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Abstract

This paper proposes a nonparametric test for common trends in semiparametric panel data models

with �xed e¤ects based on a measure of nonparametric goodness-of-�t (R2). We �rst estimate the

model under the null hypothesis of common trends by the method of pro�le least squares, and obtain

the augmented residual which consistently estimates the sum of the �xed e¤ect and the disturbance

under the null. Then we run a local linear regression of the augmented residuals on a time trend and

calculate the nonparametric R2 for each cross section unit. The proposed test statistic is obtained by

averaging all cross sectional nonparametric R2�s, which is close to zero under the null and deviates

from zero under the alternative. We show that after appropriate standardization the test statistic is

asymptotically normally distributed under both the null hypothesis and a sequence of Pitman local

alternatives. We prove test consistency and propose a bootstrap procedure to obtain p-values. Monte

Carlo simulations indicate that the test performs well in �nite samples. Empirical applications are

conducted exploring the commonality of spatial trends in UK climate change data and idiosyncratic

trends in OECD real GDP growth data. Both applications reveal the fragility of the widely adopted

common trends assumption.
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1 Introduction

Modeling trends in time series has a long history. Phillips (2001, 2005, 2010) provides recent overviews

covering the development, challenges, and some future directions of trend modeling in time series.

White and Granger (2011) o¤er working de�nitions of various kinds of trends and invite more dis-

cussions on trends in order to facilitate development of increasingly better methods for prediction,

estimation and hypothesis testing for non-stationary time-series data. Due to the wide availability of

panel data in recent years, research on trend modeling has spread to the panel data models. Most of

the literature falls into two categories depending on whether the trends are stochastic or deterministic.

But there is also work on evaporating trends (Phillips, 2007) and econometric convergence testing

(Phillips and Sul, 2007, 2009). For reviews on stochastic trends in panel data models, see Banerjee

(1999) and Breitung and Pesaran (2005).

Recently, some aspects of modeling deterministic time trends in nonparametric and semiparamet-

ric settings have attracted interest. Cai (2007) studies a time-varying coe¢ cient time series model

with a time trend function and serially correlated errors to characterize the nonlinearity, nonstation-

arity, and trending phenomenon. Robinson (2010) considers nonparametric trending regression in

panel data models with cross-sectional dependence. Atak, Linton, and Xiao (2011) propose a semi-

parametric panel data model to model climate change in the United Kingdom (UK hereafter), where

seasonal dummies enter the model linearly with heterogeneous coe¢ cients and the time trend enters

nonparametrically. Li, Chen, and Gao (2010) extend the work of Cai (2007) to panel data time-varying

coe¢ cient models. Most recently, Chen, Gao, and Li (2010, CGL hereafter) extend Robinson�s (2010)

nonparametric trending panel data models to semiparametric partially linear panel data models with

cross-sectional dependence where all individual unit share a common time trend that enters the model

nonparametrically. They propose a semiparametric pro�le likelihood approach to estimate the model.

A conventional feature of work on deterministic trending panel models is the imposition of a common

trends assumption, implying that each individual unit follows the same time trend behavior. Such an

assumption greatly simpli�es the estimation and inference process, and the proposed estimators can

be e¢ cient if there is no heterogeneity in individual time trend functions and some other conditions

are met. Nevertheless, if the common trends assumption does not stand, the estimates based on

nonparametric or semiparametric panel data models with common trends will be generally ine¢ cient

and statistical inference will be misleading. It is therefore prudent to test for the common trends

assumption before imposing it.

Since Stock and Watson (1988) there has been a large literature on testing for common trends. But

to our knowledge, most empirical works have focused on testing for common stochastic trends. Tests

for common deterministic trends are far and few between. Vogelsang and Franses (2005) propose tests

for common deterministic trend slopes by assuming linear trend functions and a stationary variance

process and examining whether two or more trend-stationary time series have the same slopes. Xu

(2011) considers tests for multivariate deterministic trend coe¢ cients in the case of nonstationary

variance process. Sun (2011) develops a novel testing procedure for hypotheses on deterministic trends

in a multivariate trend stationary model where the long run variance is estimated by series method. In
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all cases, the models are parametric and the asymptotic theory is established by passing the time series

dimension T to in�nity and keeping the number of cross sectional units n �xed. Empirical applications

include Fomby and Vogelsang (2003) and Bacigál (2005), who apply the Vogelsang-Franses test to

temperature data and geodetic data, respectively.

This paper develops a test for common trends in a semiparametric panel data model of the form

Yit = �
0Xit + fi (t=T ) + �i + "it; i = 1; : : : ; n; t = 1; : : : ; T; (1.1)

where � is a d� 1 vector of unknown parameters, Xit is a d� 1 vector of regressors, fi is an unknown
smooth time trend function for cross section unit i, the �i�s represent �xed e¤ects that can be correlated

with Xit; and "it�s are idiosyncratic errors. The trend functions fi (t=T ) that appear in (1.1) provide for

idiosyncratic trends for each individual i: For simplicity, we will assume that (i) f"itg satis�es certain
martingale di¤erence conditions along the time dimension but may be correlated across individuals,

and (ii) f"itg are independent of fXitg. Note that fi and �i are not identi�ed in (1.1) without further
restrictions.

Model (1.1) covers and extends some existing models. First, when fi � 0 for all i, (1.1) becomes
the traditional panel data model with �xed e¤ects. Second, if n = 1, then model (1.1) reduces to

the model discussed in Gao and Hawthorne (2006). Third, when fi = f for some unknown smooth

function f and all i, (1.1) becomes the semiparametric trending panel data model of CGL (2010).

The main objective of this paper is to construct a nonparametric test for common trends. Under

the null hypothesis of common trends: fi = f for all i in (1.1), we can pool the observations from

both cross section and time dimensions to estimate both the �nite dimensional parameter (�) and the

in�nite dimensional parameter (f) under the single identi�cation restriction
Pn

i=1 �i = 0 or f (0) = 0;

whichever is convenient. Let uit � �i + "it. Let buit denote the estimate of uit based on the pooled
regression. The residuals fbuitg should not contain any useful trending information in the data. This
motivates us to construct a residual-based test for the null hypothesis of common trends. To be

concrete, we will propose a test for common trends by averaging the n measures of nonparametric

goodness-of-�t
�
R2
�
from the nonparametric time series regression of buit on the time trend for each

cross sectional unit i: Such nonparametric R2 should tend to zero under the null hypothesis of common

trends and diverge from zero otherwise. We show that after being properly centered and scaled, the

average nonparametric R2 is asymptotically normally distributed under the null hypothesis of common

trends and a sequence of Pitman local alternatives. We also establish the consistency of the test and

propose a bootstrap method to obtain the bootstrap p-values.1

To proceed, it is worth mentioning that (1.1) complements the model of Atak, Linton, and Xiao

(2011) who allow for heterogenous slopes but a single nonparametric common trend across cross sec-

tions. As mentioned in the concluding remarks, it is also possible to allow the slope coe¢ cients in

1To the best of our knowledge, Su and Ullah (2011) are the �rst to suggest applying such a measure of nonparametric

R2 to conduct model speci�cation test based on residuals from restricted parametric, nonparametric, or semiparametric

regressions, and apply this idea to test for conditional heteroskedasticity of unknown form. Clearly, the nonparametric

R2 statistic can serve as a useful tool for testing many popular hypotheses in econometrics and statistics by playing a

role comparable to the important role that R2 plays in the parametric setup.
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(1.1) to vary across individuals and consider a joint test for the homogeneity of the slope coe¢ cients

and trend components. But this is beyond the scope of the current paper.

The rest of the paper is organized as follows. The hypotheses and the test statistic are given in

Section 2. We study the asymptotic distributions of the test under the null and a sequence of local

alternatives, establish the consistency of the test, and propose a bootstrap procedure to obtain the

bootstrap p-values in Section 3. Section 4 conducts a small simulation experiment to evaluate the �nite

sample performance of our test and reports empirical applications of the test to UK climate change

data and OECD economic growth data. Section 5 concludes.

NOTATION. Throughout the paper we adopt the following notation. For a matrix A; its transpose

is A0 and Euclidean norm is kAk � [tr (AA0)]1=2 ; where � signi�es �is de�ned as�. When A is a

symmetric matrix, we use �max(A) to denote its maximum eigenvalue. For a natural number l; we use

il and Il to denote the l � 1 vector of ones and the l � l identity matrix, respectively. For a function
f de�ned on the real line, we use f (a) to denote its a�th derivative whenever it is well de�ned. The

operator
p! denotes convergence in probability, and d! convergence in distribution. We use (n; T )!1

to denote the joint convergence of n and T when n and T pass to the in�nity simultaneously.

2 Basic Framework

In this section, we state the null and alternative hypotheses, introduce the estimation of the restricted

model under the null, and then propose a test statistic based on the average of nonparametric goodness-

of-�t measures.

2.1 Hypotheses

The main objective is to construct a test for common trends in model (1.1). We are interested in the

null hypothesis that

H0 : fi (�) = f (�) for � 2 [0; 1] and some smooth function f , for all i = 1; : : : ; n; (2.1)

i.e., all the n cross sectional units share the common trends function f: The alternative hypothesis is

H1 : the negation of H0:

As mentioned in the introduction, we will propose a residual-based test for the above null hypothesis.

To do so, we need to estimate the model under the null hypothesis and obtain the augmented residual,

which estimates �i+ "it. Then for each i, we run the local linear regression of the augmented residuals

on t=T , and calculate the nonparametric R2. Our test statistic is constructed by averaging these n

nonparametric R2�s.
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2.2 Estimation under the null

To proceed, we introduce the following notation.

Yi � (Yi1; : : : ; YiT )
0
; Y � (Y 01 ; : : : ; Y 0n)

0
; Xi � (Xi1; : : : ; XiT )0 ; X � (X 0

1; : : : ; X
0
n)
0
;

"i � ("i1; : : : ; "iT )
0
; " � ("01; : : : ; "0n)

0
; � � (�2; : : : ; �n)0 ; D � (�in�1; In�1)0 
 iT ;

fi � (fi(1=T ); : : : ; fi (T=T ))
0
; F � (f1; : : : ; fn)0 ; f � [f (1=T ) ; : : : ; f (T=T )]0 :

Note that under H0; F =in 
 f ; and we can write the model (1.1) as

Yit = X
0
it� + f (t=T ) + �i + "it; (2.2)

or in matrix notation as

Y = X� + in 
 f +D�+ "; (2.3)

provided we impose the identi�cation condition
Pn

i=1 �i = 0.

Following Su and Ullah (2006) and CGL (2010), we estimate the model (2.2) by using the pro�le

least squares method. Let k (�) denote a univariate kernel function and h a bandwidth. Let kh (�) �
k (�=h) =h. For any positive integer p, let z[p]h;t (�) � (1; (t=T � �) =h; : : : ; [(t=T � �) =h]

p
)
0
;

z
[p]
h (�) �

�
z
[p]
h;1 (�) ; : : : ; z

[p]
h;T (�)

�0
; and Z [p]h (�) � in 
 z[p]h (�) :

We assume that f is (p+ 1)th order continuously di¤erentiable a.e. Let Dp
hf (�) � (f (�) ; hf (1) (�) ;

: : : ; hpf (p) (�) =p!)0. Then for t=T in the neighborhood of � 2 (0; 1), we have by the pth order Taylor
expansion that f (t=T ) = Dp

hf (�)
0
z
[p]
h;t (�) + o ((t=T � �)

p
) : Let kh;t (�) � kh (t=T � �), Kh (�) �

diag(kh;1 (�) ; : : : ; kh;T (�)), and Kh (�) � In 
Kh (�). De�ne

s(�) �
�
z
[p]
h (�)

0
Kh (�) z

[p]
h (�)

��1
z
[p]
h (�)

0
Kh (�) and

S (�) �
�
Z
[p]
h (�)

0Kh (�)Z
[p]
h (�)

��1
Z
[p]
h (�)

0Kh (�) = n�1i0n 
 s(�):

The pro�le least squares method is composed of the following three steps:

1. Let � � (�0; �0)0: For given � and � 2 (0; 1); we estimate Dp
hf (�) by

bDp
h;�f (�) � argmin

F2Rp+1

�
Y �X� �D�� Z [p]h (�)F

�0
Kh (�)

�
Y �X� �D�� Z [p]h (�)F

�
:

Noting that S (�)D = 0 by straightforward calculations, the estimator bDp
h;�f (�) is in fact free

of � and its �rst element is given by

bf� (�) � e01S (�) (Y �X� �D�) = n�1 nX
i=1

e01s (�) (Yi �Xi�) ; (2.4)

where e1 = (1; 0; : : : ; 0)
0 is a (p+ 1) � 1 vector. Let bf� � ( bf� (1=T ) ; : : : ; bf� (T=T ))0; ST �

([e01S (1=T )]
0; � � � ; [e01S (T=T )]0)

0
; and SnT � in 
 ST . Then we have

bF� � in 
 bf� = SnT (Y �X�) : (2.5)
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2. We estimate (�; �) by�b�; b�� � argmin
�;�

�
Y �X� �D�� bF��0 �Y �X� �D�� bF��

= argmin
�;�

(Y � �X�� �D�)0 (Y � �X�� �D�)

where Y � � (InT � SnT )Y and X� � (InT � SnT )X. Let MD � InT � D (D0D)
�1
D0. Using

the formula for partitioned regression, we obtain

b� = (X�0MDX
�)
�1
X�0MDY

�; and (2.6a)b� � (b�2; :::; b�n) = (D0D)
�1
D0(Y � �X�b�): (2.6b)

Then �1 can be estimated by b�1 � �Pn
i=2 b�i:

3. Plugging (2.6a) into (2.4), we obtain the estimator of f (�):

bf (�) = e01S (�) (Y �Xb�): (2.7)

Let bf � � bf (1=T ) ; : : : ; bf (T=T )�0 and bF � SnT �Y �Xb�� = in 
 bf : (2.8)

After we obtain estimates of � and f (t=T ), we can estimate uit � �i+"it by buit � Yit�b�0Xit� bf (t=T )
under the null. Let bui � (bui1; : : : ; buiT )0 and bu � (bu01; : : : ; bu0n)0. Then it is easy to verify that

bu = ("� SnT ") +D�+X�(� � b�) + F�;bui = ("i � ST ") + �iiT + (Xi � STX) (� � b�) + (fi � STF) ;buit = �i + ["it � e01S (t=T ) "] + [Xit � e01S (t=T )X] (� � b�) + [fi (t=T )� e01S (t=T )F] ;
where F� � (InT � SnT )F.

2.3 A nonparametric R2-based test for common trends

The idea behind our test is simple. Under H0, buit is a consistent estimate for uit = �i + "it, and

there is no time trend in fuitgTt=1 for each cross sectional unit i: Nevertheless, under H1 buit includes an
individual-speci�c time trend component fi (t=T )�f0 (t=T ), where f0 (�) � p lim bf (�) : This motivates
us to consider a residual-based test for common trends.

For each i; we propose to run the nonparametric regression of fbuitgTt=1 on ft=TgTt=1:
buit = mi (t=T ) + �it (2.9)

where mi (�) � fi (�)� f0 (�) and �it = �i+ "�it+(�� b�)0X�
it+ f

0 (t=T )� e01S (t=T )F is the new error
term in the above regression. Clearly, under H0 we have mi (�) = 0 for � 2 [0; 1] : Given observations
fbuitgTt=1, the local linear regression of buit on t=T is �tted by weighted least squares (WLS) as follows

min
(ci0;ci1)2R2

1

T

TX
t=1

�buit � ci0 � ci1� t
T
� �
��2

wb;t (�) (2.10)
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where b � b (T ) is a bandwidth parameter such that b! 0 as T !1 , wb;t (�) � wb (t=T � �) =
R 1
0
wb(t=T

�s)ds; wb (�) � w (�=b) =b; and w (�) is a probability density function (p.d.f.) that has support [�1; 1].
By the proof of Lemma E.1 in the appendix, �tT �

R 1
0
wb (t=T � s) ds = 1 for t=T 2 [b; 1� b] and

is larger than 1/2 otherwise. Therefore, wb;t (�) plays the role of a boundary kernel to ensure thatR 1
0
wb;t (�) d� = 1 for any t = 1; :::; T: 2

Let eci � (eci0;eci1)0 denote the solution to the above minimization problem. Following Su and Ullah
(2011), the normal equations for the above regression imply the following local ANOVA decomposition

of the total sum of squares (TSS)

TSSi (�) = ESSi (�) +RSSi (�) (2.11)

where

TSSi (�) �
TX
t=1

�buit � ûi�2 wb;t (�) ;
ESSi (�) �

TX
t=1

�eci0 + eci1 (t=T � �)� ûi�2 wb;t (�) ;
RSSi (�) �

TX
t=1

(buit � eci0 � eci1 (t=T � �))2 wb;t (�) ;
and ûi � T�1

PT
t=1 buit. A global ANOVA decomposition of TSSi is given by

TSSi = ESSi +RSSi (2.12)

where

TSSi �
Z 1

0

TSSi (�) d� =
TX
t=1

(buit � ûi)2; ESSi � Z 1

0

ESSi (�) d� ; and RSSi �
Z 1

0

RSSi (�) d� :

(2.13)

Then one can de�ne the nonparametric goodness-of-�t
�
R2
�
for the above local linear regression as

R2i �
ESSi
TSSi

:

Under H0, fbuitg contains no useful trending information so that the above R2i should be close to 0 for
each individual i.

Let Wb (�) �diag(wb;1 (�) ; :::; wb;T (�)); H (�) � Wb (�) z
[1]
b (�)

�
z
[1]
b (�)

0
Wb (�) z

[1]
b (�)

��1
z
[1]
b (�)

0

Wb (�) ; and �H �
R 1
0
H (�) d� . It is easy to show that

TSSi = bu0iMbui; ESSi = bu0i( �H � L)bui; and RSSi = bu0i �IT � �H
� bui;

2Alternatively, one can use the standard kernel weight wb (t=T � �) in place of wb;t (�) in (2.10) and decompose
TSSi (�) analogously to the decomposition in (2.11). But as �tT �

R 1
0 wb (t=T � s) ds is not identically 1 for all t;R 1

0 TSSi (�) d (�) in this case does not lead to the simple expression in (2.13).
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where M � IT � L and L � iT i0T =T . De�ne the average nonparametric R2 as

R
2 � 1

n

nX
i=1

R2i =
1

n

nX
i=1

ESSi
TSSi

:

Clearly 0 � R2 � 1 by construction. We will show that after being appropriately centered and scaled,
R
2
is asymptotically normally distributed under the null and a sequence of Pitman local alternatives.

Before proceeding further, it is worth mentioning a related test statistic that is commonly used in

the literature. Under H0, the mi (�) function in (2.9) is also common for all i and thus can be written
as m (�) : Since m (t=T ) = 0 for all t = 1; :::; T under H0 we can estimate this zero function by pooling
the cross sectional and time series observations together to obtain the estimate bm (�) ; say. Then we

can compare this estimate with the nonparametric trend regression estimate m̂i (t=T ) of mi (t=T ) to

obtain the following L2 type test statistic

DnT �
1

n

nX
i=1

TX
t=1

[m̂i (t=T )� m̂ (t=T )]2 :

Noting that the estimate m̂ (t=T ) has a faster convergence rate than m̂i (t=T ) to 0 under the null, it is

straightforward to show that under suitable conditions this test statistic is asymptotically equivalent

to �DnT � 1
n

Pn
i=1

PT
t=1 m̂i (t=T )

2 under the null. Further noticing that
PT

t=1 m̂i (t=T )
2
=TSSi can

be regarded as a version of nonparametric noncentered R2 measure for the cross sectional unit i, we

can simply interpret �DnT as a weighted nonparametric noncentered R2-based test where the weight

for cross sectional unit i is given by TSSi. In this paper we focus on the test based on R
2
because

it is scale-free and is asymptotically pivotal under the null after bias-correction. See the remark after

Theorem 3.1 for further discussion.

3 Asymptotic Distributions

In this section we �rst present the assumptions that are used in later analysis and then study the

asymptotic distribution of average nonparametric R2 under both the null hypothesis and a sequence of

Pitman local alternatives. We then prove the consistency of the test and propose a bootstrap procedure

to obtain bootstrap p-values.

3.1 Assumptions

Let Fn;t (�) denote the �-�eld generated by (�1; :::; �t) for a time series f�tg. To establish the asymptotic
distribution of our test statistic, we make the following assumptions.

Assumption A1. (i) The regressor Xit is generated as follows:

Xit = gi

�
t

T

�
+ vit: (3.1)

(ii) Let vt � (v1t; :::; vnt)
0for t = 1; :::; T . fvt; Fn;t (v)g is a stationary martingale di¤erence se-

quence (m.d.s.) of n� d random matrices.
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(iii) E
h
kvitk2 jFn;t�1 (v)

i
= �2v;i a.s. for each i and max1�i�nE kvitk

4
< cv <1: There exist d�d

positive de�nite matrices �v and ��v such that

1

n

nX
i=1

E (vitv
0
it)! �v;

1

n

nX
i=1

nX
j=1

E
�
vitv

0
jt

�
! ��v; and E







nX
i=1

vit







�

= O
�
n�=2

�
;

for some � > 2.

Assumption A2. (i) Let "t � ("1t; :::; "nt)0 for t = 1; :::; T . f"t; t � 1g is a stationary sequence.
(ii) f"t;Fn;t (")g is an m.d.s. such that E ("itjFn;t�1 (")) = 0 a.s. for each i:
(iii) E ("it"jtjFn;t�1 (")) = !ij for each pair (i; j). Let �2i � !ii: 0 < c � min1�i�n �2i ;max1�i;j�n j!ij j

� c < 1; max1�i�nE
�
"8it
�
� c < 1; limn!1

1
n

Pn
i=1

Pn
j=1 j!ij j < 1; limn!1

1
n2

Pn
i=1

Pn
j=1

Pn
k=1Pn

l=1 j&ijk&ijlj <1; and limn!1
1
n2

P
1�i1 6=i2�n

P
1�i3 6=i4�n j�i1i2i3i4 j <1; where &ijk � E ("it"jt"kt)

and �i1i2i3i4 � E ("i1t"i2t"i3t"i4t) :
(iv) Let �it � "2it � �2i : There exists an even number � � 4 such that 1

nT�=2

Pn
i=1

P
1�t1;t2;:::;t��T

E
�
�it1�it2 :::�it�

�
<1:

(v) "it is independent of vjs for all i; j; t; s:

(vi) There exists a d� d positive de�nite matrix �v" such that as n!1;

1

n

nX
i=1

nX
j=1

E
�
vi1v

0
j1

�
E ("i1"j1)! �v":

Assumption A3. The trend functions fi (�) and gi (�) have continuous derivatives up to the
(p+ 1)th order.

Assumption A4. The kernel functions k (�) and w (�) are continuous and symmetric p.d.f.�s with
compact support [�1; 1].

Assumption A5. As (n; T )!1; b! 0; h! 0,
p
nb�1h2= log (nT )!1; min(Tb; nh1=2)!1;

n1=2Th2p+2 ! 0; and n1=2+2=�T�1 ! 0:

Remark 1. A1 is similar to Assumption A2 in CGL (2010). Like CGL, we allow for cross sectional
dependence in fvitg and the degree of cross sectional dependence is controlled by the moment conditions
in A1(iii). Unlike CGL, we allow fXitg to possess heterogeneous time trends fgig in (3.1), and we
relax their i.i.d. assumption of vt to the m.d.s. condition. A2 speci�es conditions on f"itg and their
interaction with fvitg : Note that we allow for cross sectional dependence in f"itg but rule out serial
dependence in A2(ii). To facilitate the derivation of the asymptotic variance of our test statistic, we

also impose time-invariant conditional correlations among all cross sectional units in A2(iii). A2(iv) is

readily satis�ed under suitable mixing conditions together with moment conditions. The independence

between f"itg and fvitg in A2(v) can be relaxed by modifying the proofs in CGL (2010) signi�cantly.
A3 is standard for local polynomial regressions. A4 is a mild and commonly-used condition in the

nonparametrics literature. A5 speci�es conditions on the bandwidths h and b and sample sizes n and

T . Note that we allow n=T ! c 2 [0;1] as (n; T ) ! 1: If we use the optimal rate of bandwidths,
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i.e., h / (nT )�1=(2p+3) in the p-th order local polynomial regression and b / T�1=5 in the local linear
regression, then A5 requires

n4p+5

T
!1; n

1
2�

1
2p+3T

1
10�

1
2p+3

log (nT )
!1; (nT )

1
2p+3

n1=2
! 0; and

n1=2+2=�

T
! 0:

More speci�cally, if we choose p = 3, then A5 implies: n7=18=(T 1=90 log (nT )) ! 1, T=n3:5 ! 0, and

n1=2+2=�=T ! 0: If n / T a, A5 requires a 2 (2=7; 1= (0:5 + 2=�)) :

3.2 Asymptotic null distribution

Let �Hts denote the (t; s)th element of �H. Let �ts � T �Hts� 1 and Q � T�1diag(�11; : : : ; �TT ). De�ne

BnT �
r
b

n

nX
i=1

"0iQ"i
T�1TSSi

;


nT � 2b

T 2

X
1�t6=s�T

�2ts

0@ 1
n

nX
i=1

nX
j=1

�2ij

1A ; where �ij � !ij��1i ��1j

�nT � n1=2Tb1=2R
2 �BnT =

r
b

n

nX
i=1

ESSi � "0iQ"i
T�1TSSi

:

The following theorem gives the asymptotic null distribution of �nT .

Theorem 3.1 Suppose Assumptions A1-A5 hold. Then under H0,

�nT
d! N (0;
0)

where 
0 � lim(n;T )!1
nT :

Remark 2. The proof of the above theorem is lengthy and involves several subsidiary propositions,
which are given in Appendix A. Under the null hypothesis, we �rst demonstrate that �nT = �nT;1 +

oP (1), where �nT;1 �
Pn

i=1 'i ("i) and 'i ("i) = n
�1=2T�1b1=2

P
1�t<s�T �ts"it"is=�

2
i . Then we apply

the martingale central limit theorem (CLT) to show that �nT;1
d! N (0;
0). In general, �nT is not

asymptotically pivotal as cross sectional dependence enters its asymptotic variance 
0: Nevertheless,

if cross sectional dependence is absent, then �nT is an asymptotic pivotal test because now 
0 =

lim(n;T )!1
2b
T 2

P
1�t6=s�T �

2
ts; which is free of nuisance parameters. This is one advantage to base a

test on the scale-free nonparametric R2 measure.

To implement the test, we need to estimate both the asymptotic bias and variance terms. Let

bBnT �r b

n

nX
i=1

bu0iMQMbui
TSSi=T

and b
nT � 2b

T 2

X
1�t6=s�T

�2ts

0@ 1
n

nX
i=1

nX
j=1

b�2ij
1A

where b�ij � !̂ij= (b�i�̂j), !̂ij � T�1
PT

t=1(buit � ûi)(bujt � ûj), b�2i = T�1
PT

t=1(buit � ûi)2 and ûi �
T�1

PT
t=1 buit. We show in the proof of Corollary 3.2 below that bBnT = BnT + oP (1) and b
nT =

10




0 + oP (1). Then we obtain a feasible test statistic as

�nT =
n1=2Tb1=2R

2 � bBnTqb
nT =
1qb
nT

r
b

n

nX
i=1

ESSi � bu0iMQMbui
TSSi=T

: (3.2)

Corollary 3.2 Under Assumptions A1-A5, �nT
d! N (0; 1) :

We then compare �nT with the one-sided critical value z�, i.e., the upper �th percentile from the

standard normal distribution. We reject the null when �nT > z� at the � signi�cance level.

3.3 Asymptotic distribution under local alternatives

To examine the asymptotic local power of our test, we consider the following sequence of Pitman local

alternatives:

H1 (
nT ) : fi (�) = f (�) + 
nT�ni (�) for all � 2 [0; 1] and i = 1; :::; n (3.3)

where 
nT ! 0 as (n; T )!1 and �ni (�) is a continuous function on [0; 1]. Let�ni � (�ni (1=T ) ; :::;
�ni (T=T ))

0. De�ne

�0 � lim
(n;T )!1

1

nT

nX
i=1

�0
ni

�
�H � L

�
�ni=�

2
i :

In the appendix we show that �0 = Cw limn!1(n
�1Pn

i=1

R 1
0
�2ni (�) d�=�

2
i ); where Cw �

R 1
�1f
R 1
�1[1+

!�12 u (u� v)] w (u)w (u� v) du [
R 1
�1 w (z � v) dz]

�1 � 1gdv and !2 �
R 1
�1 w(u)u

2du.

To derive the asymptotic property of our test under the alternatives, we add the following assump-

tion.

Assumption A6. n�1
Pn

i=1

R 1
0
jgi (�)� g (�)j d� = o (1) where g (�) � n�1

Pn
i=1 gi (�) :

That is, the nonparametric trending functions fgi (�) ; 1 � i � ng that appear in A1 are asymp-
totically homogeneous. This assumption is needed to determine the probability order of b� � � under
H1 (
nT ) and H1: Without A6, we can only show that b� � � = OP (
nT ) under H1 (
nT ) and thatb� � � = OP (1) under H1 for 
nT that converges to zero no faster than n

�1=2T�1=2: With A6, we

demonstrate in Lemma E.6 that b� � � = oP (
nT ) under H1 (
nT ) and that b� � � = oP (1) under H1;
which are su¢ cient for us to establish the local power property and the global consistency of our test

respectively in Theorems 3.3 and 3.4 below.

The following theorem establishes the local power property of our test.

Theorem 3.3 Suppose Assumptions A1-A6 hold. Suppose that �ni (�) is a continuous function such
that

Pn
i=1�ni (�) = 0 for � 2 [0; 1] and supn�1max1�i�n

R 1
0
�2ni (�) d� < 1. Then with 
nT =

n�1=4T�1=2b�1=4 in (3.3) the local power of our test satis�es

P
�
�nT > z�jH1 (
nT )

�
! 1� �

�
z� ��0=

p

0

�
;

where � (�) is the cumulative distribution function (CDF) of the standard normal distribution.
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Remark 3. Theorem 3.3 implies that our test has nontrivial asymptotic power against alternatives
that diverge from the null at the rate n�1=4T�1=2b�1=4. The power increases with the magnitude of

�0. Clearly, as either n or T increases, the power of our test will increase but it increases faster as

T !1 than as n!1 for the same choice of b:

3.4 Consistency of the test

To study the consistency of our test, we take 
nT = 1 and �ni (�) = �i (�) in (3.3), where �i (�) is a
continuous function on [0; 1] such that c� � n�1

Pn
i=1

R 1
0
�i (�)

2
d� � c� for some 0 < c� < c� <1.

Let �i � (�i (1=T ) ; :::;�i (T=T ))0. De�ne

�A � lim
(n;T )!1

1

nT

nX
i=1

�0
i

�
�H � L

�
�i=�

2
i :

where �2i � �2i +
R 1
0
�i (�)

2
d� � (

R 1
0
�i (�) d�)

2: The following theorem establishes the consistency of

the test.

Theorem 3.4 Suppose Assumptions A1-A6 hold. Under H1,

n�1=2T�1b�1=2�nT = �A + oP (1) :

Theorem 3.4 implies that under H1, P
�
�nT > dnT

�
! 1 as (n; T ) ! 1 for any sequence dnT =

o
�
n1=2Tb1=2

�
provided �A > 0; thus establishing the global consistency of the test.

3.5 A bootstrap version of the test

It is well known that asymptotic normal distribution of many nonparametric tests may not approximate

their �nite sample distributions well in practice. Therefore we now propose a �xed-regressor bootstrap

method (e.g., Hansen (2000)) to obtain the bootstrap approximation to the �nite sample distribution

of our test statistic under the null.

We propose to generate the bootstrap version of our test statistic �nT as follows:

1. Obtain the augmented residuals buit = Yit � bf (t=T )�X 0
it
b�, where bf and b� are obtained by the

pro�le least squares estimation of the restricted model. Calculate the test statistic �nT .

2. Let ûi � T�1
PT

t=1 buit and but � (bu1t � û1; ::::; bunt � ûn)0: Obtain the bootstrap error u�t by
random sampling with replacement from fbus; s = 1; 2; :::; Tg : Generate the bootstrap analog of
Yit by holding Xit as �xed: Y �it = bf (t=T )+X 0

it
b�+ ûi+u�it for i = 1; :::; n and t = 1; : : : ; T , where

u�it is the ith element in the n-vector u
�
t :

3. Based on the bootstrap resample fY �it ; Xitg, run the pro�le least squares estimation of the
restricted model to obtain the bootstrap augmented residuals fbu�itg.

4. Based on fbu�itg, compute the bootstrap test statistic ��nT � (Tn1=2b1=2R2�� bB�nT )=qb
�nT ; where
R
2�
; bB�nT and b
�nT are de�ned analogously to R2; bBnT and b
nT ; respectively, but with buit being

replaced by bu�it.
12



5. Repeat Step 2-4 for B times and index the bootstrap statistics as f��nT;lgBl=1. The bootstrap p-
value is calculated by p� � B�1

PB
l=1 1f�

�
nT;l > �nT g, where 1 f�g is the usual indicator function.

Some facts are worth mentioning: (i) Conditionally on the original sample W � f (Yit; Xit) ; i =
1; : : : ; n; t = 1; : : : ; Tg, the bootstrap replicates u�it are dependent among cross sectional units, and
i.i.d. across time for �xed i; (ii) the regressor Xit is held �xed during the bootstrap procedure; (iii)

the null hypothesis of common trends is imposed in Step 2.

4 Simulations and Applications

This section conducts a small set of simulations to assess the �nite sample performance of the test. We

then report empirical applications of the common trend test to UK climate change data and OECD

real GDP growth data.

4.1 Simulation study

4.1.1 Data generating processes

We generate data according to six data generating processes (DGPs), among which DGPs 1-2 are used

for the level study, and DGPs 3-6 are for the power study.

DGP 1:

yit = xit� +

"�
t

T

�3
+
t

T

#
+ �i + "it;

where i = 1; :::; n; t = 1; :::; T; � = 2; for each i we generate xit as i.i.d. U (ai � 3; ai + 3) across t with
ai being i.i.d. N (0; 1), �i = T�1

PT
t=1 xit for i = 2; :::; n, and �1 = �

Pn
i=2 �i.

DGP 2:

yit = xit;1�1 + xit;2�2 +

"
2

�
t

T

�2
+
t

T

#
+ �i + "it;

where i = 1; :::; n; t = 1; :::; T; �1 = 1, �2 = 1=2; xit;1 = 1+sin (�t=T )+vit;1; xit;2 = 0:5t=T +vi2;t, vit;1
and vit;2 are each i.i.d. N (0; 1) and independent of each other, �i = max(T�1

PT
t=1 xit;1; T

�1PT
t=1 xit;2)

for i = 2; :::; n, and �1 = �
Pn

i=2 �i.

DGP 3:

yit = xit� +

"
(1 + �i1)

�
t

T

�3
+ (1 + �i2)

t

T

#
+ �i + "it;

where i = 1; :::; n; t = 1; :::; T; �, xit; and �i are generated as in DGP 1, and �i1 and �i2 are each i.i.d.

U (�1=2; 1=2) ; mutually independent and independent of xit and �i.
DGP 4:

yit = xit;1�1 + xit;2�2 +

"
(2 + �i1)

�
t

T

�2
+ (1 + �i2)

t

T

#
+ �i + "it;

where i = 1; :::; n; t = 1; :::; T; �1; �2, xit;1, xit;2, and �i are generated as in DGP 2, and �i1 and �i2
are each i.i.d. U (�1=2; 1=2) ; mutually independent and independent of (xit;1; xit;2; �i).
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DGP 5:

yit = xit� +

"
(1 + �nT;i1)

�
t

T

�3
+ (1 + �nT;i2)

t

T

#
+ �i + "it;

where i = 1; :::; n; t = 1; :::; T; �, xit; and �i are generated as in DGP 1, and �nT;i1 and �nT;i2 are each

i.i.d. U (�7
nT ; 7
nT ) ; mutually independent, and independent of xit and �i.
DGP 6:

yit = xit;1�1 + xit;2�2 +

"
(1 + �nT;i1)

�
t

T

�2
+ (1 + �nT;i2)

t

T

#
+ �i + "it;

where i = 1; :::; n; t = 1; :::; T; �1; �2, xit;1, xit;2, and �i are generated as in DGP 2, and �nT;i1 and

�nT;i2 are each i.i.d. U (�7
nT ; 7
nT ), mutually independent and independent of (xit;1; xit;2; �i).
Note that DGPs 5-6 are used to examine the �nite sample behavior of our test under the sequence

of Pitman local alternatives. For both DGPs, we set 
nT = n�1=4T�1=2
�
T�1=5

��1=4
by choosing

b = T�1=5, and keep f�nT;i1g and f�nT;i2g �xed through the simulations. Similarly, f�i1g and f�i2g
are kept �xed through the simulations for DGPs 3-4.

In all of the above DGPs, we generate f"itg analogously to that in CGL (2010) and independently
of all other variables on the right hand side of each DGP. Speci�cally, we generate "t as i.i.d. n-

dimensional vector of Gaussian variables with zero mean and covariance matrix (!ij)n�n. We consider

two con�gurations for (!ij)n�n :

CD (I) : !ij = 0:5jj�ij�i�j and CD (II): !ij = 0:8jj�ij�i�j ;

where i; j = 1; :::; n; and �i are i.i.d. U (0; 1). By construction, f"itg are independent across t and
cross sectionally dependent across i.

4.1.2 Test results

To implement our test, we need to choose two kernel functions and two bandwidth sequences. We

choose the Epanechnikov kernel for both k and w so that k (v) = w (v) = 0:75
�
1� v2

�
1fjvj � 1g. To

estimate the restricted semiparametric model, we use the third order local polynomial regression and

adopt the �leave-one-out�cross validation method to select the bandwidth h. To run the local linear

regression of buit on t=T for each cross sectional unit i; we set b = cq 1
12T

�1=5 for c = 0:5; 1 and 1:5 to

examine the sensitivity of our test to the choice of bandwidth.3

We consider n; T = 25; 50; 100. For each combination of n and T; we use 500 replications for both

level and power study and 200 bootstrap resamples in each replication.

Table 1 reports the �nite sample level of our test when the nominal level is 5%. From Table 1, we

see that the levels of our test behave reasonably well except when n=T is large (e.g., (n; T ) = (50; 25)

or (100; 25)). In the latter case, our test is undersized. For �xed n, as T increases, the level of our test

approaches the nominal level fairly fast. We also note that the size of our test is robust to di¤erent

choices of bandwidth.
3Here, the time trend regressor ft=T; t = 1; 2; :::; Tg can be regarded as uniformly distributed on the interval (0; 1)

and thus has variance 1/12.
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Table 1: Finite sample rejection frequency for DGPs 1-2 (nominal level: 0.05)

CD (I) CD (II)
DGP n T c = 0:5 c = 1 c = 1:5 c = 0:5 c = 1 c = 1:5
1 25 25 0.036 0.038 0.038 0.034 0.028 0.032

50 0.038 0.044 0.036 0.032 0.038 0.030
100 0.046 0.054 0.052 0.042 0.042 0.056

50 25 0.014 0.028 0.042 0.030 0.028 0.030
50 0.034 0.056 0.054 0.038 0.044 0.044
100 0.056 0.048 0.046 0.042 0.038 0.054

100 25 0.018 0.024 0.022 0.018 0.028 0.028
50 0.038 0.030 0.024 0.048 0.052 0.048
100 0.052 0.038 0.054 0.042 0.050 0.048

2 25 25 0.048 0.050 0.050 0.036 0.022 0.038
50 0.046 0.040 0.054 0.034 0.026 0.038
100 0.056 0.064 0.072 0.030 0.038 0.062

50 25 0.026 0.024 0.036 0.018 0.026 0.042
50 0.056 0.056 0.062 0.040 0.036 0.046
100 0.056 0.066 0.054 0.044 0.044 0.058

100 25 0.014 0.016 0.016 0.020 0.022 0.036
50 0.044 0.032 0.028 0.022 0.034 0.042
100 0.042 0.046 0.058 0.032 0.040 0.040

Tables 2 reports the �nite sample power of our test against global alternatives at the 5% nominal

level. There is no time trend in the regressor xit in DGP 3 whereas both regressors xit;1 and xit;2
contain a time trend component in DGP 4. We summarize some important �ndings from Table 2.

First, as either n or T increases, the power of our test generally increases and �nally reaches 1, but

it increases faster as T increases than as n increases. This is compatible with our asymptotic theory.

Secondly, comparing the power behavior of our test under CD (I) and CD (II) indicates that the degree

of cross sectional dependence in the error terms has negative impact on the power of our test. This

is as expected, as stronger cross sectional dependence implies less information in each additional cross

sectional observation. Third, the choice of the bandwidth b has some e¤ect on the power of our test.

Surprisingly, a larger value of b is associated with a larger testing power.

Table 3 reports the �nite sample power of our test against Pitman local alternatives at the 5%

nominal level. From the table, we see that our test has nontrivial power to detect the local alternatives

at the rate n�1=4T�1=2b�1=4, which con�rms the asymptotic result in Theorem 3.3. As either n or T

increases, we observe the alteration of the local power, which, unlike the case of global alternatives,

does not necessarily increase.

4.2 Applications to real data

In this subsection we apply our test to two real data sets to illustrate its power to detect deviations

from common trends, one is to UK climate change data and the other is to OECD economic growth
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Table 2: Finite sample rejection frequency for DGPs 3-4 (nominal level: 0.05)

CD (I) CD (II)
DGP n T c = 0:5 c = 1 c = 1:5 c = 0:5 c = 1 c = 1:5
3 25 25 0.294 0.486 0.650 0.128 0.184 0.336

50 0.502 0.710 0.840 0.182 0.326 0.454
100 0.938 0.996 0.998 0.580 0.888 0.980

50 25 0.196 0.424 0.606 0.072 0.136 0.224
50 0.700 0.936 0.982 0.268 0.496 0.654
100 1.000 1.000 1.000 0.924 0.996 1.000

100 25 0.456 0.806 0.938 0.162 0.336 0.494
50 0.912 1.000 1.000 0.462 0.756 0.898
100 1.000 1.000 1.000 0.910 0.998 1.000

4 25 25 0.288 0.530 0.730 0.124 0.206 0.344
50 0.432 0.674 0.788 0.156 0.308 0.434
100 0.790 0.948 0.988 0.348 0.656 0.816

50 25 0.352 0.732 0.900 0.142 0.282 0.424
50 0.802 0.962 0.988 0.336 0.586 0.776
100 1.000 1.000 1.000 0.926 0.996 0.998

100 25 0.334 0.712 0.884 0.126 0.234 0.384
50 0.972 0.996 1.000 0.500 0.824 0.946
100 1.000 1.000 1.000 0.926 0.996 1.000

Table 3: Finite sample rejection frequency for DGPs 5-6 (nominal level: 0.05)

CD (I) CD (II)
DGP n T 
nT c = 0:5 c = 1 c = 1:5 c = 0:5 c = 1 c = 1:5
5 25 25 0.1051 0.550 0.862 0.954 0.280 0.532 0.758

50 0.0769 0.574 0.796 0.876 0.218 0.390 0.542
100 0.0563 0.884 0.978 0.994 0.532 0.800 0.916

50 25 0.0883 0.436 0.774 0.928 0.200 0.344 0.530
50 0.0647 0.662 0.890 0.952 0.234 0.422 0.554
100 0.0473 0.878 0.976 0.998 0.336 0.556 0.708

100 25 0.0743 0.410 0.770 0.926 0.146 0.272 0.416
50 0.0544 0.612 0.884 0.954 0.198 0.332 0.474
100 0.0398 0.664 0.892 0.960 0.212 0.346 0.516

6 25 25 0.1051 0.570 0.896 0.956 0.288 0.574 0.796
50 0.0769 0.494 0.764 0.876 0.192 0.354 0.538
100 0.0563 0.878 0.976 0.994 0.386 0.408 0.770

50 25 0.0883 0.488 0.836 0.936 0.178 0.366 0.544
50 0.0647 0.702 0.914 0.980 0.232 0.416 0.580
100 0.0473 0.886 0.976 0.996 0.352 0.622 0.796

100 25 0.0743 0.350 0.702 0.902 0.130 0.276 0.422
50 0.0544 0.640 0.924 0.976 0.282 0.468 0.624
100 0.0398 0.722 0.918 0.962 0.290 0.472 0.662
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data.

4.2.1 UK climate change data

The issue of global warming has received a lot of recent attention. Atak, Linton, and Xiao (2011)

develop a semiparametric model to describe the trend in UK regional temperatures and other weather

outcomes over the last century, where a single common trend is assumed across all locations.4 It is in-

teresting to check whether such a common trend restriction is satis�ed. To conserve space, in this appli-

cation we investigate the pattern of climate change in UK over the last 32 years. The data set contains

monthly mean maximum temperature (in Celsius degrees, Tmax for short), mean minimum tempera-

ture (in Celsius degrees, Tmin for short), total rainfall (in millimeters, Rain for short) from 37 stations

covering UK (available from the UK Met O¢ ce at: www.metoce. gov.uk/climate/uk/stationdata). Ac-

cording to data availability we adopt a balanced panel data set that spans from October 1978 to July

2010 for 26 selected stations (n = 26; T = 382) to see if there exists a single common trend among

these selected stations in Tmax, Tmin, and Rain, respectively. Note that the time span for our data

set is much shorter than that in Atak, Linton and Xiao (2011).

For each series we consider a model of the following form

yit = D
0
t� + fi

�
t

T

�
+ �i + "it; i = 1; :::; 26; T = 1; :::; 382;

where yit is Tmax, Tmin, or Rain for station i at time t, Dt 2 R11 is a 11-dimensional vector of
monthly dummy variables, �i is the �xed e¤ect for station i; and the time trend function fi (�) is
unknown. We are interested in testing for fi = f for all i = 1; 2; :::; n.

To implement our test, the Epanechnikov kernel is used in both stages. We choose the bandwidth

h by the �leave-one-out� cross validation method and consider 10 di¤erent bandwidths of the form

b = c
q

1
12T

�1=5, where c = 0:6; 0:7; :::; 1:5. 10,000 bootstrap resamples are used to construct the

bootstrap distribution.

The results are reported in Table 4. From the table, we see that the p-values are smaller than 0.05

for Tmax and Tmin and larger than 0.1 for Rain for all choices of b. We can reject the null hypothesis

of common trends at the 5% level for both Tmax and Tmin but not for Rain even at the 10% level.

4.2.2 OECD economic growth data

Economic growth has been a key issue in macroeconomics over many decades with much attention to

time variation in total factor productivity as a key source of growth. In this application we consider a

model for the OECD economic growth data which explicitly incorporates a nonparametric time trend

to capture such e¤ects. The data set consists of four economic variables from 16 OECD countries

(n = 16) : Gross domestic product (GDP), Capital Stock (K) ; Labor input (L) ; and Human capital

(H). We download GDP (at 2005 US$), Capital stock (at 2005 US$), and Labor input (Employment, at

thousand persons) from http://www.datastream.com, and Human capital (Educational Attainment for

4Atak, Linton, and Xiao (2011) study a model that allows for heterogenous e¤ects of seasonal dummy variables and
use di¤erent data sets than ours. Consequently, our results are not directly comparable with theirs.
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Table 4: Bootstrap p-values for application to the U.K. climate data

Series n c 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Tmax 0.0060 0.0101 0.0073 0.0078 0.0061 0.0074 0.0091 0.0110 0.0151 0.0235
Tmin 0.0142 0.0160 0.0153 0.0130 0.0097 0.0053 0.0038 0.0029 0.0024 0.0010
Rain 0.8726 0.8163 0.7365 0.6592 0.5915 0.5670 0.5731 0.5890 0.6265 0.6790

Note: bandwidth b = c
p
1=12T�1=5 and bootstrap replication number B = 10; 000:

Population Aged 25 and Over) from http://www.barrolee.com. The �rst three variables are seasonally

adjusted quarterly data and span from 1975Q4 to 2010Q3 (T = 140). For Human capital, we have

only 5-years census data from the Barro-Lee dataset so that we have to use linear interpolation to

obtain the quarterly observations.

We consider the following model for growth rates

�lnGDPit = �1�lnLit + �2�lnKit + �3�lnHit + fi (t=T ) + �i + "it; i = 1; :::; 16; T = 1; :::; 140;

where �i is the �xed e¤ect, fi (�) is unknown smooth time trends function for country i; and�lnZit =lnZit
�lnZi;t�1 for Z = GDP; L; K; and H. We are interested in testing for common time trends for the
16 OECD countries.

The kernels, bandwidths, and number of bootstrap resamples are chosen as in the previous ap-

plication. In Figure 1 we plot the estimated common trends (where we use the recentered trend:bf (�)� R 1
0
bf (�) d� for comparison) from the restricted semiparametric regression model together with

its 90% pointwise con�dence bands. Also plotted in Figure 1 are three representative individual trend

functions for France, Spain, and UK, which are estimated from the unrestricted semiparametric regres-

sion models. For the purpose of comparison, for the unconstrained model we impose the identi�cation

condition that the integral of each individual trend function over (0; 1) equals zero and use the Silver-

man rule-of-thumb to choose the bandwidths. Clearly, Figure 1 suggests that the estimated common

trends function is signi�cantly di¤erent from zero over a wide range its support. In addition, the trend

functions for the three representative individual countries are obviously di¤erent from the estimated

common trends, which implies that the widely used common trends assumption may not be plausible

at all.

Table 5 reports the bootstrap p-values for our test of common trends. From the table, we can see

that the p-values are smaller than 0:1 for all bandwidths under investigation. Then we can reject the

null hypothesis of common trends at the 10% level.

5 Concluding Remarks

In this paper we propose a nonparametric test for common trends in semiparametric panel data models

with �xed e¤ects. We �rst estimate the restricted semiparametric model to obtain the augmented
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Figure 1: Trends in OECD real GDP growth rates from 1975Q4 to 2010Q3

Table 5: Bootstrap p-values for application to OECD real GDP growth rate data

Series n c 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

� lnGDP 0.0001 0.0005 0.0020 0.0063 0.0141 0.0281 0.0336 0.0536 0.0645 0.0820

Note: bandwidth b = c
p
1=12T�1=5 and bootstrap replication number B = 10; 000:
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residuals and then run a local linear regression of the augmented residuals on the time trend for

each cross sectional unit to obtain n nonparametric R2 measures. We construct our test statistic

by averaging these individual nonparametric R2�s, and show that after being appropriately centered

and scaled, the statistic is asymptotically normally distributed under both the null hypothesis of

common trends and a sequence of Pitman local alternatives. We also prove the consistency of the test

and propose a bootstrap procedure to obtain the bootstrap p-values. Monte Carlo simulations and

applications to both the UK climate change data and the OECD economic growth data are reported,

both of which point to the empirical fragility of a common trend assumption.

Some extensions are possible. First, our semiparametric model in (1.1) only complements that in

Atak, Linton, and Xiao (2011), and it is possible to allow the slope coe¢ cients also to be heterogenous

when we test for the null hypothesis of common trends for the nonparametric component. In this case,

the pro�le least squares estimation of Su and Ullah (2006) and Chen, Gao, and Li (2010) and the

nonparametric-R2-based test lose much of their advantage and the heterogenous slope coe¢ cients can

only be estimated at a slower convergence rate. It seems straightforward to estimate the unrestricted

model for each cross sectional unit to obtain the individual trend function estimates bfi (�) and propose
an L2-distance-based test by averaging the squared L2-distance between bfi (�) and bfj (�) for all i 6= j:
It is also possible to test for the homogeneity of the slope coe¢ cients and trend components jointly.

Second, to derive the distribution theory of our test statistic, we allow for cross sectional dependence

but rule out serial dependence. It is possible to allow the presence of both as in Bai (2009) by imposing

some high-level assumptions. Nevertheless, the asymptotic variance of the non-normalized version of

the test statistic will become complicated and there seems no obvious way to estimate it consistently

in order to implement our test in practice.
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APPENDIX

A Proof of Theorem 3.1

Noting that

�nT =

r
b

n

nX
i=1

(ESSi � "0iQ"i)
�2i

+

r
b

n

nX
i=1

(ESSi � "0iQ"i)
�

1

TSSi=T
� 1

�2i

�
� �nT;1 + �nT;2; say,

we complete the proof by showing that (i) �nT;1
d! N (0;
0), and (ii) �nT;2 = oP (1). These results

are established in Propositions A.1 and A.3, respectively.

Proposition A.1 �nT;1
d! N (0;
0).

Proof. Decompose

�nT;1 =

r
b

n

nX
i=1

bu0i( �H � L)bui
�2i

�
r
b

n

nX
i=1

"0iQ"i
�2i

� �nT;11 � �nT;12: (A.1)

Let X�
i � Xi � STX and "�i � "i � ST ": De�ne

f �
�
f (1=T ) ; :::; f (T=T )

�0
and �f� � f � STF; (A.2)

where f (�) � n�1
Pn

i=1 fi (�) : Noting that

bui = "�i �X�
i (
b� � �) + f� + (fi � f) + �iiT (A.3)

and MiT = 0; we have

�nT;11 =

r
b

n

nX
i=1

bu0i( �H � L)bui
�2i

=
10X
l=1

DnTl (A.4)

where

DnT1 �
q

b
n

nP
i=1

"�0i
�
�H � L

�
"�i =�

2
i ; DnT2 �

q
b
n

nP
i=1

(fi � f)0
�
�H � L

�
(fi � f)=�2i ;

DnT3 �
q

b
n

nP
i=1

(b� � �)0X�0
i

�
�H � L

�
X�
i (
b� � �)=�2i ; DnT4 �

q
b
n

nP
i=1

f
�0 � �H � L

�
f
�
=�2i ;

DnT5 � �2
q

b
n

nP
i=1

"�0i
�
�H � L

�
X�
i (
b� � �)=�2i ; DnT6 � 2

q
b
n

nP
i=1

"�0i
�
�H � L

�
f
�
=�2i ;

DnT7 � �2
q

b
n

nP
i=1

(b� � �)0X�0
i (
�H � L)f�=�2i ; DnT8 � 2

q
b
n

nP
i=1

"�0i (
�H � L)(fi � f)=�2i ;

DnT9 � �2
q

b
n

nP
i=1

(b� � �)0X�0
i (
�H � L)(fi � f)=�2i ; DnT10 � 2

q
b
n

nP
i=1

f
�0
( �H � L)(fi � f)=�2i :

Under H0; DnTs = 0 for s = 2; 8; 9; 10: We complete the proof of the proposition by showing that:

DnT1 � DnT1 � �nT;12
d! N (0;
0) ; and (A.5)

DnTs = oP (1) ; s = 3; :::; 7: (A.6)
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Step 1. We �rst prove (A.5). Noting that "�i � "i � ST "; we can decompose DnT1 as:

DnT1 =

r
b

n

nX
i=1

"�0i
�
�H � L

�
"�i

�2i
�
r
b

n

nX
i=1

"0iQ"i
�2i

=

r
b

n

nX
i=1

"0i
�
�H � L�Q

�
"i

�2i
+

r
b

n
"0S0T

�
�H � L

�
ST "

nX
i=1

1

�2i
� 2
r
b

n

nX
i=1

"0i
�
�H � L

�
ST "

�2i

� DnT11 +DnT12 � 2DnT13:

We prove (A.5) by showing that DnT11
d! N (0;
0) and DnT1s = oP (1) for s = 2; 3: The former claim

follows from Lemma A.2 below. We now prove the latter claim. Let DnT12 �
p
nb"0S0T

�
�H � L

�
ST ":

By Lemmas E.2(ii) and E.5, we have

DnT12 =
p
nb

TX
t=1

TX
s=1

(e01S (t=T ) ")
�
�Hts � T�1

�
(e01S (s=T ) ")

�
p
nb max

1�t�T
je01S (t=T ) "j

2
TX
t=1

TX
s=1

�� �Hts � T�1��
=

p
nbOP

�
log (nT )

nTh

�
O (T ) = OP

�
log (nT )p
nb�1h2

�
= oP (1) :

Then DnT12 = oP (1) by Assumption A2(iii).
For DnT13, we have DnT13 = n�1=2b1=2

Pn
i=1 "

0
i

�
�H � L

�
ST "=�

2
i = DnT131 +DnT132; where

DnT131 �
r
b

n

nX
i=1

TX
t=1

att"ite
0
1S (t=T ) "�

�2
i ; DnT132 �

r
b

n

nX
i=1

X
1�s 6=t�T

ats"ite
0
1S (s=T ) "�

�2
i ;

and ats � �Hts � T�1: For DnT131, write

DnT131 =
b1=2

n3=2

nX
i=1

nX
j=1

TX
t=1

att"ite
0
1s (t=T ) "j�

�2
i =

b1=2

Tn3=2

X
1�i;j�n

X
1�t;s�T

attctskh;ts"it"js�
�2
i

=
b1=2

Tn3=2

nX
i=1

TX
t=1

attcttkh;tt"
2
it�

�2
i +

b1=2

Tn3=2

nX
i=1

X
1�t<s�T

(attcts + asscst)kh;ts"it"is�
�2
i

+
b1=2

Tn3=2

X
1�i 6=j�n

TX
t=1

attcttkh;tt"it"jt�
�2
i +

b1=2

Tn3=2

X
1�i 6=j�n

X
1�t<s�T

(attcts + asscst)kh;ts"it"js�
�2
i

� DnT131a +DnT131b +DnT131c +DnT131d;

where cts � e01[T
�1z

[p]
h (t=T )

0
Kh (t=T ) z

[p]
h (t=T )]�1z

[p]
h;s (t=T ) : By Lemmas E.2 and E.4(iii) and As-

sumption A5, we have

E jDnT131aj �
k (0) b1=2

n1=2h
max
1�t�n

jattj
 
1

T

TX
t=1

jcttj
!
= n�1=2b1=2h�1O

�
T�1b�1

�
O (1) = o (1) :
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So DnT131a = oP (1) by the Markov inequality. For DnT131b, we have by Lemmas E.2 and E.4(ii)

E
�
D2nT131b

�
=

b

T 2n3

nX
i=1

nX
j=1

X
1�t1<t2�T

X
1�t3<t4�T

et1t2kh;t1t2et3t4kh;t3t4E ("it1"it2"jt3"jt4)�
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T 2n3
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X
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� 2b

T 2n3
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a2t1t1c

2
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2
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2
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i ��2j

� 2b

T 2n2

0@ 1
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nX
i=1
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�2ij

1A X
1�t1<t2�T

�
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2
t1t2 + a

2
t2t2c

2
t2t1

�
k2h;t1t2

� 2b

n2h

�
max
1�t�T

a2tt

�0@ 1
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�2ij

1A0@ h

T 2

X
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c2t1t2k
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1A
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2b

n2h
O
�
T�2b�2

�
O (1) = O

�
n�2T�2b�1h�1

�
= o (1) ;

where ets � attcts + asscst; �ij � !ij�
�1
i ��1j ; and the second equality follows from the fact that

E("it1"it2"jt1"jt3) = 0 and E("it1"it2"jt3"jt4) = 0 when t1; t2; t3; and t4 are all distinct by Assumptions

A2(ii)-(iii). It follows that DnT131b = oP (1) by the Chebyshev inequality. For DnT131c, we have by
Lemma E.2 and Assumptions A2 and A5

E
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D2nT131c
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It follows that DnT131c = oP (1) by the Chebyshev inequality. Similarly, DnT131d = oP (1) because

E (DnT131d)2 =
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In sum, we have shown that DnT131 = oP (1) :
For DnT132, we have
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Following the same arguments as used in the proof ofDnT131a = oP (1), we can show that E (DnT132a)2 =
o (1). It follows that DnT132a = oP (1) and DnT132 = oP (1).

Step 2. We now prove (A.6). For DnT3; by Assumption A2(iii), and Lemmas E.3, E.6(i) and E.7,
we have
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DnT5 = �2
"r

b

n

nX
i=1

"0i
�
�H � L

�
X�
i �

�2
i �

r
b

n

nX
i=1

(ST ")
0 � �H � L

�
X�
i �

�2
i

#
(b� � �)

� �2 (DnT51 �DnT52) (b� � �); say.

24



Noting that DnT51 =
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It follows that DnT61 = oP (1) by the Chebyshev inequality. For DnT62; we can follow the proof of
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Similarly, we have DnT72 = oP (1) : Thus DnT7 = oP (1) :
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Similarly,
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Similarly, by Assumption A2 and Lemmas E.2 and E.3(ii)
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Under H0, we have fi � f = 0. Thus TSSil = 0 for l = 7; : : : ; 10. We want to show that
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B Proof of Corollary 3.2
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Following the proof of Proposition A.3, we can show that BnT;11a = BnT;11a+oP (1) ; where BnT;11a =
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the di¤erence between two p.s.d. matrices: Q = Q��T�1IT ; where Q� =diag
�
�H11; :::; �HTT

�
: So we can

write BnT;11a = n�1=2b1=2
Pn

i=1 �
�2
i "

0
iLQ

�L"i �n�1=2T�1b1=2
Pn

i=1 �
�2
i "

0
iLL"i = BnT;11a1�BnT;11a2:

Noting that

E jBnT;11a1j = n�1=2b1=2
Xn

i=1
��2i E ("

0
iLQ

�L"i) = T
�2n�1=2b1=2

nX
i=1

TX
t=1

i0TQ
�iT

= O
�
T�1n1=2b1=2

�
tr (Q�) = O

�
T�1n1=2b1=2

�
O
�
b�1
�
= o (1) ;

and similarly E jBnT;11a2j = O
�
T�1n1=2b1=2

�
= o (1) ; we have BnT;11a = oP (1) by the Markov

inequality. Similarly, BnT;11b = oP (1) : Consequently BnT;11 = oP (1) : Analogously, we can show that
BnT;1l = oP (1) for l = 2; 3: It follows that BnT;1 = oP (1) :
Using the fact that jtr (AB)j � �max (A)tr(B) for any conformable p.s.d. matrix B and sym-

metric matrix A (see, e.g., Bernstein, 2005, p. 309) and that �max (M) = 1; we can show that

X�0
i
�QX�

i



2 =tr(MQMX�
i X

�0
i MQMX

�
i X

�0
i ) � kX�0

i QX
�
i k
2
: It follows that

BnT;2 = n�1=2b1=2
Xn

i=1
b��2i (b� � �)X�0

i
�QX�

i (
b� � �)

� n�1=2b1=2



b� � �


2Xn

i=1
b��2i kX�0

i QX
�
i k

= n�1=2b1=2OP

�
(nT )

�1
�
OP

�
nb�1

�
= OP

�
n�1=2T�1b�1=2

�
= oP (1)

where we use the fact that
Pn

i=1 b��2i kX�0
i QX

�
i k = OP

�
nb�1

�
: Similarly, we have

BnT;3 = n�1=2b1=2
Xn

i=1
b��2i f�0 �Qf� � n�1=2b1=2Xn

i=1
b��2i 


f�0Qf�




= n�1=2b1=2







TX
t=1

�
�Htt � T�1

� �
f (t=T )� e01S (t=T )F

�2





2Xn

i=1
b��2i

= n�1=2b1=2OP
�
b�1h2p+2

�
OP (n) = OP

�
n1=2h2p+2b�1=2

�
= oP (1) :

By the repeated use of the Cauchy-Schwarz inequality, we can show that BnT;il = oP (1) for l = 4; 5;

and 6.

To show (ii), it su¢ ces to show that DVnT � n�1
Pn

i=1

Pn
j=1(b�2ij � �2ij) = oP (1) : Noting that

x2 � y2 = (x� y)2 + 2 (x� y) y; we can decompose DVnT as follows

DVnT =
1

n

nX
i=1

nX
j=1

(b�ij � �ij)2 + 2

n

nX
i=1

nX
j=1

(b�ij � �ij)�ij � DVnT1 + 2DVnT2:
Following the argument in the proof of Proposition A.3, we can show that

DVnT1 =
1

n

nX
i=1

nX
j=1

�bu0iMbujb�ib�j � !ij
�i�j

�2
= DV nT1 + oP (1) ; and

DVnT2 =
1

n

nX
i=1

nX
j=1

�bu0iMbujb�ib�j � !ij
�i�j

�
�ij = DV nT2 + oP (1) :
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whereDV nT1 � n�1
Pn

i=1

Pn
j=1 �

�2
i ��2j (bu0iMbuj � !ij)2 andDV nT2 � n�1Pn

i=1

Pn
j=1 �ij�

�1
i ��1j (bu0iMbuj

�!ij):
By (A.3) and the fact that MiT = 0; we have that under H0; bu0iMbuj = "�0i M"�j +(b���)0X�0

i MX
�
j

(b� � �) + f
�0
M f

� � ("�0i MX
�
j + "�0j MX

�
i )(
b� � �) +

�
"�i + "

�
j

�0
M f

� � f
�0
M
�
X�
i +X

�
j

�
(b� � �) �P6

l=1DVnT;ijl: We can prove that DV nT1 = oP (1) by showing that

DV nT1;1 � 1

n

nX
i=1

nX
j=1

��2i ��2j (DVnT;ij1 � !ij)2 = oP (1) ; and

DV nT1;l � 1

n

nX
i=1

nX
j=1

��2i ��2j (DVnT;ijl)
2
= oP (1) for l = 2; :::; 6:

Similarly we can prove DV nT2 = oP (1) by using the above decomposition for bu0iMbuj : The details are
omitted for brevity.

C Proof of Theorem 3.3

By (3.2) we haveqb
nT�nT =
b1=2

n1=2

nX
i=1

b��2i �
ESSi � bu0i �Qbui�

=

r
b

n

nX
i=1

��2i (ESSi � "0iQ"i)�
r
b

n

nX
i=1

(ESSi � "0iQ"i)
�
1b�2i � 1

�2i

�

�
r
b

n

nX
i=1

��2i
�bu0i �Qbui � "0iQ"i�+r b

n

nX
i=1

�bu0i �Qbui � "0iQ"i�� 1b�2i � 1

�2i

�
� �nT;1 � �nT;2 � �nT;3 + �nT;4; say, (C.1)

where �nT;1 and �nT;2 are as de�ned in the proof of Theorem 3.1, and b�2i � TSSi=T: It is easy to

show that b
nT = 
0 + oP (1) under H1 (
nT ) with 
nT = n�1=4T�1=2b�1=4: It su¢ ces to show that:
(i) �nT;1

d! N (�0;
0), (ii) �nT;2 = oP (1) ; (iii) �nT;3 = oP (1) ; and (iv) �nT;4 = oP (1). We complete

the proof by Propositions C.1-C.4 below.

Proposition C.1 �nT;1
d! N (�0;
0) under H1 (
nT ).

Proof. Decompose �nT;1 = �nT;11 � �nT;12 where �nT;11 and �nT;12 are de�ned in (A.1). Us-
ing the notation de�ned in the proof of Proposition A.1, it su¢ ces to show: (i) DnT1 � DnT1 �
�nT;12

d! N (0;
0) ; (ii) DnT2 = �0 + oP (1) ; and (iii) DnTs = oP (1) for s = 3; :::; 10; where �0 =

lim(n;T )!1�nT and�nT � n�1=2b1=2
2nT
Pn

i=1 �
�2
i �0

ni(
�H�L)�ni = n

�1T�1
Pn

i=1 �
�2
i �0

ni

�
�H � L

�
�ni:

(i) follows the proof of Proposition A.1. We are left to prove (ii) and (iii).
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For (ii), letting !2 and S be as de�ned in the proof of Lemma E.2, by (E.1) we have

DnT2 = 
2nT

r
b

n

nX
i=1

��2i �0
ni(
�H � L)�ni =

1

nT

nX
i=1

��2i

TX
t=1

TX
s=1

�
�Hts � T�1

�
�ni

�
t

T

�
�ni

� s
T

�
=

1

nT 2

nX
i=1

��2i

TX
t=1

TX
s=1

�Z 1

0

wb;t (�) z
[1]

b;t (�)
0 S�1z

[1]

b;s (�)wb;s (�) d�

�
�Z 1

0

wb;t (�) d�

Z 1

0

wb;s (�) d�

��1
� 1
)
�ni

�
t

T

�
�ni

� s
T

�
+ o (1)

=
1

nT 2b

nX
i=1

��2i

bT (1�b)c�1X
t=bTbc+1

TX
s=1

(Z 1=b�t=(Tb)

�t=(Tb)

�
1 + !�12 u

�
u� s� t

T b

��
w (u)w

�
u� s� t

T b

�
du

�
"Z 1=b

0

w

�
z � t

T b

�
dz

Z 1=b

0

w

�
s� t
T b

�
�
z0 � t

T b

��
dz0

#�1
� 1

9=;�ni
�
t

T

�
�ni

� s
T

�
+ o (1)

=
1

nT

nX
i=1

��2i

bT (1�b)c�1X
t=bTbc+1

Z (T�t)=(Tb)

�t=(Tb)

�Z 1

�1

�
1 + !�12 u (u� v)

�
w (u)w (u� v) du

�
"Z (T�t)=(Tb)

�t=(Tb)
w (z) dz

Z (T�t)=(Tb)

�t=(Tb)
w (z0 � v) dz0

#�1
� 1

9=;�ni
�
t

T

�
�ni

�
t

T
+ vb

�
dv + o (1)

=
1

n

nX
i=1

��2i

Z 1

0

�ni (�)
2
d� Cw + o (1) ;

where Cw �
R 1
�1

nR 1
�1
�
1 + !�12 u (u� v)

�
w (u)w (u� v) du[

R 1
�1 w (z � v) dz]

�1 � 1
o
dv: That is,DnT2

= �nT = �0 + o (1) :

For (iii), following the proof of Proposition A.1, we can show that DnTl = oP (1) under H1(
nT )

for l = 3; :::; 7: It su¢ ces to prove (iii) by showing that DnTl = oP (1) under H1(
nT ) for l = 8; :::; 10:

For DnT8; write

DnT8 � 2

r
b

n

nX
i=1

"0i(
�H � L)(fi � f)=�2i � 2

r
b

n

nX
i=1

(ST ")
0( �H � L)(fi � f)=�2i

� 2DnT8;1 � 2DnT8;2:

It is easy to show that DnT8;1 = (b=n)
1=2
OP (
nT (n

1=2T�1=2b�1 + n1=2T 1=2)) = OP (n
�1=4T�1b�3=4+

n�1=4b1=4) = oP (1) ; and DnT8;2 = OP (n�1=4b1=4
p
log (nT )) = oP (1) : It follows that DnT8 = oP (1) :

By the Cauchy-Schwarz inequality, DnTl = oP (1) for l = 9; 10.

Proposition C.2 �nT;2 = oP (1) under H1 (
nT ) :

Proof. Analogously to the proof of Proposition A.3, we can write

�nT;2 = �
r
b

n

nX
i=1

(ESSi � "0iQ"i)
b�2i � �2i
�4i

+

r
b

n

nX
i=1

(ESSi � "0iQ"i)
�b�2i � �2i �2
�4i b�2i

� ��nT;21 + �nT;22; say.
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Note that b�2i =P10
l=1 TSSil=T by (A.8). First, we want to show that

max
1�i�n

��T�1TSSi1 � �2i �� = OP (�nT ) and max
1�i�n

T�1TSSil = oP (�nT ) for l = 2; : : : ; 10; (C.2)

where �nT � n1=�T�1=2. By (A.9), it su¢ ces to show that max1�i�n T�1TSSil = oP (�nT ), for

l = 7; : : : ; 10: In the sequel, we will frequently use the fact that max1�i�n sup�2[0;1]
��fi (�)� f (�)�� =

O (
nT ) and b� � � = oP (
nT ) under H1 (
nT ) by Lemma E.6(ii). Following the study of TSSi2 in

Proposition A.3, we can show that max1�i�n T�1TSSi7 = oP (�nT ). For TSSi8 we have

T�1TSSi8 = T�1
2nT�
0
niM�ni � T�1
2nT k�nik2

= n�1=2T�2b�1=2
TX
t=1

�2ni

�
t

T

�
= O

�
n�1=2T�1b�1=2

�
= o (vnT )

uniformly in i. By the Cauchy-Schwarz inequality, max1�i�n T�1TSSil = oP (�nT ) for l = 9; 10: Con-

sequently, we havemax1�i�n jb�2i��2i j = OP (�nT ). By the proof of Proposition A.3, bnPn
i=1 (ESSi � "0iQ"i)

2

= OP (1) : It follows that

�nT;22 �
n1=2max1�i�n jb�2i � �2i j2

min1�i�n �4i b�2i
"
b

n

nX
i=1

(ESSi � "0iQ"i)
2

#1=2
= n1=2OP

�
�2nT

�
= oP (1) :

To analyze �nT;21, using (A.8) we can write

�nT;21 =

r
b

n

nX
i=1

(ESSi � "0iQ"i)
b�2i � �2i
�4i

=
10X
l=1

�nT;21l;

where �nT;211 � (b=n)1=2
Pn

i=1 �
�4
i (ESSi � "0iQ"i) (T�1TSSi1��2i ); and �nT;21l � (b=n)

1=2Pn
i=1 �

�4
i

(ESSi � "0iQ"i)T�1TSSil for l = 2; :::; 10: Following the proof of Proposition A.1 and the analysis for
TSSil in the proof of Corollary 3.2, we can show that �nT;21l = oP (1) for l = 1; :::; 10: It follows that

�nT;21 = oP (1) :

Proposition C.3 �nT;3 = oP (1) under H1 (
nT ).

Proof. By the proof of Corollary 3.2, we can write

�nT;3 =

r
b

n

nX
i=1

��2i
�bu0i �Qbui � "0iQ"i� = 10X

l=1

BnT;l

where BnT1 = (b=n)
1=2Pn

i=1 �
�2
i (BnT;i1 � "0iQ"i) ; and BnTl = (b=n)

1=2Pn
i=1 �

�2
i BnT;il for l =

2; :::; 10: Following the argument in the proof of Corollary 3.2, we can readily show that BnTl = oP (1)

for l = 1; 2; :::; 6 as in the case when H0 holds. It remains to prove that BnTl = oP (1) for l = 7; :::; 10

under H1 (
nT ) : Noting that �max (M) = 1; we have

BnT10 =

r
b

n

nX
i=1

��2i (fi � f)0 �Q(fi � f) �
b1=2
2nTp

n

nX
i=1

��2i �0
niQ�ni

= n�1T�1
nX
i=1

��2i

TX
t=1

�2ni (t=T )
�
�Htt � T�1

�
= O

�
T�1b�1

�
= o (1) :
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By the Cauchy-Schwarz inequality, we have BnT7 = o (1) and BnT8 = oP (1) : Decompose BnT9 =

2n�1=2b1=2
Pn

i=1 �
�2
i "

0
i
�Q f

�
i � 2n�1=2b1=2

Pn
i=1 �

�2
i (ST ")

0 �Q f
�
i � 2BnT9;1 � 2BnT9;2: By moments

calculation and the Chebyshev inequality, we can show that BnT9;1 = OP
�
T 1=2hp+1b1=2

�
= oP (1) ;

and BnT9;2 = OP
�
T 1=2hp+1b1=2

�
= oP (1) : Consequently BnT9 = oP (1) :

Proposition C.4 �nT;4 = oP (1) under H1 (
nT ) :

Proof. Analogously to the proof of Proposition A.3, we can write

�nT;4 = �
r
b

n

nX
i=1

�bu0i �Qbui � "0iQ"i� b�2i � �2i�4i
+

r
b

n

nX
i=1

�bu0i �Qbui � "0iQ"i� �b�2i � �2i �2�4i b�2i
� ��nT;41 + �nT;42; say.

We prove the proposition by showing that �nT;4l = oP (1) for l = 1; 2: For �nT;41; write �nT;41 =P10
l=1 �nT;41 (l) ; where

�nT;41 (1) =

r
b

n

nX
i=1

��4i (BnT;i1 � "0iQ"i)
�b�2i � �2i � ,

�nT;41 (l) =

r
b

n

nX
i=1

��4i BnT;il
�b�2i � �2i � for l = 2; :::; 10;

and BnT;il are de�ned after (B.1). Further decompose �nT;41 (1) =
P10

m=1 �nT;41 (1;m) by using the

decomposition b�2i =P10
l=1 TSSil=T in (A.8), where �nT;41 (1; 1) = (b=n)

1=2Pn
i=1 �

�4
i (BnT;i1 � "0iQ"i)

(T�1TSSi1��2i ) and �nT;41 (1;m) = (b=n)
1=2Pn

i=1 �
�4
i (BnT;i1 � "0iQ"i)T�1TSSim for m = 2; :::; 10:

It is easy to show that �nT;41 (1;m) = oP (1) for m = 1; :::; 10: Consequently �nT;41 (1) = oP (1) :

Similarly, we can show �nT;41 (l) = (b=n)
1=2Pn

i=1 �
�4
i BnT;il(b�2i � �2i ) for l = 2; :::; 10 by using the

decomposition of b�2i in (A.8). It follows that �nT;41 = oP (1) :
For �nT;42; we can apply the decomposition of bu0i �Qbui in (B.1) to demonstrate that (b=n)1=2Pn

i=1 jbu0i �Qbui
�"0iQ"ij = oP

�
n1=2

�
: Then �nT;42 = oP

�
n1=2�2nT

�
= oP (n=T ) = oP (1) by (C.2).

D Proof of Theorem 3.4

As in the proof of Theorem 3.3, we have the decompositionqb
nT�nT = �nT1 � �nT2 � �nT3 + �nT4; (D.1)

where �nTl; l = 1; 2; 3; 4, are de�ned analogously to �nTl in (C.1) with �2i being replaced by �
2
i �

�2i + �i0; �i0 �
R 1
0
�2i (�) d� � [

R 1
0
�i (�) d� ]

2, and recall �i (�) � fi (�) � f (�) under H1: By (A.8),b�2i = T�1P10
l=1 TSSil: Under H1; by Lemma E.6(iii) the results in (A.9) become

max
1�i�n

��T�1TSSi1 � �2i �� = oP (1) and max
1�i�n

T�1TSSil = oP (1) for l = 2; : : : ; 6: (D.2)
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We can also show that T�1TSSil = oP (1) uniformly in i for l = 7; 9; and 10: For TSSi8; we have

uniformly in i;

T�1TSSi8 = T
�1

TX
t=1

[�i (t=T )��i]2 =
Z 1

0

�2i (�) d� �
�Z 1

0

�i (�) d�

�2
+ o (1) = �i0 + o (1) ;

where �i � T�1
PT

t=1�i (t=T ) : It follows that uniformly in i

b�2i = �2i +�i0 + oP (1) = �2i + oP (1) : (D.3)

That is, �2i is the probability limit of b�2i under H1: We prove the theorem by showing that (i) �nT1 �
(n1=2Tb1=2)�1�nT1 = �A + oP (1) ; and (ii) �nTl � (n1=2Tb1=2)�1�nTl = oP (1) for l = 2; 3; 4:
Following the proof of Propositions A.1 and C.1, we can show that �nT1 =

�
n1=2Tb1=2

��1
�nT1 =

�nT1 +oP (1) ; where �nT1 � (n1=2Tb1=2)�1DnT2: Following the analysis of DnT2 in the proof of

Proposition C.1, we have

�nT1 =
1

nT

nX
i=1

TX
t=1

TX
s=1

( �Hts � T�1)�i (t=T )�i (s=T ) =�2i = �A + o (1) ;

where �A is de�ned analogously to �0 with (�2i ;�ni) being replaced by (�2i ;�i): This proves (i).

Following the proof of Propositions A.3 and C.2-C.4, we can show that �nTl = oP (1) for l = 2; 3; 4:

E Some Useful Lemmas

In this Appendix, we present some technical lemmas that are used in the proofs of the main results in

the paper.

Lemma E.1 Let �tT �
R 1
0
wb
�
t
T � �

�
d� : Then 1

2 � min1�t�T �tT � max1�t�T �tT = 1:

Proof. First, write �tT =
R 1
0
w
�
�
b �

t
Tb

�
d
�
�
b

�
=
R 1=b
0

w
�
u� t

Tb

�
du =

R 1=b�t=(Tb)
�t=(Tb) w (u) du:

Clearly, max1�t�T �tT = 1: If Tb � t � T (1� b) ; then �tT =
R 1
�1 w (u) du = 1: If 1 � t = T� < Tb for

some � 2 (0; b); then

�tT =

Z 1=b�t=(Tb)

�t=(Tb)
w (s) ds =

Z 1

��
w (u) du �

Z 1

0

w (u) du =
1

2

where the last equality follows from the symmetry of w and the fact that
R 1
�1 w (u) du = 1: Similarly, if

T (1� b) < t = T� � T for some � 2 (1� b; 1); then we have
R 1
0
wb
�
t
T � �

�
d� =

R 1=b�t=(Tb)
�t=(Tb) w (u) du =R �

�1 w (u) du �
R 0
�1 w (u) du =

1
2 : This proves the lemma.

Lemma E.2 max1�t;s�T
�� �Hts�� � C1 (Tb)�1 for some constant C1 <1 where �Hts denote the (t; s)th

element of �H; �H �
R 1
0
H (�) d� ; and H (�) �Wb (�) z

[1]
b (�)

�
z
[1]
b (�)

0
Wb (�) z

[1]
b (�)

��1
z
[1]
b (�)

0
Wb (�) :
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Proof. Let Sb (�) � T�1z[1]b (�)
0
Wb (�) z

[1]
b (�) : Then

Sb (�) = S+ o (1) uniformly in � 2 (0; 1) ; (E.1)

where S �
 
1 0

0 !2

!
and !2 =

R 1
�1 w (u)u

2du: By (E.1), Lemma E.1, and Assumption A4, we have

�� �Hts�� =

����T�1 Z 1

0

z
[1]
b;t (�)

0
[Sb (�)]

�1
z
[1]
b;s (�)wb;t (�)wb;s (�) d�

����
�

����T�1 Z 1

0

z
[1]
b;t (�)

0 S�1z[1]b;s (�)wb;t (�)wb;s (�) d�
����

�
����T�1 Z 1

0

wb

�
t

T
� �
�
wb

� s
T
� �
�
d�(�tT�sT )

�1
����

+

����!�12 T�1
Z 1

0

�
t� �T
Tb

��
s� �T
Tb

�
wb

�
t

T
� �
�
wb

� s
T
� �
�
d�(�tT�sT )

�1
����

� C (Tb)
�1
Z 1

0

wb

�
t

T
� �
�
d�=�tT + C (Tb)

�1
Z jt� �T j

Tb
wb

�
t

T
� �
�
d�

� C (Tb)
�1
�
1 +

Z 1

�1
jujw (u) d�

�
� C1 (Tb)�1 ;

where A � B denotes A = B (1 + o (1)) :

Lemma E.3 (i) AT1 � b
P

1�t6=s�T a
2
ts = O (1) ; (ii) AT2 � T�1

PT
t=1

PT
s=1

PT
r=1 jatsatrj = O (1) ;

and (iii) AT3 �


 �H � L



 = O
�
b�1=2

�
; where recall ats � �Hts � T�1 denotes the (t; s)th element of

�H � L; and L � T�1iT i0T :

Proof. For (i) it is easy to show that AT1 = AT1+O (b) ; where AT1 � b
P

1�t6=s�T
�H2
ts: By (E.1),

AT1 � b

T 2

X
1�t6=s�T

�Z 1

0

z
[1]
b;t (�)S

�1z
[1]
b;s (�)wb;t (�)wb;s (�) d�

�2

=
b

T 2

X
1�t6=s�T

�Z 1

0

�
1 + !�12

�
�

b
� t

T b

���
b
� s

Tb

�� 1
b2
w
��
b
� s

Tb

�
w

�
�

b
� t

T b

�
d�

�2
(�tT�sT )

�2

=
b

T 2

X
1�t6=s�T

(Z 1=b�t=(Tb)

�t=(Tb)

�
1 + !�12 u

�
u+

t� s
Tb

��
1

b
w (u)w

�
u+

t� s
Tb

�
du

)2
(�tT�sT )

�2

=
b

T 2

bT (1�b)c�1X
t=bTbc+1

TX
s=1

�Z 1

�1

�
1 + !�12 u

�
u+

t� s
Tb

��
1

b
w (u)w

�
u+

t� s
Tb

�
du

�2

�
(Z 1=b

0

w

�
z � t

T b

�
dz

Z 1=b

0

w

�
s� t
T b

� (z0 � t

T b
)

�
dz0

)�2
+O (b)

=
1

T

bT (1�b)c�1X
t=bTbc+1

Z (T�t)=(Tb)

�t=(Tb)

�Z 1

�1

�
1 + !�12 u (u� v)

�
w (u)w (u� v) du

�2

�
 Z 1=b�t=(Tb)

�t=(Tb)
w (z) dz

Z 1=b�t=(Tb)

�t=(Tb)
w (z0 � v) dz0

!�2
dv + o (1)
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=

Z 1�b

b

Z 1

�1

�Z 1

�1

�
1 + !�12 u (u� v)

�
w (u)w (u� v) du

�2�Z 1

�1
w (z) dz

Z 1

�1
w (z0 � v) dz0

��2
dvdv0

+o (1)

=

Z 1

�1

�Z 1

�1

�
1 + !�12 u (u� v)

�
w (u)w (u� v) du

�2�Z 1

�1
w (z � v) dz

��2
dv + o (1) = O (1) :

By the same token, we can show (ii). For (iii), noting that


 �H � L



2 = P1�t6=s�T a
2
ts +

PT
t=1 a

2
tt =

O
�
b�1
�
+O

�
T�1b�2

�
;


 �H � L



 = O �b�1=2� as T�1b�1 = o (1) :
Lemma E.4 Let cts � e01[T�1z

[p]
h (t=T )

0
Kh (t=T ) z

[p]
h (t=T )]�1z

[p]
h;s (t=T ) : Then (i) CT1 � T�2

P
1�t6=s�T

jctsj kh;ts = O (1) ; (ii) CT2 � T�2h
P

1�t6=s�T c
2
tsk

2
h;ts = O (1) ; (iii) CT3 � T�1

PT
t=1 jcttj = O (1) ;

(iv) CT4 � T�1
PT

t=1 c
2
tt = O (1) :

Proof. (i) Let Sp;h (�) � T�1z
[p]
h (t=T )

0
Kh (t=T ) z

[p]
h (t=T ) : The (j; l)th element of Sp;h (�) is

sjl (�) =
1
Th

PT
s=1

�
s��T
Th

�j+l�2
k
�
s��T
Th

�
: For any � 2 (0; 1) ; we have by the de�nition of Riemann

integral that

sjl (�) =
1

Th

TX
r=1

� r
Th

� �

h

�j+l�2
k
� r
Th

� �

h

�
=

Z 1=h��=(Th)

��=(Th)
uj+l�2k (u) du+ o (1)

=

Z 1

�1
uj+l�2k (u) du+ o (1) :

That is, Sp;h (�) = Sp + o (1) for any � 2 (0; 1) ; where

Sp=

0BBBB@
�0 �1 � � � �p

�1 �2 � � � �p+1
...

...
. . .

...

�p �p+1 � � � �2p

1CCCCA ;
and �j �

R 1
�1 v

jk (v) dv for j = 0; 1; :::; 2p: It follows that

CT1 =
1

T 2h

TX
t=1

TX
s=1

����e01S�1p �
1;
s� t
Th

; ...;
�
s� t
Th

�p����� k�s� tTh

�
+ o (1)

=
1

T

TX
t=1

Z (T�t)=(Th)

�t=(Th)

��e01S�1p [1; v; ...; vp]
�� k (v) dv + o (1)

=
1

T

bT (1�h)c�1X
t=bThc+1

Z (T�t)=(Th)

�t=(Th)

��e01S�1p [1; v; ...; vp]
�� k (v) dv + o (1)

=

Z 1

�1

��e01S�1p [1; v; ...; vp]
�� k (v) dv + o (1) = O (1) :

This proves (i). By the same token,

CT2 =
1

T 2h

TX
t=1

TX
s=1

����e01S�1p �
1;
s� t
Th

; ...;
�
s� t
Th

�p�����2 k�s� tTh

�2
+ o (1)

=

Z 1

�1

��e01S�1p [1; v; ...; vp]
��2 k (v)2 dv + o (1) = O (1) :
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Similarly, we can prove (iii)-(iv).

Lemma E.5 sup�2(0;1) e
0
1S (�) " = OP

�p
log (nT ) = (nTh)

�
:

Proof. The proof is analogous to that of (A.11) in Chen, Gao, and Li (2010, pp. 27-30).

Lemma E.6 Suppose Assumptions A1-A5 hold. Recall 
nT = n�1=4T�1=2b�1=2 in H1 (
nT ) : Then

as (n; T )!1;
(i) b� � � = OP �n�1=2T�1=2� under H0;
(ii) b� � � = oP (
nT ) under H1 (
nT ) provided that A6 also holds;
(iii) b� � � = oP (1) under H1 provided that A6 also holds.
Proof. (i) This can be done by following the proof of Theorem 3.1 in CGL (2010). Note that CGL

also proves the asymptotic normality under the independence of f("it; vit)g across t and the assumption
that gi in Assumption A1 is the same for all i (gi = g; say). One can verify that the above probability

order can be attained even if we relax their independence condition to our m.d.s. condition and their

homogenous trending assumption on g to our heterogeneous case.

(ii) Recalling that F � in 
 f and SnTF = SnTF, we have

b� � � = (X�0MDX
�)
�1
X�0MD("

� + F
�
) + (X�0MDX

�)
�1
X�0MD(F� F) � d1 + d2; say. (E.2)

The �rst term also appears under H0 and thus d1 = OP
�
n�1=2T�1=2

�
: The second term vanishes

under H0 and plays asymptotically non-negligible role under H1 (
nT ) : Let d2 � X�0MD(F�F): Note
that

d2 = X
�0(F� F)�X�0D (D0D)

�1
D(F� F): (E.3)

Similarly to the proof in CGL (2010), we can show that the leading term on the right hand side of the

above equation is X�0(F� F). Noting that Xit = gi (t=T ) + vit and X� = (I � SnT )X; we have

X�0(F� F) =

nX
i=1

TX
t=1

[Xit � e01S (t=T )X]
�
fi (t=T )� f (t=T )

�
=

nX
i=1

TX
t=1

vit
�
fi (t=T )� f (t=T )

�
�

nX
i=1

TX
t=1

fe01S (t=T )V g
�
fi (t=T )� f (t=T )

�
+

nX
i=1

TX
t=1

[gi (t=T )� g (t=T )]
�
fi (t=T )� f (t=T )

�
+

nX
i=1

TX
t=1

[g (t=T )� e01S (t=T )G]
�
fi (t=T )� f (t=T )

�
� 	nT1 �	nT2 +	nT3 +	nT4; (E.4)

where V � (v011; :::; v
0
1T ; :::; v

0
n1; :::; v

0
nT )

0, g (t=T ) � n�1
Pn

i=1 gi (t=T ), gi � (gi(1=T )
0; :::; gi (T=T )

0
)0

andG � (g01; :::;g0n)
0. Clearly	nTl = 0 for l = 2; 4 by the de�nition of f:Noting thatmax1�i�n sup0���1
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��fi (�)� f (�)�� = O (
nT ) ; we have
E k	nT1k2 =

nX
i=1

nX
j=1

TX
t=1

E (v0itvjt)
�
fi (t=T )� f (t=T )

� �
fj (t=T )� f (t=T )

�

�
�
max
1�i�n

sup
0���1

��fi (�)� f (�)���2
0@T nX

i=1

nX
j=1

jE (v0i1vj1)j

1A
= O

�

2nT

�
O (nT ) = o (nT ) ;

implying that 	nT1 = oP (
p
nT ): For 	nT3, we have

j	nT3j � max
1�i�n

sup
0���1

��fi (�)� f (�)�� nX
i=1

TX
t=1

jgi (t=T )� g (t=T )j

= O (
nT )T
nX
i=1

�Z 1

0

jgi (�)� g (�)j d� +O (1=T )
�

= O (
nT ) o (nT ) = o (
nTnT ) :

Consequently, we have shown that X�0(F � F) = OP (
p
nT ) + o (
nTnT ). It follows X

�0MD(F �
F) = OP (

p
nT ). Noting that (nT )�1X�0MDX

� = OP (1), we have (X�0MDX
�)
�1
X�0MD(F � F) =

oP (
nT ). Thus b� � � = oP (
nT ) under H1 (
nT ).
(iii) Using the notation above, we continue to have d1 = OP (n�1=2T�1=2) and (nT )

�1
X�0MDX

� =

OP (1) under H1: For d2; we analyze the dominant term X�0(F�F) by using the same decomposition
in (E.4). Clearly, we still have 	nT2 = 0, 	nT3 = oP (nT ) and 	nT4 = 0. For 	nT1; noting that

max1�i�n sup0���1
��fi (�)� f (�)�� = O (1) under H1, we have E(k	nT1k2) = O (nT ) ; which implies

that 	nT1 = OP (
p
nT ): Thus X�0(F� F) = oP (nT ) and b� � � = oP (1) under H1.

Remark. If gi (�)� g (�) = 0 for all � 2 [0; 1] ; then from the proof of (ii) and (iii) we can see thatb� � � = OP �n�1=2T�1=2� also holds under H1 (
nT ) and H1 (1) as 	nT3 = 0 in this case.
Lemma E.7 kX � SnTXk2 = OP (nT ) :

Proof. Recall gi � (gi (1=T ) ; :::; gi (T=T ))0 and G � (g01; :::;g0n)
0
: Noting that Xit = gi (t=T )+ vit,

we have

kX � SnTXk2

=
nX
i=1

TX
t=1

kXit � e1S (t=T )Xk2

=
nX
i=1

TX
t=1

kvit � e1S (t=T )V + [gi (t=T )� g (t=T )] + [g (t=T )� e1S (t=T )G]k2

=
nX
i=1

TX
t=1

v0itvit +
nX
i=1

TX
t=1

ke1S (t=T )V k2 +
nX
i=1

TX
t=1

kgi (t=T )� g (t=T )k2 +
nX
i=1

TX
t=1

kg (t=T )� e1S (t=T )Gk2
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+2
nX
i=1

TX
t=1

v0ite1S (t=T )V + 2
nX
i=1

TX
t=1

v0it (gi (t=T )� g (t=T )) + 2
nX
i=1

TX
t=1

v0it (g (t=T )� e1S (t=T )G)

+2
nX
i=1

TX
t=1

(e1S (t=T )V )
0
(g (t=T )� e1S (t=T )G) + 2

nX
i=1

TX
t=1

(e1S (t=T )V )
0
(gi (t=T )� g (t=T ))

+2
nX
i=1

TX
t=1

(gi (t=T )� g (t=T ))0 (g (t=T )� e1S (t=T )G) �
10X
r=1

�nT;r; say.

It is easy to show that: �nT;1 = OP (nT ) by the Markov inequality, �nT;2 = OP (nT log (nT ) =(nTh)) =

oP (nT ), �nT;3 = O (nT ) by the property of Riemann integral, �nT;4 = O
�
nTh2p+2

�
= o (nT ) by the

Taylor expansion. For the remaining terms, it is clear that �nT;r = 0 for r = 9; 10, and we can show

that
P8

r=6�nT;r = OP (nT ) by the Cauchy-Schwarz inequality.
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