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Abstract 

This paper presents a comprehensive comparison of the existing tests for the presence of 

jumps in prices of financial assets. The relative performance of the tests is examined in a 

Monte Carlo simulation, covering scenarios of both finite and infinite activity jumps, 

stochastic volatility models with continuous and discontinuous volatility sample paths, 

microstructure noise, infrequent trading and deterministic diurnal volatility. The simulation 

results reveal important differences in terms of size and power across the different data 

generating processes and sensitivity to the presence of zero returns and microstructure 

frictions in the data. An empirical application to assets from different classes complements 

the analysis. 

 

Keywords: Quadratic variation, jumps, stochastic volatility, realized measures,  

 high-frequency data. 

JEL Classification: E31, C12, C14, G10. 

 

 

 

 

 

 

 

 

 

________________________ 

* Central Bank of Cyprus, **Imperial College London. We are indebted to Walter Distaso, Nour Meddahi and 
Roel Oomen for helpful comments. We also thank Roel Oomen for sharing his Matlab code with us. Zikes  
gratefully acknowledges financial support from ESRC, grant code RES-062-23-0311. A web appendix with the 
full set of simulation results is available at http://www3.imperial.ac.uk/people/f.zikes06/research. All 
calculations reported in this paper were performed using routines written in the Ox language of Doornik (2002). 
 

Correspondence: Marina Theodosiou, Central Bank of Cyprus, 80 Kennedy Avenue, CY-1076, Nicosia, Cyprus, 
Telephone: +357 22714496. Email: MarinaTheodosiou@centralbank.gov.cy, Filip Zikes, Imperial College London, 
Business School, Exhibition Road, London SW7 2AZ. Telephone: +44 (0)795791 3476. Fax: +44 (0)20 7823 7685. 
Email: fzikes@imperial.ac.uk. 

../../../Documents%20and%20Settings/mgtheodo/Local%20Settings/Temp/notesEA312D/MarinaTheodosiou@centralbank.gov.cy
mailto:fzikes@imperial.ac.uk


1 Introduction

Since the seminal work of Merton (1976) on the application of jump processes in option

pricing, the inclusion of such processes in financial modeling has gained a lot of attention

amongst academics and practitioners. It is now well documented that price discontinuities

constitute an important component of variability in financial asset prices and thereby con-

tribute to market incompleteness. In addition, it is recognized that the presence of jumps

in price sample paths carries important implications for financial risk management and

portfolio allocation, as well as pricing and hedging of derivatives (see, among others, Das

(2002), Johannes (2004) and Piazzesi (2005) for interest rate modeling, Eberlein and Raible

(1999) for bond pricing, Bakshi, Cao, and Chen (1997), Bates (2000) and Pan (2002) for

derivative pricing).

The theoretical developments in the asset pricing literature have inspired a new stream

of research developing statistical techniques for detecting discontinuities from discretely

observed prices. Aı̈t-Sahalia (2002) was one of the first authors to attempt separating

jumps from diffusion in a parametric context. Using options data and the properties of

the transition density corresponding to discrete observations, the author finds that market

option prices are inconsistent with a pure diffusion model driving the underlying price

process. Carr and Wu (2003) developed a different methodology based on the behavior of

short dated options across maturities and at fixed moneyness states and reached a similar

conclusion.

With the greater availability of high-frequency data, recent literature has focused on

detecting and testing for jumps in a nonparametric, model-free context. Mancini (2001) was

the first to estimate jumps in a simple jump-diffusion framework. Following her work, a large

number of formal tests have been developed for detecting discontinuities in intraday price

processes, including Barndorff-Nielsen and Shephard (2004), Huang and Tauchen (2005),

Lee and Mykland (2008), Jiang and Oomen (2008), Corsi, Pirino, and Renò (2008) and

Podolskij and Ziggel (2008).

The purpose of this paper is to compare the existing tests for jumps in a an extensive

Monte Carlo simulation. We consider various models with finite and infinite-activity jumps

processes to study the size and power of the various tests. We also study the impact

of market microstructure noise, the presence of zero intraday returns typically found in

intraday data even for liquid assets, and the effect of deterministic diurnal volatility, which

is also characteristic of most high-frequency return series. We first examine the size of each

test and data generating process and then turn to their ability to detect jumps. Here we

calculate the proportion of correctly identified days when jumps occurred in the simulation,

and also compare the tests in terms of their agreement about whether or not a jump occurred

on a given day.

Overall, we find that substantial differences exist among the competing tests both in

terms of size and power and that the differences vary across the data generating processes
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considered. First, the test that employ thresholds are very sensitive to a particular choice

of the threshold parameters. Second, stochastic volatility that exhibit sudden erratic move-

ments posses a serious challenge to some tests even at very high sampling frequencies.

Third, the tests robust microstructure noise work well when the noise is independently and

identically distributed and has moderate signal-to-noise ratio but some of the tests get in

trouble when faced with high-variance or highly persistent noise. Fourth, the presence of

zero returns has severe impact on almost all tests and results into substantial increase in the

spurious detection of jumps. Finally, the deterministic U-shaped intraday volatility pattern

induces very similar distortions as the highly erratic stochastic volatility case.

In the empirical part of the paper, we apply the tests for jumps to recent samples of

high-frequency foreign exchange, individual stocks and equity index futures. Similar to the

simulation results, we find that the tests yield different results regarding the identification

of jumps and tend to disagree as to whether or not a jump occurred on a given day.

The paper is organized as follows. The theoretical framework underlying the various test

is described in section 2, while in section 3, we provide a brief description of the different

tests studied in this paper. Section 4 discusses the Monte Carlo simulation design and

the simulation results. In section 5, we investigate the impact of market microstructure

noise and in section 6 we look at the effect of the presence of zero intraday returns on the

behavior of the tests. Section 7 is dedicated to an empirical application and, finally, section

8 concludes.

2 Theoretical Framework

Let Xt denote the logarithmic price process that belongs to the class of Brownian semi-

martingales, which can be written as

Xt =

∫ t

0
audu+

∫ t

0
σudWu + Zt, (1)

where a is the drift term, σ denotes the spot volatility process, W is a standard Brownian

motion and Z is a jump process defined by:

Zt =

Nt∑
j=1

κj ,

where N is a simple counting process and κj are nonzero random variables. The counting

process can be either finite or infinite for finite or infinite activity jumps.

Since the seminal work of Andersen and Bollerslev (1998), realized volatility, RVt,M ,

obtained by summing M squared intraday returns has become the standard measure of the

quadratic variation of the price process in (1). Formally,

RVt,M =

M∑
i=1

r2ti ,
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where rti denotes the i-th intraday return on day t:

rti = xt−1+i/M − xt−1+(i−1)/M for i = 1, 2, 3, . . . ,M.

RV can be used to approximate the variation of both the continuous and the discontinuous

part of the price process since

lim
M→∞

RVt,M =

∫ t

0
σ2sds+

Nt∑
j=1

κ2j ,

≡ IVt + JVt.

However, in empirical applications one may be concerned with the behavior of IVt and JVt

in isolation, and it is therefore essential to decompose the two sources of variability of the

price process.

3 The Tests

3.1 Tests based on multipower variation

The first formal test developed for detecting jumps in high frequency data was constructed

by Barndorff-Nielsen and Shephard (2004, 2006) (henceforth BNS). Their work was later

extended and further investigated in Andersen, Bollerslev, and Diebold (2004) and Huang

and Tauchen (2005) using a variety of asymptotically equivalent statistics.

To consistently estimate integrated variance in presence of jumps BNS propose the

realized bipower variation (BPV ) defined by,

BPVt,M =

M∑
i=2

|rti−1 ||rti |.

The idea underlying the bipower variation is that if the jumps are of finite activity, the

probability of observing jumps in two consecutive returns approaches zero sufficiently fast

as the sampling frequency increases. Consequently, the product of any two consecutive

returns will be asymptotically driven by the diffusion component only thereby eliminating

the contribution of jumps.

Since the realized volatility converges to the sum of integrated variance and jump varia-

tion, it follows that the difference between RVt,M and BPVt,M captures the jump part only,

and this observation underlies the BNS test for jumps. Based on the joint Central Limit

theorem (CLT) of RV and BPV , they propose the following test statistics for testing the

null hypothesis of no jumps:

Gbpv,qpqt,M =
RVt,M −BPVt,M√

θ2
1
MQPQt,M

L→ N(0, 1),
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where QPQt,M denotes the realized quadpower quarticity given by,

QPQt,M = M
M∑
i=4

|rti−3 ||rti−2 ||rti−1 ||rti | −→
M→∞

∫ t

0
σ4sds.

The test can be generalized by replacing BPVt,M with MPVt,M and QPQt,M with MPQt,M ,

i.e. the realized multipower variation and realized multipower quarticity respectively. These

are defined by,

MPVt,M (p) = µ−p2/p
M

M−p+1

∑M
i=p

∏p−1
j=0 |rti−j |2/p,

MPQt,M (p) = µ−p4/p
M

M−p+1

∑M
i=p

∏p−1
j=0 |rti−j |4/p,

µp denotes the pth absolute moment of a variable U ∼ N(0, 1) defined by,

E(|U |p) = π−1/22p/2Γ

(
p+ 1

2

)
,

and θp = µ−2p2/p ω
2
p, for ω2

p = µp4/p+(1−2p)µ2p2/p+2
∑p−1

j=1 µ
p−j
p/4 µ

2j
2/p. The bivariate limit theory

for realized variance and realized multipower variation both in the presence and absence of

jumps is studied by Veraart (2008).

Various alterations to the above test statistic have been suggested to improve the finite

sample performance of the test. These include the logarithmic and ratio tests and some

finite-sample corrections in the denominator of the test statistic (Andersen, Bollerslev,

and Diebold, 2004, Huang and Tauchen, 2005, andBarndorff-Nielsen and Shephard, 2006).

Throughout the analysis, we will be using the adjusted jump ratio statistic:

Jmpv,mpqt,M =

(
1− MPVt,M

RVt,M

)
√
θp

1
M max(1,MPQt,M/MPV 2

t,M )

L→ N(0, 1),

since this has been shown to be the best option amongst the three alternatives (Huang

and Tauchen, 2005) in term of finite-sample performance. We will also explore various

combinations of the bipower, tri-power and quad-power variation in the nominator and the

tri-power and quad-power quarticity in the denominator of the test statistic.

3.2 Tests based on threshold multipower variation

A test that combines the idea of the threshold estimators of Mancini (2001) and the multi-

power variation estimation of BNS was proposed by Corsi, Pirino, and Renò (2008) (hence-

forth CPR). The authors argue that truncating large absolute returns alleviates the bias

associated with multipower variation in the presence of jumps.

Their test statistic is therefore based on the realized threshold multipower variation

defined by

TMPVt,M (p) = µ−p2/p

M

M − p+ 1

M∑
i=p

p−1∏
j=0

|rti−j |2/pI{|rti−j |≤ϑti−j}.
4



The threshold ϑt−1+j is defined as a multiple of the local variance, which is approximated

by a local linear filter of length 2L+ 1, adjusted iteratively for the presence of jumps:

ϑt = c2θV̂
Z
t ,

where cθ is a constant, and V̂ Z
t denotes an estimator of local variance. The latter is given

by:

V̂ Z
t =

L∑
i=−L,i 6=−1,0,1

K
( i
L

)
(rti)

2I{
(rti )

2≤c2V V̂
Z−1
ti

}
L∑

i=−L,i 6=−1,0,1
K
( i
L

)
I{

(rti )
2≤c2V V̂

Z−1
ti

} .

Z denotes the iteration number with starting value V̂ 0 = +∞, which corresponds to using

all observations. cV is a constant and K(.) denotes the Gaussian kernel:

K(y) =
(
1/
√

2π
)

exp(−y2/2).

In order to avoid a negative bias associated with introducing zero returns by truncations,

the authors correct the realized threshold multipower variation by replacing the absolute

squared returns that exceed the threshold with their expected value under the null hypoth-

esis of no jumps. Thus, the corrected estimator is given by

cTMPVt,M (p) = µ−p2/p

M

M − p+ 1

M∑
i=p

p−1∏
j=0

Z(rti−j , ϑti−j ).

Z(x, y) is defined as:

Z(x, y) =

 |x|
2/p, if x2 ≤ y

1
2M(−cϑ)

√
π

(
2
c2ϑ
y
)1/p

Γ
(2/p+1

2 ,
c2ϑ
2

)
, if x2 > y

,

where Γ(α, x) is the upper incomplete gamma function.

The test statistics for jumps is then based on the corrected realized threshold multipower

variation and is given by:

J tbv,ttpqt,M =

(
1− cTBPVt,M

RVt,M

)
√
θ2

1
M max(1, cTTPQt,M/cTBPV 2

t,M )

L→ N(0, 1).

A disadvantage of the CPR test is the need to choose the threshold parameters cθ and cV .

The simulation results reported later in the paper indeed reveal important differences in

terms of size and power of the test across different values of these constants.
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3.3 Tests based on median realized volatility

Andersen, Dobrev, and Schaumburg (2009) (henceforth ADS) have proposed a new set of

estimators for integrated variance in the presence of jumps. They are based on the minimum

and median of a number of consecutive absolute intraday returns:

MinRVt,M = π
π−2

(
M
M−1

)M−1∑
i=1

min(|rti |, |rti+1 |)2,

MedRVt,M = π
6−4
√
3+π

(
M
M−2

)M−1∑
i=2

med(|rti−1 |, |rti |, |rti+1 |)2.

These estimators are more robust to jumps than the multipower variations since large

absolute returns associated with jumps tend to be eliminated from the calculation by the

minimum and median operators. Furthermore, the MedRV estimator enjoys robustness

against the presence of occasional zero intraday returns induced by calendar-time sampling,

unlike the multipower variation that becomes downward biased.

In this paper, we exploit the joint central limit theorem for RVt,M and MedRVt,M

derived by ADS to construct a test for jumps in the same way as BNS and CPR do. The

test statistics read:

Jmedrv,minrqt,M =

(
1− MedRVt,M

RVt,M

)
√

0.96 1
M max(1,MinRQt,M/MedRV 2

t,M )

L→ N(0, 1),

Jmedrv,medrqt,M =

(
1− MedRVt,M

RVt,M

)
√

0.96 1
M max(1,MedRQt,M/MedRV 2

t,M )

L→ N(0, 1),

where MinRQt,M and MedRQt,M , given by

MinRQt,M = M
π

3π − 8

( M

M − 1

)M−1∑
i=1

med(|rti |, |rti+1 |)4,

MedRQt,M = M
3π

9π + 72− 52
√

3

( M

M − 2

)M−1∑
i=2

med(|rti−1 |, |rti |, |rti+1 |)4,

are consistent estimators of the integrated quarticity. Due to the nice properties of MedRV

discussed above, we expect these tests to be more powerful than their BNS counterparts.

3.4 Tests based on truncated power variation

Podolskij and Ziggel (2008)(henceforth PZ) build further on the threshold idea of Mancini

(2001) and suggest to construct a test statistics for jumps based on the difference between

power variation and the truncated version thereof, since the difference between the two

captures the contribution of jumps.

6



The test statistic is defined by

St,M (p) =
T (X, p)t,M
ρ2(p)t,M

,

where T (X, p)t,M denotes the difference between the realized power variation and the trun-

cated realized power variation, and ρ2(p)t,M is a standardizing term:

T (X, p)t,M = 1/M1−p/2
M∑
i=1

|rti |p(1− ηiI{|rti |≤α(1/M)$}),

ρ2(p)t,M = V ar[ηi]MPVt,M (2p),

where ηi are positive i .i .d random variables with E[ηi] = 1 and E[|ηi|2] <∞. The test statis-

tics is thus based on the truncated power variation constructed from randomly perturbed

intraday returns as opposed to the usual threshold power variation studied by Mancini

(2001). This is required to obtain limit theory for the test (see the original paper by the

authors for details).

Podolskij and Ziggel (2008) suggest that ηi can be sampled from the distribution:

Pη =
1

2
(δ1−τ + δ1+τ ),

where δ is the Dirac measure. They also suggest to take α = c
√
BPVt,M , $ = −0.4 and

τ = 0.1 or 0.05. The threshold is therefore proportional to an initial estimate of integrated

variance, while the choice of the other two constants is rather arbitrary.

Similar to the CPR test, the PZ test requires the specification of the threshold constant,

which in turn affect the performance of the test. In addition, one has to specify the distribu-

tion of ηi. In this paper, we only experiment with different values of the threshold constant

c and follow Podolskij and Ziggel (2008) regarding the choice of the other free parameters.

3.5 Swap variance tests

Inspired by the replication strategy of Neuberger (1994) for hedging variance swap con-

tracts1, Jiang and Oomen (2008)(henceforth JO) propose a new test for jumps which is

based on the difference between the simple and logarithmic returns. Their idea compares

and contrasts to that of BNS in that they use a jump-sensitive measure to be compared

with the realized volatility rather than a jump-robust measure, as in BNS.

The underlying idea behind the variance swap replication strategy is that in the absence

of jumps, the accumulated difference between the simple return and the log return captures

one half of the integrated variance. Thus

SwVt,M = 2

M∑
i=1

(Rti − rti)
p→
∫ t

t−1
σ2udu,

1A variance swap is a contract whose payoff is equal to the difference between the square of annualized

realized volatility of the underlying price over a given time period, and a strike price fixed at the inception

of the contract
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where for the series of log prices Xt and i = 1, 2, 3, . . . ,M ,

Rti =
exp(xt−1+i/M )− exp(xt−1+(i−1)/M )

exp(xt−1+(i−1)/M )
,

and rti denotes the continuously compounded returns defined in (4). Thus in the absence of

jumps, the difference between SwVt,M and RVt,M converges to zero. If jumps are present,

however, the limit reads

SwVt,M −RVt,M
p→ 2

∑
tj∈[t−1,t]

(exp(κj)− κj − 1)−
∑

tj∈[t−1,t]

κ2j ,

Building on this insight, JO define the test statistics for jumps as follows:

JOt,M =
M√

ΩSwV
(SwVt,M −RVt,M )

L→ N(0, 1),

where

ΩSwV =
µ6
9

M3µ−p6/p

M − p− 1

M−p∑
i=0

p∏
k=1

|rti |6/p

is an estimator of integrated sixticity,
∫
σ6udu. The authors suggest using p = 4 and p = 6.

Similarly to BNS, CPR and ADS, JO find that a test based on the ratio of SwVt,M and

RVt,M exhibits better finite-sample properties than the difference test in equation (3.5).

The ratio test statistics is given by,

JOt,M =
M ·BPVt,M√

ΩSwV

(
1−

RVt,M
SwVt,M

)
L→ N(0, 1),

and this is the version of the test we employ in this paper.

3.6 Tests based on two-time scales power variation

Using the convergence properties of power variation and its dependence on the time scale on

which it is measured, Aı̈t-Sahalia and Jacod (2009) (henceforth ASJ) define a new variable

which converges to 1 in the presence of jumps in the underlying return series, or to another

deterministic and known number in the absence of jumps. This quantity is defined as the

ratio of power variations calculated under two different time scales (1/M and k/M):

Ŝ(p, k, 1/M)t =
B̂(p, k/M)t

B̂(p, 1/M)t

where

B̂(p, 1/M)t =

M∑
i=1

|rti |p p > 2

denotes the usual power variation. Under the null hypothesis of no jumps and with p > 2,

Ŝ(p, k, 1/M)t converges to kp/2−1, while under the alternative the limit is equal to one.
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Building on these insights, the ASJ test statistics for the null hypothesis of no jumps is

defined as
Ŝ(p, k, 1/M)t − kp/2−1√

V̂ c
t,M

where V̂ c
t denotes the asymptotic variance of Ŝ(p, k, 1/M)t and is given by,

V̂ c
t =

1/M N(p, k) Â(2p, 1/M)t

Â(p, 1/M)2t
,

where

Â(p, 1/M)t =
1/M1−p/2

µp

M∑
i=1

|rti |pI{|rti |≤α(1/M)$}

N(p, k) =
1

µ2p
(kp−2(1 + k)µ2p + kp−2(k − 1)µ2p − 2kp/2−1µk,p

µk,p = E(|U |p|U +
√
k − 1V |p)

for U , V independent standard normal random variables.

The ASJ test requires the choice of four parameters, namely p, k, α and ϑ. In this paper,

we follow ASJ in using p = 4 and k = 2 and experiment with different values of the threshold

parameters.

3.7 Tests based on local volatility

The last test for jumps we consider in this paper is the one developed by Lee and Mykland

(2008)(henceforth LM). The intuition behind their approach is that the magnitude of price

changes depends on the local volatility conditions and that a ‘large’ price change does not

necessarily imply a jump in the return process without conditioning on the current vari-

ability. An important advantage of their tests lies in the fact that one can draw conclusions

not only about the presence of jumps in a given time period, but also about the number

and location of jumps within this period.

For every intraday period ti, LM propose to calculate the ratio between the intraday

return, rti , and the instantaneous volatility, σti , which they approximate using bipower

variation, i.e.

L(i) =
rti
σ̂ti

where

σ̂ti
2 =

1

K − 2

i−1∑
j=i−K+2

|rti ||rti−1 |

and K denotes the window size or bandwidth used for the estimation of the instantaneous

volatility. If a jump occurred in a given period of time, this ratio should be large in absolute

value and vice versa. This idea underlies the test statistic for jumps in the intra-day period

ti:
|L(i)| − CM

SM
,

9



where

CM =
(2 log(M))1/2

µ1
− log(π) + log(log(M))

2µ1(2 log(M))1/2
and SM =

1

µ1(2 log(M))1/2

represent the centering and normalizing terms.

To select a rejection region for the test, LM derive the limiting distribution of the

maximum of |L(i)| over all i = 1, ...,M and show that the limiting distribution implies

that for a given significance level α, the relevant threshold for |L(i)|−CMSM
is given by β =

− log(− log(1 − α)). Thus if |L(i)|−CMSM
> β the null hypothesis of no jump at time ti is

rejected. The choice of the bandwith parameter K is guided by asymptotic theory and the

authors recommend using a value of
√

252×M .

4 Monte Carlo Simulation

4.1 Simulation Design

We consider three different data generating processes (DGPs) to investigate the size and

power properties of the various tests for jumps described above. The first two are the one

and two-factor log-linear stochastic volatility (SV) models studied by Chernov, Gallant,

Ghysels, and Tauchen (2003), and employed by Barndorff-Nielsen and Shephard (2004) and

Huang and Tauchen (2005) in a simulation study of the behavior of the bipower variation

based tests. These are defined by:

LL1F: one-factor log-linear SV

dp(t) = µdt+ exp[β0 + β1v(t)]dWp(t),

dv(t) = αvv(t)dt+ dWv(t),

LL2F: two-factor log-linear SV

dp(t) = µdt+ sexp[β0 + β1v1(t) + β2v2(t)]dWp(t),

dv1(t) = αv1v1(t)dt+ dWv1(t),

dv2(t) = αv2v2(t)dt+ [1 + βv2v2(t)]dWv2(t),

where Wp,Wv,Wv1, and Wv2 are standard Brownian motions with leverage correlations

Corr(dWp(t), dWv(t)) = ρdt, Corr(dWp(t),dWv1(t)) = ρ1dt, and Corr(dWp(t), dWv2(t)) =

ρ2dt, and v(t), v1(t) and v2(t) are stochastic volatility factors. The process v1(t) is a

standard Gaussian process, while v2(t) exhibits a feedback term in the diffusion function.

The spliced exponential function sexp ensures a solution to LL2F exists (see Chernov,

Gallant, Ghysels, and Tauchen, 2003, for details).

The third DGP is a log-linear stochastic volatility model in which the volatility factor

follows an infinite-activity pure-jump process recently considered by Todorov and Tauchen

(2008):
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LLIA: infinite-activity pure-jump SV

dp(t) = µdt+ exp[β0 + β1v(t)]dWp(t),

dv(t) = αvv(t)dt+ dLv(t)

where Lv is a symmetric tempered stable process with Lévy density given by ν(x) = c e
−λ|x|

|x|1+α ,

α ∈ (0, 2). The parameter αv measures the degree of activity of jumps, while λ governs the

tail behavior of the Lévy density.

We use the same parametrization for LL1F and LL2F as in Huang and Tauchen (2005)

(see Table 1 & 2). For the LLIA, we fix λ at 2.5 as Todorov and Tauchen (2008) and vary

c and α such that the variance of Lv(1) remains constant at 1, (see Table 3). Thus the

first two moments of the increments of the volatility factor vt are identical under LL1F and

LLIA, but these have fatter tails under LLIA. The sample paths are, of course, dramatically

different with the former being continuous while the latter purely discontinuous.

To simulate sample paths of the log-price under LL1F and LL2F we use the Euler

discretization scheme with the increment of the Euler clock set to 1 second. We generate

55,000 trading days, each 6.5 hours long, which corresponds to typical trading hours on

major equity exchanges. We discard the first 5000 days to avoid distortions induces by initial

conditions. For each day, we calculate the test statistics for jumps at different sampling

frequencies ranging from 30 seconds to 15 minutes.

The simulation of the tempered stable process in LLIA is based on the series represen-

tation of tempered stable processes derived by Rosiński (2001), and outlined in Todorov

(2007). For each 6.5-hour day, we generate 2,340 intraday observations of Lv corresponding

to 10-second sampling. We truncate the infinite series expansion such that we simulate on

average 10,000 jumps in Lv per day.

To study the power properties of the various tests for jumps, we first augment the LL1F

model by a pure jump component of finite activity:

LL1F-FAJ: one-factor log-linear SV with finite-activity jumps

dp(t) = µdt+ exp[β0 + β1v(t)]dWp(t) + dJt,

dv(t) = αvv(t)dt+ dWv(t),

where Jt is a compound Poisson process with normally distributed jumps with variance

σ2 and constant jump intensity λ. We experiment with various combinations of σ2 and λ,

ranging from large infrequent jumps to small frequent ones similar to Huang and Tauchen

(2005) (see Table 4).

Next, we explore power against alternatives that entail infinite-activity jump processes:

LL1F-IAJ: one-factor log-linear SV with infinite-activity jumps

dp(t) = µdt+ exp[β0 + β1v(t)]dWp(t) + kdLt,

dv(t) = αvv(t)dt+ dWv(t),
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where k is a constant and Lt is a symmetric tempered stable process with Lévy density

given by ν(x) = c e
−λ|x|

|x|1+α , α ∈ (0, 2). We use the same parameter values for the jump process

as Todorov (2007) (Table 5). The parameters are calibrated such that the contribution of

the jump component to the overall variation reflects the results from previous empirical

literature (Huang and Tauchen, 2005).

We implement the above discussed tests for jumps in the following way:

• Multipower variation ratio test (BNS) using BV, TPV and QPV to estimate the

integrated variance and TPQ or QPQ to estimate the integrated quarticity;

• Threshold bipower variation ratio test (CPR) using threshold TPQ to estimate the

integrated quarticity; the choice of threshold follows CPR exactly with ϑ set to 3,4 or

5;

• Median realized volatility ratio test (ADS) using either MinRQ or MedRQ to estimate

the integrated quarticity;

• Swap variance ratio test (JO) using either realized quadpower or sixthpower sixticity

to estimate the integrated sixticity;

• Two-scale power variation test (ASJ): we set p = 4, k = 2 as suggested by ASJ, using

truncated power variation to estimate the asymptotic variance of the Ŝ statistics with

α = 0.47 and ϑ set to 3,4 or 5.

• Truncated power variation test (PZ): we consider p = 2 and p = 4 and set τ = 0.05,

ϑ = 0.4 and c = 2.3, 3, 4.

• Test based on local volatility (LM) using BV, TPV and QPV to estimate instantaneous

volatility.

For expositional clarity, we summarize the main results in a few tables focusing on the

most important differences across the tests and the various data generating process. The

simulation results not directly reported here do not provide much additional insight but

they are available upon request.

4.2 Size

Table 1 summarizes the simulated size for 1% nominal level. We report results for the

LL1F model with moderate mean reversion, LL2F and LLIA with activity index of volatility

jumps equal to 0.4. Other parameter configurations of the DGP’s yield similar results and

are omitted to save space.

We find that while the BNS, CPR and ADS tests exhibit only small size distortions in

small samples, the swap variance test (JO) and the truncated power variation test (PZ)

tend to be oversized and the ASJ test significantly undersized in moderate samples. This

observation is true for all stochastic volatility models considered here.
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Starting with the LL1F model with moderate mean reversion, we find that the BNS ratio

test based on the use of bipower variation exhibits slight positive size distortions at lower

frequencies, as shown by Huang and Tauchen (2005) before, but these are rather negligible

from an empirical perspective. When realized tripower variation is used in place of realized

bipower variation in the BNS test, the size distortions essentially disappear. However, using

realized quadpower variation, in particular when coupled with realized tripower quarticity,

reduces the size of the BNS test below the nominal level at low sampling frequencies.

Simulation evidence not reported here suggests that this is caused by positive skewness

of realized multipower variation at low frequencies, with the degree of skewness increasing

with p. Thresholding the bipower variation as suggested by CPR tends to increase the

size slightly for low levels of the threshold. This is perhaps not surprising given that it is

not optimal from a statistical point of view to truncate the large returns in the absence of

jumps. This biases the bipower variation downward and the test statistics upward, hence

the slightly higher empirical size.

The jumps tests based on the recently developed median realized volatility (ADS) show

relatively stable performance across sampling frequencies. They do tend to be slightly

oversized at low sampling frequencies but the distortions are smaller than in the case of

the test based on bipower variation. The choice of the estimator of integrated quarticity

(MinRQ vs. MedRQ) does not seem to have a practical impact on the size properties.

Turning to the ASJ test, we first note the difference in size depending on the truncation

parameter α. The higher α, that is, the larger the threshold employed in the calculation

of the truncated power variation, the lower the size. But more importantly, for a given

threshold, decreasing the sampling frequency tends to have a significant negative impact on

the size of the test. This effect is more pronounced for more conservative significance levels.

The simulation evidence indicates that the problem lies with the positive skewness of the

ASJ test statistics at lower frequencies. Already at the 2 minute frequency does the ASJ

test statistic exhibit significant departures from the standard normal limiting distribution,

showing much more probability mass in the right tail than in the left one. This problem

becomes more severe at lower sampling frequencies; for example, at 15 minutes, the empirical

size of the test is only about one half of the nominal level, irrespective of the speed of mean

reversion.

Similar to ASJ, the performance of the PZ test also depends on the choice of threshold.

For the relatively small value of the threshold recommended by PZ (c = 2.3) we find

large positive size distortions for moderate and low sampling frequencies. Most of these

distortions are nonetheless alleviated by slightly increasing the threshold (c = 3).

We next look at the size properties under the two-factor SV model (LL2F). As shown

by Huang and Tauchen (2005), the BNS tests tend to be oversized in this case and this

result is confirmed in our simulation for all multipower variation-based tests. Similar results

are obtained for the ADS, JO and CPR tests with the latter being much more sensitive

to the choice of threshold than in the case of the LL1F model. In the two-factor model,
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the volatility process experiences sudden erratic movements generating large absolute price

increments which can be easily confused with jumps. Setting too small a threshold will

eliminate these large but genuine diffusive intraday returns and bias the threshold bipower

variation downward, resulting in false rejections of the null hypothesis of no jumps.

The LL2F scenario is much more challenging for the ASJ and PZ test. Not only do

these tests become extremely sensitive to the choice of threshold, the size distortions do not

seem to disappear in large samples. In fact, increasing the sampling frequency exacerbates

the problem, questioning the workings of the limit theory under the two-factor model.

Finally, we investigate whether the pure-jump volatility specification (LLIA) affects the

finite-sample properties of the tests for jumps. The results, reported in the web appendix,

are very similar to the LL1F case, suggesting that even highly active pure jump volatility

process does not adversely affect the inference about jumps beyond the distortions observed

for relatively smooth continuous volatility specifications (LL1F).

Summarizing the size simulations, we find that the BNS and ADS tests exhibit most

stable performance across the different DGP’s and sampling frequencies. The tests that

require thresholding (ASJ, PZ and CPR) seem to be very sensitive to the choice of threshold.

4.3 Power against finite-activity jumps

Having examined the size, we now turn to power against finite-activity jumps. We report

three different jumps scenarios, ranging from large, infrequent jumps (λ = 0.1, σ2 = 2.5)

up to small and frequent ones (λ = 2.0, σ2 = 0.5). It is well-known that when applied

on a day-by-day basis, the jump tests are inconsistent (Huang and Tauchen, 2005): for

any given finite time-period there is always a positive probability that no jump occurs and

hence none of the tests can discriminate between a continuous price process and a price

process with jumps of finite activity. For example, with λ = 0.1, a jump occurs only about

every 10 days, and hence the tests will have no chance of detecting jumps on 9 out of 10

days on average. It is therefore more instructive to focus on the ability of the jump test to

detect jumps on days when jumps indeed occurred, which can be neatly summarized by the

confusion matrix described in what follows.

Tables 2-4 report confusion matrices for the eight tests at different sampling frequencies

applied on a day-by-day basis under the LL1F data generating process with moderate mean

reversion of -0.100 and significance level of 1%. We only focus on one version of each test,

except for the test that require thresholding where we report two test statistics in order to

study the dependence on the choice of threshold.

The confusion matrices are constructed as follows. The diagonal elements show the

proportion of correctly identified jump days by each test individually. For example, a value

of 70 means that the particular test manages to detect 70% of the days on which jumps

occurred in the simulation. The off-diagonal elements then report the proportion of jump

day jointly flagged by a pair of tests. They provide a measure of agreement between the

two tests about the occurrence of jumps.
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Starting with the scenario of large, frequent jumps, we find that the PZ test is the most

powerful one, closely followed by the LM and JO tests. In case of the former, the power

crucially depends on the choice of threshold: a smaller value of the threshold parameter

leads to a larger proportion of detected jumps, but recall from the previous section that it

also produces important size distortions. This trade-off is particularly pronounced at lower

sampling frequencies. For example, for the 15 minute sampling frequency, the PZ test with

the threshold value of 2.3, which was recommended by PZ, correctly identifies 79.8% of

jump days while with the threshold set equal to 4 the proportion decreases by more than

20 percentage points to 59.1%. The CPR test behaves in a similar way but the dependence

on the threshold parameter is less strong.

The BNS and ADS tests deliver good performance, with the latter test being slightly

more powerful than the former, as expected. Replacing the bi-power variation by the

tri-power or quad-power variations in the BNS test (not reported here) does not lead to

improvements in power, however, despite the fact that the TPV and QPV are more robust

to jumps than BV. This is probably due to the higher variance of the two measures of

integrated variance. Finally, the ASJ test is the least powerful out of all tests at the sampling

frequencies reported here. It seems to work well only up to the one-minute frequency and

looses power quickly hereafter.

In terms of pairwise agreement among the tests as to whether or not a jump occurred

on a given day, which we report in the off-diagonal part of the confusion matrix, we find

that the proportion of commonly detected jump days tends to be driven by the test with

lower power. In particular, the proportion of commonly detected jumps tends to be slightly

smaller that the proportion of jumps detected individually by the test with lower power.

This implies that if the test with lower power detects a jump so does the test with higher

power. Consider, for example, the swap variance test, JO, which detects 91.20% of jumps

days at the 1 minute frequency, together with the ADS test that identifies 88.94% of them.

The implied minimum proportion of commonly detected jump days equals 81.14%, while the

maximum, given by the ADS performance, is 88.94%. The actual proportion obtained by

the simulation equals 88.43%, which is very close to the upper bound. Similar observations

are made for the other pair of tests.

The other jump scenarios, reported in Tables 3-4, produce qualitatively similar results

in term of the relative performance of the tests. The power decreases across the board

as the variance of the jumps decreases and the jump intensity increases. The degree of

disagreement among the tests increases slightly as well.

4.4 Power against infinite-activity jumps

We next examine the power against infinite activity jumps. It is important to note that not

all of the tests studied here are designed for this kind of departure from the null hypothesis

of no jumps. This is because some of the measures of integrated variance that these test

employ are not robust to the presence of infinite activity jumps and thus cannot be used

15



to disentangle the continuous and discontinuous components of volatility. In particular, all

test based on the bi-power variation and minimum or median realized volatility suffer from

this problem. We study them in the context of infinite activity jumps nonetheless for they

may still possess non-trivial power against this alternative.

The results are summarized in Table 10. We find the relative performance to be very

similar to the case of finite activity jumps. The PZ test with low threshold delivers highest

power, followed by the LM and JO tests. The latter test works particularly well in that it

retain power even at the low sampling frequency of 15 minutes. The BNS and ADS tests

fare relatively well despite being based on non-robust measures of integrated variance. The

ASJ test only works at very high frequencies.

5 Microstructure noise

It is now widely recognized that the estimation of the realized variance at very high fre-

quencies is heavily biased by the presence of market microstructure noise (Hansen and

Lunde (2006)). This contamination of the “efficient price” arises from a wide range of

market frictions including bid-ask spread, infrequent trading, inventory control problems

and asymmetric information, among others2. The noise dominates the estimation results

predominantly at finely sampled data, and thus creates a trade-off between the efficiency

and the bias due to contamination. A vast literature has been developed with techniques

attempting to reduce or eliminate such frictions, see Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008a) and the references therein.

The literature typically assumes that the efficient price Xt+i/M is contaminated by an

additive noise component,

X∗t+i/M = Xt+i/M + εt+i/M ,

where E[εt+i/M ] = 0 and Var[εt+i/M ] = ω2 < ∞. Various assumptions are made regarding

the dependence between Xt+i/M and εt+i/M and the time-series properties of the latter.

Here we restrict attention to noise that is independent from the efficient price.

In the context of testing for jumps, Huang and Tauchen (2005) and Andersen, Bollerslev,

and Dobrev (2007), use staggered returns in the calculation of the bipower and tri-power

variation to eliminate the correlation of two consecutive returns stemming from an iid noise

process and therefore alleviate the effect of microstructure noise. The realized staggered

multipower measures are defined as

sMPVt,M,k(p) = µ−p2/p
M

M−p(1+k)+1

∑M−p(1+k)
i=0

∏p−1
j=0 |rti+j∗(1+k) |2/p,

sMPQt,M,k(p) = µ−p4/p
M2

M−p(1+k)+1

∑M−p(1+k)
i=0

∏p−1
j=0 |rti+j∗(1+k) |4/p,

where µ−p2/p = π−1/22p/2Γ(p+1
2 ).

2See O’Hara (1995) and Hasbrouck (2007) for details.
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Similarly to the staggered multipower variation measures, one can define staggered me-

dian realized volatility as follows:

sMedRVt,M,k = cv

(
M
M−2

)∑M−4
i=0 med(|rti |, |rti+(1+k)

|, |rti+2(1+k)
|)2,

sMedRQt,M,k = cq

(
M2

M−2

)∑M−4
i=0 med(|rti |, |rti+(1+k)

|, |rti+2(1+k)
|)4,

where cv = π
6−4
√
3+π

and cq = 3π
9π+72−52

√
3
. These staggered measures can be readily plugged

into the J tests for jumps in place of the non-staggered measures and applied to testing for

jumps in the presence of iid or moving-average type of noise.

Alternative approaches are provided by Jiang and Oomen (2008) and Podolskij and

Ziggel (2008) who modify their test statistics to account for the presence of iid noise. We

do not provide the formulae here to save space and refer the reader to the original papers.

To simulate the behavior of the tests for jumps in the presence of microstructure noise,

we let the efficient price be governed by the LL1F stochastic volatility model with mod-

erate mean reversion. Following Andersen, Dobrev, and Schaumburg (2009), we model

the microstructure noise as an AR(1) process with parameter ρ ∈ {0, 0.95}. These sce-

narios thus include the case of an iid noise (ρ = 0) typically found in transaction prices

as well as a persistent noise process (ρ = 0.95) suitable for modeling quotes (Hasbrouck

(1999)). We consider two noise-to-signal ratios: large, with ω2/IV = 0.01 and moderate

with ω2/IV = 0.001 and implement the following tests:

• Staggered multipower variation ratio test (BNS) using sBV, sTPV and sQPV to esti-

mate the integrated variance and sTPQ or sQPQ to estimate the integrated quarticity;

• Staggerd median realized volatility ration test (ADS) using sMinRQ and sMedRQ to

the estimated integrated quarticity;

• Swap variance ratio test robust to iid microstructure noise (JO);

• Truncated power variation test robust to iid microstructure noise (PZ), where, fol-

lowing the recommendation of PZ, we set τ = 0.05, ϑ = 0.17 and c = 2.3, 3, 4.

and consider sampling frequencies of 5s, 15s, 30s, 1min and 5 min. The main simulation

results are summarized in Tables 5-8.

5.1 Size

Starting with the case of iid microstructure noise with moderate noise-to-signal ratio re-

ported in the left panel of Table 5, we see that all four classes of tests possess very good size

properties. Similar to the case of no microstructure noise the PZ test exhibits sensitivity to

the choice of threshold.

We next introduce dependence into the microstructure noise by allowing it to follow

a first-order autoregression with parameter 0.95 and set the noise-to-signal ratio back to
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0.001 (moderate noise). It comes as no surprise that the tests based on staggered multipower

measures are no longer immune to this type of noise. In fact, staggering can only help if

the noise is of the moving-average type. The simulated size of the BNS and ADS tests

decreases with the sampling frequency although the distortions are not as dramatic as the

highly dependent noise process may suggest. Similar, but a more pronounced, effect is

found for the swap variance test (JO). Increasing the variance of the noise implies large size

distortions in the same directions.

Overall the best performing test in terms of size is the PZ test. Except for the relatively

low frequency of 5 minutes, the PZ test exhibits empirical size very close to the nominal

level across the scenarios considered here, as long as moderate or large threshold is used.

This is quite remarkable especially in the case of large, highly dependent noise.

5.2 Power

The jump detection ability of the noise-robust tests is presented in Tables 6-8. We focus

on the same jump scenarios as in Section 4.3. The most powerful test is again the PZ test

but only for a small value of the threshold parameter. Increasing the threshold results into

a sharp decrease in power, especially at lower sampling frequencies. The noise-robust JO

test shows a very stable performance across the different specifications of the noise process

and delivers better power than either BNS or ADS. The latter two work quite well when

the noise has moderate variance (ω2 = 0.001).

Increasing the variance of the noise to 0.01 leads to a sharp drop in power of all tests.

The effect is most pronounced when the jumps are small and frequent (Table 8).

6 Zero returns

It is well-known that prices do not change at equidistant points in time (see, for exam-

ple, Engle and Russell (1998)). There generally tends to be more activity taking place in

the market shortly after opening and towards the end of the trading session than around

lunchtime. As a result, when sampling in calendar time some intraday returns may be equal

to zero, which may in turn distort the inference about jumps.

To see this, consider the BNS test based on bipower variation. Since the latter is

calculated as a sum of products of two consecutive returns, one zero intraday return will set

two summands equal to zero as opposed to the realized volatility, where only one summand

will be knocked out of the sum of squared returns. As a result, the difference between RV

and BV will be upward biased and consequently the test based on this difference oversized.

It is clear that this effect will be more pronounced for tests based on multipower variations of

higher order. This observation has motivated ADS to propose the median realized volatility

as a more robust measure of integrated variance and quarticity in the presence of infrequent

trading.
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To shed more light on the impact of zeros returns on the alternative tests for jumps,

we consider the following simple model of sparse sampling. The efficient price follows

the LL1F model as before but it is only observed at random points in time, whereby the

durations between consecutive observations are assumed to be independently exponentially

distributed with mean φ(t). To calibrate the mean duration as a function of the time of

day, φ(t), we follow ? and fit a cubic spline to the price durations of the S&P 500 futures

contract between 2003-2007 (the data is described in greater detail below).

The average duration between consecutive price changes is found to be about 15 seconds

and we observe a large difference between average morning durations (10 seconds) and

lunchtime durations (20 seconds). We use this diurnal pattern function throughout the

simulations but re-scale it such that the mean price duration over the course of the trading

day is equal to either 5 seconds, 15 seconds or 30 seconds. This allows us to study the

impact of different levels of nontrading on the size of the alternative tests for jumps. We

study the same test statistics as in the size simulations.

The main simulation results are summarized in Table 9. Consistent with intuition, the

most affected by the presence of zero intraday returns are the tests based on multipower

variations (BNS and CPR). In case of the CPR test, the problem is further exacerbated by

the presence of the bipower variation in construction of the threshold. The negative bias

in the bipower variation due to zero returns tends to reduce the threshold value and as we

have seen in the simulations before this translates into more frequent false rejections of the

null hypothesis. The tests based on the median realized volatility (ADS) are slightly more

robust to the presence of zeros although the gains are not very large, at least not for the

type of infrequent trading considered here.

The impact of zeros on the swap variance test (JO) tends to be much smaller. It

operates primarily through the realized sixticity appearing in the denominator of the JO

test statistics. The downward bias of the realized sixticity implies more frequent rejections

that consistent with the nominal significance level. Similarly effected is the ASJ test,

which requires the use of multipower variation to estimate the quarticity appearing in the

denominator of the test statistics.

Overall the best performance in terms of empirical size in the presence of zero returns is

afforded by the PZ test, as long as one chooses a sufficiently large constant c when calculating

the threshold. Even when the mean duration of nontrading is large (30 seconds), the PZ

test provides reasonable inference at frequencies as high as 2 minutes, at which all other

test already suffer from substantial size distortions.

7 Diurnal volatility

The last challenge that the test for jumps will be subjected to in this paper is the determin-

istic diurnal volatility component. It is well-known that unconditional intraday volatility

tends to exhibit an asymmetric U-shaped pattern. It is typically highest in the morning,
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drops significantly around lunchtime and then picks up again towards market close. We

follow Hasbrouck (1999) and model the unconditional intraday volatility as

E(σt) = A(e−at + e−b(1−t)). (2)

We set A = 0.0795, a = −2.5 and b = −3.2. With these parameter values the mean volatility

approximately equals 2, 0.5 and 1 in the morning, mid-day and evening, respectively.

We first study the size. The results, reported in Table 15, resemble those obtained under

the LL2F model. All tests are substantially oversized, those that require thresholding are

very sensitive to the choice of the threshold, and the performance of PZ and LM test actually

deteriorates as the sampling frequency increases. The BNS and ADS tests seem to be the

best choice similarly to the case of LL2F with no diurnal volatility.

In terms of the ability of the test to detect jumps, the ranking is again similar to the

case of LL1F. To save space, we only report the scenario of moderate jump intensity and

size noting that the results for the other jump scenarios are qualitatively similar. The PZ

test with a low value of threshold delivers highest power, closely followed by the LM and

JO tests. Recall, however, that the two former tests are severely oversized.

8 Empirical Application

In this section, the we apply aforementioned jump tests to empirical data. The analysis is

carried out using high frequency data from three markets: the foreign exchange inter-dealer

market, the equity futures market, and the stock market. Specifically, the currency pairs

of EUR/USD and USD/JPY are analyzed together with the S&P 500 Futures Index and

equity data from five corporations, listed on the New York Stock Exchange (NYSE) namely,

Citigroup, IBM, McDonald’s, Disney and General Electric. For the cleaning of the data, we

follow the procedure outlined by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b).

Below, we give a brief description of the various datasets employed.

8.1 Data Description and Preliminaries

8.1.1 Foreign exchange

We study the EUR/USD spot exchange rate during the period between January 4, 2000 and

May 31, 2007. The mid-quotes are extracted from the Electronic Broking Services (EBS)

Market Data database, which is currently the larger of the two electronic venues that make

up the inter-dealer spot FX market, after Reuters. In addition, EBS has become the major

trading platform for the two most traded currency pairs, the USD/JPY and the EUR/USD.

This data has been only recently made available to academic researchers. As is customary

in the literature, observations recorded between 21:00 GMT on Friday and 21:00 GMT on

Sunday as well as holidays are discarded. In addition, days with low trading activity due

to public and bank holidays are also excluded from the data. This leaves us with 1820 days

in the sample.
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8.1.2 Individual stocks

We collect equity data for five corporations listed on the New York Stock Exchange (NYSE),

namely McDonald’s and IBM over the period between July 2, 2001 and December 29, 2005,

which yields a total of 1126 days. Only the mid-quotes recorded between 9:30 EST and 16:00

EST are considered. The data is extracted from the Trades And Quotes (TAQ) database

of NYSE.

8.1.3 S&P 500 Futures

We focus on the most liquid (front) S&P 500 futures contract over the period from June

2, 2003 to December 28, 2007. Only observations between the hours of 8:30 EST to 15:00

EST are considered and holidays are omitted, leaving us with a total of 1174 days in the

sample. This data was obtained from TickData Inc.

8.1.4 Preliminaries

All four series of high-frequency prices have been filtered using the approach proposed by

?. In order to gain some intuition about the level of the jump component, microstructure

noise and flat trading in the various datasets, we provide in Figure 1 in the signature plots

of the average daily realized volatility, medium realized volatility, bi-power and tri-power

variation. The level of microstructure noise appears to be higher for the equity and futures

data than for the FX data, for which a 30-second sampling frequency seems adequate to

avoid the impact of microstructure noise on the estimation of volatility. In case of the

individual stocks and S&P 500 futures, frequencies between 2 and 5 minutes deliver stable

results.

While the difference between the realized volatility and and the jump-robust measures

(MedRV, BV, TPV) provides information about the magnitude of the jump component,

this information is only reliable at moderate and small sampling frequencies due to the

presence of zero returns. The signatures plots reveal that the equity data has a larger

proportion of zero returns than the FX and futures data, and the jump-robust measures

become severely downward biased for frequencies higher than a minute. For the foreign

exchange and futures data, on the other hand, MedRV and BV seem to stabilize already at

the 30-second frequency, whereas, not surprisingly, TPV requires slightly lower frequency

to avoid the effect of zero returns.

Tables 18-20 provide some descriptive statistics for the various datasets. In Table 18,

the average number of quotations per day is reported for each calendar year in the sample

together with the percentage of unique quotes. We observe that the foreign exchange

data has the largest average number of quotes per day relative to the operating hours in

the market, while the futures data has the smallest number of quotes. In addition, for all

datasets, with the exception of the futures data, the number of quotes increases significantly

over the sample period, the increase being higher for the individual stocks. The futures data
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possesses the highest percentage of unique quotes amongst all the data examined. Only less

than 3% of consecutive quotes in the future data are identical. The number is much larger

for the foreign exchange data and equity data. For these datasets, the number of consecutive

duplicate quotes increases significantly over time.

Table 19 reports the average durations between successive quotes. When accounting

for duplicate quotes, the quote arrival rates are quite similar across the datasets, except

for S&P 500 futures which shows average duration about twice as high as the other assets

considered. Finally, Table 20 reports the yearly percentage of zero returns for five differ-

ent sampling frequencies, extending from 30 seconds to 15 minutes. Consistent with the

volatility signature plots, the percentage of zero returns decreases significantly with the

sampling frequency. Nonetheless, the proportion of zeros remains nontrivial even at the

relatively low and commonly employed 5-minute frequency implying possible positive bias

in the estimated contribution of jumps to the overall variation in the assets’ prices.

8.2 Results of Jump Tests

We now apply the set of jumps test to the data. For each asset and day of the sample we

test for the presence of jumps at three different sampling frequencies: 1 minute, 5 minute

and 15 minutes. To balance the trade-off between size and power we use intermediate values

for the threshold parameters in the CPR, ASJ and PZ tests. We adopt the 1% significance

level throughout.

We summarize the results in a set of confusion matrices: we calculate the proportion

of days that each test identified jumps individually and also for each pair of the tests the

proportion of jump days detected by the corresponding tests jointly. The latter is again

interpreted as a measure of the degree of agreement among the different tests. The confusion

matrices are reported in Tables 21 and 22.

The empirical results are consistent with those obtained in the simulations. There is a

clear association between the number of zero returns and the proportion of days identified

as jump days. As expected, the tests that are affected the most are the BNS and LM ones.

The proportion of detected jump days also radically increases with the sampling frequency,

except for the JO test which exhibits relatively stable performance.

The largest proportion of jump days is detected for the EUR/USD exchange rate. At

the 5 minute frequency, the tests indicate between 23 and 53% of jump days in the sample,

if we ignore the ASJ test which is known to have low power and the LM test which is

substantially biased due to zero returns. There are much less jumps in the S&P 500 future

index, for about 10 to 15 % of the days in the sample do the test signal the presence of

jumps. The IBM stock price jumps relatively infrequently (6 - 11%), while McDonalds

exhibits similar behavior to S&P 500 futures.
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9 Conclusion

This paper aims to evaluate the performance of seven different approaches developed for

testing for the presence of jumps in asset price processes. Extensive simulation results

examining the size and power of the tests under different data generating scenarios reveal

that there is no clear “winner”. The performance of each test depends on a particular

scenario: while some tests perform well in the absence of frictions, they face considerable

difficulties when confronted with noisy data. The tests employing thresholds suffer further

from a trade-off between size and power; small threshold improves the ability to detect true

jumps but at the same time increases the probability of spurious jump detection in periods

when no jumps occurred. Further research is therefore called for to address the choice of

the threshold in order to balance this trade-off.

An important feature of the jump tests that we document in this paper is their sensitivity

to the presence of zero intraday returns. A natural remedy to this problem is to resort to

tick-time sampling (see e.g. ?, 2006 for a discussion of the benefits of tick-time sampling

for estimation of volatility). Nevertheless, the limit theories underlying the tests studied

here are derived under the assumption of equidistant sampling and hence it remains to be

shown whether they remain valid when sampling time becomes random. Further research

will almost surely tackle this issue.

The conclusions from the empirical application based on individual stock, foreign ex-

change and equity futures data conform to those of the Monte Carlo simulation. They show

that the test statistics are very sensitive to the presence of zero returns and microstructure

noise. It is therefore very important in empirical work to be aware of this problem and

interpret the results accordingly.
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A Tables

µ 0.030
β0 0.000
β1 0.125
αv {−0.137e− 2,−0.100,−1.386}

Table 1: Parameters of the LL1F model used in the simulations.

µ 0.030
β0 -1.200
β1 0.040
β2 1.500
αv1 -0.137e-2
αv2 -1.386
βv2 0.250
ρ1 -0.300
ρ2 -0.300

Table 2: Parameters of the LL2F model used in the simulations.

µ 0.030
β0 0.000
β1 0.125
αv {−0.137e− 2,−0.100,−1.386}
λ 2.500
(c, α) {(2.424,0.400),(1.635,0.800),(0.894,1.200),(0.325,1.600)

Table 3: Parameters of the LLIA model used in the simulations.

λ {0.1,0.5,1.0,1.5,2.0}
σ2 {0.5,1.0,1.5,2.0,2.5}

Table 4: Jump intensity and variance of jump size for LL1F-FAJ model.

α {0.1,0.5}
k {0.0119,0.0161}
c {0.125,0.4}
λ {0.015,0.015}

Table 5: Parameters of the jump process in the LL1F-IAJ model.
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Jbv J
(3)
tbv J

(5)
tbv Jmed SwVqps S3(4, 2) S5(4, 2) S2.3(2) S4(2) LMbv

Sampling frequency: 1 minute

Jbv 88.68

J
(3)
tbv 88.68 89.88

J
(5)
tbv 88.68 89.44 89.44

Jmedrv 87.93 88.56 88.37 88.94

SwVqps 88.18 89.27 88.91 88.43 91.20

S3(4, 2) 74.36 74.93 74.81 74.53 75.50 75.86

S5(4, 2) 71.34 71.91 71.78 71.53 72.43 72.52 72.52

S2.3(2) 88.56 89.73 89.31 88.83 91.12 75.79 72.50 93.97

S4(2) 87.74 88.54 88.35 87.99 88.75 74.74 71.78 88.81 88.85

LMbv 88.52 89.69 89.27 88.79 91.12 75.75 72.50 93.60 88.81 93.68

Sampling frequency: 5 minutes

Jbv 78.27

J
(3)
tbv 78.27 82.01

J
(5)
tbv 78.25 80.18 80.18

Jmedrv 77.49 79.87 79.07 80.47

SwVqps 77.77 81.23 79.68 79.70 84.19

S3(4, 2) 1.64 2.08 1.93 1.93 2.20 2.33

S5(4, 2) 1.62 1.99 1.91 1.91 1.99 1.99 1.99

S2.3(2) 78.21 81.92 80.12 80.33 83.75 2.33 1.99 87.57

S4(2) 75.92 77.18 77.09 76.84 77.09 1.76 1.76 77.18 77.26

LMbv 78.14 81.84 80.05 80.18 83.41 2.29 1.99 85.85 77.18 86.00

Sampling frequency: 15 minutes

Jbv 64.01

J
(3)
tbv 63.97 70.75

J
(5)
tbv 63.95 66.89 66.93

Jmedrv 62.17 66.64 64.37 67.98

SwVqps 63.22 69.64 66.07 66.83 75.77

S3(4, 2) 0.00 0.00 0.00 0.00 0.02 0.04

S5(4, 2) 0.00 0.00 0.00 0.00 0.00 0.02 0.02

S2.3(2) 63.91 70.67 66.83 67.81 74.68 0.02 0.00 79.76

S4(2) 58.22 58.98 58.93 58.41 58.85 0.00 0.00 59.00 59.08

LMbv 63.05 69.56 65.97 66.79 72.96 0.02 0.00 75.46 58.93 76.59

Table 7: Confusion matrix. LL1F-FAJ with medium mean reversion. λ = 0.1, σ2 = 2.5.

Significance level: 1%.
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Jbv J
(3)
tbv J

(5)
tbv Jmed SwVqps S3(4, 2) S5(4, 2) S2.3(2) S4(2) LMbv

Sampling frequency: 1 minute

Jbv 86.15

J
(3)
tbv 86.15 88.02

J
(5)
tbv 86.15 87.11 87.11

Jmedrv 84.97 85.90 85.57 86.39

SwVqps 85.14 86.71 86.02 85.30 88.85

S3(4, 2) 68.84 69.59 69.30 68.84 69.74 70.57

S5(4, 2) 61.60 62.25 62.01 61.57 62.37 62.89 62.89

S2.3(2) 86.03 87.88 86.99 86.28 88.71 70.55 62.87 92.78

S4(2) 85.00 86.08 85.79 85.04 85.88 69.30 62.13 86.42 86.51

LMbv 86.00 87.84 86.96 86.24 88.65 70.52 62.86 92.13 86.41 92.23

Sampling frequency: 5 minutes

Jbv 72.87

J
(3)
tbv 72.86 77.74

J
(5)
tbv 72.87 75.15 75.16

Jmedrv 70.47 73.32 72.02 74.21

SwVqps 70.66 74.87 72.83 71.72 78.41

S3(4, 2) 1.81 2.31 2.10 1.99 2.40 2.62

S5(4, 2) 1.51 1.79 1.72 1.70 1.77 1.82 1.82

S2.3(2) 72.72 77.59 75.01 74.08 78.04 2.60 1.80 85.27

S4(2) 68.93 70.45 70.32 68.69 69.20 1.98 1.67 70.45 70.54

LMbv 72.11 76.70 74.37 73.31 76.77 2.54 1.80 81.17 70.39 81.31

Sampling frequency: 15 minutes

Jbv 52.87

J
(3)
tbv 52.84 60.51

J
(5)
tbv 52.85 55.89 55.92

Jmedrv 48.86 52.93 50.52 55.54

SwVqps 50.02 56.58 52.83 52.34 65.71

S3(4, 2) 0.00 0.01 0.00 0.01 0.02 0.03

S5(4, 2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S2.3(2) 52.79 60.37 55.84 55.38 64.28 0.02 0.00 73.98

S4(2) 42.80 43.56 43.45 41.60 42.63 0.00 0.00 43.60 43.69

LMbv 50.24 57.22 53.23 52.56 58.88 0.02 0.00 64.14 43.11 65.01

Table 8: Confusion matrix. LL1F-FAJ with medium mean reversion. λ = 1.0, σ2 = 1.5.

Significance level: 1%.
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Jbv J
(3)
tbv J

(5)
tbv Jmed SwVqps S3(4, 2) S5(4, 2) S2.3(2) S4(2) LMbv

Sampling frequency: 1 minute

Jbv 67.93

J
(3)
tbv 67.92 72.87

J
(5)
tbv 67.92 70.41 70.41

Jmedrv 65.80 68.46 67.42 69.62

SwVqps 64.00 67.79 66.19 65.17 72.57

S3(4, 2) 44.39 46.31 45.51 44.99 45.52 48.46

S5(4, 2) 30.09 31.35 30.91 30.44 31.17 32.48 32.48

S2.3(2) 67.75 72.66 70.23 69.39 72.36 48.35 32.43 84.78

S4(2) 63.84 66.19 65.55 64.47 64.56 44.80 30.89 66.91 67.06

LMbv 67.67 72.54 70.15 69.31 72.25 48.32 32.43 83.23 66.90 83.50

Sampling frequency: 5 minutes

Jbv 36.89

J
(3)
tbv 36.87 45.81

J
(5)
tbv 36.88 39.51 39.52

Jmedrv 33.23 38.23 35.11 40.37

SwVqps 31.70 38.34 34.11 34.11 45.92

S3(4, 2) 0.87 1.42 1.12 1.16 1.57 1.98

S5(4, 2) 0.55 0.83 0.73 0.76 0.82 0.86 0.86

S2.3(2) 36.56 45.46 39.20 39.91 44.90 1.93 0.83 63.45

S4(2) 24.68 25.89 25.77 24.91 24.76 0.89 0.66 25.93 26.25

LMbv 35.31 43.57 37.94 38.38 42.61 1.83 0.83 54.65 25.89 55.39

Sampling frequency: 15 minutes

Jbv 13.92

J
(3)
tbv 13.89 18.84

J
(5)
tbv 13.90 14.62 14.65

Jmedrv 10.55 13.28 11.08 16.22

SwVqps 11.30 15.18 12.00 13.08 27.62

S3(4, 2) 0.00 0.00 0.00 0.00 0.01 0.04

S5(4, 2) 0.00 0.00 0.00 0.00 0.00 0.03 0.03

S2.3(2) 13.65 18.49 14.38 15.67 23.81 0.01 0.00 36.62

S4(2) 4.81 4.93 4.88 4.60 4.83 0.00 0.00 4.93 5.17

LMbv 10.78 15.13 11.50 12.72 17.87 0.01 0.00 23.04 4.79 25.21

Table 9: Confusion matrix. LL1F-FAJ with medium mean reversion. λ = 2.0, σ2 = 0.5.

Significance level: 1%.
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Jbv J
(3)
tbv J

(5)
tbv Jmed SwVqps S3(4, 2) S5(4, 2) S2.3(2) S4(2) LMbv

Sampling frequency: 1 minute

Jbv 10.73

J
(3)
tbv 10.71 12.28

J
(5)
tbv 10.73 11.38 11.40

Jmedrv 9.32 10.01 9.72 11.06

SwVqps 9.26 10.34 9.87 9.51 13.40

S3(4, 2) 6.15 6.66 6.45 6.29 6.97 7.97

S5(4, 2) 5.24 5.66 5.50 5.36 5.94 6.36 6.36

S2.3(2) 9.86 11.30 10.53 10.19 12.30 7.53 6.07 19.48

S4(2) 8.65 9.28 9.09 8.83 9.41 6.27 5.45 9.51 10.30

LMbv 9.73 11.12 10.40 10.09 12.20 7.48 6.07 17.07 9.50 17.58

Sampling frequency: 5 minutes

Jbv 5.71

J
(3)
tbv 5.69 6.94

J
(5)
tbv 5.71 6.06 6.08

Jmedrv 4.50 5.19 4.79 6.19

SwVqps 4.46 5.42 4.83 4.91 8.95

S3(4, 2) 0.13 0.25 0.19 0.22 0.30 0.52

S5(4, 2) 0.12 0.20 0.17 0.19 0.20 0.32 0.32

S2.3(2) 5.00 6.22 5.37 5.48 7.13 0.38 0.21 13.03

S4(2) 3.48 3.66 3.65 3.61 3.67 0.16 0.16 3.68 4.34

LMbv 4.55 5.61 4.91 5.06 6.40 0.36 0.20 8.52 3.68 9.09

Sampling frequency: 15 minutes

Jbv 3.40

J
(3)
tbv 3.38 4.21

J
(5)
tbv 3.40 3.59 3.61

Jmedrv 2.17 2.65 2.34 3.66

SwVqps 2.42 3.15 2.63 2.78 8.89

S3(4, 2) 0.00 0.00 0.00 0.00 0.00 0.06

S5(4, 2) 0.00 0.00 0.00 0.00 0.00 0.05 0.05

S2.3(2) 3.06 3.87 3.27 3.26 5.53 0.00 0.00 10.31

S4(2) 1.34 1.37 1.37 1.33 1.37 0.00 0.00 1.37 1.85

LMbv 1.98 2.72 2.19 2.36 3.52 0.00 0.00 4.28 1.36 5.08

Table 10: Confusion matrix. LL1F-IAJ with medium mean reversion and jump activity

index equal to 0.5. Significance level: 1%.
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30 s 1 min 2 min 5 min 15 min

A. Multipower variation ratio tests (BNS)

Jbv,tpq 2.01 2.52 3.07 4.20 5.27

Jbv,qpq 2.15 2.71 3.38 4.55 5.67

Jtpv,tpq 1.70 1.95 2.43 3.26 3.94

Jtpv,qpq 1.95 2.30 3.03 4.01 4.66

Jqpv,tpq 1.36 1.45 1.67 1.95 1.68

Jqpv,qpq 1.73 2.03 2.55 3.33 3.61

B. Threshold bipower variation ratio tests (CPR)

J
(3)
tbv,ttpq 2.45 3.16 4.21 6.91 7.61

J
(4)
tbv,ttpq 2.06 2.60 3.20 4.74 5.91

J
(5)
tbv,ttpq 2.02 2.54 3.10 4.32 5.43

C. MedRV ratio tests (ADS)

Jmedrv,minrq 2.11 2.68 3.26 4.12 4.66

Jmedrv,medrq 1.93 2.33 2.90 3.97 5.04

B. Swap variance ratio tests (JO)

SwVqps 2.33 3.39 5.01 8.48 15.66

SwVsps 2.71 4.20 6.44 11.79 22.81

E. Power variation ratio test (ASJ)

S3(4, 2) 5.00 3.56 1.91 0.64 0.03

S4(4, 2) 1.36 0.91 0.52 0.23 0.03

S5(4, 2) 0.53 0.35 0.20 0.07 0.03

F. Threshold power variation difference test (PZ)

S2.3(2) 64.79 57.44 48.49 36.04 24.00

S3(2) 10.53 10.39 9.39 7.94 6.31

S4(2) 1.24 1.20 1.19 1.17 1.18

G. Local volatility test (LM)

LMbv 92.96 79.21 29.91 28.35 11.48

Table 16: Size. Simulated size of the tests for jumps for 1% nominal. LL1F model with

medium mean reversion and deterministic diurnal volatility.
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Jbv J
(3)
tbv J

(5)
tbv Jmed SwVqps S3(4, 2) S5(4, 2) S2.3(2) S4(2) LMbv

Sampling frequency: 1 minute

Jbv 84.96

J
(3)
tbv 84.96 86.90

J
(5)
tbv 84.96 86.06 86.06

Jmedrv 83.36 84.40 84.04 85.02

SwVqps 83.30 84.71 84.20 83.22 86.66

S3(4, 2) 28.34 28.79 28.61 28.42 28.71 29.60

S5(4, 2) 9.64 9.85 9.78 9.64 9.85 10.01 10.01

S2.3(2) 84.95 86.89 86.05 84.99 86.65 29.56 10.00 96.83

S4(2) 83.99 85.38 84.90 83.88 85.07 28.81 9.90 86.58 86.60

LMbv 84.93 86.87 86.03 84.99 86.65 29.55 10.00 96.18 86.58 97.59

Sampling frequency: 5 minutes

Jbv 72.92

J
(3)
tbv 72.92 78.85

J
(5)
tbv 72.91 75.35 75.35

Jmedrv 69.43 72.26 70.90 73.28

SwVqps 69.84 74.29 72.04 69.86 77.99

S3(4, 2) 0.23 0.35 0.30 0.28 0.36 0.46

S5(4, 2) 0.18 0.23 0.22 0.22 0.23 0.24 0.24

S2.3(2) 72.86 78.75 75.29 73.21 77.60 0.45 0.24 89.97

S4(2) 68.48 70.72 70.19 67.91 69.31 0.27 0.22 70.84 70.90

LMbv 72.00 77.42 74.42 72.30 76.22 0.43 0.24 84.17 70.74 84.87

Sampling frequency: 15 minutes

Jbv 56.18

J
(3)
tbv 56.14 63.81

J
(5)
tbv 56.16 58.91 58.95

Jmedrv 50.60 53.96 51.87 57.09

SwVqps 53.17 59.88 55.86 53.86 72.53

S3(4, 2) 0.00 0.00 0.00 0.00 0.00 0.01

S5(4, 2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S2.3(2) 56.10 63.64 58.87 56.90 69.37 0.01 0.00 78.80

S4(2) 44.58 45.62 45.38 42.81 44.96 0.00 0.00 45.74 45.80

LMbv 52.34 59.19 55.07 52.55 61.74 0.00 0.00 65.89 45.04 67.07

Table 17: Confusion matrix. LL1F-FAJ with medium mean reversion and deterministic

diurnal volatility. λ = 1.0, σ2 = 1.5. Significance level: 1%.
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Quotes/day

Asset 2000 2001 2002 2003 2004 2005 2006 2007

EUR/USD 32582 30928 30412 36080 37065 38000 37766 36401

(63.20) (61.54) (54.32) (61.32) (63.51) (54.11) (47.32) (40.25)

S& P 500 – – – 2042 1890 1749 1665 1819

– – – (99.11) (98.38) (98.28) (97.85) (98.12)

McDonald’s – 2512 3007 5450 6782 8785 – –

– (42.41) (37.51) (32.14) (29.38) (28.45) – –

IBM – 5034 6213 7223 8338 8777 – –

– (53.36) (38.52) (49.93) (50.50) (44.28) – –

Table 18: The average number of quotes per day for each for the years in the sample and

for each dataset. The percentage of observations for which the quoted price was different

from the previous one is given in parentheses.

Asset 2000 2001 2002 2003 2004 2005 2006 2007

EUR/USD Quotes 6.33 5.91 6.43 4.95 4.64 4.84 5.28 4.58

Quotes (∆p 6= 0) 9.09 9.03 10.87 7.57 7.01 8.18 9.83 10.81

S & P 500 Quotes – – – 11.69 13.56 15.36 16.15 14.59

Quotes (∆p 6= 0) – – – 11.79 14.56 17.46 18.67 16.19

MacDonald’s Quotes – 9.39 7.92 4.36 3.51 2.69 – –

Quotes (∆p 6= 0) – 22.39 21.29 13.87 12.22 9.73 – –

IBM Quotes – 4.64 3.89 3.31 2.83 2.67 – –

Quotes (∆p 6= 0) – 8.73 10.08 6.78 5.67 6.10 – –

Table 19: Average durations between successive quotes.

Asset Sampl. Freq. 2000 2001 2002 2003 2004 2005 2006 2007

EUR/USD 1 min 27.21 28.98 33.48 25.53 23.52 26.75 31.37 37.15

5 min 11.06 12.08 14.69 10.03 9.27 11.02 13.34 16.52

15 min 5.77 6.57 8.04 5.46 4.94 5.90 7.41 9.80

S & P 500 1 min – – – 15.93 16.46 17.13 17.63 15.50

5 min – – – 7.63 8.08 8.28 8.41 7.30

15 min – – – 4.75 4.89 5.36 5.87 5.35

McDonald’s 1 min – 23.34 21.81 27.48 28.41 25.24 – –

5 min – 7.99 6.56 10.23 10.48 8.73 – –

15 min – 4.57 4.26 5.49 5.44 5.06 – –

IBM 1 min – 5.64 5.90 6.83 7.57 9.44 – –

5 min – 2.68 2.25 3.01 2.90 3.66 – –

15 min – 2.02 1.50 2.02 1.87 2.11 – –

Table 20: Yearly percentages of zero returns.
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Figure 1: Volatility signature plots for EUR/USD, IBM and McDonalds based on mid-

quotes, and S&P 500 futures contract based on transaction prices.
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