution control is constant and the ceiling is tight, the earlier it is 

done the better, since that allows increased use of cheap oil earlier in time.  

 

In summary, there is a clear distinction between the two options for pollution reduction. 

Abatement may happen only at the ceiling and must commence at the beginning. The use of the 

land fuel may start before the ceiling, and once energy production from land begins, it will 

always be part of the fuel mix. This is because the scarcity of oil drives the price of oil higher, 

making the land fuel relatively cheaper over time. The land fuel may be supplied starting from 

before the ceiling is binding, interior to the ceiling or after the ceiling no longer holds.   
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7. Concluding Remarks 

In this paper we develop a Hotelling model with a market for land that drives the supply of clean 

energy. We discover a range of energy prices within which the land-based fuel may substitute for 

the fossil fuel. Depending on whether land is abundant and the magnitude of demands for food 

and energy, the supply of the land fuel may occur discontinuously, and before or after 

environmental regulation is binding. Regulation causes the price of energy to increase, therefore 

more land is allocated away from food production. However, if the demand for energy is high, 

then regulation forces food production and prices to remain constant over an extended time 

period. 

 

The proposed framework can be used to make informed predictions on how agricultural policies 

may affect the supply of clean energy from land that substitutes for a non-renewable resource 

such as oil in transportation. Policies that decrease the demand for food will lead to an increase in 

the supply of the clean energy. These may include the removal of export subsidies on the 

domestic agricultural sector and import tariffs for agricultural products. Technological change in 

food production (e.g., introduction of high-yielding varieties) that increases profits per unit of 

land will lead to a substitution of land away from energy into food production and a consequent 

increase in the price of energy. In the other direction, environmental policies in the energy sector 

may also affect the land market equilibrium. If demand for energy were to increase and then 

decline exogenously, because of changes in population and economic growth, the land fuel may 

be supplied in an initial period and then the economy may switch back to oil, leading to an 

increase in food production and a decrease in the price of food. There may be a period in the 

interim when food production goes to zero and all land is used to produce energy, with the bulk 

of agriculture shifting into imports. However domestic production may come back if energy 

demand declines in the future. In an international context, environmental regulation in developed 

economies may cause an increase in food prices, leading to increased imports from developing 

countries. Domestically, there may be a shift in land use from other sectors into the production of 

food and energy. 

 

In future work it may be important to consider Ricardian land with differential quality. The 
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scarcity of land may drive up food and energy prices, which in turn may determine equilibrium 

land qualities in each sector as well as technological progress in these sectors, assumed constant 

in this model. In a global economy, differential land qualities and demands may dictate the 

optimal allocation of food production as well as land-based pollution control activities such as 

sequestration through forestry. 
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Appendix A 

 

We determine the values of the two rents 0λ  and 0µ  and the three dates τ , τ  and )( 0
y λΓ that solve the 

following five equations system: the cumulative demand/supply balance for oil, 

( ) [ ] ( ) 0)(

00 00
0)( Xdtecdxdteecd

y
t

xx
tt

xx =++−+−+ ∫∫
Γ+ λ

τ

ραρτ ρ λττθµλ  ; the pollution stock 

continuity equation at τ , Z),(Z 00 =µλ
(

 ; the price continuity equations at τ , τ  and yΓ : 

( ) ee pp =00 ,µλ(  at τ=t , ( ) f
yx pp =0λ  at τ=t , and ( ) y

yx pp =0λ  at )( 0λ
yt Γ= . For any set of 

solution values for these variables 0λ , 0µ ,τ ,τ  and )( 0λ
yΓ , there exists values of the multipliers such 

that all the first order conditions are satisfied by: 

 

( )
( )( )

( )( )
⎪
⎪
⎩

⎪
⎪
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⎧

≤Γ
Γ<≤

<<
<≤
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tx

y

y
xx

ex

)(,0
)(,

,
0,,

0

00

00

λ
λτλ

ττ
τµλ(

 

( )( ) ( )( )
( )

( )( ) ( )( )
( )⎪

⎪
⎩
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⎧

≤
<≤−
<<−
<≤−

=
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⎪
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⎪
⎪
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Γ<≤
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<≤

=

tpq
tpq
tpq
tpq
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y
xf

ef

ef

f

)(,)(ˆ
)(,ˆ

,ˆ
0,,ˆ
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0

00

00

λ
λτλ

ττ
τµλ(

. 

where )(ˆ ef pq  is optimal food production for a given energy price ep , i.e., )(ˆ)(ˆ efef pLfpq ≡ . It is easy 

to check that the nonnegative functions µπγγ −,,, yx  and ν satisfy the necessary conditions (1)-(11). 

 

⎪⎩

⎪
⎨
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=
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t
yy

yx

y

x ,)(
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Appendix B 
 

 
Checking the optimality of an active abatement policy 
 
Let the subscript na (no abatement) denote equilibrium values in the model with no abatement, where the 

variables are denoted by na
0λ , na

0µ and naτ . Let na
ep~ denote the function )(~

0λep and na
ep(  the function 

),(p 00e µλ( , for na
0λ and na

0µ . The no abatement policy is optimal if and only if 0,~ ≥≥ tpp na
e

na
e

( . In the 

initial phase before the ceiling with 0>x , the price path na
ep  is given by na

ep(  until time nat τ= , 

followed by a period when the ceiling is constrained during which na
ep  is constant and equal to either ep  

or f
yp , and there may exist a third phase with na

ep  as the Hotelling path with a
nana

x
na
e cppp −== ~ .16 

 

                                                 
16 The condition natna

0x
na
e ecp θµλ ρ −+= always holds although the value of naµ may change from one phase to 

another.                                                                        
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Let na
e

na
e pp (<~ over some time interval that includes τ , say ),( 21 ετετ +− nana , 2,1,0 => iiε . Assume 

it is optimal not to abate and consider the interval during which nana
e pp (= . Since 0>x , then by (15), 

and 0a ≥γ , we have µ−≥ac  so that na
e

na
e pp (≥~ , which is a contradiction. Thus it is optimal to abate. 

 

However, consider the case when .0,~ ≥≥ tpp na
e

na
e

(  At any time t such that 0>x , 0=aγ , na
e

na
e pp~ >  

which implies tac µ−> . By (15), aac γµ +−=  and the preceding inequalities hold if and only if 

0a >γ , i.e., if and only if 0=a . Thus it is optimal not to abate. The constrained solution with no 

abatement is indeed the first best solution. In this case, the graph of na
ep~ shifts up and cuts the graph of 

na
ep(  beyond time naτ . 

 
 

Determining  the characteristics of the optimal path 

Assume it is optimal to abate. We may have different scenarios according to the values of f
yp ,  y

yp  and 

ep , one of which is illustrated in Fig B1. τ is the time at which the ceiling begins to be active and 

abatement begins, δ  the time at which the abatement must end andτ  the time at which the ceiling 

constraint ceases to be active. 

 

[Figure B1 here] 

 

We need to solve for 0λ , 0µ , τ , δ , τ  and yΓ  from the following system of six equations: the 

cumulative demand/supply balance equation for oil given by 

( )( ) [ ] ( )( ) 0
00 00 , Xdtpdxdtpd

y

xxex =+−+ ∫∫
Γ

τ

δ
λδτµλ( ; the pollution stock continuity equation at τ , the 

time at which the ceiling is attained, ZZ =),( 00 µλ
(

; the price continuity equations - at time τ : 

( ) ( )000
~, λµλ ee pp =( ; time δ : ( ) ee pp =0

~ λ ; time τ  : ( ) ex pp =0λ and time yΓ : ( ) y
yx pp =0λ .  

 

 

In Fig. B1 we assume that e
f
y pp <  and that f

yp  is lower than ( )00 ,µλp(  at time τ . We denote by bt the 

time at which ( ) f
ypp =00 ,µλ( . Hence the ceiling constraint is first relaxed by both pollution abatement 
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and use of the land fuel followed only by the latter. But for a higher trigger price f
yp , still lower than ep , 

we could have three phases at the ceiling: first abatement, next abatement and use of land fuel and finally 

use of the land fuel only. For e
f
y pp > , the only option is to abate.  

 

List of Symbols 

 

U: utility function or gross surplus, ef uuU +≡  

)( ii qu , { }efi ,∈ : gross surplus generated by good i 

)q(u ii′ denoted by pi , { }efi ,∈  

L : land endowment 

{ }y,fi,Li ∈ : land allocated to good i,  0LLL yf ≥−−   

y : quantity of land fuel 

f , y  : yields per unit of land, ff Lfq = , yLyy =  

fc , yc : cost per unit of land 

fc f / , ycy / : cost per unit output 

X : stock of fossil fuel, 0X  initial stock 

)t(x : extraction rate of fossil fuel 

xyqe +=  

π : land rent 

λ : scarcity rent of oil, 0λ : initial value, teρλλ 0=  

Z : stock of pollutant 

Z : pollution cap: 0)t(ZZ ≥−  

θ : pollution per unit of fossil fuel 

a : abatement 

α : natural regeneration rate of pollution 

0  given, )0(  , 0 ≥−<=−=
•

ZZZZZZxZ αθ  

θα )Za()a(x += : constrained oil consumption when ZZ = , )0(xx ≡  
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µ : shadow cost of the pollutant stock, 0µ  initial value 

ac : unit cost of abatement 

t
0x0x ec)(p ρλλ +=  

a
t

0x0e cec)(p~ θλλ ρ ++=  

( )t
0

t
0x00e eec),(p αρρ µλµλ +−+=(  

If land is allocated only to food production, then 
f
fL : land allocated to food production 

fπ : land rent 

( ) y/cp f
y

f
y π+≡ : full marginal cost of land fuel for fππ =  

If land is allocated to both food and fuel production, then 
y
fL , y

yL  : land allocated to food and fuel, respectively 

yπ : land rent 

( ) ycp y
y

y
y /π+≡ : full marginal cost of land fuel for yππ =  

fffff cLfufL −′≡ )()(π : land rent for land under food production 

yyyyy cLyuyL −′≡ )()(π : land rent for land under fuel production, absent fossil fuel 

( ) ]ln)cp[ln( 0x
f
y

1
0

f λρλΓ −−= − , defined for ( )x
f
y cp −∈ ,00λ  

]ln)cp[ln()( 0x
y
y

1
0

y λρλΓ −−= − , defined for ( )x
y
y cp −∈ ,00λ  

For a given price of energy ep , 

)(ˆ
ef pL , )(ˆ

ey pL : land allocation when rents are equal for food and fuel 

)(ˆ epπ : land rent 

)(ˆ)(ˆ eye pLypy = : output of land fuel 

)(ˆ)(ˆ efef pLfpq = : output of food 

)(ˆ)()( eeeex pypdpd −≡ : residual demand for oil 

)( 0λx : oil consumption along path ( ) ( ) ( )( )000 λλλ xxx pdxp ≡=  

)( 0λy : oil consumption along path ( ) ( ) ( )( )000
ˆ: λλλ xfx pLyyp ≡  



 28

 
 

Fig 1. Land is used only for Food 
 

 

 
 

Fig 2. Land is used both for Food and Clean Energy 
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Fig 3. Energy Supply when Land is Scarce or Demand for Food is High 
 

 
 
 

Fig 4. Energy Supply with Abundant Land or Low Demand for Food 
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Fig 5. Oil Demand when Land is Abundant or the Demand for Energy is Low 
 

 
 
 

Fig 6. Energy Supply from Land increases monotonically 
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Fig 7. Energy from Land acts as a pure Backstop Resource 
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Fig 8. Land Supplies Energy before Regulation Binds 
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Fig 9. Multiple Discontinuities in the Supply of the Land Fuel 
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Fig 10. Oil is Exhausted exactly when Regulation ceases to Bind 
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Fig 11. Fuel from Land is expensive: Only Oil is used under Regulation 
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Fig B1. Abatement must start exactly when the Ceiling is achieved, if at all 
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