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ON THE SPARSITY ORDER OF A GRAPH AND ITSDEFICIENCY IN CHORDALITYMONIQUE LAURENTReceived August 31, 1998Revised April 26, 2000Given a graph G on n nodes, let PG denote the cone consisting of the positive semide�niten�n matrices (with real or complex entries) having a zero entry at every o�-diagonalposition corresponding to a non edge of G. Then, the sparsity order of G is de�ned as themaximum rank of a matrix lying on an extreme ray of the cone PG.It is known that the graphs with sparsity order 1 are the chordal graphs and a charac-terization of the graphs with sparsity order 2 is conjectured in [1] in the real case. We showin this paper the validity of this conjecture. Moreover, we characterize the graphs withsparsity order 2 in the complex case and we give a decomposition result for the graphswith sparsity order � 2 in both real and complex cases. As an application, these graphscan be recognized in polynomial time.We also indicate how an inequality from [17] relating the sparsity order of a graph andits minimum �ll-in can be derived from a result concerning the dimension of the faces ofthe cone PG. 1. IntroductionIn this paper we study the ranks of extremal positive semide�nite matriceswith a given sparsity pattern, in continuation of the papers [1], [7], [12,13],[5], [6], [17]. This study is motivated mainly by its application to the comp-letion problem for positive semide�nite matrices (details are given below)and it is also relevant to chordal graphs and Gaussian elimination for sparsepositive de�nite matrices ([15]).Mathematics Subject Classification (2000): 05C50, 05C75, 15A48, 15A57.



2 MONIQUE LAURENTThe sparsity order of a graph. Let G = (V;E) be a graph with nodeset V =f1;2; : : : ;ng and let E denote the set of non edges; that is, E is theset of pairs ij with i 6= j 2V and ij 62E. Let PG denote the set of positivesemide�nite n�n matrices whose ij-th entries are zero for all ij 2 E. Allmatrices are assumed to have entries in the �eld F, where F is equal to R(the �eld of real numbers) or C (the �eld of complex numbers). The set PGis a closed convex cone. A matrix X2PG is said to be extremal if it lies onan extreme ray of the cone PG. The sparsity order of G (also abbreviatedas the order of G) ordF(G) is de�ned as the maximum rank of an extremalmatrix in PG. We have: ordF(G)�n�2, with equality in the real case whenn�4 if and only if G is a circuit [7]. When G is the complete graph, PG is thecone of all positive semide�nite matrices, every extremal matrix has rank�1 and, thus, ordF(G)=1. The sparsity order of a complete bipartite graphis computed in [5] and the graphs with sparsity order 1 are characterized in[1] (cf. also [14]). Namely,Theorem 1. For a graph G, we have: ordR(G)=1 () ordC (G)=1 () Gis chordal, i.e., G does not contain any circuit of length � 4 as an inducedsubgraph.The following two operations are useful for computing the sparsity order.If H is an induced subgraph of G, thenordF(H) � ordF(G)[1] and if G is the clique sum of two graphs G1 and G2, thenordF(G) = max(ordF(G1); ordF(G2))(1)[7]. A graph G is called a k-block if G has order k and every proper inducedsubgraph of G has order �k�1. For instance, the circuit Cn is an (n�2)-block over the reals if n � 4 [1]. For any given k, the number of k-blocksis �nite, because a k-block has at most k2+ k� 2 (resp. k2 � 1) nodes ifF=R (resp. F= C ) [1]. In both the real and complex cases, K1 is the only1-block and C4 is the only 2-block; in the real case, there are exactly sixteen3-blocks: the graphs A1�A10 and B1�B6 shown in Figure 2. [1]. Heltonet al. [6] have classi�ed the 4-blocks over R having 9 non edges (by relation(5), this is the smallest number of non edges that a 4-block can have); theirnumber is quite large and the classi�cation involves many technical details.This indicates the di�culty of the general problem of classifying k-blocks.In order to characterize the graphs having order �k, it su�ces to knowthe minimal (with respect to taking induced subgraphs) graphs among the p-blocks with p>k and this might be more tractable, at least for small values



ON THE SPARSITY ORDER OF A GRAPH 3of k. For instance, it follows from Theorem 1 that every k-block (k � 2)contains a circuit of length � 4 as an induced subgraph. The following isconjectured in [1] in the case k=2 and F=R :Conjecture 2. A graph G satis�es: ordR(G)�2, if and only if G does notcontain as an induced subgraph a circuit on n � 5 nodes nor a 3-block.Equivalently, over the reals, the only k-block (k � 4) which contains no 3-block is the circuit Ck+2.The main contribution of this paper is to show the validity of Conjecture2 (cf. Theorem 9); we also prove an analogous characterization for the graphshaving sparsity order �2 over C (cf. Theorem 13). The essential ingredientin our proof is a decomposition result (in terms of clique sums) for the classof graphs having no 3-block and no circuit of length � 5 as an inducedsubgraph (cf. Theorem 8). Section 5 is devoted to the proof of this resultwhich is quite technical.As an application, one can recognize in polynomial time whether a graphhas order 1 or 2. As another application, we can characterize the graphswhose `powers' all have order �2 (cf. Theorems 11 and 15); in the complexcase we derive a result of McCullough [12,13]. Moreover, we obtain theclassi�cation of the 3-blocks, which was not known in the complex case (cf.Corollary 14).The minimum fill-in �ll(G) of a graph G is the minimum number ofedges that need to be added to G in order to obtain a chordal graph; thisparameter has been studied, in particular, in connection with the Gaussianelimination process for real symmetric positive de�nite matrices (cf. Rose[15]). The following inequalities relating the sparsity order and the minimum�ll-in have been shown in [17], solving a conjecture of [7].Proposition 3. ordR(G)��ll(G)+1; ordC (G)�2 ��ll(G)+1.We will see in Section 2 that these inequalities follow as an easy appli-cation of a result (cf. Theorem 6) about the dimension of faces of the conePG.Note that the di�erence between the minimum �ll-in and the sparsityorder can be arbitrarily large. Indeed, if G is the clique sum of two graphsG1 andG2, then ordF(G)=max(ordF(G1);ordF(G)2) while �ll(G)=�ll(G1)+�ll(G2). We will see in Section 3 examples of graphs (those in class G4 - theyare not clique sums) having order 2 and an arbitrarily large minimum �ll-in. The complexity of computing the order of a graph is not known. Onthe other hand, evaluating the upper bound given by Proposition 3 is hard,since computing the minimum �ll-in is NP-complete ([19]).



4 MONIQUE LAURENTApplication to the completion problem. Let us now explain the linkexisting between the cone PG and the completion problem for positive se-mide�nite matrices.The matrix completion problem asks whether a given partial matrix canbe completed so as to obtain a matrix satisfying a prescribed matrix pro-perty, in our case, being positive semide�nite. This problem has received alot of attention in the literature; this is due, in particular, to its many appli-cations, e.g., to statistics, molecular chemistry, distance geometry, etc. (Cf.the surveys by Johnson [9], Laurent [10] and further references there.)Given a graph G= (V;E) and a partial matrix A= (aij) whose entriesare speci�ed only on the diagonal positions and on the o�-diagonal positionscorresponding to the edges of G, A is said to be completable to a positivesemidefinite matrix if there exist a positive semide�nite matrix B such thatbii = aii (i 2 V ) and bij = aij (i 6= j 2 V and ij 2E). Then, CG denotes thesubset of RV [E consisting of all such completable partial matrices A. WhenG is the complete graph, CG is the cone of all positive semide�nite matrices,which is well known to be self polar. From this follows that the polar cone1of CG is equal to the projection on RV [E of the cone PG.Therefore, a partial matrix is completable to a positive semide�nite mat-rix if and only if its inner product with any extremal matrix in PG is non-negative. Hence, knowledge about the extremal matrices in PG is useful fordeciding completability of partial matrices. This fact motivates the study ofextremal matrices in PG and of the order of graph G. In view of the pola-rity relation between the cones CG and PG, Theorem 1 is equivalent to thefollowing result of [4] concerning the cone CG.Theorem 4. A graph G is chordal if and only if every partial matrix whoseentries are speci�ed on G (and on the main diagonal) and for which all fullyspeci�ed principal submatrices are positive semide�nite can be completedto a positive semide�nite matrix.We now give some preliminaries about matrices and vector representati-ons, leading to a reformulation for the sparsity order, and some notation ongraphs.Matrices and vector representations. An n�n matrix X=(xij) withentries in F (= R or C ) is Hermitian if X� = X and positive semidefinite1 Recall that the polar C� of a cone C�Fd is the set of all y2Fd such that y�x�0 8x2C.When the cone C consists of n�n matrices, we view C as a subset of Fn2 equipped with theusual inner product. That is, for two n�n matrices A and B, their inner product hA;Biis de�ned as Tr(A�B)=Pni;j=1 a�ijbij : Here, z�;a�;A� denote, respectively, the conjugateof z2F (equal to z if F=R), and the conjugate transpose of vector a or matrix A.



ON THE SPARSITY ORDER OF A GRAPH 5(then, we write: X � 0) if X is Hermitian and x�Xx � 0 for all x 2 Fn .Equivalently, X � 0 if there exist vectors u1; : : : ;un 2 Fk (k � 1) such thatxij = u�i uj for all i; j = 1; : : : ;n; the sequence (u1; : : : ;un) is then called aGram representation of X and X is called the Gram matrix of u1; : : : ;un.Note that fu1; : : : ;ung and X have the same rank. If X has rank k, then ithas a unique (up to orthogonal transformation) Gram representation in thek-dimensional space Fk .Let G = (V;E) be a graph with V = f1; : : : ;ng and let X be an n�npositive semide�nite matrix with Gram representation (u1; : : : ;un). Then,X2PG if and only if the vectors u1; : : : ;un satisfy:u�iuj = 0 for all ij 2 E;(2)i.e., they form an orthogonal representation of G. Given a subset A�E[E,set UA := fuiu�j + uju�i j ij 2 Ag if F = R;UA := fuiu�j ; uju�i j ij 2 Ag if F = C :(3)If X 2 PG, then all matrices in UE are orthogonal to the identity matrix.The following is shown in [1].Proposition 5. Let X 2 PG with rank k and Gram representation(u1; : : : ;un) in Fk . Then, X is extremal if and only if the identity matrixis (up to scalar multiple) the only k�k real symmetric matrix (resp. comp-lex matrix) which is orthogonal to all matrices in UE in the real case (resp.complex case). Equivalently, X is extremal if and only if the following holds:rank(UE) = �k + 12 �� 1(F = R); k2 � 1(F = C ):(4)Therefore,ordF(G) = k =) jEj � �k + 12 �� 1 (F = R); 12(k2 � 1) (F = C ):(5)A set of vectors u1; : : : ;un 2 Fk with rank k and satisfying (2) and (4)is called a k-dimensional extremal orthogonal representation of G. Hence,the sparsity order of G is equal to the largest k for which there exists ak-dimensional extremal orthogonal representation of G. Proposition 5 turnsout to be a direct consequence of the result from Theorem 6 about dimen-sions of faces of PG.



6 MONIQUE LAURENTGraphs. All graphs are assumed to be simple (i.e., without loops and paral-lel edges). Given a graph G=(V;E) with E as set of non edges, G :=(V;E)is the complementary graph of G. As usual, Kn denotes the complete graphon n nodes, Kn;m denotes the complete bipartite graph with colour classesof cardinalities n and m, and Cn denotes the circuit on n nodes. Given asubset U of V , G[U ] denotes the subgraph of G induced by U , with nodeset U and edge set fij 2E j i; j 2Ug. A subset S � V is called a stable setof G if ij 62E for all i 6= j 2 S, and a clique if ij 2E for all i 6= j 2 S. Thestability number �(G) is the maximum cardinality of a stable set in G. Asubset F �E is called a matching in G if no two edges of F have a commonendnode.Let G1 = (V1;E1) and G2 = (V2;E2) be two graphs such that the setK :=V1\V2 is a clique in both G1, G2 and there is no edge between a nodeof V1 nV2 and a node of V2 nV1. Then, the graph G := (V1[V2;E1[E2) iscalled the clique sum of the graphs G1 and G2 and the set K is called aclique cutset of G.A graph G is said to be chordal (or triangulated) if it does not contain acircuit Cn (n�4) as an induced subgraph. Equivalently, G is chordal if andonly if G is a clique sum of cliques (Dirac [3]).Given an integer m� 1, let G(m) denote the graph obtained from G byreplacing every node v2V by a clique Kv of cardinality m and making anytwo nodes i2Ku, j 2Kv adjacent in G(m) if and only if the nodes u and vare adjacent in G.2. Relating the sparsity order of a graph and its de�ciency inchordalityIn this section we show that the results from Propositions 3 and 5 follow asapplications of a result concerning the structure of the faces of the cone PG.Let G=(V;E) be a graph with V =f1; : : : ;ng. A subset F �PG is calleda face of PG if X=Y +Z with X 2F , Y;Z 2PG implies that Y;Z 2F . Theextreme rays of PG are its faces of dimension 1. Given X 2PG, let FPG(X)denote the smallest (with respect to inclusion) face of PG that contains X.Then, FPG(X) = fY 2 PG j KerX � KerY g(where KerX=fx2Rn jXx=0g); this relation was shown in [8] in the casewhen G=Kn and the general case follows easily. Moreover, one can computethe dimension of the face FPG(X) in terms of parameters of X (cf. Theorem31.5.3 in [2]).



ON THE SPARSITY ORDER OF A GRAPH 7Theorem 6. Let G=(V;E) be a graph, let X2PG with rank k and Gramrepresentation (u1; : : : ;un) in Fk , and let UE be de�ned by (3). Then,dimFPG(X) = �k + 12 ��rankR(UE) (F = R); k2� rankC (UE) (F = C ):(6)In particular, X is extremal if and only if (4) holds.Proof. Let U denote the k � n matrix whose columns are the vectorsu1; : : : ;un. Then, X = U�U . Call a k� k matrix B a perturbation of X ifX��B2PG for some �> 0. Then, dim FPG(X) is equal to the dimensionof the set of perturbations of X. One can verify that B is a perturbation ofX if and only if B=U�RU for some k�k Hermitian matrix R satisfyinghR; uiu�j i = hR; uju�i i = 0 for all ij 2 E:Let U denote the subspace of Fk2 (the set of k�k matrices) spanned by UE .In the real case, dim FPG(X) is equal to the dimension of the orthogonalcomplement of U in the space Sk of real symmetric matrices and, thus, to�k+12 ��rankR(UE). (We have used here the fact that, for a symmetric matrixB, hB;uiu�j i=0() hB;uiu�j+uju�i i=0.) In the complex case, dim FPG(X)is equal to the dimension of the set Hk\U?, the orthogonal complement ofU in the space Hk of k�k complex Hermitian matrices. However, the setHk\U? has the same dimension as its superset C k2\U?, which implies thatdim FPG(X)=k2�rankC (UE). Indeed, suppose that fR1; : : : ;Rpg is a set oflinearly independent matrices in C k2 \U?. Note that for R2C k2 \U?, bothmatrices R+R� and i(R�R�) belong to Hk\U?. Moreover, at least one ofthe two systems fR1+R�1;R2; : : : ;Rpg and fi(R1�R�1);R2; : : : ;Rpg is linearlyindependent. Therefore, we can iteratively construct from fR1; : : : ;Rpg a setof p linearly independent matrices in Hk\U?.We now indicate how Proposition 3 can be derived from Theorem 6.Let G= (V;E) be a graph and set k := ordF(G) and p := �ll(G). Thereexists a subset F of E of cardinality p such that the graph H := (V;E[F )is chordal. Let X be an extremal matrix in PG of rank k and with Gramrepresentation (u1; : : : ;un) in Fk ; thus, X2PH . Set �R :=�k+12 � and �C :=k2.By relation (6), we have:rankF(UE) = �F � dimFPG(X) = �F � 1;rankF(UEnF ) = �F � dimFPH (X):On the other hand,rankF(UE) � rankF(UEnF ) + rankF(UF ) � rankF(UEnF ) + �F � jF j;



8 MONIQUE LAURENTsetting �R=1 and �C :=2. This implies thatdimFPH (X) � �F � jF j+ 1 = �F � p+ 1:There exist d � dimFPH (X) extremal matrices X1; : : : ;Xd 2 PH such thatX =X1+ : : :+Xd. This implies that rankX � rankX1+ : : :+rankXd. Eachmatrix Xi has rank 1 since H is chordal. Therefore, rankX � d which,combined with the inequality: d��F �p+1, implies that k=rankX��F �p+1.That is, ordF(G)��F ��ll(G)+1.3. Graphs with sparsity order 2: The real caseIn this section, we characterize the graphs having sparsity order � 2 inthe real case. The main result is Theorem 9 which gives two equivalentdescriptions for these graphs; one is in terms of forbidden induced subgraphsand the other one shows how such graphs can be decomposed by means ofclique sums using four basic classes of graphs.
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(1a) graph G

chordal
graph

(2b) graph G(2a) graph G

(3a) graph G Fig. 1. Classes G1, G2, G3, and G4We begin with introducing four classes of graphs having order � 2 overR. These graphs are shown in Figure 1.. For i= 1;2;3;4, let Gi denote theclass consisting of the graphs having the form shown in Figure 1. (ia) and



ON THE SPARSITY ORDER OF A GRAPH 9of their induced subgraphs. We use the following convention in Figure 1.: Asmall dark dot indicates a node, a big dark sphere indicates a clique, whilea big white sphere indicates a stable set; edges are indicated by lines, whilea thick line between two spheres or between two sets of nodes shows thatevery node in one set is adjacent to every node in the other set.For each class Gi with i=2;3;4, we picture not only graph G2Gi but alsoits complementary graph G, because the latter graph has a very simple formwhich will be used in the proof of Proposition 7. Note that a graph G2G1is obtained by adding two non adjacent nodes to a chordal graph H andmaking them adjacent to all nodes of H (and taking an induced subgraphof the resulting graph).Remark that a graph in class Gi has minimum �ll-in at most i for i=1;2;3while graphs in G4 may have an arbitrary large minimum �ll-in.Proposition 7. If G2G1[G2[G3[G4, then ordR(G)�2.Proof. If G2G1, then ordR(G)�2 follows from Proposition 3, since �ll(G)�1.Let G2Gi for i=2;3;4. Let X be an extremal matrix in the cone PG havingrank k := ordR(G) and with Gram representation (u1; : : : ;un) in Rk . Then,by Theorem 6, rank(UE) = 12(k2 + k � 2):We compute in each case the rank of the set UE . Consider �rst the casewhen G2G2. Let A;B denote the node sets corresponding to the two stablesets that are connected in G (cf. Figure 1. (2b)) and set a :=rankfui j i2Ag,b :=rankfui j i2Bg. Then, rank(UE) � 2 + ab:We have that a+b�k since every ui (i2A) is orthogonal to every uj (j2B);this implies that ab� 14k2. Therefore, we have:12(k2 + k � 2) � 2 + 14k2;from which it follows that k�2. If G2G3, then we have:12(k2 + k � 2) � 4;implying again that k�2. Finally, if G2G4, then we obtain in the same wayas above that: 12(k2 + k � 2) � 14k2 + 14k2;which also implies that k�2.



10 MONIQUE LAURENTWe now characterize the graphs having order � 2 over R. The resultrelies essentially on a graph-theoretic result concerning the characterizationin terms of forbidden induced subgraphs of the graphs in the classes Gi(i=1;2;3;4) and their clique sums. We �rst formulate this graph-theoreticresult whose proof, in view of its length, is delayed till Section 5.Theorem 8. The following assertions are equivalent for a graph G.(i) G does not contain as an induced subgraph a circuit Cn (n�5) nor anyof the graphs A2-A10 and B1-B6 (cf. Figure 2.).(ii) G is a clique sum of a set of graphs belonging to 4[i=1Gi (cf. Figure 1.).We show in Figure 2. the complementary graphs of a list of sixteen graphsA1�A10, B1�B6. Note that A1;B2;A2;B4;B5 are, respectively, the circuitC5, the complete bipartite graph K3;3, K3;3+e (add an edge to K3;3), K3;3nf(delete an edge from K3;3), K3;3+enf .Theorem 9. The following assertions are equivalent for a graph G.(i) ordR(G)�2.(ii) G does not contain as an induced subgraph a circuit Cn (n�5) nor anyof the graphs A2-A10 and B1-B6 (cf. Figure 2.).(iii) G is a clique sum of a set of graphs belonging to 4[i=1Gi (cf. Figure 1.).Proof. The implication (i) =) (ii) follows from the fact that the graphs Cn(n�5), A1�A10, B1�B6 all have order �3 (for this, it su�ces to exhibit foreach of them a 3-dimensional extremal orthogonal representation; cf. [1]).The implication (ii) =) (iii) holds by Theorem 8, while (iii) =) (i) followsfrom relation (1) and Proposition 7.The result from Theorem 9 can be seen as an analogue and generalizationof the corresponding characterization for graphs of order 1, which states thatthe following assertions are equivalent for a graph G: (i) ordR(G) = 1; (ii)G is chordal; (iii) G can be decomposed as a clique sum of cliques. We nowmention some applications of Theorem 9. The �rst application is that onecan test in polynomial time whether a given graph G has order �2 over thereals. Indeed, it su�ces for this to �rst (i) decompose G into graphs withoutclique cutsets by means of clique sums and then to (ii) test whether all thegraphs produced by step (i) belong to 4[i=1Gi. Step (i) can be performed in



ON THE SPARSITY ORDER OF A GRAPH 11
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Fig. 2. Complements of graphs A1�A10, B1�B6 (the 3-blocks over R)time O(nm) if G has n nodes and m edges [18] and step (ii) can obviouslybe executed in polynomial time.The second application is the classi�cation of the 3-blocks over the reals,which was obtained by Agler et al. [1]. The only fact from [1] that we haveused concerning the graphs A1�A10, B1�B6 is that they have order � 3(which easily implies that they are 3-blocks). But, we obtain `for free' thehard part, which consists of showing that A1�A10, B1�B6 are the only3-blocks.Theorem 10. In the real case, the 3-blocks are the graphs A1�A10 andB1�B6.Proof. If G is a 3-block then, by Theorem 9, G must contain one of thegraphs A1�A10, B1�B6 as an induced subgraph and, thus, G is equal to it(by the de�nition of a block).



12 MONIQUE LAURENTThe third application of Theorem 9 is the characterization of the graphsG whose powers G(m) all have order �2 over R.Theorem 11. The following assertions are equivalent for a graph G.(o) ordR(G(m))�2 for every integer m�1.(i) ordR(G(2))�2.(ii) G does not contain as an induced subgraph a circuit Cn (n�5) nor anyof the graphs A4, B1, D1, D2, D3 (cf. Figures 2. and 3.).(iii) G is a clique sum of a set of graphs belonging to the class G4 (cf.Figure 1.).
D D D1 2 3Fig. 3. Complements of graphs D1, D2, and D3The next lemma will be used in the proof of Theorem 11 and later aswell.Lemma 12.(i) Let H be a chordal graph that does not contain an induced path oflength 3 and with stability number �(H)=2. Then, its node set can bepartitioned into V0[V1[V2 in such a way that V0[V1 and V0[V2 arecliques and there is no edge between V1 and V2.(ii) If G 2 G1 contains neither D1 nor D3 as an induced subgraph, thenG2G4.Proof. (i) As H is chordal and is not a clique, there exists a clique cutsetK in H. Hence, the node set VH of H can be partitioned into N1[N2[K,in such a way that there is no edge between N1 and N2. Moreover, bothN1;N2 are cliques (since �(H)=2). For a=1;2, setKa := fk 2 K j ik 62 E for some i 2 Nag:Then, K1 6=; =) K2=;, a node k2K1 is not adjacent to any node of N1(else, one would �nd a path of length 3 in H), and k2K1 is adjacent to all



ON THE SPARSITY ORDER OF A GRAPH 13nodes in N2 (since �(H) = 2). Therefore, we can assume that K2 = ; and,then, VH = N1 [ (K nK1) [ (K1 [N2);where the sets N1[(KnK1) and (KnK1)[K1[N2 are cliques and there is noedge between the sets N1 and K1[N2. Thus, (i) holds (setting V0 :=KnK1,V1 :=N1, V2 :=K1[N2).(ii) Let G2G1 and let H denote the chordal part in G (cf. Figure 1. (1a)).If G contains neither D1 nor D3 as an induced subgraph, then H does notcontain an induced path of length 3 and �(H)�2. We may assume that His not a clique (else we are done). Using (i) we conclude that G has indeedthe form of a graph in G4.Proof of Theorem 11. (o) =) (i) and (iii) =) (o) are obvious. The imp-lication (i) =) (ii) follows from the corresponding implication in Theorem9; indeed, the graphs H :=D1;D2;D3 are forbidden as induced subgraphs ofG since H(2) contains A6;A8;A2, respectively. Similarly, (ii) =) (iii) followsfrom the corresponding implication in Theorem 9. Indeed, each of the graphsA1�A10, B1�B6 contains one of A4;B1;D1;D2;D3 as an induced subgraph.Hence, under assumption (ii), we know that G is a clique sum of a familyof graphs belonging to S4i=1Gi. In order to conclude the proof, it su�cesnow to verify that a graph G2S3i=1Gi not containing D1;D2;D3 necessarilybelongs to G4. This is obvious for the classes G2 and G3 and Lemma 12 (ii)settles the case when G2G1.4. Graphs with sparsity order 2: The complex caseIn this section we characterize the graphs having sparsity order �2 over C .As in the real case, we begin with exhibiting some basic classes of graphshaving order �2 over C as well as some examples of graphs with order �3.Let G5 denote the class consisting of the graphs that can be obtained froma complete graph by deleting a matching of cardinality at most 3. It followsfrom (5) that ordC (G)� 2 if G 2 G5 and McCullough (Prop. 2.6, [12]) hasshown that ordC (G)�2 if G2G4.It is shown in [12] that ordC (G)�3 ifG is one of the graphs Cn (n�5), A4,B1 (cf. Figure 2.), D1, D3 (cf. Figure 3.). We observe that the graphs D4 andD5 whose complements are shown in Figure 4. also have order �3. (The vec-tor assignments indicated there provide a 3-dimensional extremal orthogo-nal representation.) In fact, the graphs A4;B1;D1;D3;D4;D5 all have orderequal to 3 (by (5)). Therefore, the graphs Cn (n�5), A4;B1;D1;D3;D4;D5
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Fig. 4. Complements of graphs D4 and D5are forbidden induced subgraphs for the class of graphs having order � 2over C . As we now see, there are no other minimal forbidden induced subg-raphs. The proof of this result relies again on a decomposition result, whichfollows quite easily from Theorem 8.Theorem 13. The following assertions are equivalent for a graph G.(i) ordC (G)�2.(ii) G does not contain as an induced subgraph any of the graphs Cn (n�5),A4;B1;D1;D3;D4; and D5.(iii) G is a clique sum of a set of graphs belonging to G4[G5.Proof. The implications (i) =) (ii) and (iii) =) (i) are clear. We now verifythe implication (ii) =) (iii). For this, let G be a graph satisfying Theorem13 (ii). Then, G satis�es the condition (ii) from Theorem 9 (since the graphsA2;A3;B2�B6 all contain D3; while A5;A6;A7 contain D1; A8;A9 containD4; and �nally A10 contains D5). Therefore, by Theorem 9, G is a cliquesum of a set of graphs belonging to 4[i=1Gi. In order to conclude the proof,it su�ces to verify that a graph G2G1[G2[G3 satisfying Theorem 13 (ii)belongs, in fact, to G5. This is easy to see when G2G2[G3 and Lemma 12(ii) settles the case when G2G1.Therefore, the graphs having order � 2 over C can be recognized inpolynomial time. Another application of Theorem 13 is the classi�cation ofthe 3-blocks over C .Corollary 14. The 3-blocks over the �eld C are the graphs C5, B1, A4, D1,D3, D4, and D5.As last application of Theorem 13, we obtain the following result of Mc-Cullough [12,13] characterizing the graphs G whose powers G(m) all haveorder � 2 over C . It turns out that we �nd the same graphs as in the realcase.



ON THE SPARSITY ORDER OF A GRAPH 15Theorem 15. The following assertions are equivalent for a graph G.(o) ordC (G(m))�2 for every integer m�1.(i) ordC (G(2))�2.(ii) G does not contain as an induced subgraph a circuit Cn (n�5) nor anyof the graphs A4, B1, D1, D2, D3 (cf. Figures 2. and 3.).(iii) G is a clique sum of a set of graphs belonging to the class G4 (cf. Figure1.).Proof. The implications (o) =) (i) and (iii) =) (o) are clear. The implica-tion (i) =) (ii) follows from Theorem 13 and the fact that D(2)2 contains D4.We now verify the implication (ii) =) (iii). For this, let G satisfy Theorem15 (ii); then, G satis�es Theorem 13 (ii) and, thus, is a clique sum of a set ofgraphs belonging to G4[G5. It su�ces now to note that a graph belongingto G5 and satisfying Theorem 15 (ii) belongs, in fact, to G4.McCullough [12,13] has given an additional equivalent property for thegraphs satisfying Theorem 15 (ii) (called by him 2-chordal), in terms ofexistence of a certain linear ordering of the nodes involving the notion of`simplicial pair of nodes'; this is in analogy with the existence a perfect el-imination ordering for chordal graphs, that involve the notion of simplicialnode. Note that the `hard' part in his proof lies also in proving the de-composition result via clique sums (the original proof given in [12] for thisdecomposition result was not correct; it was later corrected in [13]).5. Proof of Theorem 8This section is devoted to the proof of Theorem 8. The implication (ii) =)(i) follows from the fact that the graphs Cn (n�5), A2�A10, B1�B6 haveno clique cutset and that they cannot occur as an induced subgraph of agraph in Gi (i=1;2;3;4).We now turn to the proof of the reverse implication: (i) =) (ii). Thestarting point of our proof was inspired by the proof given in [16] for thefollowing result of Dirac [3]: Every chordal graph G which is not a cliquehas a clique cutset. The latter result can be shown in the following manner.Let G be a chordal graph which is not a clique. Then, there exists a nodeu which is not adjacent to all nodes in V . Let S�V be a maximal subset ofV containing u such that G[S] is connected and the setN := fi 2 V n S j i is adjacent to some node in Sg



16 MONIQUE LAURENTis strictly contained in V nS. Setting N :=V n (S[N), we have partitionedV into V = S [N [N;where G[S] is connected, N 6= ;, and there is no edge between the sets Nand S. It follows from the maximality assumption on S thatevery node of N is adjacent to every node of N:(1)Moreover, N is a clique and, thus, a clique cutset in G (cf. the proof ofClaim 3).We now return to the proof of Theorem 8 (i) =) (ii). For this, we letG be a graph satisfying condition (i) (i.e., G does not contain Cn (n� 5),A2�A10, B1�B6 as an induced subgraph) and we assume that G has noclique cutset. We show that G belongs to one of the classes Gi, i=1;2;3;4.We can assume that G is not a clique (else, we are done). In the same manneras above, one can partition the node set V intoV = S [N [N;where S 6= ;, G[S] is connected, N 6= ;, there is no edge between the setsN and S, N is not a clique, and relation (1) holds. The rest of the proofconsists in a detailed analysis of the structure of the sets S; N and N , sothat one can �nally reach the conclusion that G has indeed the form of agraph in 4[i=1Gi.5.1. Preliminary results and sketch of proofWe group here a number of preliminary results on the structure of G whichwill lead to several distinct cases that we have to consider. In what follows,we let n denote a given element of N . For s2S, we setN(s) := fi 2 N j is 2 Eg:Claim 2. If st is an edge in S such that N(s)[N(t) is not a clique, thenN(s)�N(t) or N(t)�N(s).Proof. Assume that st is an edge in S and that N(s) nN(t), N(t) nN(s)are both non empty; we show that N(s)[N(t) is a clique. For this, leti2N(s)nN(t) and j2N(t)nN(s); then, ij2E (else, (n;i;s; t; j) would be aninduced C5). Let i0 be another node in N(s)nN(t); then, ii02E (else, we �nd



ON THE SPARSITY ORDER OF A GRAPH 17B5 on fs;t; i; i0; j;ng). Let k2N(s)\N(t); then, ki2E (else, we �nd A4 or B1on fn;s; t; i; j;kg depending whether kj 2E). Finally, if k;k0 2N(s)\N(t),then kk02E (else, we �nd A5 on fs;t;k;k0; i; j;ng).Claim 3. If i; j 2 N are two non adjacent nodes in N , then there existss2S which is adjacent to both i and j.Proof. Let i; j2N be non adjacent and assume that no s2S is adjacent toboth i; j. There exist s;t2 S such that si; tj 2E and sj; ti 62E. Consider ashortest path P in S from s to t. Then, this path P together with the edgessi; in;nj;jt yields a circuit of length �5 in G, a contradiction.As a consequence of Claim 3, we obtain thatG[N ] is chordal.(4)Indeed, suppose that G[N ] contains an induced C4; let i; j2N be nonadja-cent, and let s2S be adjacent to i and j. Then, we �nd B3 on the nodes ofC4 and i; j;s, a contradiction.Claim 5. Let I�N be a stable set in N of cardinality jIj�3. Then, thereexists a unique node s2S which is adjacent to all nodes in I.Proof. We proceed by induction on jIj � 3. Suppose �rst that jIj=3, I =fi; j;kg. If there exists no node in S adjacent to i; j;k then, by Claims 3 and 2,there exist pairwise nonadjacent nodes r;s; t2S such that ri;rj;si;sk; tj; tk2E and rk;sj; ti 62E; this gives an induced circuit C6 in G, a contradiction.Now, if s;t are two distinct nodes in S adjacent to i; j and k, then we �nd A2or B2 on fi; j;k;s; t;ng depending whether s;t are adjacent or not. Hence,the result holds when jIj= 3. Suppose now that I = fi1; : : : ; ipg with p� 4and that no node of S is adjacent to all elements of I. By the inductionassumption, we may assume that, for every j =1; : : : ;p, there exists sj 2 Sadjacent to all nodes in I nfijg; then, the subgraph of G induced by nodesn;s1;sp; ip�2; ip�1; ip is B4. Hence, there exists s2S adjacent to all nodes inI; uniqueness follows from the case jIj=3.Claim 6. Let i; j;k2N be distinct nodes such that G[fi; j;kg] has exactlyone edge. Then, there exists a node s2S which is adjacent to i; j; and k.Proof. Suppose the claim does not hold. Say, ij 2E and ik;jk 62E. Then,there exist s;t2S such that s is adjacent to i;k but not to j and t is adjacentto j;k but not to i. Then, st2E (else, we �nd C5 on s;t; i; j;k) and we �ndB1 on n;s; t; i; j;k.



18 MONIQUE LAURENTClaim 7. Let I;J �N be distinct maximal stable sets in N . If I \J 6= ;,then any node s2S which is adjacent to all elements in I is adjacent to allelements in J .Proof. Suppose not. Let s2S be adjacent to all elements in I and let j2JnIsuch that sj 62E. By maximality of I, there exists i2I such that ij2E. Letk2 I \J and let t2S be adjacent to i; j; and k (which exists by Claim 6).Then, we �nd B4 or B5 on n;s; t; i; j;k (depending whether st2E or not).Claim 8. Let (i;h;j;k) be an induced C4 in N (i.e., ih;jh; ik;jk2E, ij;hk 62E). Then, any node s2S which is adjacent to i and j is adjacent to h andk. Moreover, every node x2N nfi; j;h;kg is adjacent to at least three nodesin fi; j;h;kg.Proof. Let s2S be adjacent to i and j and suppose that s is not adjacent,say, to k. Let t 2 S be adjacent to h and k. Suppose in a �rst step thatsh 62 E. If t is adjacent to both i; j, then we �nd B3 or B6 on the nodesn;s; t; i; j;h;k (depending whether s;t are adjacent); if t is adjacent to one ofi; j, then we �nd A2 or B5 and, if t is not adjacent to i; j, then we �nd B2 orB4 on the nodes s;t; i; j;h;k. Therefore, we have that sh2E and, similarly,ti2E. Then, we �nd A5 or B6 on fn;s; t; i; j;h;kg when tj2E and we �ndA4 when tj 62E (on fs;t; i; j;h;kg if st 62E and on fn;s; t; i; j;kg if st2E).We now prove the second assertion of the claim. For this, consider x 2N nfi; j;h;kg such that xi 62E. Let s2S which is adjacent to x;i;j (whichexists by Claim 6); then s is adjacent to h and k. Hence, the subgraph of Ginduced by fn;s;x; i; j;h;kg is A3, A5, B3, or B6 if one of the edges xj;xh;xkis missing.Corollary 9. If N is not a clique, then G[N ] is chordal and there are atleast two edges among any three nodes in N .Proof. Let n1;n2 be two non adjacent nodes in N . Suppose �rst that(i;h;j;k) is an induced C4 in N . Let s 2 S be adjacent to i; j;h;k (whichexists by Claims 3 and 8); thus, we �nd A3 on fn1;n2;s; i; j;h;kg. Thisshows that G[N ] is chordal. Suppose now that i; j;k are distinct nodes in Nhaving at most one edge among them. Then, there exists s2S adjacent toi; j;k (by Claims 5 and 6); thus, we �nd B2 or A2 on fn1;n2;s; i; j;kg.Let � denote the largest cardinality of an induced matching in G[N ], thecomplementary graph of G[N ]. Then, ��1 since N is not a clique and� � 3:(10)



ON THE SPARSITY ORDER OF A GRAPH 19Indeed, suppose that ��4 and let fiaja ja=1;2;3;4g be an induced matchingin G[N ]. By Claims 3 and 8, there exists a node s2S which is adjacent toall nodes ia; ja, a=1; : : : ;4. Then, we �nd A10 on fn;s; ia; ja (a=1;2;3;4)g.Note that ��2 if and only if G[N ] is not chordal.We can now describe the overal structure of the proof. We will organizeour discussion according to the value of the parameter �=1;2;3 (by (10)).In the case when � = 1, i.e., when the graph G[N ] is chordal, it will beconvenient to consider separately the two cases when �(G[N ])=2 and when�(G[N ])�3. To summarize, the proof will consist of examining the followingdisjoint cases:Case A: �=1 and �(G[N ])=2; then, we show that G2G1[G4.Case B: �=1 and �(G[N ])�3; then, we show that G2G1.Case C: �2f2;3g; then, we show that G2G� .5.2. Case AWe assume here that G[N ] is chordal with stability number �(G[N ]) = 2.Let K�N be a clique cutset in G[N ]. Then, N can be partitioned asN = K [N1 [N2where N1;N2 6=; and there is no edge between the sets N1 and N2. Moreover,both N1 and N2 are cliques (since �(G[N ])=2). We show that G belongs toG1[G4. For convenience, we introduce the following sets:S1 := fs 2 S j s is adjacent to N1 but not to N2g;S2 := fs 2 S j s is adjacent to N2 but not to N1g;S12 := fs 2 S j s is adjacent to N1 and N2g; S0 := S n (S1 [ S2 [ S12)and, for a=1;2,Ka := fk 2 K j ik 62 E for some i 2 Nag and K0 := K n (K1 [K2):Given a set A � V and u 2 V nA, we say that u is adjacent to A if u isadjacent to some element in A. Moreover, a path connecting a node of S1 toa node of S2 whose set of internal nodes is contained in S0 is called a pathfrom S1 to S2 via S0. We have:K1 \K2 = ;;N1 [K2 and N2 [K1 are cliques,since �(G[N ])=2. Moreover, S12 6= ;:



20 MONIQUE LAURENTIndeed, given i12N1, i22N2, there exists (by Claim 3) a node s2S whichis adjacent to i1 and i2; thus, s2S12. The following observation will be usedrepeatedly.Claim 11. There does not exist an induced path from S1 to S2 via S0.Moreover, any induced path contained in S0[S1[S2 is contained in S0[S1or in S0[S2.Proof. Suppose that there exists an induced path (s1;u1; : : : ;up;s2) wheres1 2 S1, s2 2 S2, and u1; : : : ;up 2 S0 (p� 0). Let ia 2Na be adjacent to sa,for a= 1;2. Then, (i1;s1;u1; : : : ;up;s2; i2;n) is an induced circuit of length�5 in G, yielding a contradiction. The second assertion in the claim followseasily.By de�nition, every node of S12 is adjacent to at least one node in N1and in N2. More strongly, we have:Every node s 2 S12 is adjacent to every node in N1 [N2 [K1 [K2:(12)This follows using Claim 7, since any two non adjacent nodes of N form amaximal stable set in G[N ]. Indeed, let s2 S12 and let i1 2N1, i2 2N2 beadjacent to s. Then, s is adjacent to every other node j12N1 since fi1; i2gand fj1; i2g are two intersecting maximal stable sets. Moreover, if k 2K1is not adjacent to some j1 2 N1, then s is adjacent to k since fk;j1g is amaximal stable set meeting fj1; i2g.Claim 13. The graph G[S12[K[N ] is chordal.Proof. We already know that G[K [N ] is chordal (using (4)); hence, apossible C4 is necessarily contained in K [S12 and has at least two nodesin S12. Let i1 2N1 and i2 2N2. If (i; j;s; t) is an induced C4 with i; j 2Kand s;t 2 S12, then i; j 2 K0 (by (12)) and we �nd A5 on n;s; t; i; j; i1; i2.In the case when (i;r;s; t) is an induced C4 with i2K and r;s; t2 S, theni2K0 and we �nd B6 on n;r;s; t; i; i1; i2. Finally, if (r;s; t;u) is an inducedC4 contained in S12, then we �nd B3 on n;r;s; t;u; i1; i2.Our next objective is to show that S=S12, i.e., that the set T :=S0[S1[S2is empty. Given s2T , setXs := fx 2 S12 [N j sx 2 Eg:Claim 14. Xs is a clique for every s2T and Xs[Xt is a clique for everyedge st in T .



ON THE SPARSITY ORDER OF A GRAPH 21Proof. Note �rst that, if x;y are two non adjacent nodes in S12[N , thenone of the following holds: either x2S12, y2S12[K0; or x2K1; y2N1 (orthe symmetric case: x2K2, y2N2); or x2N1, y2N2.Suppose that Xs is not a clique for some s2T and let x;y be nonadjacentnodes in Xs. If x 2 S12, then N(s)�N(x) (by Claim 2, since N(x) is nota clique) and, thus, y 62N which, in view of the above observation, meansthat y2S12. But, then, we �nd B4 or B5 on fn;s;x;y; i1; i2g (where i12N1,i22N2). We cannot have: x2N1;y2N2; therefore, x2K1, y2N1 and, thus,s2S1. Then, s must be adjacent to any i22N2 (by Claim 7, since fy; i2g is amaximal stable set in N meeting fx;yg), contradicting the fact that s2S1.Hence, Xs is a clique.Suppose now that Xs[Xt is not a clique for some edge st in T . Then,there exist two nonadjacent nodes x;y in Xs[Xt with, say, x2XsnXt andy2Xt nXs. We can assume, e.g., that s;t2S0[S1. Again we cannot have:x 2 N1;y 2 N2. Hence, given i2 2 N2, (i2;x;s; t;y) is an induced C5 in thecase when x2 S12 and y 2 S12[K0; in the case when x2K1, y 2N1, then(n;x;s; t;y) is an induced C5.If T 6= ;, we let A denote a maximal subset of T for which G[A] isconnected and the set X(A) := [a2AXa is a clique.Claim 15. There is no edge between the sets A and T nA.Proof. Assume that a2A is adjacent to b2T nA. By maximality of A, wededuce that X(A)[Xb is not a clique; hence, there exist two nonadjacentnodes x 2 X(A) and y 2 Xb. Let a0 2 A be adjacent to x. As x;y arenot adjacent, we deduce from Claim 14 that a0 6= a, a0b;a0y;bx 62 E. Let(a0;a1; : : : ;ap;a) be a shortest path connecting a0 and a in A (possibly p=0if a0a2E). Together with nodes x;y, this yields an induced path P of length� 4 from x to y and whose internal nodes belong to T . Now, by Claim 11,we may assume that all internal nodes of P belong to S0 [S1. Therefore,the path P together with edges i2x;i2y (resp. with edges nx, ny) yields aninduced circuit of length �6 in G when x2S12 and y2S12[K0 (resp. whenx2K1 and y2N1).We can now deduce thatT = S0 [ S1 [ S0 = ;; that is; S = S12:For, if T 6= ;, then A 6= ; and X(A) is a clique cutset in G. (To see it, notethat there is no edge between A and the sets T nA, (S12[N)nX(A) and N .Hence, if we delete the clique X(A) in G, we obtain a graph in which A isdisconnected from the rest of the graph.)



22 MONIQUE LAURENTCorollary 16. If jN1j= jN2j=1 and K1=K2=;, then G2G1.Proof. Indeed, under this assumption, we have that N1 = fi1g, N2 = fi2gwhere both i1 and i2 are adjacent to all nodes in V nfi1; i2g=S[K[N . AsG[V nfi1; i2g] is chordal (by Claim 13), we obtain that G2G1.From now on, we can assume without loss of generality that the followingholds: jN1j � 2; or K1 6= ;:(17)Then, N is a clique by Corollary 9. Moreover,S is a clique and every node of S is adjacent to every node of N:Indeed, it follows from assumption (17) that G[N ] contains a path (i; j;k)of length 2 (choosing, either i;k2N1, j2N2; or i2K1, j2N1, k2N2 whereij 62E). Therefore, if s;t are two non adjacent nodes of S, then we �nd A2on the set fi; j;k;s; t;ng. Hence, S is a clique. Suppose now that s2S is notadjacent to some node h2N ; then, h2K0 by (12). Let t2S be adjacent toh. Then, we �nd A6 on the set fn;s; t;h; i; j;kg.Hence, we know the following information about G: The sets S and Nare cliques, every node of S[N is adjacent to every node of N , and G[N ] ischordal. This implies:Corollary 18. If jSj= jN j=1, then G2G1.Henceforth, we can now assume, moreover, thatmax(jSj; jN j) � 2:(19)This implies thatG[N ] does not contain an induced path of length 3:Indeed, G[S[N ] contains a path of length 2 by (19); hence, if G[N ] wouldcontain an induced path of length 3, we would �nd graph A6.Therefore, by Lemma 12 (i), we know that N can be partitioned intoN = V1 [ V0 [ V2where V0[V1 and V0[V2 are cliques and there is no edge between V1 andV2. (Namely, V0=K0, V1=N1 and V2=K1[N2.) We can now conclude thatG belongs to class G4 (with the cliques V1;S;V2;N forming the outer circuitand V0 as central clique). This concludes the proof in case A.



ON THE SPARSITY ORDER OF A GRAPH 235.3. Case BWe assume here that G[N ] is chordal with stability number �(G[N ]) � 3.We show that G2G1. For this, let I be a maximal stable set in N ; jIj� 3.By Claim 5, there exists an element sI2S which is adjacent to all nodes inI. A �rst easy observation is thatjN j = 1:Indeed, if n1;n22N and i; j;k2I, then we �ndA2 or B2 on fn1;n2;sI ; i; j;kg.Next, we observe thatsI is adjacent to every node of N:Indeed, let h2NnI. If hi 62E for some i2I, then sI is adjacent to h by Claim7. If hi2E for all i2I, then sIh2E for, if not, we �nd A2 on fn;sI ;h; i; j;kg(where i; j;k2I). At this point, we can already conclude thatif S = fsIg; then G 2 G1:(20)Indeed, sI and n are both adjacent to all elements of N and G[N ] is chordal.We now show that the set T :=S nfsIg is empty. For this, note �rst thatevery node s 2 T is adjacent to at most one node of I:(21)Indeed, we know from Claim 5 that s is adjacent to at most two nodes of I.If s2T is adjacent to i; j 2 I and if k 2 I nfi; jg, then we �nd B4 or B5 onfn;s;sI ; i; j;kg. For s2T , setYs := fx 2 N j sx 2 Eg:Claim 22. For every s2T , Ys is a clique and, for every edge st in T , Ys[Ytis a clique.Proof. Suppose that x;y 2 Ys are not adjacent where s2 T . Let i; j 2 I beboth non adjacent to s (such i; j exist by (21)). Then, we have that xi;yi2E(for, if not, we �nd A4, B4 or B5 on fn;s;sI ;x;y; ig). Similarly, xj;yj 2E.Hence, we have found (x;i;y;j) as induced C4 in G[N ], which contradictsour assumption that G[N ] is chordal.Suppose now that Ys[Yt is not a clique for some edge st in T ; let x2YsnYt,y2Yt nYs be non adjacent. Then, (n;x;s; t;y) is an induced C5.Let A be a maximal subset of T such that G[A] is connected and the setY (A) := [a2AYa is a clique. One can verify thatthere is no edge between the sets A and T nA:



24 MONIQUE LAURENT(The proof is similar to that of Claim 15. Namely, if a 2A is adjacent tob 2 T nA, then we �nd two non adjacent nodes x 2 Y (A), y 2 Yb and aninduced path P from x to y whose internal nodes belong to T . This path Ptogether with edges nx, ny yields an induced circuit of length �6.)From this it follows that A=; (otherwise, the clique Y (A)[fsIg wouldbe a clique cutset in G). Therefore, T = ;, which shows that S= fsIg and,thus, G2G1 by (20). This concludes the proof in Case B.5.4. Case CWe assume here that � 2f2;3g; thus, G[N ] is not chordal. By Corollary 9,this implies that N is a clique:Let fiaja j a=1; : : : ;�g be an induced matching of maximum cardinality inG[N ]. In view of Claim 8, every node of N is non adjacent to at most oneof the ia; ja's. This leads us to de�ning the following sets:Ia := fi 2 N j i 6= ja and ija 62 Eg; Ja := fi 2 N j i 6= ia and iia 62 Egfor a=1; : : : ;�. Thus, ia2Ia and ja2Ja for a��. SetI := �[a=1 Ia [ Ja; N0 := N n I;SI := fs 2 S j s is adjacent to all nodes of Ig; and T := S n SI :We group several observations about the sets I;N0;SI . By Claim 8, SI 6= ;and a node s2S belongs to SI if and only if s is adjacent to ia and ja forsome a=1; : : : ;�. Moreover, N0 is a clique(else we �nd an induced matching of size �+1 in G[N ]).Every node of N0 is adjacent to every node of I:Indeed, suppose that x 2 I is not adjacent to y 2 N0; say, x 2 I1. Then,y is adjacent to i1; j1; i2; j2 and x 6= i1. Given s 2 SI we �nd A7 onfi1; j1; i2; j2;x;y;s;ng. Moreover,SI is a clique.(23)



ON THE SPARSITY ORDER OF A GRAPH 25Indeed, if s;t2SI are not adjacent, then we �nd A3 on fn;s; t; i1; j1; i2; j2g.We also have: If x 2 Ia; j 2 Ja; a 2 f1; : : : ; �g; then xy 62 E:(24)Say, a=1. The statement is obvious if x= i1 or y= j1. Otherwise, we �ndA7 on fi1; j1; i2; j2;x;y;s;ng where s2SI . The following statements (25) and(26) are direct consequences of Claim 8.If x 2 Ia [ Ja; then x is adjacent to ib and jb; for a 6= b 2 f1; : : : ; �g:(25) If s 2 T; x; y 2 Ia [ Ja and xy 62 E; then s is adjacent toat most one of x; y:(26) If x 2 Ia [ Ja; y 2 Ib [ Jb; a 6= b 2 f1; : : : ; �g; then xy 2 Eand x 2 fia; jag or y 2 fib; jbg:(27)The statement follows from (25) if x2fia; jag or y2fib; jbg. Otherwise, we�ndA4 on fx;y; ia; ja; ib; jbg if xy 62E and we �nd A8 on fx;y; ia; ja; ib; jb;s;ngif xy2E (where s2SI).Our next objective is to show that S=SI , i.e., T =;. For s2T , set:Zs := fx 2 SI [N j sx 2 Eg:Claim 28. Zs is a clique for every s2 T and Zs[Zt is a clique for everyedge st in T .Proof. Suppose that x;y 2Zs are not adjacent for some s2 T . As SI andN0 are cliques and every node of I is adjacent to every node of N0, there aretwo cases: either x;y2 I, or x2SI and y2N . The case x;y2 I is excludedby relations (26) and (27). If x2 SI and y 2N , then N(s)[N(y) is not aclique since I�N(x). By Claim 2, this implies that N(s)�N(x) and, thus,xy2E, a contradiction.Suppose now that Zs[Zt is not a clique for some edge st in T ; let x2ZsnZt,y 2 Zt nZs be non adjacent. If x;y 2N then (n;x;s; t;y) is an induced C5in G. Hence, x2 SI and y 2N0. Consider i1 2 I1; j1 2 J1. By (26), we mayassume that si1 62E. Then, ti12E (else, (i1;x;s; t;y) is an induced C5) and,thus, tj1 62E, sj12E. But, then, we have found B1 on fi1; j1;x;y;s; tg.Let A be a maximal subset of T for which G[A] is connected and the setZ(A) := [a2AZa is a clique.Claim 29. There is no edge between the sets A and T nA.



26 MONIQUE LAURENTProof. Suppose that a 2 A is adjacent to b 2 T nA. By maximality of A,we deduce that Z(A) [ Zb is not a clique; let x 2 Z(A), y 2 Zb be nonadjacent and let a0 2 A be adjacent to x. We know from Claim 28 thata 6= a0 and a0y;xa;xb 62E. Considering a shortest path in G[A] from a0 toa, we �nd an induced path (x;a1; : : : ;ap;y) where a1; : : : ;ap 2 T and p� 3.If x;y 2 N , then this path together with edges nx;ny yields an inducedcircuit in G. Hence, x 2 SI and y 2N0. Consider i1 2 I1, j1 2 J1. Then, i1is adjacent to one of a1;a2. (Indeed, i1 is adjacent to some ai for, if not,then (i1;x;a1; : : : ;ap;y) is an induced circuit. Let k�1 be the smallest indexsuch that i1ak2E; then, (i1;x;a1; : : : ;ak) is an induced circuit which impliesthat k�2.) Similarly, j1 is adjacent to one of a1;a2. Hence, we can assumethat i1a1 2E (=) j1a1 62E), j1a2 2E (=) i1a2 62E). Then, we �nd B5 onfi1; j1;x;y;a1;a2g.From this it follows thatT = ;; that is; S = SI :For, if not, then A 6=; and Z(A) would be a clique cutset in G.Corollary 30. If � = 3, or if � = 2 with max(jIa [Jaj : a= 1;2) � 3, thenG2G� .Proof. By the assumption, we have that jN j= jSj=1 and S[N0 is a clique(for, otherwise, one would �nd A8 or A9 in G). Moreover, if � = 3, thenmax(jIa[Jaj :a=1;2;3)=2 (else, one �nds A9). Using (24), (25), (27), oneobtains that G2G� .Therefore, we can now assume that� = 2 and max(jIa [ Jaj : a = 1; 2) = 2:Set N 00 := fi 2 N0 j is 62 E for some s 2 Sg:The following holds: si 62 E for every s 2 S; i 2 N 00:Indeed, suppose that si 2E for some s2 S, i 2N 00 and let t2 S such thatti 62E. Then, we �nd A7 on fn;s; t; i; i1; j1; i2; j2g.Hence, the node set of G can be partitioned into the sets S,N0nN 00,N 00[N ,and I=fi1; j1; i2; j2g, in such a way that S[(N0nN 00) and (N0nN 00)[N 00[Nare cliques and there is no edge between S and N 00[N . Therefore, G belongsto G2. This concludes the proof in Case C and, thus, of Theorem 8.



ON THE SPARSITY ORDER OF A GRAPH 276. ConclusionsAs mentioned in the Introduction, one of the motivations for the studyof the cone PG comes from its link with the positive semide�nite matrixcompletion problem. It has been shown in [11] that the completion problemcan be solved in polynomial time for the following classes of graphs: chordalgraphs (i.e., graphs with sparsity order 1); graphs with �xed minimum �ll-in; hence, for graphs in 3[i=1Gi; graphs in G4 when one of the sets on the4-circuit is assumed to have a �xed size. Therefore, if one can show that thecompletion problem is polynomial time solvable over the whole class G4, thenthe problem would be polynomial time solvable for all graphs with sparsityorder 2.Acknowledgements. We thank a referee for his/her careful reading of thepaper and for his/her suggestions that helped improve the presentation ofthe paper. References[1] J. Agler, J. W. Helton, S. McCullough, and L. Rodman: Positive semide�-nite matrices with a given sparsity pattern, Linear Algebra and its Applications, 107(1988), 101{149.[2] M. Deza and M. Laurent: Geometry of Cuts and Metrics. Vol. 15 of Algorithmsand Combinatorics, Springer-Verlag, Berlin, 1997.[3] G. A. Dirac: On rigid circuit graphs, Abhandlungen aus dem Mathematischen Semi-nar der Universit�at Hamburg, 25 (1961), 71{76.[4] R. Grone, C. R. Johnson, E. M. S�a, and H. Wolkowicz: Positive de�nite comp-letions of partial hermitian matrices, Linear Algebra and its Applications, 58 (1984),109{124.[5] R. Grone and S. Pierce: Extremal bipartite matrices, Linear Algebra and its App-lications, 131 (1990), 39{50.[6] J. W. Helton, D. Lam, and H. J. Woederman: Sparsity patterns with high rankextremal positive semide�nite matrices, SIAM Journal on Matrix Analysis and itsApplications, 15 (1994), 299{312.[7] J. W. Helton, S. Pierce, and L. Rodman: The ranks of extremal positive semide-�nite matrices with given sparsity pattern, SIAM Journal on Matrix Analysis and itsApplications, 10 (1989), 407{423.[8] R. D. Hill and S. R. Waters: On the cone of positive semide�nite matrices, LinearAlgebra and its Applications, 90 (1987), 81{88.[9] C. R. Johnson: Matrix completion problems: a survey, In C. R. Johnson, editor,Matrix Theory and Applications, volume 40 of Proceedings of Symposia in AppliedMathematics, pages 171{198. American Mathematical Society, Providence, Rhode Is-land, 1990.



28 MONIQUE LAURENT: ON THE SPARSITY ORDER OF A GRAPH[10] M. Laurent: Cuts, matrix completions and graph rigidity, Mathematical Program-ming 79 (1997), 255{283.[11] M. Laurent: Polynomial instances of the positive semide�nite and Euclidean dis-tance matrix completion problems, Preprint, 1998. To appear in SIAM Journal onMatrix Analysis and its Applications.[12] S. McCullough: 2-chordal graphs, In I. Gohberg, J. W. Helton and L. Rodman,eds., Contributions to Operator Theory and its Applications, Vol. 35 in Series OperatorTheory: Advances and Applications, pages 143{192, Birkh�auser-Verlag, Basel, 1988.[13] S. McCullough: Minimal separators of 2-chordal graphs, Linear Algebra and itsApplications, 184 (1993), 187{199.[14] V. I. Paulsen, S. C. Power, and R. R. Smith: Schur products and matrix comp-letions, Journal of Functional Analysis, 85 (1989), 151{178.[15] D. J. Rose: Triangulated graphs and the elimination process, Journal of Mathema-tical Analysis and Applications, 32 (1970), 597{609.[16] A. Schrijver: A Course on Combinatorial Optimization. Lecture Notes, 1994.[17] N. Shaked-Monderer: Extremal positive semide�nite matrices with given sparsitypattern. Linear and Multilinear Algebra, 36 (1994), 287{292.[18] R. E. Tarjan: Decomposition by clique separators, Discrete Mathematics, 55 (1985),221{232.[19] M. Yannakakis: Computing the minimum �ll-in is NP-complete. SIAM Journal onDiscrete and Algebraic Methods, 2 (1981), 77{79.Monique LaurentCWI, P.O. Box 94079,1090 GB Amsterdam,The Netherlands


