-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Research Papers in Economics

EUROSYSTEM

WORKING PAPER SERIES

A Comprehensive Comparison of Alternative
Tests for Jumps in Asset Prices

Marina Theodosiou

Filip Zikes

July 2011

Working Paper 2011-2


https://core.ac.uk/display/6362337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Central Bank of Cyprus Working Papers present work in progress by central bank staff and
outside contributors. They are intended to stimulate discussion and critical comment. The
opinions expressed in the papers do not necessarily reflect the views of the Central Bank of

Cyprus or the Eurosystem.

Address
80 Kennedy Avenue
CY-1076 Nicosia, Cyprus

Postal Address
P. O. Box 25529
CY-1395 Nicosia, Cyprus

E-mail
publications@centralbank.gov.cy

Website
http:/ /www.centralbank.gov.cy

Fax
+357 22 378153

Papers in the Working Paper Series may be downloaded from:
http://www.centralbank.gov.cy/ngcontent.cfm?a id=5755

© Central Bank of Cyprus, 2011. Reproduction is permitted provided that the soutce is acknowledged.


http://www.centralbank.gov.cy/nqcontent.cfm?a_id=5755

A Comprehensive Comparison of Alternative
Tests for Jumps in Asset Prices

Marina Theodosiou®and Filip Zikes™
July 2011

Abstract

This paper presents a comprehensive comparison of the existing tests for the presence of
jumps in prices of financial assets. The relative performance of the tests is examined in a
Monte Carlo simulation, covering scenarios of both finite and infinite activity jumps,
stochastic volatility models with continuous and discontinuous volatility sample paths,
microstructure noise, infrequent trading and deterministic diurnal volatility. The simulation
results reveal important differences in terms of size and power across the different data
generating processes and sensitivity to the presence of zero returns and microstructure
frictions in the data. An empirical application to assets from different classes complements
the analysis.
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1 Introduction

Since the seminal work of Merton (1976) on the application of jump processes in option
pricing, the inclusion of such processes in financial modeling has gained a lot of attention
amongst academics and practitioners. It is now well documented that price discontinuities
constitute an important component of variability in financial asset prices and thereby con-
tribute to market incompleteness. In addition, it is recognized that the presence of jumps
in price sample paths carries important implications for financial risk management and
portfolio allocation, as well as pricing and hedging of derivatives (see, among others, Das
(2002), Johannes (2004) and Piazzesi (2005) for interest rate modeling, Eberlein and Raible
(1999) for bond pricing, Bakshi, Cao, and Chen (1997), Bates (2000) and Pan (2002) for
derivative pricing).

The theoretical developments in the asset pricing literature have inspired a new stream
of research developing statistical techniques for detecting discontinuities from discretely
observed prices. Ait-Sahalia (2002) was one of the first authors to attempt separating
jumps from diffusion in a parametric context. Using options data and the properties of
the transition density corresponding to discrete observations, the author finds that market
option prices are inconsistent with a pure diffusion model driving the underlying price
process. Carr and Wu (2003) developed a different methodology based on the behavior of
short dated options across maturities and at fixed moneyness states and reached a similar
conclusion.

With the greater availability of high-frequency data, recent literature has focused on
detecting and testing for jumps in a nonparametric, model-free context. Mancini (2001) was
the first to estimate jumps in a simple jump-diffusion framework. Following her work, a large
number of formal tests have been developed for detecting discontinuities in intraday price
processes, including Barndorff-Nielsen and Shephard (2004), Huang and Tauchen (2005),
Lee and Mykland (2008), Jiang and Oomen (2008), Corsi, Pirino, and Reno (2008) and
Podolskij and Ziggel (2008).

The purpose of this paper is to compare the existing tests for jumps in a an extensive
Monte Carlo simulation. We consider various models with finite and infinite-activity jumps
processes to study the size and power of the various tests. We also study the impact
of market microstructure noise, the presence of zero intraday returns typically found in
intraday data even for liquid assets, and the effect of deterministic diurnal volatility, which
is also characteristic of most high-frequency return series. We first examine the size of each
test and data generating process and then turn to their ability to detect jumps. Here we
calculate the proportion of correctly identified days when jumps occurred in the simulation,
and also compare the tests in terms of their agreement about whether or not a jump occurred
on a given day.

Overall, we find that substantial differences exist among the competing tests both in

terms of size and power and that the differences vary across the data generating processes



considered. First, the test that employ thresholds are very sensitive to a particular choice
of the threshold parameters. Second, stochastic volatility that exhibit sudden erratic move-
ments posses a serious challenge to some tests even at very high sampling frequencies.
Third, the tests robust microstructure noise work well when the noise is independently and
identically distributed and has moderate signal-to-noise ratio but some of the tests get in
trouble when faced with high-variance or highly persistent noise. Fourth, the presence of
zero returns has severe impact on almost all tests and results into substantial increase in the
spurious detection of jumps. Finally, the deterministic U-shaped intraday volatility pattern
induces very similar distortions as the highly erratic stochastic volatility case.

In the empirical part of the paper, we apply the tests for jumps to recent samples of
high-frequency foreign exchange, individual stocks and equity index futures. Similar to the
simulation results, we find that the tests yield different results regarding the identification
of jumps and tend to disagree as to whether or not a jump occurred on a given day.

The paper is organized as follows. The theoretical framework underlying the various test
is described in section 2, while in section 3, we provide a brief description of the different
tests studied in this paper. Section 4 discusses the Monte Carlo simulation design and
the simulation results. In section 5, we investigate the impact of market microstructure
noise and in section 6 we look at the effect of the presence of zero intraday returns on the
behavior of the tests. Section 7 is dedicated to an empirical application and, finally, section

8 concludes.

2 Theoretical Framework

Let X; denote the logarithmic price process that belongs to the class of Brownian semi-

martingales, which can be written as

¢ ¢
X = / ayudu + / oudWy + Z, (1)
0 0

where a is the drift term, o denotes the spot volatility process, W is a standard Brownian

motion and Z is a jump process defined by:

Ny
Zt: E Hj,
=1

where N is a simple counting process and r; are nonzero random variables. The counting
process can be either finite or infinite for finite or infinite activity jumps.

Since the seminal work of Andersen and Bollerslev (1998), realized volatility, RV s,
obtained by summing M squared intraday returns has become the standard measure of the

quadratic variation of the price process in (1). Formally,

M

E 2
RW,M = rt,”

=1



where 7, denotes the i-th intraday return on day ¢:
T, :l‘t,IJri/M —Jit,1+(i,1)/M for i = 1,2,3,...,M.

RV can be used to approximate the variation of both the continuous and the discontinuous

part of the price process since

t Nt
. o 2 2
z\}lgloo RVim = /0 ogds + ;1: Kj»
= IV, +JV,.

However, in empirical applications one may be concerned with the behavior of I'V; and JV;
in isolation, and it is therefore essential to decompose the two sources of variability of the

price process.

3 The Tests

3.1 Tests based on multipower variation

The first formal test developed for detecting jumps in high frequency data was constructed
by Barndorff-Nielsen and Shephard (2004, 2006) (henceforth BNS). Their work was later
extended and further investigated in Andersen, Bollerslev, and Diebold (2004) and Huang
and Tauchen (2005) using a variety of asymptotically equivalent statistics.

To consistently estimate integrated variance in presence of jumps BNS propose the

realized bipower variation (BPV') defined by,

M
BPVim = Z Tt |7, -

i=2
The idea underlying the bipower variation is that if the jumps are of finite activity, the
probability of observing jumps in two consecutive returns approaches zero sufficiently fast
as the sampling frequency increases. Consequently, the product of any two consecutive
returns will be asymptotically driven by the diffusion component only thereby eliminating
the contribution of jumps.

Since the realized volatility converges to the sum of integrated variance and jump varia-
tion, it follows that the difference between RV; y; and BPV; ) captures the jump part only,
and this observation underlies the BNS test for jumps. Based on the joint Central Limit
theorem (CLT) of RV and BPV, they propose the following test statistics for testing the

null hypothesis of no jumps:

— BP
gl = Vet =~ BPVu 1 g 4y,
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where QPQ; r denotes the realized quadpower quarticity given by,

M t
QPQurt = MS [ro_yliruallres ol — / olds.
i—d M — o0 0

The test can be generalized by replacing BPV; y with M PV} y and QP Q¢ v with M PQy v,
i.e. the realized multipower variation and realized multipower quarticity respectively. These
are defined by,

MPVirm(p) = pyf o7 g1 pH S, T e 1277,

MPQu(p) = pyfy s Soinp =g e, |*77,

fp denotes the pth absolute moment of a variable U ~ N(0,1) defined by,
+1
E(|UP) = 7~ V/2op/2p (P12
(UP) = =),

and 0, = iy 7w W, 2, for w? = :“Z/p +(1— 2p)u§1/7p +2378 % uz/j,u?/p The bivariate limit theory

for realized variance and realized multipower variation both in the presence and absence of
jumps is studied by Veraart (2008).

Various alterations to the above test statistic have been suggested to improve the finite
sample performance of the test. These include the logarithmic and ratio tests and some
finite-sample corrections in the denominator of the test statistic (Andersen, Bollerslev,
and Diebold, 2004, Huang and Tauchen, 2005, andBarndorff-Nielsen and Shephard, 2006).

Throughout the analysis, we will be using the adjusted jump ratio statistic:

(1 B J\épvw,M)
mpu,mpq oM L
J _ 5 N(0, 1),

t,M 1 2
/Oty max(1, MPQua /MPV2,)

since this has been shown to be the best option amongst the three alternatives (Huang
and Tauchen, 2005) in term of finite-sample performance. We will also explore various
combinations of the bipower, tri-power and quad-power variation in the nominator and the

tri-power and quad-power quarticity in the denominator of the test statistic.

3.2 Tests based on threshold multipower variation

A test that combines the idea of the threshold estimators of Mancini (2001) and the multi-
power variation estimation of BNS was proposed by Corsi, Pirino, and Reno (2008) (hence-
forth CPR). The authors argue that truncating large absolute returns alleviates the bias
associated with multipower variation in the presence of jumps.

Their test statistic is therefore based on the realized threshold multipower variation
defined by

M p—1
TMPV; p(p) = Mg/pmznh“tz il /ey {lT’t <o}

=p j=0



The threshold ¥;_14; is defined as a multiple of the local variance, which is approximated

by a local linear filter of length 2L + 1, adjusted iteratively for the presence of jumps:
ﬁt = Cs‘AftZ,

where ¢y is a constant, and f/tZ denotes an estimator of local variance. The latter is given
by:
> (g
z (Tti) {(Tti)QSC%/thil}

i=—L,i#£—1,0,1
L

2 K(DI{(m)Z‘Sthf‘l}

i=—L,i#—1,0,1

i
Ve =

Z denotes the iteration number with starting value V0 = 400, which corresponds to using

all observations. ¢y is a constant and K(.) denotes the Gaussian kernel:
K(y) = (1/V2r) exp(~y*/2).

In order to avoid a negative bias associated with introducing zero returns by truncations,
the authors correct the realized threshold multipower variation by replacing the absolute
squared returns that exceed the threshold with their expected value under the null hypoth-

esis of no jumps. Thus, the corrected estimator is given by

M p-1
cTMPV, p(p) = uZ/pM p—l—lZHZTtl 0t ;)
i=p j=0
Z(z,y) is defined as:
\x]2/p, if 22 <y

Z(z,y) =
2M(—lc,9)\/77(%y)

2
Vep (e ) if a2 sy

9

where I'(«, z) is the upper incomplete gamma function.
The test statistics for jumps is then based on the corrected realized threshold multipower

variation and is given by:

(1 _ cIBPV, M>
RV,
thv ttpq _ &M

t,M
\/92 max(1,cTTPQy /T BPVY,)

% N(0,1).

A disadvantage of the CPR test is the need to choose the threshold parameters ¢y and cy .
The simulation results reported later in the paper indeed reveal important differences in

terms of size and power of the test across different values of these constants.



3.3 Tests based on median realized volatility

Andersen, Dobrev, and Schaumburg (2009) (henceforth ADS) have proposed a new set of
estimators for integrated variance in the presence of jumps. They are based on the minimum

and median of a number of consecutive absolute intraday returns:

M-1

MZNRV,:,M = ﬁ(%)Zmin(’rti|7’rti+1‘)27
=1
‘ M-1
MedRViyr = g2 (L) D med(lrs, o, I ey )
=2

These estimators are more robust to jumps than the multipower variations since large
absolute returns associated with jumps tend to be eliminated from the calculation by the
minimum and median operators. Furthermore, the MedRV estimator enjoys robustness
against the presence of occasional zero intraday returns induced by calendar-time sampling,
unlike the multipower variation that becomes downward biased.

In this paper, we exploit the joint central limit theorem for RV; ) and MedRV;m
derived by ADS to construct a test for jumps in the same way as BNS and CPR do. The

test statistics read:

| _ MedRViy
RV m

ngj\ejirv,minrq 1 . . £> N(O, 1),
\/O-%M max (1, MinRQ: rr/MedRV,;>,,)
| _ MedRViy
medrv,medr RVer L
Jing e = = N(0,1),

\/().96 17 max(1, MedRQyar/MedRVE,,)

where MinRQ; p and MedRQq v, given by

- Mo\ Mt
Mi — Mi( ) e D2
ZnRQt7M 37_[_ _ 8 M _ 1 ; med(|rtz|7 ’th-l»l ‘) 9
M—1
3 M
MedR M ( ) med(|re, |, 174 |, 17 D4,
Qt,M 97T+72 - 52\/5 M _ 2 ; (| tz—l’ ‘ tz’ ‘ 7fH—lD

are consistent estimators of the integrated quarticity. Due to the nice properties of MedRV

discussed above, we expect these tests to be more powerful than their BNS counterparts.

3.4 Tests based on truncated power variation

Podolskij and Ziggel (2008)(henceforth PZ) build further on the threshold idea of Mancini
(2001) and suggest to construct a test statistics for jumps based on the difference between
power variation and the truncated version thereof, since the difference between the two

captures the contribution of jumps.



The test statistic is defined by

T(X7 p)t M
Stm(p) = —5~——,
’ p*(P)e.m
where T'(X, p): pmr denotes the difference between the realized power variation and the trun-

cated realized power variation, and p? (p)¢,m is a standardizing term:

M
T(X,p)ear = 1/M"P2Y " |y P(1 = niyyr, | <a(/an=});
i—1

P*(p)e,nr = Var[mi] M PV, v (2p),

where 7; are positive i.i.d random variables with E[n;] = 1 and E[|;]?] < co. The test statis-
tics is thus based on the truncated power variation constructed from randomly perturbed
intraday returns as opposed to the usual threshold power variation studied by Mancini
(2001). This is required to obtain limit theory for the test (see the original paper by the
authors for details).

Podolskij and Ziggel (2008) suggest that n; can be sampled from the distribution:
1
P = 5(5177' + 51+‘r)7

where 0 is the Dirac measure. They also suggest to take o = c\/m, w = —0.4 and
7 = 0.1 or 0.05. The threshold is therefore proportional to an initial estimate of integrated
variance, while the choice of the other two constants is rather arbitrary.

Similar to the CPR test, the PZ test requires the specification of the threshold constant,
which in turn affect the performance of the test. In addition, one has to specify the distribu-
tion of n;. In this paper, we only experiment with different values of the threshold constant

¢ and follow Podolskij and Ziggel (2008) regarding the choice of the other free parameters.

3.5 Swap variance tests

Inspired by the replication strategy of Neuberger (1994) for hedging variance swap con-
tracts!, Jiang and Oomen (2008)(henceforth JO) propose a new test for jumps which is
based on the difference between the simple and logarithmic returns. Their idea compares
and contrasts to that of BNS in that they use a jump-sensitive measure to be compared
with the realized volatility rather than a jump-robust measure, as in BNS.

The underlying idea behind the variance swap replication strategy is that in the absence
of jumps, the accumulated difference between the simple return and the log return captures

one half of the integrated variance. Thus

M ¢
SwVi =2 Z(th‘ —1,) 2 o2du,
i=1 =1

LA variance swap is a contract whose payoff is equal to the difference between the square of annualized
realized volatility of the underlying price over a given time period, and a strike price fixed at the inception

of the contract



where for the series of log prices X; and ¢ =1,2,3,..., M,

eXP(!Et—Hz‘/M) - GXP(iUt—H(z‘—l)/M)

R, —
exp(T—14(i-1)/M)

7

9

and 7, denotes the continuously compounded returns defined in (4). Thus in the absence of
jumps, the difference between SwV; ps and RV; js converges to zero. If jumps are present,

however, the limit reads

SwVi v — RVtM—>2 Z (exp(kj) —kj — 1) — Z K,jz,
t;€[t—1,¢] t;€[t—1,¢]

Building on this insight, JO define the test statistics for jumps as follows:

JOp 0 = (SwViar — RVir) 5 N(0, 1),

SwV

where
3, p M-p p

M3y
He ™ 6/p 6/
Q E | | p
SwV = 9 M — p— g |T |

is an estimator of integrated sixticity, [ o8du. The authors suggest using p = 4 and p = 6.
Similarly to BNS, CPR and ADS, JO find that a test based on the ratio of SwV; ps and
RV ar exhibits better finite-sample properties than the difference test in equation (3.5).

The ratio test statistics is given by,

JOym =

M'BPVtM< RVtM> L
M- : = N(0,1),

and this is the version of the test we employ in this paper.

3.6 Tests based on two-time scales power variation

Using the convergence properties of power variation and its dependence on the time scale on
which it is measured, Ait-Sahalia and Jacod (2009) (henceforth ASJ) define a new variable
which converges to 1 in the presence of jumps in the underlying return series, or to another
deterministic and known number in the absence of jumps. This quantity is defined as the

ratio of power variations calculated under two different time scales (1/M and k/M):

B(p,k/M
p,k, 1/M) A(pJ / )
B(p,1/M)
where
) M
B(p, 1/M); =Y |ry,|” p>2

denotes the usual power variation. Under the null hypothesis of no jumps and with p > 2,

S(p,k,1/M), converges to k?/>~1, while under the alternative the limit is equal to one.



Building on these insights, the ASJ test statistics for the null hypothesis of no jumps is

defined as A
S(pa k7 1/M)t - kp/z*l

vV Viu
where f/tc denotes the asymptotic variance of S (p,k,1/M); and is given by,
e _ UM N(p.k) A(2p,1/M);

c
t

Y

A(p,1/M)?
where
A 1/Mip2 M
Ap, 1/ M)y = — Z 7t [P Ly, | <a(1/00)=}
Fp i=1
1
N(p,k) = — (R 721+ k)pap + k2 (k — Dpp — 267 g

Hp
pep = E(UPIU+VE—-1V[?)

for U, V independent standard normal random variables.
The ASJ test requires the choice of four parameters, namely p, k, & and ¥. In this paper,
we follow ASJ in using p = 4 and k = 2 and experiment with different values of the threshold

parameters.

3.7 Tests based on local volatility

The last test for jumps we consider in this paper is the one developed by Lee and Mykland
(2008) (henceforth LM). The intuition behind their approach is that the magnitude of price
changes depends on the local volatility conditions and that a ‘large’ price change does not
necessarily imply a jump in the return process without conditioning on the current vari-
ability. An important advantage of their tests lies in the fact that one can draw conclusions
not only about the presence of jumps in a given time period, but also about the number
and location of jumps within this period.

For every intraday period t;, LM propose to calculate the ratio between the intraday
return, 14, and the instantaneous volatility, o, which they approximate using bipower
variation, i.e.

L(i) = =~

where
i—1

Gt = —— 3 rallr)
7 K_2 . 7 i—1
j=i—K+2

and K denotes the window size or bandwidth used for the estimation of the instantaneous
volatility. If a jump occurred in a given period of time, this ratio should be large in absolute
value and vice versa. This idea underlies the test statistic for jumps in the intra-day period

t;:
|£(i)| — Cum
Sm ’

9



where

(21og(M))/? _ log(m) + log(log(M)) 1

d Sy =
i 2u(2log()iz T M

Cy = -
M 11 (2log(M))1/2

represent the centering and normalizing terms.

To select a rejection region for the test, LM derive the limiting distribution of the
maximum of |£(z)] over all ¢ = 1,..., M and show that the limiting distribution implies
that for a given significance level «, the relevant threshold for w(%'% is given by § =
—log(—log(1 — «)). Thus if lﬁ(%'% > [ the null hypothesis of no jump at time ¢; is
rejected. The choice of the bandwith parameter K is guided by asymptotic theory and the

authors recommend using a value of /252 x M.

4 Monte Carlo Simulation

4.1 Simulation Design

We consider three different data generating processes (DGPs) to investigate the size and
power properties of the various tests for jumps described above. The first two are the one
and two-factor log-linear stochastic volatility (SV) models studied by Chernov, Gallant,
Ghysels, and Tauchen (2003), and employed by Barndorff-Nielsen and Shephard (2004) and
Huang and Tauchen (2005) in a simulation study of the behavior of the bipower variation
based tests. These are defined by:

LL1F: one-factor log-linear SV

dp(t) = pdt+explBo+ Brv(t)]dWp(t),
dv(t) = auou(t)dt + dW,(1),

LL2F: two-factor log-linear SV

dp(t) = pdt+sexp[Bo + Bivi(t) + Bava(t)|dW,(2),
dv1 (t) = QU1 (t)dt + dWUl(t),
dva(t) = apova(t)dt + [1 + Buove(t)]|dWia(t),

where W,, W,, W1, and W,o are standard Brownian motions with leverage correlations
Corr(dW,(t),dWy(t)) = pdt, Corr(dW)y(t), dWy1(t)) = p1dt, and Corr(dWy(t), dWe(t)) =
p2dt, and wv(t), vi(t) and wva(t) are stochastic volatility factors. The process v (t) is a
standard Gaussian process, while v2(t) exhibits a feedback term in the diffusion function.
The spliced exponential function sexp ensures a solution to LL2F exists (see Chernov,
Gallant, Ghysels, and Tauchen, 2003, for details).

The third DGP is a log-linear stochastic volatility model in which the volatility factor
follows an infinite-activity pure-jump process recently considered by Todorov and Tauchen
(2008):

10



LLIA: infinite-activity pure-jump SV

dp(t) = pdt + exp[Bo + Bro(t)|dWp(t),
do(t) = auu(t)dt +dLy(t)

where L, is a symmetric tempered stable process with Lévy density given by v(x) = c%,

a € (0,2). The parameter o, measures the degree of activity of jumps, while A governs the
tail behavior of the Lévy density.

We use the same parametrization for LL1F and LL2F as in Huang and Tauchen (2005)
(see Table 1 & 2). For the LLIA, we fix A at 2.5 as Todorov and Tauchen (2008) and vary
¢ and « such that the variance of L,(1) remains constant at 1, (see Table 3). Thus the
first two moments of the increments of the volatility factor v; are identical under LL1F and
LLIA, but these have fatter tails under LLIA. The sample paths are, of course, dramatically
different with the former being continuous while the latter purely discontinuous.

To simulate sample paths of the log-price under LL1F and LL2F we use the Euler
discretization scheme with the increment of the Euler clock set to 1 second. We generate
55,000 trading days, each 6.5 hours long, which corresponds to typical trading hours on
major equity exchanges. We discard the first 5000 days to avoid distortions induces by initial
conditions. For each day, we calculate the test statistics for jumps at different sampling
frequencies ranging from 30 seconds to 15 minutes.

The simulation of the tempered stable process in LLIA is based on the series represen-
tation of tempered stable processes derived by Rosinski (2001), and outlined in Todorov
(2007). For each 6.5-hour day, we generate 2,340 intraday observations of L, corresponding
to 10-second sampling. We truncate the infinite series expansion such that we simulate on
average 10,000 jumps in L, per day.

To study the power properties of the various tests for jumps, we first augment the LL1F

model by a pure jump component of finite activity:
LL1F-FAJ: one-factor log-linear SV with finite-activity jumps

dp(t) = pdt+exp[Bo + Bro(t)]dWp(t) + dJy,

dv(t) = auu(t)dt + dW,(t),
where J; is a compound Poisson process with normally distributed jumps with variance
o2 and constant jump intensity A. We experiment with various combinations of o2 and ),
ranging from large infrequent jumps to small frequent ones similar to Huang and Tauchen

(2005) (see Table 4).

Next, we explore power against alternatives that entail infinite-activity jump processes:

LL1F-TAJ: one-factor log-linear SV with infinite-activity jumps

dp(t) = pdt+exp[fBo + fro(t)]dW,(t) + kdLy,
do(t) = auu(t)dt +dW,(t),

11



where k is a constant and L; is a symmetric tempered stable process with Lévy density
given by v(z) = c%, a € (0,2). We use the same parameter values for the jump process
as Todorov (2007) (Table 5). The parameters are calibrated such that the contribution of
the jump component to the overall variation reflects the results from previous empirical
literature (Huang and Tauchen, 2005).

We implement the above discussed tests for jumps in the following way:

e Multipower variation ratio test (BNS) using BV, TPV and QPV to estimate the
integrated variance and TPQ or QPQ to estimate the integrated quarticity;

e Threshold bipower variation ratio test (CPR) using threshold TPQ to estimate the
integrated quarticity; the choice of threshold follows CPR exactly with ¢ set to 3,4 or
5;

e Median realized volatility ratio test (ADS) using either MinRQ or MedRQ to estimate
the integrated quarticity;

e Swap variance ratio test (JO) using either realized quadpower or sixthpower sixticity

to estimate the integrated sixticity;

e Two-scale power variation test (ASJ): we set p =4, k = 2 as suggested by ASJ, using
truncated power variation to estimate the asymptotic variance of the S statistics with
o = 0.47 and ¥ set to 3,4 or 5.

e Truncated power variation test (PZ): we consider p = 2 and p = 4 and set 7 = 0.05,
¥ =0.4 and ¢ = 2.3, 3,4.

e Test based on local volatility (LM) using BV, TPV and QPV to estimate instantaneous
volatility.

For expositional clarity, we summarize the main results in a few tables focusing on the
most important differences across the tests and the various data generating process. The
simulation results not directly reported here do not provide much additional insight but

they are available upon request.

4.2 Size

Table 1 summarizes the simulated size for 1% nominal level. We report results for the
LL1F model with moderate mean reversion, LL2F and LLIA with activity index of volatility
jumps equal to 0.4. Other parameter configurations of the DGP’s yield similar results and
are omitted to save space.

We find that while the BNS, CPR and ADS tests exhibit only small size distortions in
small samples, the swap variance test (JO) and the truncated power variation test (PZ)
tend to be oversized and the ASJ test significantly undersized in moderate samples. This

observation is true for all stochastic volatility models considered here.
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Starting with the LL1F model with moderate mean reversion, we find that the BNS ratio
test based on the use of bipower variation exhibits slight positive size distortions at lower
frequencies, as shown by Huang and Tauchen (2005) before, but these are rather negligible
from an empirical perspective. When realized tripower variation is used in place of realized
bipower variation in the BNS test, the size distortions essentially disappear. However, using
realized quadpower variation, in particular when coupled with realized tripower quarticity,
reduces the size of the BNS test below the nominal level at low sampling frequencies.
Simulation evidence not reported here suggests that this is caused by positive skewness
of realized multipower variation at low frequencies, with the degree of skewness increasing
with p. Thresholding the bipower variation as suggested by CPR tends to increase the
size slightly for low levels of the threshold. This is perhaps not surprising given that it is
not optimal from a statistical point of view to truncate the large returns in the absence of
jumps. This biases the bipower variation downward and the test statistics upward, hence
the slightly higher empirical size.

The jumps tests based on the recently developed median realized volatility (ADS) show
relatively stable performance across sampling frequencies. They do tend to be slightly
oversized at low sampling frequencies but the distortions are smaller than in the case of
the test based on bipower variation. The choice of the estimator of integrated quarticity
(MinRQ vs. MedRQ) does not seem to have a practical impact on the size properties.

Turning to the ASJ test, we first note the difference in size depending on the truncation
parameter . The higher «, that is, the larger the threshold employed in the calculation
of the truncated power variation, the lower the size. But more importantly, for a given
threshold, decreasing the sampling frequency tends to have a significant negative impact on
the size of the test. This effect is more pronounced for more conservative significance levels.
The simulation evidence indicates that the problem lies with the positive skewness of the
ASJ test statistics at lower frequencies. Already at the 2 minute frequency does the ASJ
test statistic exhibit significant departures from the standard normal limiting distribution,
showing much more probability mass in the right tail than in the left one. This problem
becomes more severe at lower sampling frequencies; for example, at 15 minutes, the empirical
size of the test is only about one half of the nominal level, irrespective of the speed of mean
reversion.

Similar to ASJ, the performance of the PZ test also depends on the choice of threshold.
For the relatively small value of the threshold recommended by PZ (¢ = 2.3) we find
large positive size distortions for moderate and low sampling frequencies. Most of these
distortions are nonetheless alleviated by slightly increasing the threshold (¢ = 3).

We next look at the size properties under the two-factor SV model (LL2F). As shown
by Huang and Tauchen (2005), the BNS tests tend to be oversized in this case and this
result is confirmed in our simulation for all multipower variation-based tests. Similar results
are obtained for the ADS, JO and CPR tests with the latter being much more sensitive
to the choice of threshold than in the case of the LL1F model. In the two-factor model,
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the volatility process experiences sudden erratic movements generating large absolute price
increments which can be easily confused with jumps. Setting too small a threshold will
eliminate these large but genuine diffusive intraday returns and bias the threshold bipower
variation downward, resulting in false rejections of the null hypothesis of no jumps.

The LL2F scenario is much more challenging for the ASJ and PZ test. Not only do
these tests become extremely sensitive to the choice of threshold, the size distortions do not
seem to disappear in large samples. In fact, increasing the sampling frequency exacerbates
the problem, questioning the workings of the limit theory under the two-factor model.

Finally, we investigate whether the pure-jump volatility specification (LLIA) affects the
finite-sample properties of the tests for jumps. The results, reported in the web appendix,
are very similar to the LL1F case, suggesting that even highly active pure jump volatility
process does not adversely affect the inference about jumps beyond the distortions observed
for relatively smooth continuous volatility specifications (LL1F).

Summarizing the size simulations, we find that the BNS and ADS tests exhibit most
stable performance across the different DGP’s and sampling frequencies. The tests that
require thresholding (ASJ, PZ and CPR) seem to be very sensitive to the choice of threshold.

4.3 Power against finite-activity jumps

Having examined the size, we now turn to power against finite-activity jumps. We report
three different jumps scenarios, ranging from large, infrequent jumps (A = 0.1, 02 = 2.5)
up to small and frequent ones (A = 2.0, 02 = 0.5). It is well-known that when applied
on a day-by-day basis, the jump tests are inconsistent (Huang and Tauchen, 2005): for
any given finite time-period there is always a positive probability that no jump occurs and
hence none of the tests can discriminate between a continuous price process and a price
process with jumps of finite activity. For example, with A = 0.1, a jump occurs only about
every 10 days, and hence the tests will have no chance of detecting jumps on 9 out of 10
days on average. It is therefore more instructive to focus on the ability of the jump test to
detect jumps on days when jumps indeed occurred, which can be neatly summarized by the
confusion matrix described in what follows.

Tables 2-4 report confusion matrices for the eight tests at different sampling frequencies
applied on a day-by-day basis under the LL1F data generating process with moderate mean
reversion of -0.100 and significance level of 1%. We only focus on one version of each test,
except for the test that require thresholding where we report two test statistics in order to
study the dependence on the choice of threshold.

The confusion matrices are constructed as follows. The diagonal elements show the
proportion of correctly identified jump days by each test individually. For example, a value
of 70 means that the particular test manages to detect 70% of the days on which jumps
occurred in the simulation. The off-diagonal elements then report the proportion of jump
day jointly flagged by a pair of tests. They provide a measure of agreement between the

two tests about the occurrence of jumps.
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Starting with the scenario of large, frequent jumps, we find that the PZ test is the most
powerful one, closely followed by the LM and JO tests. In case of the former, the power
crucially depends on the choice of threshold: a smaller value of the threshold parameter
leads to a larger proportion of detected jumps, but recall from the previous section that it
also produces important size distortions. This trade-off is particularly pronounced at lower
sampling frequencies. For example, for the 15 minute sampling frequency, the PZ test with
the threshold value of 2.3, which was recommended by PZ, correctly identifies 79.8% of
jump days while with the threshold set equal to 4 the proportion decreases by more than
20 percentage points to 59.1%. The CPR test behaves in a similar way but the dependence
on the threshold parameter is less strong.

The BNS and ADS tests deliver good performance, with the latter test being slightly
more powerful than the former, as expected. Replacing the bi-power variation by the
tri-power or quad-power variations in the BNS test (not reported here) does not lead to
improvements in power, however, despite the fact that the TPV and QPV are more robust
to jumps than BV. This is probably due to the higher variance of the two measures of
integrated variance. Finally, the ASJ test is the least powerful out of all tests at the sampling
frequencies reported here. It seems to work well only up to the one-minute frequency and
looses power quickly hereafter.

In terms of pairwise agreement among the tests as to whether or not a jump occurred
on a given day, which we report in the off-diagonal part of the confusion matrix, we find
that the proportion of commonly detected jump days tends to be driven by the test with
lower power. In particular, the proportion of commonly detected jumps tends to be slightly
smaller that the proportion of jumps detected individually by the test with lower power.
This implies that if the test with lower power detects a jump so does the test with higher
power. Consider, for example, the swap variance test, JO, which detects 91.20% of jumps
days at the 1 minute frequency, together with the ADS test that identifies 88.94% of them.
The implied minimum proportion of commonly detected jump days equals 81.14%, while the
maximum, given by the ADS performance, is 88.94%. The actual proportion obtained by
the simulation equals 88.43%, which is very close to the upper bound. Similar observations
are made for the other pair of tests.

The other jump scenarios, reported in Tables 3-4, produce qualitatively similar results
in term of the relative performance of the tests. The power decreases across the board
as the variance of the jumps decreases and the jump intensity increases. The degree of

disagreement among the tests increases slightly as well.

4.4 Power against infinite-activity jumps

We next examine the power against infinite activity jumps. It is important to note that not
all of the tests studied here are designed for this kind of departure from the null hypothesis
of no jumps. This is because some of the measures of integrated variance that these test

employ are not robust to the presence of infinite activity jumps and thus cannot be used
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to disentangle the continuous and discontinuous components of volatility. In particular, all
test based on the bi-power variation and minimum or median realized volatility suffer from
this problem. We study them in the context of infinite activity jumps nonetheless for they
may still possess non-trivial power against this alternative.

The results are summarized in Table 10. We find the relative performance to be very
similar to the case of finite activity jumps. The PZ test with low threshold delivers highest
power, followed by the LM and JO tests. The latter test works particularly well in that it
retain power even at the low sampling frequency of 15 minutes. The BNS and ADS tests
fare relatively well despite being based on non-robust measures of integrated variance. The

ASJ test only works at very high frequencies.

5 Microstructure noise

It is now widely recognized that the estimation of the realized variance at very high fre-
quencies is heavily biased by the presence of market microstructure noise (Hansen and
Lunde (2006)). This contamination of the “efficient price” arises from a wide range of
market frictions including bid-ask spread, infrequent trading, inventory control problems

and asymmetric information, among others?.

The noise dominates the estimation results
predominantly at finely sampled data, and thus creates a trade-off between the efficiency
and the bias due to contamination. A vast literature has been developed with techniques
attempting to reduce or eliminate such frictions, see Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2008a) and the references therein.

The literature typically assumes that the efficient price Xy ; s is contaminated by an

additive noise component,

;—i-i/M = Xyri/m + €i/m
where E[e,;/y/] = 0 and Varle, /] = w? < 0o. Various assumptions are made regarding
the dependence between X, ;s and €;,;/)s and the time-series properties of the latter.
Here we restrict attention to noise that is independent from the efficient price.

In the context of testing for jumps, Huang and Tauchen (2005) and Andersen, Bollerslev,
and Dobrev (2007), use staggered returns in the calculation of the bipower and tri-power
variation to eliminate the correlation of two consecutive returns stemming from an 4id noise
process and therefore alleviate the effect of microstructure noise. The realized staggered
multipower measures are defined as

SMPVi v k(p) = i) st Soimo O T2 I

2
Is 1 FT=p(1FR) T &

i+j*(1+k) ’

M—p(1+k) 1yp—1 4
HP:O ’rti+j*(1+k)‘

SMPQink(P) = 1y, iR TT Lot

where ,u2/ = W_I/QZP/QF(pT).

2See O’Hara (1995) and Hasbrouck (2007) for details.
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Similarly to the staggered multipower variation measures, one can define staggered me-

dian realized volatility as follows:
sMedRVyar i, = ¢ <%) Zij\i0_4 med(|ry, |, | |7 2,

i+ (1+k) |7 i+2(1+k) |)

2 M—4
sMedRQuars = ey (#5 ) Yo med(lral 7, o | 1)

37
9m+72—52v/3"
into the J tests for jumps in place of the non-staggered measures and applied to testing for

where ¢, = m and ¢, = These staggered measures can be readily plugged
jumps in the presence of iid or moving-average type of noise.

Alternative approaches are provided by Jiang and Oomen (2008) and Podolskij and
Ziggel (2008) who modify their test statistics to account for the presence of iid noise. We
do not provide the formulae here to save space and refer the reader to the original papers.

To simulate the behavior of the tests for jumps in the presence of microstructure noise,
we let the efficient price be governed by the LL1F stochastic volatility model with mod-
erate mean reversion. Following Andersen, Dobrev, and Schaumburg (2009), we model
the microstructure noise as an AR(1) process with parameter p € {0,0.95}. These sce-
narios thus include the case of an iid noise (p = 0) typically found in transaction prices
as well as a persistent noise process (p = 0.95) suitable for modeling quotes (Hasbrouck
(1999)). We consider two noise-to-signal ratios: large, with w?/IV = 0.01 and moderate
with w?/IV = 0.001 and implement the following tests:

e Staggered multipower variation ratio test (BNS) using sBV, sTPV and sQPV to esti-
mate the integrated variance and sTPQ or sQPQ to estimate the integrated quarticity;

e Staggerd median realized volatility ration test (ADS) using sMinRQ and sMedRQ to

the estimated integrated quarticity;
e Swap variance ratio test robust to #d microstructure noise (JO);

e Truncated power variation test robust to id microstructure noise (PZ), where, fol-

lowing the recommendation of PZ, we set 7 = 0.05, ¥ = 0.17 and ¢ = 2.3, 3, 4.

and consider sampling frequencies of 5s, 15s, 30s, Imin and 5 min. The main simulation

results are summarized in Tables 5-8.

5.1 Size

Starting with the case of iid microstructure noise with moderate noise-to-signal ratio re-
ported in the left panel of Table 5, we see that all four classes of tests possess very good size
properties. Similar to the case of no microstructure noise the PZ test exhibits sensitivity to
the choice of threshold.

We next introduce dependence into the microstructure noise by allowing it to follow

a first-order autoregression with parameter 0.95 and set the noise-to-signal ratio back to
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0.001 (moderate noise). It comes as no surprise that the tests based on staggered multipower
measures are no longer immune to this type of noise. In fact, staggering can only help if
the noise is of the moving-average type. The simulated size of the BNS and ADS tests
decreases with the sampling frequency although the distortions are not as dramatic as the
highly dependent noise process may suggest. Similar, but a more pronounced, effect is
found for the swap variance test (JO). Increasing the variance of the noise implies large size
distortions in the same directions.

Overall the best performing test in terms of size is the PZ test. Except for the relatively
low frequency of 5 minutes, the PZ test exhibits empirical size very close to the nominal
level across the scenarios considered here, as long as moderate or large threshold is used.

This is quite remarkable especially in the case of large, highly dependent noise.

5.2 Power

The jump detection ability of the noise-robust tests is presented in Tables 6-8. We focus
on the same jump scenarios as in Section 4.3. The most powerful test is again the PZ test
but only for a small value of the threshold parameter. Increasing the threshold results into
a sharp decrease in power, especially at lower sampling frequencies. The noise-robust JO
test shows a very stable performance across the different specifications of the noise process
and delivers better power than either BNS or ADS. The latter two work quite well when
the noise has moderate variance (w? = 0.001).

Increasing the variance of the noise to 0.01 leads to a sharp drop in power of all tests.

The effect is most pronounced when the jumps are small and frequent (Table 8).

6 Zero returns

It is well-known that prices do not change at equidistant points in time (see, for exam-
ple, Engle and Russell (1998)). There generally tends to be more activity taking place in
the market shortly after opening and towards the end of the trading session than around
lunchtime. As a result, when sampling in calendar time some intraday returns may be equal
to zero, which may in turn distort the inference about jumps.

To see this, consider the BNS test based on bipower variation. Since the latter is
calculated as a sum of products of two consecutive returns, one zero intraday return will set
two summands equal to zero as opposed to the realized volatility, where only one summand
will be knocked out of the sum of squared returns. As a result, the difference between RV
and BV will be upward biased and consequently the test based on this difference oversized.
It is clear that this effect will be more pronounced for tests based on multipower variations of
higher order. This observation has motivated ADS to propose the median realized volatility
as a more robust measure of integrated variance and quarticity in the presence of infrequent

trading.
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To shed more light on the impact of zeros returns on the alternative tests for jumps,
we consider the following simple model of sparse sampling. The efficient price follows
the LL1F model as before but it is only observed at random points in time, whereby the
durations between consecutive observations are assumed to be independently exponentially
distributed with mean ¢(t). To calibrate the mean duration as a function of the time of
day, ¢(t), we follow ? and fit a cubic spline to the price durations of the S&P 500 futures
contract between 2003-2007 (the data is described in greater detail below).

The average duration between consecutive price changes is found to be about 15 seconds
and we observe a large difference between average morning durations (10 seconds) and
lunchtime durations (20 seconds). We use this diurnal pattern function throughout the
simulations but re-scale it such that the mean price duration over the course of the trading
day is equal to either 5 seconds, 15 seconds or 30 seconds. This allows us to study the
impact of different levels of nontrading on the size of the alternative tests for jumps. We
study the same test statistics as in the size simulations.

The main simulation results are summarized in Table 9. Consistent with intuition, the
most affected by the presence of zero intraday returns are the tests based on multipower
variations (BNS and CPR). In case of the CPR test, the problem is further exacerbated by
the presence of the bipower variation in construction of the threshold. The negative bias
in the bipower variation due to zero returns tends to reduce the threshold value and as we
have seen in the simulations before this translates into more frequent false rejections of the
null hypothesis. The tests based on the median realized volatility (ADS) are slightly more
robust to the presence of zeros although the gains are not very large, at least not for the
type of infrequent trading considered here.

The impact of zeros on the swap variance test (JO) tends to be much smaller. It
operates primarily through the realized sixticity appearing in the denominator of the JO
test statistics. The downward bias of the realized sixticity implies more frequent rejections
that consistent with the nominal significance level. Similarly effected is the ASJ test,
which requires the use of multipower variation to estimate the quarticity appearing in the
denominator of the test statistics.

Overall the best performance in terms of empirical size in the presence of zero returns is
afforded by the PZ test, as long as one chooses a sufficiently large constant ¢ when calculating
the threshold. Even when the mean duration of nontrading is large (30 seconds), the PZ
test provides reasonable inference at frequencies as high as 2 minutes, at which all other

test already suffer from substantial size distortions.

7 Diurnal volatility

The last challenge that the test for jumps will be subjected to in this paper is the determin-
istic diurnal volatility component. It is well-known that unconditional intraday volatility

tends to exhibit an asymmetric U-shaped pattern. It is typically highest in the morning,
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drops significantly around lunchtime and then picks up again towards market close. We

follow Hasbrouck (1999) and model the unconditional intraday volatility as
E(oy) = A(e™ 4 ¢7?071), (2)

We set A = 0.0795, a = —2.5 and b = —3.2. With these parameter values the mean volatility
approximately equals 2, 0.5 and 1 in the morning, mid-day and evening, respectively.

We first study the size. The results, reported in Table 15, resemble those obtained under
the LL2F model. All tests are substantially oversized, those that require thresholding are
very sensitive to the choice of the threshold, and the performance of PZ and LM test actually
deteriorates as the sampling frequency increases. The BNS and ADS tests seem to be the
best choice similarly to the case of LL2F with no diurnal volatility.

In terms of the ability of the test to detect jumps, the ranking is again similar to the
case of LL1F. To save space, we only report the scenario of moderate jump intensity and
size noting that the results for the other jump scenarios are qualitatively similar. The PZ
test with a low value of threshold delivers highest power, closely followed by the LM and

JO tests. Recall, however, that the two former tests are severely oversized.

8 Empirical Application

In this section, the we apply aforementioned jump tests to empirical data. The analysis is
carried out using high frequency data from three markets: the foreign exchange inter-dealer
market, the equity futures market, and the stock market. Specifically, the currency pairs
of EUR/USD and USD/JPY are analyzed together with the S&P 500 Futures Index and
equity data from five corporations, listed on the New York Stock Exchange (NYSE) namely,
Citigroup, IBM, McDonald’s, Disney and General Electric. For the cleaning of the data, we
follow the procedure outlined by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b).

Below, we give a brief description of the various datasets employed.

8.1 Data Description and Preliminaries
8.1.1 Foreign exchange

We study the EUR/USD spot exchange rate during the period between January 4, 2000 and
May 31, 2007. The mid-quotes are extracted from the Electronic Broking Services (EBS)
Market Data database, which is currently the larger of the two electronic venues that make
up the inter-dealer spot FX market, after Reuters. In addition, EBS has become the major
trading platform for the two most traded currency pairs, the USD/JPY and the EUR/USD.
This data has been only recently made available to academic researchers. As is customary
in the literature, observations recorded between 21:00 GMT on Friday and 21:00 GMT on
Sunday as well as holidays are discarded. In addition, days with low trading activity due
to public and bank holidays are also excluded from the data. This leaves us with 1820 days

in the sample.
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8.1.2 Individual stocks

We collect equity data for five corporations listed on the New York Stock Exchange (NYSE),
namely McDonald’s and IBM over the period between July 2, 2001 and December 29, 2005,
which yields a total of 1126 days. Only the mid-quotes recorded between 9:30 EST and 16:00
EST are considered. The data is extracted from the Trades And Quotes (TAQ) database
of NYSE.

8.1.3 S&P 500 Futures

We focus on the most liquid (front) S&P 500 futures contract over the period from June
2, 2003 to December 28, 2007. Only observations between the hours of 8:30 EST to 15:00
EST are considered and holidays are omitted, leaving us with a total of 1174 days in the

sample. This data was obtained from TickData Inc.

8.1.4 Preliminaries

All four series of high-frequency prices have been filtered using the approach proposed by
?7. In order to gain some intuition about the level of the jump component, microstructure
noise and flat trading in the various datasets, we provide in Figure 1 in the signature plots
of the average daily realized volatility, medium realized volatility, bi-power and tri-power
variation. The level of microstructure noise appears to be higher for the equity and futures
data than for the FX data, for which a 30-second sampling frequency seems adequate to
avoid the impact of microstructure noise on the estimation of volatility. In case of the
individual stocks and S&P 500 futures, frequencies between 2 and 5 minutes deliver stable
results.

While the difference between the realized volatility and and the jump-robust measures
(MedRV, BV, TPV) provides information about the magnitude of the jump component,
this information is only reliable at moderate and small sampling frequencies due to the
presence of zero returns. The signatures plots reveal that the equity data has a larger
proportion of zero returns than the FX and futures data, and the jump-robust measures
become severely downward biased for frequencies higher than a minute. For the foreign
exchange and futures data, on the other hand, MedRV and BV seem to stabilize already at
the 30-second frequency, whereas, not surprisingly, TPV requires slightly lower frequency
to avoid the effect of zero returns.

Tables 18-20 provide some descriptive statistics for the various datasets. In Table 18,
the average number of quotations per day is reported for each calendar year in the sample
together with the percentage of unique quotes. We observe that the foreign exchange
data has the largest average number of quotes per day relative to the operating hours in
the market, while the futures data has the smallest number of quotes. In addition, for all
datasets, with the exception of the futures data, the number of quotes increases significantly

over the sample period, the increase being higher for the individual stocks. The futures data
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possesses the highest percentage of unique quotes amongst all the data examined. Only less
than 3% of consecutive quotes in the future data are identical. The number is much larger
for the foreign exchange data and equity data. For these datasets, the number of consecutive
duplicate quotes increases significantly over time.

Table 19 reports the average durations between successive quotes. When accounting
for duplicate quotes, the quote arrival rates are quite similar across the datasets, except
for S&P 500 futures which shows average duration about twice as high as the other assets
considered. Finally, Table 20 reports the yearly percentage of zero returns for five differ-
ent sampling frequencies, extending from 30 seconds to 15 minutes. Consistent with the
volatility signature plots, the percentage of zero returns decreases significantly with the
sampling frequency. Nonetheless, the proportion of zeros remains nontrivial even at the
relatively low and commonly employed 5-minute frequency implying possible positive bias

in the estimated contribution of jumps to the overall variation in the assets’ prices.

8.2 Results of Jump Tests

We now apply the set of jumps test to the data. For each asset and day of the sample we
test for the presence of jumps at three different sampling frequencies: 1 minute, 5 minute
and 15 minutes. To balance the trade-off between size and power we use intermediate values
for the threshold parameters in the CPR, ASJ and PZ tests. We adopt the 1% significance
level throughout.

We summarize the results in a set of confusion matrices: we calculate the proportion
of days that each test identified jumps individually and also for each pair of the tests the
proportion of jump days detected by the corresponding tests jointly. The latter is again
interpreted as a measure of the degree of agreement among the different tests. The confusion
matrices are reported in Tables 21 and 22.

The empirical results are consistent with those obtained in the simulations. There is a
clear association between the number of zero returns and the proportion of days identified
as jump days. As expected, the tests that are affected the most are the BNS and LM ones.
The proportion of detected jump days also radically increases with the sampling frequency,
except for the JO test which exhibits relatively stable performance.

The largest proportion of jump days is detected for the EUR/USD exchange rate. At
the 5 minute frequency, the tests indicate between 23 and 53% of jump days in the sample,
if we ignore the ASJ test which is known to have low power and the LM test which is
substantially biased due to zero returns. There are much less jumps in the S&P 500 future
index, for about 10 to 15 % of the days in the sample do the test signal the presence of
jumps. The IBM stock price jumps relatively infrequently (6 - 11%), while McDonalds
exhibits similar behavior to S&P 500 futures.
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9 Conclusion

This paper aims to evaluate the performance of seven different approaches developed for
testing for the presence of jumps in asset price processes. Extensive simulation results
examining the size and power of the tests under different data generating scenarios reveal
that there is no clear “winner”. The performance of each test depends on a particular
scenario: while some tests perform well in the absence of frictions, they face considerable
difficulties when confronted with noisy data. The tests employing thresholds suffer further
from a trade-off between size and power; small threshold improves the ability to detect true
jumps but at the same time increases the probability of spurious jump detection in periods
when no jumps occurred. Further research is therefore called for to address the choice of
the threshold in order to balance this trade-off.

An important feature of the jump tests that we document in this paper is their sensitivity
to the presence of zero intraday returns. A natural remedy to this problem is to resort to
tick-time sampling (see e.g. 7, 2006 for a discussion of the benefits of tick-time sampling
for estimation of volatility). Nevertheless, the limit theories underlying the tests studied
here are derived under the assumption of equidistant sampling and hence it remains to be
shown whether they remain valid when sampling time becomes random. Further research
will almost surely tackle this issue.

The conclusions from the empirical application based on individual stock, foreign ex-
change and equity futures data conform to those of the Monte Carlo simulation. They show
that the test statistics are very sensitive to the presence of zero returns and microstructure
noise. It is therefore very important in empirical work to be aware of this problem and

interpret the results accordingly.
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A Tables

L 0.030
Bo 0.000
b1 0.125

a, {—0.137e —2,—0.100, —1.386}

Table 1: Parameters of the LL1F model used in the simulations.

7 0.030
8o ~1.200
B 0.040
Bo 1.500
ay1 -0.137e-2
Q2 -1.386
51}2 0.250
1 -0.300
o -0.300

Table 2: Parameters of the LL2F model used in the simulations.

[ 0.030
B0 0.000
B 0.125
o {—0.137¢ — 2,-0.100, —1.386}
A 2.500

(c,a)  {(2.424,0.400),(1.635,0.800),(0.894,1.200),(0.325,1.600)

Table 3: Parameters of the LLIA model used in the simulations.

A {0.1,0.5,1.0,1.5,2.0}
o? {0.5,1.0,1.5,2.0,2.5}

Table 4: Jump intensity and variance of jump size for LL1F-FAJ model.

a {0.1,0.5}
k {0.0119,0.0161}
c {0.125,0.4}

A {0.015,0.015}

Table 5: Parameters of the jump process in the LL1F-TAJ model.
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o T i) e

SwVps S3(4,2) S5(4,2) S23(2) Si(2) LMy,

Sampling frequency: 1 minute
Jbw 88.68

JP 83.68 89.88

JO) 88.68 89.44 89.44

Jmedrv  87.93  88.56 88.37 88.94

SwVyys 88.18 89.27 88.91 8843 91.20

S3(4,2) 74.36 7493 74.81 7453 7550 75.86

S5(4,2) 71.34 7191 71.78 7153 7243 7252 72.52

Sy3(2) 88.56 89.73 89.31 88.83 91.12 7579 7250 93.97

S4(2) 87.74 8854 88.35 87.99 88.75 7474 71.78 88.81 88.85
LM,, 8852 89.69 89.27 88.79 91.12 7575 7250 93.60 88.81 93.68
Sampling frequency: 5 minutes

Jio 78.27

JE 7827 82.01

J9 7825 80.18 80.18

Jmears 7749 79.87 79.07 80.47

SwVyps 7777 8123 79.68 79.70 84.19

S3(4,2) 1.64 208 193 193 220 2.33

S5(4,2) 1.62 199 191 191 1.99 199  1.99

Sy3(2) 78.21 81.92 80.12 80.33 83.75 233  1.99 87.57

S4(2)  75.92 7718 T7T.09 7684 77.09 1.76 176  77.18 77.26
LMy, 7814 81.84 80.05 80.18 8341 229 199 8585 77.18 86.00
Sampling frequency: 15 minutes

Jhe 64.01

JE 63.97 70.75

JO) 63.95 66.89 66.93

Jmears 62.17  66.64 64.37 67.98

SwVyps 6322 69.64 66.07 66.83 75.77

S3(4,2) 0.00 0.00 0.00 000 002 0.04

S5(4,2) 0.00 0.00 0.00 000 000 002  0.02

S>3(2) 6391 70.67 66.83 67.81 74.68  0.02 0.00 79.76

S4(2) 5822 5898 5893 5841 5885  0.00  0.00 59.00 59.08
LMy, 63.05 69.56 65.97 66.79 72.96 0.02  0.00 7546 5893 76.59

Table 7: Confusion matrix. LL1F-FAJ with medium mean reversion. A = 0.1, 02 = 2.5.

Significance level: 1%.
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Jow I TS Jmed

SwVps S3(4,2) S5(4,2) S23(2) Si(2) LMy,

Sampling frequency: 1 minute
Iy 86.15

JP 8615 88.02

JO 8615 87.11 87.11

Imedrv  84.97 8590 85.57 86.39

SwVps 85.14 86.71 86.02 85.30 88.85

S3(4,2) 68.84 69.59 69.30 68.84 69.74 70.57

S5(4,2) 61.60 6225 62.01 6157 62.37 62.89 62.89

Sy3(2) 86.03 87.88 86.99 86.28 88.71 70.55  62.87 92.78

S4(2)  85.00 86.08 85.79 85.04 8588 69.30 62.13 86.42 86.51
LMy,  86.00 87.84 86.96 86.24 88.65 70.52 62.86 92.13 86.41 92.23
Sampling frequency: 5 minutes

Joo 72.87

JO 7286 7774

JO 7287 7515 75.16

Jmedro 7047 73.32 72.02 74.21

SwVyys 70.66 74.87 72.83 T71.72 78.41

S3(4,2) 1.81 231 210 1.99 240  2.62

S5(4,2) 151 179 172 170 1.77 182  1.82

Sy3(2) 7272 7759 75.01 74.08 78.04 260  1.80 85.27

S4(2) 6893 70.45 70.32 68.69 69.20 1.98  1.67 70.45 70.54
LM, 7211 7670 74.37 7331 76.77 254 180 81.17 70.39 81.31
Sampling frequency: 15 minutes

Jie 52.87

JE 52.84 60.51

JO 5285 5589 55.92

Jmears  48.86 52.93  50.52 55.54

SwVyps 50.02 56.58 52.83 52.34 65.71

S3(4,2) 0.00 0.01 0.00 0.01 002 0.03

S5(4,2) 0.00 0.00 0.00 000 000 000  0.00

So3(2)  52.79 60.37 55.84 55.38 64.28  0.02 0.00 73.98

S4(2)  42.80 4356 43.45 41.60 4263  0.00  0.00 43.60 43.69
LMy, 5024 57.22 53.23 5256 5888  0.02  0.00 64.14 43.11 65.01

Table 8: Confusion matrix. LL1F-FAJ with medium mean reversion. A = 1.0, o = 1.5.

Significance level: 1%.
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Too T I Jmed SwVps Ss(4,2) S5(4,2) Sas(2) Si(2) LM,
Sampling frequency: 1 minute
Jio 67.93
JD 6792 72.87
JO 6792 7041 70.41
Jmedrs 65.80  68.46 67.42 69.62
SwVps 64.00 67.79 66.19 65.17 72.57
S3(4,2) 44.39 46.31 4551 44.99 4552 48.46
S5(4,2) 30.09 31.35 30.91 30.44 31.17 3248 32.48
Sy3(2) 67.75 72.66 70.23 69.39 72.36 4835 3243 84.78
S4(2)  63.84 66.19 65.55 64.47 64.56 44.80  30.89 66.91 67.06
LMy, 67.67 7254 70.15 69.31 7225 4832 3243 83.23 66.90 83.50
Sampling frequency: 5 minutes
Joo 36.89
JE 36.87 45.81
JO 36.88 3951 39.52
Jmears 33.23 3823 35.11 40.37
SwVys 3170 38.34 3411 34.11 45.92
S3(4,2) 0.87 142 112 116 157  1.98
S5(4,2) 055 083 073 076 082 0.8  0.86
So3(2) 36.56 45.46 39.20 39.91 44.90  1.93 0.83 63.45
S4(2)  24.68 2589 25.77 2491 2476  0.89  0.66 25.93 26.25
LMy, 3531 43.57 37.94 3838 4261 1.83 083 54.65 25.89 55.39
Sampling frequency: 15 minutes
Jie 13.92
JE 13.80 18.84
JO 13.90 14.62 14.65
Jmears 10.55 1328 11.08 16.22
SwVys 11.30 1518 12.00 13.08 27.62
S3(4,2) 0.00 0.00 0.00 000 0.01 0.04
S5(4,2) 0.00 0.00 0.00 000 000 003  0.03
So3(2) 13.65 18.49 14.38 1567 23.81  0.01 0.00 36.62
S4(2) 481 493 488 460 483  0.00 000 493 5.17
LMy, 1078 1513 11.50 1272 17.87  0.01  0.00 23.04 4.79 25.21

Table 9: Confusion matrix. LL1F-FAJ with medium mean reversion. A = 2.0, o = 0.5.

Significance level: 1%.
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Too T I Jmed SwVps Ss(4,2) S5(4,2) Sas(2) Si(2) LM,
Sampling frequency: 1 minute
o 10.73
JP 1071 12.28
g 10.73 11.38 11.40

tbv

Jmedro 9.32 1001 9.72 11.06

SwVys 9.26 1034 987 951 13.40

S5(4,2) 6.15 6.66 645 629 697  7.97

S5(4,2) 524 566 550 536 594 636  6.36

Sp3(2)  9.86 11.30 10.53 10.19 1230 7.53  6.07 19.48

Si(2) 865 928 909 883 941 627 545 951 10.30
LMy, 973 11.12 1040 10.09 1220 748  6.07 1707 9.50 17.58

Sampling frequency: 5 minutes

Tow 5.71
I 5.69  6.94
T 571  6.06 6.08

Jmears 450 519 479  6.19
SwVy,s 446 542 483 491 8.95

S3(4,2) 0.13 025 0.19 022 030  0.52

Ss5(4,2) 0.12 020 0.17 019 020 0.32  0.32

So3(2)  5.00 6.22 537 548  7.13 0.38 0.21 13.03

Sy(2) 348 366 3.65 3.61 367  0.16 0.16  3.68 4.34
LMy, 455 5.61 491 506  6.40 0.36 0.20 852 3.68 9.09

Sampling frequency: 15 minutes

Jo 3.40
T 338 4.21
J©) 3.40 359 3.61

tbv
Jedrs 217 265 234 3.66

SwVys 242 315 263 278 8.89

S5(4,2) 0.00 0.0 0.00 000 0.00 0.06

S5(4,2) 0.00 0.00 000 000 0.00 005 0.05

S»s5(2) 3.06 3.87 327 326 553 000 000 10.31

S42) 134 137 137 133 137 000 000 137 1.85
LMy, 198 272 219 236 352 000 000 428 136 5.08

Table 10: Confusion matrix. LL1F-IAJ with medium mean reversion and jump activity

index equal to 0.5. Significance level: 1%.
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30s 1min 2min 5 min 15 min

A. Multipower variation ratio tests (BNS)

Tovipg 201 252 307 420 527
Jv.apa 215 271 338 455  5.67
Jipo.tpg 170 195 243 326  3.94
Jipv apq 1.95 230 303 401  4.66
Japv.tpg 136 145 167 195  1.68
— 173 203 255 333 361
B. Threshold bipower variation ratio tests (CPR)

T o 245 316 421 691  7.61
T o 2.06 260 320 474 591
T v 202 254 310 432 543

C. MedRV ratio tests (ADS)
Jmedro,minrg ~ 2.11 2.68 3.26 4.12 4.66
Imedrv,medrq  1.93 2.33 2.90 3.97 5.04

B. Swap variance ratio tests (JO)

SwVps 233 3.39 5.01 8.48 15.66
SwVps 2.71 4.20 6.44 11.79 2281
E. Power variation ratio test (ASJ)

S3(4,2) 5.00  3.56 1.91 0.64 0.03
S4(4,2) 1.36 091 052 023 0.03
S5(4,2) 0.53 0.35 0.20 0.07 0.03
F. Threshold power variation difference test (PZ)
S23(2) 64.79 5744 4849 36.04 24.00
S3(2) 10.53 10.39  9.39 7.94 6.31
S4(2) 1.24 1.20 1.19 1.17 1.18
G. Local volatility test (LM)

LMy, 92.96 79.21 2991 2835 1148

Table 16: Size. Simulated size of the tests for jumps for 1% nominal. LL1F model with

medium mean reversion and deterministic diurnal volatility.
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Too T I Jmed SwVps Ss(4,2) S5(4,2) Sas(2) Si(2) LM,
Sampling frequency: 1 minute
o 84.96
JP 84.96 86.90
g 84.96 86.06 86.06

tbv

Jmears 83.36 84.40 84.04 85.02

SwVyps 83.30 84.71 84.20 83.22 86.66

S3(4,2) 28.34 2879 28.61 2842 28.71 29.60

S5(4,2) 9.64 985 978 964 9.85  10.01 10.01

Sy3(2) 84.95 86.89 86.05 84.99 86.65 29.56 10.00 96.83

S4(2)  83.99 85.38 84.90 83.88 85.07 28.81  9.90 86.58 86.60
LM, 8493 86.87 86.03 84.99 86.65 29.55 10.00 96.18 86.58 97.59
Sampling frequency: 5 minutes

Joo 72.92

JO 7202 78.85

JO 7291 7535 75.35

Jmears  69.43 7226 70.90 73.28

SwVys 69.84 7429 72.04 69.86 77.99

S3(4,2) 0.23 035 030 028 0.36  0.46

S5(4,2) 018 023 022 022 023 024  0.24

Sy3(2) 72.86 7875 7529 7321 77.60 045 024  89.97
S4(2) 6848 70.72 70.19 67.91 69.31 027 022 70.84 70.90
LMy, 7200 7742 7442 7230 7622 043 024 8417 70.74 84.87
Sampling frequency: 15 minutes

Jie 56.18

JE 5614 63.81

JO) 5616 58.91 58.95

Jmears  50.60  53.96 51.87 57.09

SwVyps 5317 59.88 55.86 53.86 72.53

S3(4,2) 0.00 0.00 0.00 000 0.00 0.01

S5(4,2) 0.00 0.00 0.00 000 000 000  0.00

S53(2) 56.10 63.64 5887 56.90 69.37  0.01 0.00 78.80
S4(2) 4458 4562 4538 4281 4496  0.00  0.00 45.74 45.80

LMy, 5234 59.19 55.07 52.55 61.74 0.00 0.00 65.89 45.04 67.07

Table 17: Confusion matrix. LL1F-FAJ with medium mean reversion and deterministic

diurnal volatility. A = 1.0, o2 = 1.5. Significance level: 1%.
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Quotes/day

Asset 2000 2001 2002 2003 2004 2005 2006 2007
EUR/USD 32582 30928 30412 36080 37065 38000 37766 36401
(63.20) (61.54) (54.32) (61.32) (65.51) (54.11) (47.32) (40.25)
S& P 500 - - - 2042 1890 1749 1665 1819
- - - (99.11) (98.38) (98.28) (97.85) (98.12)
McDonald’s 2512 3007 5450 6782 8785 - -
- (42.41) (37.51) (32.14) (29.38) (28.45) - -
IBM - 5034 6213 7223 8338 8777 - -
- (53.36) (38.52) (49.93) (50.50) (44.28) - -

Table 18: The average number of quotes per day for each for the years in the sample and

for each dataset. The percentage of observations for which the quoted price was different

from the previous one is given in parentheses.

Asset 2000 2001 2002 2003 2004 2005 2006 2007
EUR/USD Quotes 6.33 5.91 6.43 4.95 4.64 4.84 5.28 4.58
Quotes (A, #0) 9.09 9.03 10.87 7.57 7.01 8.18 9.83 10.81
S & P 500 Quotes - - - 11.69 13.56 15.36 16.15 14.59
Quotes (A, # 0) - - - 11.79 1456 17.46 18.67 16.19
MacDonald’s  Quotes - 9.39 792 436  3.51 2.69 - -
Quotes (A, # 0) - 22,39 21.29 13.87 1222 9.73 - -
IBM Quotes - 4.64 3.89 3.31 2.83 2.67 - -
Quotes (A, # 0) - 8.73 10.08 6.78 5.67 6.10 - -
Table 19: Average durations between successive quotes.
Asset Sampl. Freq. 2000 2001 2002 2003 2004 2005 2006 2007
EUR/USD 1 min 27.21 2898 3348 25.53 23.52 26.75 31.37 37.15
5 min 11.06 12.08 14.69 10.03 9.27 11.02 13.34 16.52
15 min 5.77 6.57 8.04 5.46 4.94 5.90 7.41 9.80
S & P 500 1 min - - - 15.93 16.46 17.13 17.63 15.50
5 min - - - 7.63 8.08 8.28 8.41 7.30
15 min - - - 4.75 4.89 5.36 5.87 5.35
McDonald’s 1 min - 23.34 21.81 27.48 28.41 25.24 - -
5 min - 7.99 6.56 10.23 10.48 8.73 - -
15 min - 4.57 4.26 5.49 5.44 5.06 - -
IBM 1 min - 5.64 5.90 6.83 7.57 9.44 - -
5 min - 2.68 2.25 3.01 2.90 3.66 - -
15 min - 2.02 1.50 2.02 1.87 2.11 - -

Table 20: Yearly percentages of zero returns.
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Figure 1: Volatility signature plots for EUR/USD

quotes, and S&P 500 futures contract based on transaction prices.
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