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On Nonparametric Estimation

of a Hedonic Price Function

Harry Haupt∗, Joachim Schnurbus†, and Rolf Tschernig‡

Abstract

Recently, using data on Canadian housing, Parmeter, Henderson, and Kumbhakar
(2007) found that a nonparametric approach for estimating hedonic prices is su-
perior to formerly suggested parametric and semiparametric specifications. We
carefully analyze this data set by applying a nonparametric specification test and
simulation based forecast comparisons. For the case at issue our results suggest
that a previously proposed parametric specification cannot be rejected.

Keywords: Nonparametric modeling, specification testing, forecast evaluation.

JEL classification: C1, C14

1 Introduction

Anglin and Gencay (1996), hereafter AG, proposed a semiparametric framework for the

estimation of hedonic prices using data on the Canadian housing market. Based on

their data and results, Parmeter, Henderson, and Kumbhakar (2007), hereafter PHK,

apply a completely nonparametric kernel regression method suggested by Li and Racine

(2004, 2007) and Racine and Li (2004), where both continuous and discrete regressors

are smoothed within a multivariate regression framework. In terms of in-sample fit they

find the nonparametric approach superior to the specifications considered by AG.

PHK recognize that two points make the kernel regression methods for mixed data a

natural candidate for the data set used by AG. First, hedonic theory suggests that regres-

sions concerning the heterogenous good housing should reflect the intrinsic nonlinearity
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in the relationship between house prices and housing characteristics, though nothing is

known a priori about a specific functional form. Second, data on housing characteristics

typically consist of a few continuous and rather many ordered and unordered categorical

variables.

In this paper we carefully analyze the data used by AG and PHK with respect to

general specification testing, variable selection, and forecast performance. For testing

the null of correct specification of a parametric benchmark suggested by AG (see Table

III. in AG), we apply the specification test of Hsiao, Li, and Racine (2007) that explicitly

allows for mixed continuous and discrete regressors. We are not able to reject the null

hypothesis of a correct specification at any reasonable significance level. In order to

check whether the fit-improvement of the nonparametric specification is largely due to

overfitting, we additionally conduct a simulation based forecast comparison between the

parametric benchmark specification and the nonparametric approach of PHK. Again, our

results are in favor of the parametric specification. Finally, we provide an explanation

for these findings and complement them with some remarks on the relevance of the

kernel choice for discrete regressors for estimation efficiency and elimination of irrelevant

regressors.

2 Nonparametric Analysis

AG and PHK analyze a data set for the Canadian housing market, where the conditional

mean of the natural log of price is explained by eleven characteristics of the houses.

The data set consists of 546 observations, one continuous regressor, the lot size (in

logs), and ten discrete regressors, six of them binary. AG apply different parametric

specifications, as well as the semiparametric estimator of Robinson (1988). PHK reject

the null hypothesis of correct semiparametric specification using the test of Delgado

and González Manteiga (2001). Hence they apply the nonparametric generalized kernel

estimation method presented in detail in Li and Racine (2007). We use the specification

test of Hsiao et al. (2007), which is also based on the nonparametric generalized kernel

estimation and is more efficient than traditional1 nonparametric tests for a setting of

mixed data regressors. We prefer the Hsiao et al. (2007) test to the test of Delgado and

González Manteiga (2001) since the latter is based on the same bandwidth value for all

nonparametric regressors and so is unlikely to work reliably when discrete ordered and

continuous covariates are treated jointly like continuous variables.

1In traditional tests, the sample has to be split up for the category-combinations of the discrete
regressors.
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We begin our analysis by testing the null hypothesis of correct specification of the

linear parametric benchmark model against the alternative of parametric misspecifica-

tion. We use the same configuration of the test as in the original paper of Hsiao et al.

(2007). They apply a local-constant estimator with a Gaussian kernel for the continuous

regressor (in level-form) and kernels proposed by Li and Racine2 as weighting functions

for the discrete (binary and non-binary) regressors. The bandwidths are selected by

least-squares cross-validation. Note that all of our calculations are done in R (version

2.7.1) and the nonparametric estimations and tests are conducted with the np-package

(version 0.20-1) of Hayfield and Racine (2008). For the standardized version of the test

statistic we get an asymptotic p-value of 0.51, implying that the parametric specifica-

tion cannot be rejected. Hsiao et al. (2007) point out, that “the asymptotic normal

approximation does not work well in finite-sample settings”, suggesting the use of boot-

strap methods. We therefore conduct the test using three different bootstrap methods

(iid, wild, wild with Rademacher variables) and obtain quite similar p-values between

0.22 and 0.24. Hence the parametric specification cannot be rejected at any reasonable

significance level.

As it may be possible that in the current setting even the bootstrap-versions of the

Hsiao test may not have enough power, we also apply simulation techniques in order to

compare the predictive ability of the parametric benchmark specification to that of the

nonparametric specification of PHK. In each of the 399 replications, we first split the

sample randomly into two subsamples: 90% of the observations are used for estimat-

ing each specification. Based on these estimates, the mean squared errors (MSE) for

the predicted (log-)prices are calculated for the remaining 10% of the houses. Next we

calculate the relative MSE as the fraction of the MSE for the parametric specification

and that of the nonparametric specification. Figure 1 shows the simulated density for

this relative mean squared error. Values above one indicate the nonparametric specifi-

cation to predict better, values below one indicate better predictions of the parametric

specification. Evidently, in most of the 399 replications, the relative mean squared error

takes a value less than 1. In fact, in about 92% of the replications the predictions of the

parametric specification exhibit a lower mean squared error. For the mean absolute er-

ror and mean absolute percentage error, the shares are of the same magnitude (meaning

that the parametric specification is preferable for prediction in at least nine out of ten

cases)3.

2These kernels are optionally available in np. Details can be found in Racine and Li (2004).
3By using alternative sample-split proportions, such as 80-20 or 70-30, the results are even more in

favor of the parametric specification.
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Figure 1: Density of relative mean squared errors of prediction.

Why do our prediction results differ so much from the findings of PHK? Three is-

sues have to be considered here: first, the relevance of nonparametrically estimating the

impact of the continuous regressor, second, the optimal degree of smoothing of discrete

variables and, finally, the possibility of smoothing out irrelevant variables. To begin

with, reconsider the estimation setup of PHK. They use a local linear estimator with

a second order Gaussian kernel for the continuous regressor combined with the weight-

ing functions of Wang and van Ryzin (1981) and Aitchison and Aitken (1976) for the

discrete regressors. The bandwidths are selected with a modified version of the Akaike

Information Criterion suggested by Hurvich, Simonoff, and Tsai (1998). We were able

to reproduce their estimation results and obtain exactly the same gradient values as in

Table I. of PHK. Since the selected smoothing parameters are crucial in nonparametric

estimation, we display the estimated bandwidths in Table 1 because they are not pre-

sented in PHK. In addition, the type of each regressor, the applied kernel as well as the
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Regressor Regressortype Weighting Function Est. Bandwidth Max. Bandwidth

ln(lot) continuous Gaussian (2. order) 888595.2 ∞
ca binary Aitchison and Aitken 0.1409 0.5

drv binary Aitchison and Aitken 0.1206 0.5

ffin binary Aitchison and Aitken 0.1296 0.5

ghw binary Aitchison and Aitken 0.0302 0.5

rec binary Aitchison and Aitken ≈ 0.5 0.5

reg binary Aitchison and Aitken 0.2253 0.5

bdms ordered Wang and van Ryzin 0.6153 < 1

fb ordered Wang and van Ryzin 0.2667 < 1

gar ordered Wang and van Ryzin ≈ 1 < 1

sty ordered Wang and van Ryzin 0.5063 < 1

Table 1: Estimated bandwidths of local linear kernel regression.

maximum of the admissible bandwidth range are displayed.

Now inspect the first row in Table 1. It contains the estimated bandwidth for the

single continuous regressor, ln(lot), the logarithm of the lot size. The extremely large

bandwidth relative to the observed values of the regressor strongly suggests that no

smoothing is needed for this variable. Taking logs is already sufficient for capturing the

nonlinearity in lot size. It is therefore not very surprising to find the parametric model

to be superior to the nonparametric alternative since it is well known that within the

local linear estimation framework a very large bandwidth suggests that the impact of the

corresponding regressor is best represented in a linear way. Thus, the direct influence of

ln(lot) does not require nonparametric modeling.

Before inspecting the discrete regressors with respect to their entries in the remaining

rows of Table 1, we remark that, following Li and Racine (2007, p. 145), a desirable

property of weighting functions for discrete variables is that irrelevant regressors are

smoothed out. This requires that in case of an irrelevant discrete regressor there exists a

smoothing parameter that implies identical weights across all categories of the regressor

considered.

For the case of unordered binary regressors this requirement is fulfilled by the choice

of the Aitchison and Aitken (1976) weighting function: if the bandwidth lies at its upper

bound 0.5, the corresponding regressor is irrelevant. Inspection of Table 1 reveals that

the variable rec (recreational room exists/does not exist) is irrelevant for the estimated

house price since the estimated bandwidth is in the close vicinity of 0.5.
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The remaining discrete regressors are treated in the model as ordered with the weight-

ing function of Wang and van Ryzin (1981). In the following we show that the choice of

the Wang and van Ryzin (1981) kernel comes with two drawbacks: the kernel weights

are limited to a certain range such that the degree of smoothing is limited and irrelevant

regressors cannot be smoothed out. In any case, such restrictions may lead to inefficien-

cies in finite samples due to a higher mean squared error. It will turn out that for the

case at issue the limited smoothing capabilities matter.

These limitations become apparent by inspecting the Wang and van Ryzin (1981)

weighting function

l(δ, λ) =





1− λ for δ = 0,

1
2
(1− λ)λ|δ| for δ ∈ Z,

where λ is the selected bandwidth for the discrete regressor and δ represents the distance

between the category of interest and any category used for estimation. Note that a

bandwidth λ of exactly 1 implies zero kernel weights for any δ and is thus no admissible

bandwidth. In contrast, a zero bandwidth implies that only those observations are used

that are in the category of interest, implying no smoothing at all. Thus, for smoothing

to occur, the bandwidth has to take values in 0 < λ < 1. Now consider the ratio of

the kernel weights for the category of interest, δ = 0, and any other category δ 6= 0.

As an example, you may be interested in the price for a house that has two garages

(gar= 2), so all observations with two garages exhibit δ = 0 and are therefore weighted

by 1 − λ, while observations with one or three garages have |δ| = 1 and are assigned

weights 1
2
(1− λ)λ, respectively.

In general, the ratio of weights is given by

1− λ
1
2
(1− λ)λ|δ|

=
2

λ|δ|
, 0 < λ < 1, (1)

where the equal sign only holds within the indicated range of bandwidths. Clearly, this

ratio decreases monotonically with an increasing bandwidth and approaches its infimum

2 as the bandwidth λ tends to 1.

Thus, this ratio cannot take any value smaller than 2. This clearly limits the amount

of smoothing since almost equal weights are not possible. In particular, equal weights

corresponding to a ratio of 1 are ruled out and therefore smoothing out of irrelevant

variables cannot occur. Inspecting the remaining four rows of Table 1 shows that these

limitations become relevant for the ordered regressor gar. The corresponding bandwidth

is estimated to be extremely close to 1 with a precise value of 0.999999999995943. This

indicates that more smoothing might be needed for a further reduction of the MSE.
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Such inefficiencies can be avoided by applying kernels that explicitly allow for smooth-

ing out irrelevant ordered regressors such as the kernel of Li and Racine. We therefore

use the latter in our simulations concerning the predictive ability although the results

turn out to be robust with respect to the kernel choice. Furthermore, excluding irrele-

vant variables such as rec does not change the results. For the ordered regressor gar the

corresponding ratio of weights is found to be between 1 and 2, indicating the relevance

of this variable on the one hand and the need for strong smoothing on the other hand.4

3 Conclusion

Multivariate nonparametric estimation methods are an exciting edge of research in ap-

plied econometrics. Especially through the collected works of Li, Racine, Hall and others,

who achieved that nonparametric specifications can be used in multiple regression esti-

mation and testing settings with discrete regressors without noticeable efficiency losses,

these methods are of increasing appeal.

We re-estimated the results of PHK and AG and extended their analysis based on a

careful reconsideration of their specification. It turns out that the choice of the specifica-

tion test matters. An adequate test should explicitly allow for the mixed data structure.

In addition, it was pointed out that kernels for discrete data differ with respect to their

smoothing capabilities and efficiency properties. For the housing data set under con-

sideration, all our results indicate that a complete nonparametric specification does not

seem to be necessary.

We conclude that advanced nonparametric methods are an indispensable tool for

modeling, either for considerably strengthening the support of simple parametric spec-

ifications or for estimation purposes when a robust parametric specification cannot be

determined.
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