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Counterparty credit Risk

On the mathematical form of CVA in Basel III
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Logica plc , Prof Keesomlan 14, Amstelveen, Netherlands
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Abstract

Credit valuation adjustment in Basel III is studied from the perspec-
tive of the mathematics involved. A bank covers mark-to-market losses
for expected counterparty risk with a CVA capital charge. The CVA is
known as credit valuation adjustments. In this paper it will be argued
that CVA and conditioned value at risk (CVaR) have a common math-
ematical ancestor. The question is raised why the Basel committee,
from the perspective of CVaR, has selected a specific parameterization.
It is argued that a fine-tuned supervision, on the longer run, will be
beneficial for counterparties with a better control over their spread.
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1 Introduction

1.1 Measures of counterparty risk

The reservation of capital is based on what to expect in the future. In Basel III
the Credit Valuation Adjustment (CVA) capital charge takes a prominent role
[1] in the treatment of mark-to-market counterparty risk. Banks with IMM
approval for counterparty credit risk need to calculate additional capital charge
by modeling the impact of changes in the counterparties’ credit spreads. The
capital charge calculation for each counterparty is based on the CVA formula
of page 31 of the framework document and is represented below in equation (1).

We may ask if a presently sufficient decrease in counterparty spread can be
trusted for the future such that it will, rightfully, not add to the required
capital charge. Our method enables a comparison of counterparties and a
’trusworthiness’ factor to be incorporated in the CVA. The method on which
’trust’ can be made numerical is e.g. to compare historical series of spread
and to use the variance of the spread. An alternative method to compare is
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to employ Fourier analysis on the fluctuations of different spread. If principal
wavenumber components of two series are more or less equal, both counter-
parties suffer from the same economic processes. If one counterparty has a
greater mean amplitude than the other, one can conclude that this counter-
party is less in control over his spread. Therefore it could be wise to reserve
capital despite of a sufficient decrease in spread in the present period. The
proposed parametrization of fine-tuning on counterparty risk is based on the
method of conditional value at risk [2]. Of course other assesments of trust, like
a panel of experts, can be employed too to classify trust in counterparty spread.

The CVA is defined in the framework [1] as:

CV A = LMKT

T
∑

i=1

max
{

0, e−ŝi−1ti−1 − e−ŝiti
}

(

EEi−1Di−1 + EEiDi

2

)

(1)

Here, EEi is the expected exposure [4] to the counterparty at time (bucket)
ti, with t0 = 0 and i = 1, 2, ...T . The EEi is obtained in the new capital con-
servation mechanism of the committee and refers to a required countercyclical
capital buffer [3]. Moreover, Di is a default risk-free discount factor at ti. It
is somewhat unclear what is intended here. The LMKT is the so-called loss-
given-default of the counterparty and must be based on the spread of a market
instrument of the couterparty. It is a market assesment of the loss and, hence,
does not depend on time buckets ti. The filer max(0, y) in equation (1) equals
y when y > 0 and vanishes if y ≤ 0. Note that LMKT does not change for the
measurement period from t0 to tT . But that does not imply that this factor
will be constant for a possible next period. The ŝi will be discussed below.
The difference with Basel II [4] appears to be substantial because in Basel
II supervision the committee only subscribed banks to employ the following
maturity measure, M .

M =

∑tk≤1 year
k=1 Eff (EEk)∆ tk Dk +

∑maturity
k∈{tk>1 year} EEk ∆ tk Dk

∑tk≤1 year
k=1 Eff (EEk)∆ tk Dk

(2)

Conceptually, M is the (effective) credit duration of counterparty exposure [4].

1.2 Mathematical resemblance with CVaR

The first thing that catches the eye in the Basel III CVA formulation is the
use of the max(0, y) operator. Its systematics resembles the way in which the
β-CVaR [5] is obtained. The basis for β-CVaR is the expression

Fβ(~x, α) = α +
1

(1− β)T

T
∑

i=1

[f(~x, ~yi)− α]+ (3)
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with [t]+ = t when t > 0 and [t]+ = 0 when t ≤ 0. Furthermore, f(~x, ~y) is a
general measure of loss associated to a decision vector ~x ∈ X ⊂ Rn. The ~x
refer to the ’portfolio’ while ~yi ∈ Y ⊂ Rm refer to the uncertainties that arise
from market parameters. Note that the CVaR is a general scheme.

As can be seen in equation (3) the ~y are supposed to be uniformly distributed
with 1/T , for bucket numbering i = 1, 2, .., T . In the definition, the index β is
the probability level of the loss, i.e. there is a probability β that the loss will
not exceed α. Later on we will make this more explicit.

In order to establish a relation between the CVA defined in (1) and the CVaR,
we can make the following comparison: the EEi together with the ti can be
assigned to the ~x from (3), the ŝi =

si
LMKT

in (1) naturally are assigned to the
~yi from (3). The si refer to the credit spread of the counterparty at, what the
committee calls, ’tenor’ ti. When the α is selected zero we acknowledge a form
[gi]

+ employed in (1). Or,

f(~x, ~yi) ∼
(

e−ŝi−1ti−1 − e−ŝiti
)

(

EEi−1Di−1 + EEiDi

2

)

= gi (4)

On the point of using a maximum operator max(0, gi) one can see the resem-
blance beween CVA and CVaR because [gi]

+ = max(0, gi). Hence, the methods
to optimize CVaR can, in principle, be applied to CVA as well. The mathe-
matical statistics apparently allows an optimizing approach. For the ease of
comparing the CVA in equation (1) with CVaR we may write

CV A = LMKT

T
∑

i=1

max (0, gi) (5)

with gi as defined in (4).

2 Factor dynamics in the CVA

Here we study the dynamics of CVA. Recall that the factor ŝi is defined by
ŝi =

(

si
LMKT

)

and si refers to the credit spread of the counterparty. Now be-

cause, ti > ti−1 ≥ t0 = 0, it follows that, when the (weighted) credit spread of
the counterparty, or the, ŝi at ti is greater than ŝi−1, then, e

−ŝi−1ti−1−e−ŝiti > 0

and the mean
(

EEi−1Di−1+EEiDi

2

)

> 0 times the e−ŝi−1ti−1 − e−ŝiti adds to the
CV A. The weight factor is the difference between the exponentials.

Furthermore, if ŝi < ŝi−1 then
(

EEi−1Di−1+EEiDi

2

)

still may add to the CV A
provided

δti−1 >

(

ŝi−1

ŝi
− 1

)

ti−1 (6)
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given ti = ti−1 + δti−1. This means that for relative large time steps a certain
amount of diminishing of credit spread for the counterparty appears to still
add to the capital charge CVA. This is due to the fact that in the initial di-
minishing of credit spread over time, the spread of the counterparty can still
increase in a, more uncertain, larger time period.

Only when ŝi < ŝi−1 and equation (6) is not valid does the term gi in time
period ti not contribute to the CVA capital charge. Hence, a lower CVA cap-
ital charge turns out to depend on a sufficient decreasing series {ŝi}

I1
i=I0

with
I0 < I1 in the set {1, 2, ...., T}, that is a consecutive series of decreasing spread
periods. Moreover, when e−ŝi−1ti−1 − e−ŝiti ≈ 0 there is litte contribution to
the CVA. No doubt, when δti is relatively small a prudent control will then
require a relatively large T .

3 CVA and CVaR

For comparison with CVaR the CVA is made dependent on α. Hence,

CV A(α) = α + LMKT

T
∑

i=1

max (0, gi − α) (7)

gi defined as in (4). As can be seen from equation (1) the Basel III CVA has,
α = 0.

Subsequently we note that the CVaR is defined by

φβ(~x) = (1− β)−1
∫

f(~x,~y)≥αβ

f(~x, ~y)P (d~y) (8)

with αβ a parameter depending on α and β. The CVaR can be obtained as a
minimalization problem: φβ(~x) = min {Fβ(~x, α)|α ∈ R}, with Fβ(~x, α) as in
(3), or more generally

Fβ(~x, α) = α + (1− β)−1
∫

~y∈Rm
[f(~x, ~y)− α]+P (d~y) . (9)

Here, P (~y) is a, Lebesgue, probability measure over the vector ~y, similar as used
by Komogorov [6]. In case of equation (3), the Lebesgue measure ’collapses’ to
a discrete space with uniform density, ρ(~yi) = 1/T for ~yi ∈ Rm, i = 1, 2, 3, , , T .
Hence, according to [7] the minimum can be found through the expression

∂

∂α
Fβ(~x, α) = 1 + (1− β)−1 (Ψ(~x, α)− 1) (10)

with
Ψ(~x, α) =

∫

f(~x,~y)≤α
P (d~y) (11)
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This is equal to the expression that the random variable f(~x, ~y) does not ex-
ceed a treshold α. Hence, Ψ(~x, α) = β, or in words, the probability that f(~x, ~y)
does not exceed a treshold α is equal to β ∈ (0, 1). Having, ∂

∂α
Fβ(~x, α) = 0, the

minimum of Fβ(~x, α) is found and hence, the minimum CVaR is determined
as φβ(~x) with the probability that a test random variable does not exceed a
value α with a probability β.

Interestingly, introducing a Heaviside θ function as correction term
αLMKT

∑T
i=1 θ(gi − α) to equation (7) does not lead to a minimum for terms

similar to Fβ(~x, α). This is true when we reformulate CV A′(α) = CV A(α) +
αLMKT

∑T
i=1 θ(gi − α) in terms of Gβ(~x, α) in CVaR terms like

Gβ(~x, α) = Fβ(~x, α) + α(1− β)−1
∫

~y∈Rm
θ(g(~x, ~y)− α)P (d~y) (12)

with Fβ(~x, α) from equation (9). Because

∫

~y∈Rm
θ(g(~x, ~y)− α)P (d~y) = 1−Ψ(~x, α) (13)

with, f(~x, ~y) in equation (11) replaced by g(~x, ~y), it follows that

∂

∂α
Gβ(~x, α) = 1− α(1− β)−1

∫

~y∈Rm
δ(g(~x, ~y)− α)P (d~y). (14)

It is highly likely that g(~x, ~y) is unequal to α given g(~x, ~y) and ~x ∈ X, ~y ∈
Y . Simply stated there appears not to exist trivial compensation terms for:
∆(α) = −αLMKT

∑T
i=1 θ(gi − α) in equation (7). This conclusion can be

supported by noting the fact that, generally, max(0, z) = zθ(z). Hence, for
numerical purposes there appears no CVaR trivial way from CV A(α) to sums
without ∆(α).

4 Conclusion & discussion

4.1 CVar and CVA resemblance

As can be seen from comparing the two formula’s the Basel III CVA method-
ology resembles the CVaR. Moreover, it was shown that a CVaR minimum
exists for α ∈ R. As can be seen from the definition (1), the Basel III CVA
is connected to the CVaR with the use of α = 0 and there is no CVaR triv-
ial compensation term for ∆(α) defined previously. If for proper choice of
T and β we have LKMT = 1

(1−β)T
, then max(0, gi − α) = [gi − α]+, with,

gi =
(

e−ŝi−1ti−1 − e−ŝiti
) (

EEi−1Di−1+EEiDi

2

)

warrants a CVaR reformulation of
CVA.



6 J.F. Geurdes

In this interpretation it makes sense to view the ŝi as belonging to the ~y
’market’ variables. Moreover, expected exposure, EEi, can be seen as belong-
ing to the state variables ~x. For a certain period, LMKT and Di also belong
to ~y. Concerning the time-buckets they also can be assigned to the state vari-
ables in the sense that they can, directly, be influenced by the bank. More in
particular, the δti appear state variables. Note that a bank can negotiate with
the supervisor the δti of the reports and in this way the time-buckets certainly
can be viewed as state variable.

4.2 Proof that CV A(α) > CV A(0) for α < 0

In Figure 1 below the direction of the difference is already made plausible. Let
us define the set I+ as I+ = I(gi > 0) = {i|gi > 0} and I− = I(gi ≤ 0) =
{i|gi ≤ 0} such that I+ ∪ I− = {1, 2, 3, ...T}. This implies that one may write

CV A(0) = LMKT

∑

i∈I+

gi (15)

If we note that [g]+ = gθ(g), it follows for α < 0, that, CV A(α)− CV A(0) =

−|α|+ LMKT

∑

i∈I−

(|α|+ gi) θ (|α|+ gi) + LMKT |α|
∑

i∈I+

(|α|+ gi) (16)

This is true because, when gi > 0 then gi + |α| > 0 too. Now because

LMKT |α|
∑

i∈I+

(|α|+ gi) = card
(

I+
)

LMKT |α|, (17)

with card denoting ’cardinality’of the set, then if card (I+)LMKT > 1, it
follows that CV A(α)− CV A(0) > 0, because

LMKT

∑

i∈I−

(|α|+ gi) θ (|α|+ gi) ≥ 0. (18)

4.3 Financial consequence

The question now arises whether the selection α = 0, implicitly present in the
Basel III definition of risk capital required for counterparty risk (1), represents
the best optimal value given the previous obvious subdivision in state and
market variables. In other words, granted the structural resemblance between
CVaR methodolgy and the required CVA, we may ask what the reasons for
the Basel committee were to select the α = 0 parameterization in their CVA
required capital charge. The application of equation (7) enables to have α < 0.
Looking at the discussion of the dynamics of factors in section 2, one sees that
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Figure 1: The CV A(α) for α < 0 and the Basel
III CV A(0) (horizontal line) are given where α ∈
{−0.01,−0.02,−0.03,−0.04,−0.05,−0.06,−0.07,−0.08,−0.09,−0.1}. The
si, EEi and Di are pairwise randomly generated from the interval (0,1) and
LMKT = 2. With the present parametrisation the gap in the lower |α| region
requires to reserve 3 - 4 × the amount of Basel III CVA
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α < 0 is interesting for unstable counterparty spread. Despite the fact that
e.g. in the ti the spread of the counterparty is diminished related to ti−1, one
could still want to add gi + |α| because of (expected) fluctuation in spread in
some future. The latter selection enables a fine-tuning in discriminating stable
and unstable counterparties basing onself on the variance of the couterparty
spread, i.e. the V ar(si).

From figure 1 we present numerical proof of the fact that for α < 0 the
CV A(α) is larger than the CV A(0) used in the Basel III framework. Use
was made of parametrizations LMKT = 2, T = 103 and si, EEi together with
Di pairwise randomly generated (in a VBA program). The α are taken from
the set {αn|n = 1, 2, ..., 10, αn = αn−1 −∆α, α0 = 0,∆α = 0.01}. Hence, the
introduction of α < 0 enables a fine-tuning in the CVA in terms of more or
less creditworthy counterparties.

4.4 Measure of trust

An alternative to the variance of the spread of the counterparty is a Fourier
analysis on spread fluctuations. When characteristic frequencies for two given
counterparties are approximately equal but there is a substantial difference in
spread-amplitude a measure of trust in a counterparty is obtained that can
be expressed in terms of α < 0. Use of comparing characteristic frequencies
will enable to judge whether counterparties are subjected to similar economic
fluctuations.

4.5 Question of supervision

In view of possible negotiating processes on time-buckets and the creditworthi-
ness of counterparties it can be questioned whether the present Basel III CVA
form with α = 0 is the best possible capital charge in a regulatory framework
for more resilient banking. Differentiating on a numerical measure of trust will
avoid having too low capital reservation for certain counterparties and will
have the effect that, because of less required capital reserve, banks will prefer
to do business with counterparties with a better control over their spread.
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