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Abstract

This paper proposes a nonparametric test for common trends in semiparametric panel data models
with fixed effects based on a measure of nonparametric goodness-of-fit (R?). We first estimate the
model under the null hypothesis of common trends by the method of profile least squares, and obtain
the augmented residual which consistently estimates the sum of the fixed effect and the disturbance
under the null. Then we run a local linear regression of the augmented residuals on a time trend and
calculate the nonparametric R? for each cross section unit. The proposed test statistic is obtained by
averaging all cross sectional nonparametric R?’s, which is close to zero under the null and deviates
from zero under the alternative. We show that after appropriate standardization the test statistic is
asymptotically normally distributed under both the null hypothesis and a sequence of Pitman local
alternatives. We prove test consistency and propose a bootstrap procedure to obtain p-values. Monte
Carlo simulations indicate that the test performs well in finite samples. Empirical applications are
conducted exploring the commonality of spatial trends in UK climate change data and idiosyncratic
trends in OECD real GDP growth data. Both applications reveal the fragility of the widely adopted
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1 Introduction

Modeling trends in time series has a long history. Phillips (2001, 2005, 2010) provides recent overviews
covering the development, challenges, and some future directions of trend modeling in time series.
White and Granger (2011) offer working definitions of various kinds of trends and invite more dis-
cussions on trends in order to facilitate development of increasingly better methods for prediction,
estimation and hypothesis testing for non-stationary time-series data. Due to the wide availability of
panel data in recent years, research on trend modeling has spread to the panel data models. Most of
the literature falls into two categories depending on whether the trends are stochastic or deterministic.
But there is also work on evaporating trends (Phillips, 2007) and econometric convergence testing
(Phillips and Sul, 2007, 2009). For reviews on stochastic trends in panel data models, see Banerjee
(1999) and Breitung and Pesaran (2005).

Recently, some aspects of modeling deterministic time trends in nonparametric and semiparamet-
ric settings have attracted interest. Cai (2007) studies a time-varying coefficient time series model
with a time trend function and serially correlated errors to characterize the nonlinearity, nonstation-
arity, and trending phenomenon. Robinson (2010) considers nonparametric trending regression in
panel data models with cross-sectional dependence. Atak, Linton, and Xiao (2011) propose a semi-
parametric panel data model to model climate change in the United Kingdom (UK hereafter), where
seasonal dummies enter the model linearly with heterogeneous coefficients and the time trend enters
nonparametrically. Li, Chen, and Gao (2010) extend the work of Cai (2007) to panel data time-varying
coefficient models. Most recently, Chen, Gao, and Li (2010, CGL hereafter) extend Robinson’s (2010)
nonparametric trending panel data models to semiparametric partially linear panel data models with
cross-sectional dependence where all individual unit share a common time trend that enters the model
nonparametrically. They propose a semiparametric profile likelihood approach to estimate the model.

A conventional feature of work on deterministic trending panel models is the imposition of a common
trends assumption, implying that each individual unit follows the same time trend behavior. Such an
assumption greatly simplifies the estimation and inference process, and the proposed estimators can
be efficient if there is no heterogeneity in individual time trend functions and some other conditions
are met. Nevertheless, if the common trends assumption does not stand, the estimates based on
nonparametric or semiparametric panel data models with common trends will be generally inefficient
and statistical inference will be misleading. It is therefore prudent to test for the common trends
assumption before imposing it.

Since Stock and Watson (1988) there has been a large literature on testing for common trends. But
to our knowledge, most empirical works have focused on testing for common stochastic trends. Tests
for common deterministic trends are far and few between. Vogelsang and Franses (2005) propose tests
for common deterministic trend slopes by assuming linear trend functions and a stationary variance
process and examining whether two or more trend-stationary time series have the same slopes. Xu
(2011) considers tests for multivariate deterministic trend coefficients in the case of nonstationary
variance process. Sun (2011) develops a novel testing procedure for hypotheses on deterministic trends

in a multivariate trend stationary model where the long run variance is estimated by series method. In



all cases, the models are parametric and the asymptotic theory is established by passing the time series
dimension T to infinity and keeping the number of cross sectional units n fixed. Empirical applications
include Fomby and Vogelsang (2003) and Bacigédl (2005), who apply the Vogelsang-Franses test to
temperature data and geodetic data, respectively.

This paper develops a test for common trends in a semiparametric panel data model of the form
}/it = ﬁ/Xit +f1 (t/T) =+ «; +€ita = 17...,77,, t= 1,...,T, (11)

where (8 is a d X 1 vector of unknown parameters, X;; is a d x 1 vector of regressors, f; is an unknown
smooth time trend function for cross section unit 7, the o;’s represent fixed effects that can be correlated
with X, and €;+’s are idiosyncratic errors. The trend functions f; (¢/7) that appear in (1.1) provide for
idiosyncratic trends for each individual 7. For simplicity, we will assume that (i) {e;;} satisfies certain
martingale difference conditions along the time dimension but may be correlated across individuals,
and (ii) {e;+} are independent of {X;;}. Note that f; and «; are not identified in (1.1) without further
restrictions.

Model (1.1) covers and extends some existing models. First, when f; = 0 for all 4, (1.1) becomes
the traditional panel data model with fixed effects. Second, if n = 1, then model (1.1) reduces to
the model discussed in Gao and Hawthorne (2006). Third, when f; = f for some unknown smooth
function f and all 4, (1.1) becomes the semiparametric trending panel data model of CGL (2010).

The main objective of this paper is to construct a nonparametric test for common trends. Under
the null hypothesis of common trends: f; = f for all 4 in (1.1), we can pool the observations from
both cross section and time dimensions to estimate both the finite dimensional parameter (5) and the
infinite dimensional parameter (f) under the single identification restriction Y ;- ; a; =0 or f(0) =0,
whichever is convenient. Let u;; = a; + ;4. Let 1;; denote the estimate of u;; based on the pooled
regression. The residuals {u;;} should not contain any useful trending information in the data. This
motivates us to construct a residual-based test for the null hypothesis of common trends. To be
concrete, we will propose a test for common trends by averaging the n measures of nonparametric
goodness-of-fit (RQ) from the nonparametric time series regression of #;; on the time trend for each
cross sectional unit 7. Such nonparametric R? should tend to zero under the null hypothesis of common
trends and diverge from zero otherwise. We show that after being properly centered and scaled, the
average nonparametric R? is asymptotically normally distributed under the null hypothesis of common
trends and a sequence of Pitman local alternatives. We also establish the consistency of the test and
propose a bootstrap method to obtain the bootstrap p-values.

To proceed, it is worth mentioning that (1.1) complements the model of Atak, Linton, and Xiao
(2011) who allow for heterogenous slopes but a single nonparametric common trend across cross sec-

tions. As mentioned in the concluding remarks, it is also possible to allow the slope coefficients in

ITo the best of our knowledge, Su and Ullah (2011) are the first to suggest applying such a measure of nonparametric
R2 to conduct model specification test based on residuals from restricted parametric, nonparametric, or semiparametric
regressions, and apply this idea to test for conditional heteroskedasticity of unknown form. Clearly, the nonparametric
R? statistic can serve as a useful tool for testing many popular hypotheses in econometrics and statistics by playing a

role comparable to the important role that R? plays in the parametric setup.



(1.1) to vary across individuals and consider a joint test for the homogeneity of the slope coefficients
and trend components. But this is beyond the scope of the current paper.

The rest of the paper is organized as follows. The hypotheses and the test statistic are given in
Section 2. We study the asymptotic distributions of the test under the null and a sequence of local
alternatives, establish the consistency of the test, and propose a bootstrap procedure to obtain the
bootstrap p-values in Section 3. Section 4 conducts a small simulation experiment to evaluate the finite
sample performance of our test and reports empirical applications of the test to UK climate change
data and OECD economic growth data. Section 5 concludes.

NOTATION. Throughout the paper we adopt the following notation. For a matrix A, its transpose
is A’ and Euclidean norm is || A|| = [tr (44,41')]1/27 where = signifies “is defined as”. When A is a
symmetric matrix, we use Apmax(4) to denote its maximum eigenvalue. For a natural number [, we use
7; and I; to denote the [ x 1 vector of ones and the [ x [ identity matrix, respectively. For a function
f defined on the real line, we use f(*) to denote its a’th derivative whenever it is well defined. The
operator 2, denotes convergence in probability, and <, convergence in distribution. We use (n,T") — oo

to denote the joint convergence of n and 1" when n and T pass to the infinity simultaneously.

2 Basic Framework

In this section, we state the null and alternative hypotheses, introduce the estimation of the restricted
model under the null, and then propose a test statistic based on the average of nonparametric goodness-

of-fit measures.

2.1 Hypotheses

The main objective is to construct a test for common trends in model (1.1). We are interested in the

null hypothesis that
Hoy: fi (1) = f(7) for 7 € [0,1] and some smooth function f, for alli=1,...,n, (2.1)
i.e., all the n cross sectional units share the common trends function f. The alternative hypothesis is
H; : the negation of Hy.

As mentioned in the introduction, we will propose a residual-based test for the above null hypothesis.
To do so, we need to estimate the model under the null hypothesis and obtain the augmented residual,
which estimates «; +¢;;. Then for each i, we run the local linear regression of the augmented residuals
on t/T, and calculate the nonparametric R?. Our test statistic is constructed by averaging these n

nonparametric R?’s.



2.2 Estimation under the null
To proceed, we introduce the following notation.
Y, = (Ya,....Yir), Y=,....Y), X;=(Xa,...,Xir), X=(X],...,X}),
g = (ei,..eimr) =) a=(ag,...,an), D= (—in_1,In_1) Qir,
f; = (L(YT),....[:(T/T)), F=(f,....8), £=[f(/T),....f(T/T)] .
Note that under Hy, F =i, ® f, and we can write the model (1.1) as
Yie = X8+ f(t/T) + a; + €4, (2:2)
or in matrix notation as
Y=XB+1i,®f+Da+e, (2.3)

provided we impose the identification condition Y . ; a; = 0.

Following Su and Ullah (2006) and CGL (2010), we estimate the model (2.2) by using the profile
least squares method. Let k (-) denote a univariate kernel function and h a bandwidth. Let kj, () =
k(-/h) /h. For any positive integer p, let z,[lp]t ()= (1,(t/T =7) /h,...,[(t/T —7) /WP,

/
z,[f] (r) = (zgﬁ (T),,Z}[Lplr (T)) , and Z,[Lp] (r)= in®z,[lp] (7).

We assume that f is (p + 1)th order continuously differentiable a.e. Let D% f (1) = (f (1), hfW (1),
. hPf®) (1) /p!)'. Then for t/T in the neighborhood of 7 € (0, 1), we have by the pth order Taylor
expansion that f (t/T) = Dy f (r) 2, (1) + o((t/T — 7)"). Let kn (1) = kn (t/T —7), Kn(7) =
diag(kp,1 (1), ..., knr (7)), and K}, (7) = I, ® K}, (7). Define

s(r) = (z,[lp] () Ky, (1) z,[lp] (7')>71 z,[lp] (1) K} (1) and

s = (2P Ku(n) 2 (T))_lz,[f’] (1) K (r) = 01, @ s(7).
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The profile least squares method is composed of the following three steps:

1. Let 6 = (o/,8"). For given 6 and 7 € (0, 1), we estimate D f (1) by

~ /
D? ,f (r) = argmin (Y — X8 — Da— 7" (7) F) Ky, (7) (Y — XB—Da—Z" (7) F) .
’ FERp+1

Noting that S (7) D = 0 by straightforward calculations, the estimator ﬁi,o f(7) is in fact free

of v and its first element is given by

fo () =€&S (1) (Y = XB = Da) =n""Y €5 (n) (Y = Xif), (2.4)
i=1

where e; = (1,0,...,0) is a (p+1) x 1 vector. Let ?5 = (ﬁa(l/T),...,ﬁg(T/T))’, Sr =

([exS (1/T)),---,[e,S(T/T))) , and S,r =i, @ Sr. Then we have

Fp=i,®f =S (Y —Xj). (2.5)



2. We estimate (a, 8) by

~ ~ ! ~
(a,ﬁ) = argmin (Y — Xf - Da— Fﬁ) (Y — X8 - Da— FB)
B
= argmin (Y* — X*8 — Da)’' (Y* — X*B — Da)
0.8

where Y* = (Inr — Sp7)Y and X* = (Iyr — Spr) X. Let Mp = I,7 — D (D’D)_1 D’. Using

the formula for partitioned regression, we obtain

B = (X"MpX*) " X*MpY*, and (2.6a)
a = (d2,...0,) = (D'D) " D'(Y* — X*B). (2.6b)
Then a; can be estimated by a; = — Y i, @;.

3. Plugging (2.6a) into (2.4), we obtain the estimator of f (7):

f(r)=eS(r) (Y - XB). (2.7)
Let
~ ~ ~ / . ~ ~
f= (f(l/T) . .,f(T/T)) and F = S, (Y - Xﬂ) =i, ®F. (2.8)
After we obtain estimates of 5 and f (¢/T), we can estimate u;; = «; +¢€5 by Uy = Yy fB/X“ - f(t/T)
under the null. Let @; = (s, ..., Ur) and 4 = (@), ...,a,) . Then it is easy to verify that
@ = (e Sure) + Da+ X*(8-B) +F",
u;, = (85— Sre)+azir+ (X; — SrX) (B — B) + (f; — STF),
Uy = o+ e — A4S /T el + [Xie — €1 S (/T) X] (B — B) + [f: (t/T) — €18 (t/T) F,

where F* = (I,,7 — S,1) F.

2.3 A nonparametric R%-based test for common trends

The idea behind our test is simple. Under Hy, u; is a consistent estimate for u;; = «; + €4, and
there is no time trend in {uit}thl for each cross sectional unit 7. Nevertheless, under H; u;; includes an
individual-specific time trend component f; (t/T)— f° (t/T), where f° (7) = plim f () . This motivates
us to consider a residual-based test for common trends.

For each i, we propose to run the nonparametric regression of {ﬂit}thl on {t/T}tTZI:
Uip = m; (¢/T) +n;y (2.9)

where m; (1) = f; (1) — f°(7) and n;, = o; +ef, + (B*B)let + fO(t/T) — €S (¢t/T) F is the new error
term in the above regression. Clearly, under Hy we have m; (1) = 0 for 7 € [0, 1]. Given observations
{ﬂit}thl, the local linear regression of @;; on t/T is fitted by weighted least squares (WLS) as follows

1« t 2
min6R2 T Z [ﬂit — Cio — Ci1 (T — T>:| Wy, (T) (2.10)
t=1

(cio,ci1)



where b = b (T) is a bandwidth parameter such that b — Oas T — oo, Wy (1) = wy, (/T —7) / fol wy(t/T
—s)ds, wy, () = w (-/b) /b, and w () is a probability density function (p.d.f.) that has support [—1,1].
By the proof of Lemma E.1 in the appendix, Ay = fol wy (t/T —s)ds = 1 for t/T € [b,1 —b] and
is larger than 1/2 otherwise. Therefore, @, (7) plays the role of a boundary kernel to ensure that
fol Wy (T)dr =1forany t =1,...,7T. 2

Let ¢; = (¢, E»L‘l)/ denote the solution to the above minimization problem. Following Su and Ullah
(2011), the normal equations for the above regression imply the following local ANOVA decomposition
of the total sum of squares (TSS)

where

T

TSS; (1) = Z (@ — Ei)2wb,t (1),
t; -

ESS; (T) = Z (El() + ¢t (t/T — T) - ’LAI,Z) Wy ¢ (T) s
T

RSSi (1) = ) (i — o — ¢ (t/T — 7)) Wiy (1),

o
Il

1
and 4; = T~1 Zthl Uit A global ANOVA decomposition of T'SS; is given by
TSS; = ESS; + RSS; (2.12)

where

1 T 1 1
TSSl = / TSSZ (7’) dr = (’l/ljlt — Ei)z, ESSl = / ESSZ (7') dT, and RSSl = / RSSZ (7') dr.
0 — 0 0

t=1

(2.13)
Then one can define the nonparametric goodness-of-fit (R2) for the above local linear regression as
ESS;
Rz = L
t O TSS;

Under Hy, {4} contains no useful trending information so that the above R? should be close to 0 for
each individual i.

Let W, (1) =diag(wp1 (1) ,...,Wer (7)), H (1) = Wy (1) zl[)l] (1) (zl[}] (7) Wy (1) zl[)l] (T)) B zl[jl] (r)’
Wy (1), and H = fol H () dr. Tt is easy to show that

TSSl = a;Ma“ ESSl = ﬂ;(H — L)a“ and RSS, = ﬂ; (IT — H) ai,

2 Alternatively, one can use the standard kernel weight wy, (/T — 7) in place of W, (7) in (2.10) and decompose
TSS; (1) analogously to the decomposition in (2.11). But as \yp = fol wy (t/T — s)ds is not identically 1 for all ¢,
fol TSS; (7)d(7) in this case does not lead to the simple expression in (2.13).



where M = Iy — L and L = iri’/T. Define the average nonparametric R? as

—2_1 - _1 - ESS,
R :EZRE_E;TSSZ-'

i=1

Clearly 0 < ﬁz < 1 by construction. We will show that after being appropriately centered and scaled,
R is asymptotically normally distributed under the null and a sequence of Pitman local alternatives.
Before proceeding further, it is worth mentioning a related test statistic that is commonly used in
the literature. Under Hy, the m; (-) function in (2.9) is also common for all ¢ and thus can be written
as m (-). Since m (t/T) =0 for all t = 1,...,T under Hy we can estimate this zero function by pooling
the cross sectional and time series observations together to obtain the estimate m (-), say. Then we
can compare this estimate with the nonparametric trend regression estimate m; (¢/T") of m; (t/T) to
obtain the following Lo type test statistic
LSS iy (/) — i 4/ T

= [7;

P = it = z
Noting that the estimate 7 (¢/7) has a faster convergence rate than 1, (¢/T") to 0 under the null, it is
straightforward to show that under suitable conditions this test statistic is asymptotically equivalent
to Dpp = 2377, SO 7 (t/T)? under the null. Further noticing that Y., 7 (t/T)* /T'SS; can
be regarded as a version of nonparametric noncentered R? measure for the cross sectional unit %, we
can simply interpret D, as a weighted nonparametric noncentered R2-based test where the weight
for cross sectional unit ¢ is given by T'SS;. In this paper we focus on the test based on R? because
it is scale-free and is asymptotically pivotal under the null after bias-correction. See the remark after

Theorem 3.1 for further discussion.

3 Asymptotic Distributions

In this section we first present the assumptions that are used in later analysis and then study the
asymptotic distribution of average nonparametric R? under both the null hypothesis and a sequence of
Pitman local alternatives. We then prove the consistency of the test and propose a bootstrap procedure

to obtain bootstrap p-values.

3.1 Assumptions

Let F, + (§) denote the o-field generated by (£, ..., §,) for a time series {, }. To establish the asymptotic
distribution of our test statistic, we make the following assumptions.

Assumption Al. (i) The regressor X;; is generated as follows:

t
Xit = g (T> + Vgt (3.1)

(ii) Let v; = (Vigy o, Upg) for t = 1,...,T. {v;, Fns(v)} is a stationary martingale difference se-

quence (m.d.s.) of n x d random matrices.



(i) B [||’U¢t||2 | Fri—1 (U)} =02, a.s. for each ¢ and max;<i<,, vie]|* < ¢y < 00. There exist d x d

positive definite matrices 3, and X} such that

5
=0 (n6/2> ,

n

1 1 n n
- ZE (vivly) — Soy - Z ZE (viev};) — X5, and E

i=1 i=1 j=1

n
E Vit
i=1

for some § > 2.

Assumption A2. (i) Let ¢, = (€14, ...,en) for t =1,...,T. {g;,t > 1} is a stationary sequence.

(ii) {et, Fne (e)} is an m.d.s. such that E (e;|F,+—1 (¢)) = 0 a.s. for each i.

(iii) E (g4€t| Fn,t—1 (€)) = wij for each pair (7, j). Let 07 = wy;. 0 < ¢ < miny<i<, 07, maxi<; j<n |wij
<€ <00, maxi<i<n B (e5) <€ < 00, limy oo = 304 > iy lwij| < 00, limy e Lo dim1 D=t
Sy [sijesij| < 0o, and lim, e 25 D 1<y tin<n D1 <igtis<n | Fivizigis| < 00, Where 65 = E (€54€txt)
and K ipigi, = F (5i1t5i2t51'3t5i4t) .

(iv) Let &;, = €}, — 07. There exists an even number A > 4 such that —=z 37" >, o ¢
E (&1, &ity-Eiry) < 00.

(v) €4 is independent of vj, for all ¢, 7,¢, s.

(vi) There exists a d X d positive definite matrix 3,. such that as n — oo,

n n

Z Z E (”ﬂ”;l) E (gi1€j1) = Soe.

i=1j=1

1
n

Assumption A3. The trend functions f;(-) and g¢; (-) have continuous derivatives up to the
(p + 1)th order.

Assumption A4. The kernel functions k () and w (-) are continuous and symmetric p.d.f.’s with

compact support [—1,1].

Assumption A5. As (n,T) — oo, b — 0, h — 0, Vnb=1h2/log (nT) — oo, min(Tb, nh'/?) — oo,
nt/2Th?P+2 0, and n'/2t2/A7-1 0.

Remark 1. Al is similar to Assumption A2 in CGL (2010). Like CGL, we allow for cross sectional
dependence in {v;; } and the degree of cross sectional dependence is controlled by the moment conditions
in Al(iii). Unlike CGL, we allow {X;;} to possess heterogeneous time trends {g;} in (3.1), and we
relax their i.i.d. assumption of v; to the m.d.s. condition. A2 specifies conditions on {g;;} and their
interaction with {v;;}. Note that we allow for cross sectional dependence in {g;;} but rule out serial
dependence in A2(ii). To facilitate the derivation of the asymptotic variance of our test statistic, we
also impose time-invariant conditional correlations among all cross sectional units in A2(iii). A2(iv) is
readily satisfied under suitable mixing conditions together with moment conditions. The independence
between {g;:} and {v;} in A2(v) can be relaxed by modifying the proofs in CGL (2010) significantly.
A3 is standard for local polynomial regressions. A4 is a mild and commonly-used condition in the
nonparametrics literature. A5 specifies conditions on the bandwidths h and b and sample sizes n and

T. Note that we allow n/T — ¢ € [0,00] as (n,T) — oco. If we use the optimal rate of bandwidths,



ie., h o (nT)_l/(2p+3) in the p-th order local polynomial regression and b o< 7~1/5 in the local linear
regression, then A5 requires
nAp+5 N3 TE T s (nT)ﬁ n1/2+2/A
T 7 H e A

More specifically, if we choose p = 3, then A5 implies: n”/18 /(T log (nT)) — oo, T/n*% — 0, and
n' /222 )T — 0. If n oc T%, A5 requires a € (2/7,1/(0.54+2/))).

3.2 Asymptotic null distribution

Let H;, denote the (¢, s)th element of H. Let ays = THys — 1 and Q = T~ 'diag(au1, . .., arr). Define

el Qal
Vo3 s

BnT =
2b 1 n n
QnT = ﬁ Z at25 ﬁ Z Z pf] ’ where sz = wijo-i_lo'j_l
1<t#s<T i=1 j=1
ESS; —€Qz;
Lor = n'?TH?R — B,y = \/7 i
T R nT = Z T-1T3SS;

The following theorem gives the asymptotic null distribution of ', .
Theorem 3.1 Suppose Assumptions A1-A5 hold. Then under Hy,
Tor % N (0,9)
where Qo = lim, 1) o0 Qn7-

Remark 2. The proof of the above theorem is lengthy and involves several subsidiary propositions,
which are given in Appendix A. Under the null hypothesis, we first demonstrate that I,y = I'yyr1 +
op (1), where Iyrq = >0 ¢, (g5) and @, (g;) = n~ 12— 1p1/2 Zl§t<s§T Qis€it€is/o7. Then we apply
the martingale central limit theorem (CLT) to show that I'y7 1 4N (0,€0). In general, T',,r is not
asymptotically pivotal as cross sectional dependence enters its asymptotic variance €y. Nevertheless,
if cross sectional dependence is absent, then I'),r is an asymptotic pivotal test because now €y =

limy, 7y~ o0 %—2 Y o1t £5<T a?,, which is free of nuisance parameters. This is one advantage to base a

test on the scale-free nonparametric R? measure.

To implement the test, we need to estimate both the asymptotic bias and variance terms. Let
no
uMQMu; ~ 2D
Bur = \[ “rsoyr T = > e Z me
1<t#s<T i=1 j=1

where p;; = @ij/ (6:65), @iy = TV (@i — @) (@5 — ), 6; = T~V S (@i — 4;)? and @ =

71 Zthl ;. We show in the proof of Corollary 3.2 below that Bpr = Bur + op (1) and Qnr =

10



Qo + op (1). Then we obtain a feasible test statistic as

— pPTHPR - Bur _ \f ESS; — 2, MQM4;
I = = L L, 2
r = ﬁ Z TSS;)T (32)
nT

Q’rLT

Corollary 3.2 Under Assumptions A1-A5, Tpr 4N (0,1).

We then compare I, with the one-sided critical value zq, i.e., the upper ath percentile from the

standard normal distribution. We reject the null when T'),; > z, at the « significance level.

3.3 Asymptotic distribution under local alternatives

To examine the asymptotic local power of our test, we consider the following sequence of Pitman local

alternatives:
Hy (Vo) : [i (1) = F(7) + Ypplpi (7) for all 7 € [0,1] andi=1,..,n (3.3)

where v,,7 — 0 as (n,T) — oo and A,; (+) is a continuous function on [0,1]. Let A,; = (A; (1/T), ...,
A (T/T)). Define

Oy = i (H-L)Ay;/o}.
0 (n ’Il)nioo nT Z ni /0-1
In the appendix we show that @9 = C,, hmnﬁoo( D fo 2. (r)dr/o?), where C,, = f_ll{f_ll[l—i—
wy tu(u —v)] w(u)w (u—v)du | f_l (z —v)dz]™! — 1}dv and wy = f_ll w(u)u?du.

To derive the asymptotic property of our test under the alternatives, we add the following assump-

tion.
Assumption A6. n~ 'Y " | fol lg; (1) =g (7)|dr = 0(1) where g (-) =n"' 3", 9: ().

That is, the nonparametric trending functions {g; (-), 1 < ¢ < n} that appear in Al are asymp-
totically homogeneous. This assumption is needed to determine the probability order of B — [ under
Hi (v,,r) and Hy. Without A6, we can only show that B—B=0p (V) under Hi (7,,r) and that
B—pB=0p (1) under H, for =, that converges to zero no faster than n~/2T~1/2. With A6, we
demonstrate in Lemma E.6 that 3 — 3 = op (v,,7) under Hy (y,,7) and that B—B=op (1) under Hy,
which are sufficient for us to establish the local power property and the global consistency of our test
respectively in Theorems 3.3 and 3.4 below.

The following theorem establishes the local power property of our test.

Theorem 3.3 Suppose Assumptions A1-A6 hold. Suppose that A,; () is a continuous function such
that 37 | Api (1) = 0 for 7 € [0,1] and sup,>; maxi<i<n fol A2, (1)dr < oco. Then with v,; =
n~YAT=1/2p=1/% in (3.3) the local power of our test satisfies

P(fnT > zq|Hy (vnT)) —1—-® (za — @0/\/(2»0) ,

where ® (+) is the cumulative distribution function (CDF) of the standard normal distribution.
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Remark 3. Theorem 3.3 implies that our test has nontrivial asymptotic power against alternatives
that diverge from the null at the rate n=1/4T~1/2p=1/4 The power increases with the magnitude of
Op. Clearly, as either n or T increases, the power of our test will increase but it increases faster as

T — oo than as n — oo for the same choice of b.

3.4 Consistency of the test

To study the consistency of our test, we take v,p = 1 and A,; (1) = A; (7) in (3.3), where A, (+) is a
continuous function on [0, 1] such that c, <n !> " | fol A; (7)%dr < for some 0 < ¢p < Ea < 00.
Let A; = (A; (1/T),...,A; (T/T))". Define

1
O,= 1 —
A (n,]%rioo nT

Y Al (H-L)A/7;.
i=1

where 77 = 0? + fol A; (1) dr — (fol A; (1) dr)?. The following theorem establishes the consistency of
the test.

Theorem 3.4 Suppose Assumptions A1-A6 hold. Under Hy,
n_l/QT_lb_l/anT =04 +o0p (1) .

Theorem 3.4 implies that under Hy, P (fnT > dnT) — 1 as (n,T) — oo for any sequence d,r =
o (n1/2Tb1/2) provided © 4 > 0, thus establishing the global consistency of the test.

3.5 A bootstrap version of the test

It is well known that asymptotic normal distribution of many nonparametric tests may not approximate
their finite sample distributions well in practice. Therefore we now propose a fixed-regressor bootstrap
method (e.g., Hansen (2000)) to obtain the bootstrap approximation to the finite sample distribution
of our test statistic under the null.

We propose to generate the bootstrap version of our test statistic I',r as follows:

1. Obtain the augmented residuals u;; = Yy — J?(t/T) — X{,ﬁ, where f and 3 are obtained by the

profile least squares estimation of the restricted model. Calculate the test statistic I',,p.

2. Let 4; = T71 Zle Ui and Uy = (Urg — U1, .oey Upt — Up)'. Obtain the bootstrap error u} by
random sampling with replacement from {us,s = 1,2,...,T}. Generate the bootstrap analog of
Y by holding X;; as fixed: Y} = f(t/T) +X£tB+@ +uffori=1,..,nandt=1,...,T, where

uy, is the ith element in the n-vector uy.

3. Based on the bootstrap resample {Y;;, X;:}, run the profile least squares estimation of the
restricted model to obtain the bootstrap augmented residuals {u},}.

~

4. Based on {7}, compute the bootstrap test statistic T, , = (Tn1/2b1/2§2* — B:p) /) Q0 p, where
RQ*, E;T and Q;T are defined analogously to EQ, EnT and ﬁnT, respectively, but with 4;; being

replaced by uf,.

12



5. Repeat Step 2-4 for B times and index the bootstrap statistics as {fbe’l}lB: 1~ The bootstrap p-

value is calculated by p* = B~ Y7, 1{?;;:” > T,r}, where 1{-} is the usual indicator function.

Some facts are worth mentioning: (i) Conditionally on the original sample W = { (Y, X41), ¢ =
1,...,n, t = 1,...,T}, the bootstrap replicates u}, are dependent among cross sectional units, and
ii.d. across time for fixed i; (ii) the regressor X;; is held fixed during the bootstrap procedure; (iii)

the null hypothesis of common trends is imposed in Step 2.

4 Simulations and Applications

This section conducts a small set of simulations to assess the finite sample performance of the test. We
then report empirical applications of the common trend test to UK climate change data and OECD
real GDP growth data.

4.1 Simulation study
4.1.1 Data generating processes

We generate data according to six data generating processes (DGPs), among which DGPs 1-2 are used

for the level study, and DGPs 3-6 are for the power study.

DGP 1:
t\* L
T T
where i =1,...,n,t =1,...,T, 8 = 2, for each i we generate x;; as i.i.d. U (a; — 3,a; + 3) across t with
a; being i.i.d. N (0,1), a; =T~} Zthl zy fori=2,...,n,and ag = = >, ;.

DGP 2: )
t t
92( = i
() +7
wherei=1,..,n,t=1,....T, 6, =1, 8y =1/2, xjy1 = L +sin (7t/T) +vit 1, Tit.2 = 0.5¢/T +via 1, Vit
and vj 2 are each i.i.d. N (0,1) and independent of each other, o;; = max(7~* ZtT:l Tig1, 7! 23:1 Tit2)
fori=2,...,n,and oy = = > 1", ;.
DGP 3:

Yit = TS + + a; + €,

Yit = Tit, 181 + Tig,28, + + o + €4,

3
t t
Yir =z + [(14di1) (T> +(1+6i2)f + oy + €,

where i =1,...n,t=1,....T, B, x;, and «; are generated as in DGP 1, and J;; and §;2 are each i.i.d.
U (-1/2,1/2), mutually independent and independent of z;; and «;.
DGP 4:

Yit = Tit, 101 + Tit,208s + + oy + €,

2
(2+6i1) (;) + (14 652) %

where ¢ = 1,...,n,t = 1,...,T, By, By, Tit,1, Tit,2, and «; are generated as in DGP 2, and §;; and d;2

are each ii.d. U (—1/2,1/2), mutually independent and independent of (x;; 1, Zit 2, 0).
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DGP 5:

3
t t
Yit = Ty + [ (14 dnrin) (> + (L4 0nri2) = | + ai + €4,

T T

wherei=1,...,n,t=1,...,T, B, z;, and o; are generated as in DGP 1, and d,,7;1 and d,1,2 are each
iid. U(=7v,7, 7V,r), mutually independent, and independent of z;; and «;.

DGP 6:
+ Qy + €4y,

2
t t
Yit = Tit, 101 + Tit, 289 + [ (L4 0nri1) (T) + (1 + dnri2) T

where i = 1,...,n, t = 1,...,T, B, Ba, Tit,1, Tit,2, and «; are generated as in DGP 2, and d,,7,;1 and
dn12 are each 1id. U (—=7v,p, 7v,r), mutually independent and independent of (z:1, Zit,2, @;).

Note that DGPs 5-6 are used to examine the finite sample behavior of our test under the sequence
of Pitman local alternatives. For both DGPs, we set v,r = n~VAT=1/2 (T_1/5)71/4 by choosing
b=T"15 and keep {6nr,in} and {dn72} fixed through the simulations. Similarly, {d;1} and {d;2}
are kept fixed through the simulations for DGPs 3-4.

In all of the above DGPs, we generate {£;;} analogously to that in CGL (2010) and independently
of all other variables on the right hand side of each DGP. Specifically, we generate ¢; as i.i.d. n-
dimensional vector of Gaussian variables with zero mean and covariance matrix (wi;)nxn. We consider

two configurations for (w;;)nxn
CD (I) Wi = 0.5|j_i|0'i0'j and CD (II) Wij = 0.8”_”0'1'0']‘,

where 4, j = 1,...,n, and o; are i.i.d. U (0,1). By construction, {e;;} are independent across ¢ and

cross sectionally dependent across i.

4.1.2 Test results

To implement our test, we need to choose two kernel functions and two bandwidth sequences. We
choose the Epanechnikov kernel for both k and w so that k (v) = w (v) = 0.75 (1 — v?) 1{|v| < 1}. To
estimate the restricted semiparametric model, we use the third order local polynomial regression and
adopt the “leave-one-out” cross validation method to select the bandwidth h. To run the local linear
regression of u;; on t/T for each cross sectional unit ¢, we set b = (:\/%T*I/5 for c=0.5,1 and 1.5 to
examine the sensitivity of our test to the choice of bandwidth.?

We consider n, T = 25,50, 100. For each combination of n and T, we use 500 replications for both
level and power study and 200 bootstrap resamples in each replication.

Table 1 reports the finite sample level of our test when the nominal level is 5%. From Table 1, we
see that the levels of our test behave reasonably well except when n/T is large (e.g., (n,T) = (50, 25)
or (100,25)). In the latter case, our test is undersized. For fixed n, as T increases, the level of our test
approaches the nominal level fairly fast. We also note that the size of our test is robust to different
choices of bandwidth.

3Here, the time trend regressor {t/T, t = 1,2,...,T} can be regarded as uniformly distributed on the interval (0,1)

and thus has variance 1/12.
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Table 1: Finite sample rejection frequency for DGPs 1-2 (nominal level: 0.05)

CD () CD (II)
DGP n T c=05 ¢c=1 ¢=15 c=05 ¢=1 ¢=1.5
1 25 25 0.036 0.038 0.038 0.034 0.028 0.032
50 0.038 0.044 0.036 0.032 0.038 0.030
100 0.046 0.054 0.052 0.042 0.042 0.056
50 25 0.014 0.028 0.042 0.030 0.028 0.030
50 0.034 0.056 0.054 0.038 0.044 0.044
100 0.056 0.048 0.046 0.042 0.038 0.054
100 25 0.018 0.024 0.022 0.018 0.028 0.028
50 0.038 0.030 0.024 0.048 0.052 0.048
100 0.052 0.038 0.054 0.042 0.050 0.048
2 25 25 0.048 0.050 0.050 0.036 0.022 0.038
50 0.046 0.040 0.054 0.034 0.026 0.038
100 0.056 0.064 0.072 0.030 0.038 0.062
50 25 0.026 0.024 0.036 0.018 0.026 0.042
50 0.056 0.056 0.062 0.040 0.036 0.046
100 0.056 0.066 0.054 0.044 0.044 0.058
100 25 0.014 0.016 0.016 0.020 0.022 0.036
50 0.044 0.032 0.028 0.022 0.034 0.042
100 0.042 0.046 0.058 0.032 0.040 0.040

Tables 2 reports the finite sample power of our test against global alternatives at the 5% nominal
level. There is no time trend in the regressor x;; in DGP 3 whereas both regressors 1 and i 2
contain a time trend component in DGP 4. We summarize some important findings from Table 2.
First, as either n or T increases, the power of our test generally increases and finally reaches 1, but
it increases faster as T increases than as n increases. This is compatible with our asymptotic theory.
Secondly, comparing the power behavior of our test under CD (I) and CD (II) indicates that the degree
of cross sectional dependence in the error terms has negative impact on the power of our test. This
is as expected, as stronger cross sectional dependence implies less information in each additional cross
sectional observation. Third, the choice of the bandwidth b has some effect on the power of our test.
Surprisingly, a larger value of b is associated with a larger testing power.

Table 3 reports the finite sample power of our test against Pitman local alternatives at the 5%
nominal level. From the table, we see that our test has nontrivial power to detect the local alternatives
at the rate n=1/4T7~1/2p=1/4 which confirms the asymptotic result in Theorem 3.3. As either n or T
increases, we observe the alteration of the local power, which, unlike the case of global alternatives,

does not necessarily increase.

4.2 Applications to real data

In this subsection we apply our test to two real data sets to illustrate its power to detect deviations

from common trends, one is to UK climate change data and the other is to OECD economic growth

15



Table 2: Finite sample rejection frequency for DGPs 3-4 (nominal level: 0.05)

CD (I) CD (1II)
DGP n T c=05 ¢=1 ¢=1.5 c=05 ¢=1 ¢=15
3 25 25 0.294 0.486 0.650 0.128 0.184 0.336
50 0.502 0.710 0.840 0.182 0.326 0.454
100 0.938 0.996 0.998 0.580 0.888 0.980
50 25 0.196 0.424 0.606 0.072 0.136 0.224
50 0.700 0.936 0.982 0.268 0.496 0.654
100 1.000 1.000 1.000 0.924 0.996 1.000
100 25 0.456 0.806 0.938 0.162 0.336 0.494
50 0.912 1.000 1.000 0.462 0.756 0.898
100 1.000 1.000 1.000 0.910 0.998 1.000
4 25 25 0.288 0.530 0.730 0.124 0.206 0.344
50 0.432 0.674 0.788 0.156 0.308 0.434
100 0.790 0.948 0.988 0.348 0.656 0.816
50 25 0.352 0.732 0.900 0.142 0.282 0.424
50 0.802 0.962 0.988 0.336 0.586 0.776
100 1.000 1.000 1.000 0.926 0.996 0.998
100 25 0.334 0.712 0.884 0.126 0.234 0.384
50 0.972 0.996 1.000 0.500 0.824 0.946
100 1.000 1.000 1.000 0.926 0.996 1.000

Table 3: Finite sample rejection frequency for DGPs 5-6 (nominal level: 0.05)

CD () CD (1)
DGP n r VT c=05 ¢=1 ¢=15 c=05 ¢=1 c¢c=15
) 25 25 0.1051 0.550 0.862 0.954 0.280 0.532 0.758
50 0.0769 0.574  0.796 0.876 0.218 0.390 0.542
100 0.0563 0.884  0.978 0.994 0.532 0.800 0.916
50 25 0.0883 0.436 0.774  0.928 0.200 0.344  0.530
50 0.0647 0.662 0.890 0.952 0.234 0.422 0.554
100 0.0473 0.878 0.976 0.998 0.336 0.556 0.708
100 25 0.0743 0.410 0.770 0.926 0.146 0.272 0.416
50 0.0544 0.612 0.884  0.954 0.198 0.332 0.474
100 0.0398 0.664  0.892 0.960 0.212 0.346 0.516
6 25 25 0.1051 0.570 0.896 0.956 0.288 0.574 0.796
50 0.0769 0.494 0.764 0.876 0.192 0.354 0.538
100 0.0563 0.878 0.976 0.994 0.386 0.408 0.770
50 25 0.0883 0.488 0.836 0.936 0.178 0.366 0.544
50 0.0647 0.702 0.914  0.980 0.232 0.416 0.580
100 0.0473 0.886 0.976 0.996 0.352 0.622 0.796
100 25 0.0743 0.350 0.702 0.902 0.130 0.276 0.422
50 0.0544 0.640 0.924 0.976 0.282 0.468 0.624
100 0.0398 0.722 0.918 0.962 0.290 0.472 0.662
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data.

4.2.1 UK climate change data

The issue of global warming has received a lot of recent attention. Atak, Linton, and Xiao (2011)
develop a semiparametric model to describe the trend in UK regional temperatures and other weather
outcomes over the last century, where a single common trend is assumed across all locations.* It is in-
teresting to check whether such a common trend restriction is satisfied. To conserve space, in this appli-
cation we investigate the pattern of climate change in UK over the last 32 years. The data set contains
monthly mean maximum temperature (in Celsius degrees, Tmaz for short), mean minimum tempera-
ture (in Celsius degrees, Tmin for short), total rainfall (in millimeters, Rain for short) from 37 stations
covering UK (available from the UK Met Office at: www.metoce. gov.uk/climate/uk/stationdata). Ac-
cording to data availability we adopt a balanced panel data set that spans from October 1978 to July
2010 for 26 selected stations (n = 26, T' = 382) to see if there exists a single common trend among
these selected stations in Tmax, Tmin, and Rain, respectively. Note that the time span for our data
set is much shorter than that in Atak, Linton and Xiao (2011).

For each series we consider a model of the following form
t
vit = DB+ f; <T> +oa;+eq, 1=1,...,26, T=1,...,382,

where y;; is Tmax, Tmin, or Rain for station i at time ¢, D; € R is a 11-dimensional vector of
monthly dummy variables, «; is the fixed effect for station i, and the time trend function f;(-) is
unknown. We are interested in testing for f; = f for all: =1,2,...,n.

To implement our test, the Epanechnikov kernel is used in both stages. We choose the bandwidth
h by the “leave-one-out” cross validation method and consider 10 different bandwidths of the form
b = c\/ST~Y5, where ¢ = 0.6, 0.7,...,1.5. 10,000 bootstrap resamples are used to construct the
bootstrap distribution.

The results are reported in Table 4. From the table, we see that the p-values are smaller than 0.05
for Tmax and Tmin and larger than 0.1 for Rain for all choices of b. We can reject the null hypothesis

of common trends at the 5% level for both Tmaz and T'min but not for Rain even at the 10% level.

4.2.2 OECD economic growth data

Economic growth has been a key issue in macroeconomics over many decades with much attention to
time variation in total factor productivity as a key source of growth. In this application we consider a
model for the OECD economic growth data which explicitly incorporates a nonparametric time trend
to capture such effects. The data set consists of four economic variables from 16 OECD countries
(n = 16) : Gross domestic product (GDP), Capital Stock (K'), Labor input (L), and Human capital
(H). We download GDP (at 2005 US$), Capital stock (at 2005 US$), and Labor input (Employment, at

thousand persons) from http://www.datastream.com, and Human capital (Educational Attainment for

4 Atak, Linton, and Xiao (2011) study a model that allows for heterogenous effects of seasonal dummy variables and
use different data sets than ours. Consequently, our results are not directly comparable with theirs.
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Table 4: Bootstrap p-values for application to the U.K. climate data

Series \ ¢ 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 14 1.5
Tmax 0.0060 0.0101 0.0073 0.0078 0.0061 0.0074 0.0091 0.0110 0.0151 0.0235
Tmin 0.0142 0.0160 0.0153 0.0130 0.0097 0.0053 0.0038 0.0029 0.0024 0.0010
Rain 0.8726 0.8163 0.7365 0.6592 0.5915 0.5670 0.5731 0.5890 0.6265 0.6790

Note: bandwidth b = c\/1/12T_1/5 and bootstrap replication number B = 10, 000.

Population Aged 25 and Over) from http://www.barrolee.com. The first three variables are seasonally
adjusted quarterly data and span from 1975Q4 to 2010Q3 (7' = 140). For Human capital, we have
only 5-years census data from the Barro-Lee dataset so that we have to use linear interpolation to
obtain the quarterly observations.

We consider the following model for growth rates
AlHGDPZt = ﬁlAlnLit + BQAIHKit + ﬂ3A1HH¢t + fz (t/T) + o; + Eity 1= ].7 ceey ].67 T= 1, ceey 140,

where «; is the fixed effect, f; (+) is unknown smooth time trends function for country ¢, and AlnZ;; =InZ;;
—InZ, ;_; for Z = GDP, L, K, and H. We are interested in testing for common time trends for the
16 OECD countries.

The kernels, bandwidths, and number of bootstrap resamples are chosen as in the previous ap-
plication. In Figure 1 we plot the estimated common trends (where we use the recentered trend:
f(T) — fol f(T) dr for comparison) from the restricted semiparametric regression model together with
its 90% pointwise confidence bands. Also plotted in Figure 1 are three representative individual trend
functions for France, Spain, and UK, which are estimated from the unrestricted semiparametric regres-
sion models. For the purpose of comparison, for the unconstrained model we impose the identification
condition that the integral of each individual trend function over (0, 1) equals zero and use the Silver-
man rule-of-thumb to choose the bandwidths. Clearly, Figure 1 suggests that the estimated common
trends function is significantly different from zero over a wide range its support. In addition, the trend
functions for the three representative individual countries are obviously different from the estimated
common trends, which implies that the widely used common trends assumption may not be plausible
at all.

Table 5 reports the bootstrap p-values for our test of common trends. From the table, we can see
that the p-values are smaller than 0.1 for all bandwidths under investigation. Then we can reject the

null hypothesis of common trends at the 10% level.

5 Concluding Remarks

In this paper we propose a nonparametric test for common trends in semiparametric panel data models

with fixed effects. We first estimate the restricted semiparametric model to obtain the augmented
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Figure 1: Trends in OECD real GDP growth rates from 1975Q4 to 2010Q3
Table 5: Bootstrap p-values for application to OECD real GDP growth rate data
Series \ ¢ 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

AlnGDP 0.0001 0.0005 0.0020 0.0063 0.0141 0.0281 0.0336 0.0536 0.0645 0.0820

Note: bandwidth b = c\/l/IQT_1/5 and bootstrap replication number B = 10, 000.
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residuals and then run a local linear regression of the augmented residuals on the time trend for
each cross sectional unit to obtain m nonparametric R? measures. We construct our test statistic
by averaging these individual nonparametric R?’s, and show that after being appropriately centered
and scaled, the statistic is asymptotically normally distributed under both the null hypothesis of
common trends and a sequence of Pitman local alternatives. We also prove the consistency of the test
and propose a bootstrap procedure to obtain the bootstrap p-values. Monte Carlo simulations and
applications to both the UK climate change data and the OECD economic growth data are reported,
both of which point to the empirical fragility of a common trend assumption.

Some extensions are possible. First, our semiparametric model in (1.1) only complements that in
Atak, Linton, and Xiao (2011), and it is possible to allow the slope coefficients also to be heterogenous
when we test for the null hypothesis of common trends for the nonparametric component. In this case,
the profile least squares estimation of Su and Ullah (2006) and Chen, Gao, and Li (2010) and the
nonparametric- R2-based test lose much of their advantage and the heterogenous slope coefficients can
only be estimated at a slower convergence rate. It seems straightforward to estimate the unrestricted
model for each cross sectional unit to obtain the individual trend function estimates ﬁ (1) and propose
an Lo-distance-based test by averaging the squared Lo-distance between ﬁ (1) and f; (1) for all 4 # j.
It is also possible to test for the homogeneity of the slope coefficients and trend components jointly.
Second, to derive the distribution theory of our test statistic, we allow for cross sectional dependence
but rule out serial dependence. It is possible to allow the presence of both as in Bai (2009) by imposing
some high-level assumptions. Nevertheless, the asymptotic variance of the non-normalized version of
the test statistic will become complicated and there seems no obvious way to estimate it consistently

in order to implement our test in practice.
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APPENDIX

A Proof of Theorem 3.1

Noting that

r, - \/>Z (ESS; — 5@51 \/>Z ESS; — €,Qe¢;) (TS;/T_;?)

= Duri+Tarp2, say,

we complete the proof by showing that (i) T'pr1 4N (0,€0), and (ii) I'yyr2 = op (1). These results
are established in Propositions A.1 and A.3, respectively.

Proposition A.1 T'y7 4N (0,90).

Proof. Decompose

n A,
/b [b — €iQe;
Lnra = Z Q =lnra1 —arae. (A.1)

Let X} =X, — SrX and ¢ =¢; — Sye. Define

f=(F(1/T),...7(T/T)) and F* =F — S¢F, (A.2)
where f (1) =n"t 3" | fi (7). Noting that
U= — X[ (B-B)+F + (£ — ) + iz (A-3)

and Mip = 0, we have

n A,
Lnran = \/> ZD”TZ (A4)

where
Dpr = \/% S e (H-L)er/o?, Dyrs = \/%Z(fi —f) (H - L) (f; - f)/o},
=1 =1
Durs = /% ;(5 — BYX; (H—L)X;(B—B)/0?, Dura= \/%;f*’ (D)o,
Durs = -2,/ ang;?" (H - L) X:(B - B)/o?, Dure=2,/2 ég;/ (0 - L) /o2,
D :_2\/Z7LA_ IR (I 2 — Q?L*/f_ L _f 2
nTT = w2 (B =Py X (H = L)t /o7, Dyrs =2 ZE- (H = L)(f; — )/07,
=1

Duro =2/ 3> (B~ BYX{/(H ~ L)(f, ~ ©)/o?.  Durio = 2[ > (7 - L)(f - )/o
i=1
Under Hy, D,rs =0 for s = 2,8,9,10. We complete the proof of the proposition by showing that:

Dpri = Dari — a2 < N (0,9), and (A.5)
Dyrs = op(l), s=3,..,7. (A.6)
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Step 1. We first prove (A.5). Noting that e} = ¢; — Spe, we can decompose D,, 1 as:

D = (23 A byl
€i _ "1 be—ci(H-L)S
\/>Z ) +\/;€/S%<H_L)ST€2J?_2\/;ZI€((7?)TE

= Durit +Dpri2 — 2DnT13

We prove (A.5) by showing that D,711 4N (0,90) and D,,r15 = op (1) for s = 2,3. The former claim
follows from Lemma A.2 below. We now prove the latter claim. Let D712 = V/ nbe’ St (H — L) Sre.
By Lemmas E.2(ii) and E.5, we have

T T
Duriz = Vb)Y Y (1S (t/T)e) (Hie —T7") (€15 (s/T)e)

t=1 s=1

T T
(t/T) e H
Vb i 1S (/1) ZZ

= VnbOr (1og¥th)> <1O§b 1h2> =or ().

IN

Then D, 712 = op (1) by Assumption A2(iii).
For D,r13, we have D713 = n~ /212370 | e (H — L) Sre/o? = Dpri31 + Dyrise, where

n T
nT131—\/722 apeie) S (t/T)eo; *, Dprize = \/72 Z arseier S (s/T) eo

i=1 1<s#t<T

and a;s = Hys — T~ 1. For D131, write

b1/2 n n T ) L b1/2 _9
Dpr131 = REyD) E E E agee) s (t)T) ejo; = = Tr3/2 E E AttCiskn,15€it€550;
i=1 j=1t=1 1<i,j<n 1<t,s<T
b1/2 n T n )
2 —
= T E E attcttkh,ttgitai Tn3/2 E E (arcts + QssCst)kn t5€it€is0;
i=1 t=1 i=11<t<s<T
b1/2 )
Tn3/2 E E agcrekn tt€zt€gt0 Tn3/2 E E attCts + asscst)kh,tsgitgjso—i
1<i#j<n t=1 1<i#j<n 1<t<s<T

= Duri3ia + Darizis + Duri31c + Darisid,

where ¢, = [T 2" (¢/T) Ky, (t/T) 27 (t/T)] "'z, (t/T). By Lemmas E.2 and E.4(iii) and As-
sumption A5, we have

k(0)b'/2 1 ¢ —1/2p1/27 -1 —17-1

ergag( |att\ TZ'CM =n b h O(T b )0(1) :0(1)

t=1

D) |D7LT131a| S
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So Dyri131a = op (1) by the Markov inequality. For Dy, 71315, we have by Lemmas E.2 and E.4(ii)

E (DELTli’)lb)

b n n
-2 -2
T29,3 E E § § Ctyty kh,t1t2 Ciaty kh,t3t4E (Eih ity €jts Ejt4) 0; 0j

i=1 j=11<t1<ta<T 1<t3<t4<T

b n n
2 -2 -2
T29,3 § § E (etthkhat1t2) E (gitlsit26jt16jt2) 0; 0

i=1 j=11<t, <to<T

20 v 2 2 2 2 2 —2 _—2
S T20,3 Z Z (atltlctltz + at2t2ct2t1) Khtt, |E (Eiti€itaEit1Ejta)| 0 0
i=1 j=1 1<ty <t2<T
2 1~
2 2 2 2 2 2
< T2n2 g Z Z pij Z (atltlctth + at2t2ct2t1) kh;t1t2
i=1 j=1 1<t; <to<T
2b 2 I ¢~ 2 h 2 12
S a3y <1Tgta<XTatt> o Zzpij T2 Z Chita Rty ts
== i=1 j=1 1<ty £t <T
2b
= —550 (T7272)0(1) =0 (n*T*b'h™") =0(1),
where e = auces + assCst, p; = wijai_laj_l, and the second equality follows from the fact that

E(eit,€its€5t,€jt5) = 0 and E (e, €1,€ 15651, ) = 0 when t1, €2, t3, and ¢4 are all distinct by Assumptions
A2(ii)-(iii). Tt follows that D,71315 = op (1) by the Chebyshev inequality. For D, 7131, we have by
Lemma E.2 and Assumptions A2 and A5

E [D'?LT1310]

IN

T T
b k kn osE 202
T2TL3 AttCttRh ttAssCssKh,ss (€i1t€i2t€i386i45) Uil 0'7;3

1<i1#ia<n 1<ig#is<n t=1 s=1
bk? (0) o o
T2n3h2 attcttasscsswzlzgWzguo—il UZ‘3
1<i1#i2<n 1<iz£is<n 1<t#s<T

T
bk? (0)
2 .2 § ' E : —2 _—2
+W Q1 Cy E(5i1t5i2t5i3t5i4t) 04,04,
t=1

1<iy #ia<n 1<iz#is<n

2 2
b 2\ [ 1 Y e
a2 o) | o 2 weol” | {72l

1<ii #ia<n

b 1
2 —2 -2
+7Tnh2 lléltaéXT a ) |5 E E E (€i,t€iyt€i5t€iat) 0, O

1<ii£ia<n 1<iz#is<n

t=1

Nl

b —27-2 —27-2
mO(T b )0(1)0(1)+Tnh20(T b=*)0(1)0 (1)

O (n ' T2 2"+ n ' T3 h2) = o (1).
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It follows that D,r131. = op (1) by the Chebyshev inequality. Similarly, D, 71314 = op (1) because

2 4b 2 2 2 -2 -2
E (D71,T131d) = T2,3 g E § Q¢4 Ctltgkh,hth (511t16i2t25i3t15i4t2) i, Ois
1<ii#ia<n 1<ig#ia<n 1<t <t2<T
4b
_ 2 2 12 S —2 -2
= T2,3 E E E Ay, Chy 1 Kty £, Win 13 Winia O, Oy

1<ii#ia<n 1<ig#ia<n 1<t <to<T'
2

4c2b 9 h 9 49 1
< nh [hax Ay T2 Z oKt t n Z |wiy i |
T 1<t1<t2<T 1<iy,i2<n
b
= —0 (T7?2)0(1)0(1)=0(n'T2h b7 1) =0(1).

In sum, we have shown that D, 7151 = op (1).

For DnT1327 we have

pl/2 ) pl/2 T )
/ — —
Dynr132 = 372 E E atsﬁz’teﬁ(s/T)EjUi :W E E E AysCsrkn, sr€it€jr 0
1<4,j<n 1<s#t<T 1<i,j<n 1<s#£t<T r=1
b1/2 )
= Thi2 E E atsCsrkn,sreitcjro; - +op (1)

1<i#j<n 1<s#t#r<T
Dyriz2q +op (1).

Following the same arguments as used in the proof of D;,,r1314 = op (1), we can show that F (DnT132a)2 =
o(1). Tt follows that D,ri1324 = op (1) and Dyri32 = op (1).

Step 2. We now prove (A.6). For D,r3, by Assumption A2(iii), and Lemmas E.3, E.6(i) and E.7,

we have

|DnT3‘

IA

n
et e | o[- s 3 - sex?
=1

= c71n*1/2 (61/2 ||ﬁ — LH) HB - BHz HX - S?LTXHQ

= n20(1)Op (n'T7) Op (nT) = Op (n_l/Q) =op(1).

For Dy,r4, noting that maxi<;<7 |f(t) — eﬁS(t/T)F‘ = O (h?*!) by analysis analogous to CGL
(2010), by Lemma E.3 and Assumption A5 we have

|Dyra| < ¢ lnl/? (b1/2 | - LH) [£°]2 = n1/20 (1) O (Th*+2) = O (nl/QThQW) —0(1).

Now decompose D, 15 as follows

D,rs = =2 [\/EZ&Q (H— L) Xfa;z — \/EZ<ST€)I (I_{— L) Xi*ai2] (B—B)

i=1

—2(Dprs1 — Dnrs2) (B — B), say.
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Noting that Dyrsi = \/2 S0, 07 24(H — L) (X; = $7X) = /LS, S0, ST, 07 2eqa (X
1S (s/T) X], by Assumption A2, the Cauchy inequality, and Lemma E.3(ii),

T
3 ZatsatrE{tr[( is — €5 (s/T) X) (X, — €)S (r/T) X))} wijo; 20,72

1s=1nr

E || Dyrsi

>

n n T
=1 j=1t=

7

n n 1 T T T
Tb max  max (EIIXls S(s/T) XII) ZZ!M (TZZZ|atsatr>

=1 j=1 t=1 s=1r=1

IN

= TbO(1)O(1)O (1) = O (Th).

For D, 152 we have

| Dursell” = %ZZM[(H L) X;X;' (H - L) Sree'Sy) 077207
i=1 j=1
= —tr [( Y anxg‘x;’a;%;?) (H — L) Spee' Sy (H—L)]
< Cﬂ(_ ||X:||> (v = Z]*) Iszell?
= 0p(TW?) 0(1)Op (1] (nh)) = O (T/h).

It follows that Dy = Op(TY2b1/2 + TV2R=1/2)0p((nT) " "?) = Op(n=12(bY/? + h=1/2)) = op (1) .

For D,, g, we write

Dore = \/72 -2 / H L) f STF —2\/720' STE H L) (f STF)

= 2DnT61 - 2DnT627

where F = i, ®f = 4,,@f under Hy. Noting that D,,re1 = n~1/2p1/23°" ZtT:1 Zle oy 2eiars[f (s/T)
—e,8(s/T)F], by Assumptions A2 and A5 and Lemma E.3(ii), we have

E(Dyrei) = *ZZZZZ%J%M: (s/T) = ey S(s/T)F] [f (r/T) — e1S(r/T)F] 07 %0

i=1 j=1 t=1 s= 1

B 2 n o n T T T
Q_2Tb1rgnsa§XT‘f (% —e&S(%)F‘ (7112121|w”|) (;Zzzmtsatro
=1 j=

t=1 s=1r=1

n n T T
1r=

IN

= TbO (h****) O (1)O (1) = O (Tbh**?) =0 (1).

It follows that D,7161 = op (1) by the Chebyshev inequality. For D, 162, we can follow the proof of
D, 152 and show that D, 162 = op (1). Consequently, D,,r¢ = op (1) . Now write D,,r7 = —24/b/n > 1",
(B BY X HE +2 (b/n)l/2 S 72(6 BYXLE = —2D,171+2Dy172. By the Cauchy-Schwarz
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inequality, we have

Durm < <\/EHB g Z:ai‘* |X;HX;

_ P?p(n_lm)()(T%}mh?@+U)}U2::Ch>CT”2h”H)::0p(1y

A

1/2 1/2
) (V" T /

Similarly, we have D,r72 = op (1). Thus D77 =op(1). =

Lemma A.2 D,,711 = IEZ 1 Z(H L— Q)el/a —>N(0 Q) -

T
: 1 _ 2p/2 -2
Proof. Write DnTll = ﬁ E Z’I’LT,t) where ZnT7t = T E 1Otts Eit€is and g =
t=2

TH;s — 1 = Tays. Noting that {Z,74, Fny(€)} is an m.d.s., we prove the lemma by applying the
martingale CLT. By Corollary 5.26 of White (2001) it suffices to show that: (i) F (Zf;Tﬂf) < C for all
t and (n,T) for some C < oo, and (ii) 7'~ Z ZnTt Qo =op(1).

We first prove (i). For 2 <t < T, decompose

t—1 t—1 n n

4b
2 -2 -2
ZnTJ, = nT E : E : § E Qts; Otsy 04, 04, €iqt€i151€i0tCias

s1=1s9=141=114i5=1

t—1 n n
o Z Z Z hoi
= « O‘ 0 61' $t€i15€i9tE4q0s
nT ts 1 1 2 2

s=1i1=11is=1

n n
4b § E E -2 _—2
+nT atslatszail UZ'2 Ei1t€i1818i2t€i282

1<s51<s2<t—111=1142=1

n n
TLT atslatSQJil 0-1'2 E'thf‘:zlsl EthEZQSQ

1<s9<s1<t—111=112=1
= 21t + 22t + 23t say. (A?)

Then E (Zyp,) = E (210 + 220 + 25)° < 3{E (23,) + E (23,) + E (23,)} = 3{Z1; + Zat + Z3.}, say.

t—1 n - n n

1602
-2 -2
Zi = n2T2E E E E E E atSQU O’ O, 0 E(511t5@2t57,3t57,4t51151512515135261482)

si=li1=1lis=1s 3=1li4=1

t—1 n n

1662
- nQTQ at81at520- U U U ’%1121324E (5118151251523825l482)

S1= 111 112 152 1¢ 1L4 1

t—1 n n n

1662 "
= WZ Z Z Z Z atsa cr 0' 20_2/-122”21»31-4

s=141=11is=143=1144=1

+ 2 2,572,722,
n2T2 atslatSQJil UiQ Uis 01’4 KiyigiziaWiyipWisia

1<s1#£59<t— 11‘1—11‘2—11'3—11'4—1

C%Zt‘l
< o Zats <—+C<2(J
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Similarly,
n n n n
z 164> e e
2t — n2T?2 O‘tslat52at53ats40'i1 Uz‘2 0i3 0-2.4
1<s1<82<t—11<83<84<t—1491=14a=1143=1144=1
X E (€5,tEiytEigtEistEiys1EinsnCigssEissy)

2 n n n n
160 2 2 -2 -2 -2 -2
272 Qs X5y Tiy iy Tig Oy FiriniziaWinisWigiy

1<s1<sa<t—1i1=1io=143=1144=1

Cb?
— Z thQSIOéQ <C,

= T2 tsa
1<s1<s2<t—1

where we have used the fact that T-'b 22:1 a?, < C uniformly in ¢t and C' may vary across lines.
By the same token Z3; < C for all t. Consequently, E (ZiT,t) < C for all t and some large enough
constant C.

Now we prove (ii) by the Chebyshev inequality. First, by Assumption A2(ii)-(iii),

T t—1 n n

T
E(;zzzm) D BN T TR N g
t=2

t=2 s=1i=1 j=1 1<t#s<T i=1 j=1

where p;; = w;;/(0;0;) by Assumption A2. Second, decompose

T 2 T
1 1 2
(T ZZELTJ> T2 ZE (Zgﬂt) + T2 Z E (ZELT,tZTZLT,s) = Zant + Zont-
t=2 t=2

2<t<s<T

By the proof of (i), Zi,r = T2 Zf,Tzz E (Zﬁﬂt) = O(1/T) = o(1). For Za,r, by (A.7) we have
Zont = 2T 3 oot cgar E210215 + 210205 + 210235 + 220215 + 220225 + 220235 + 231215 + 230225 + 231235

_ 9 -2
= Zj:l Z2nTj7 say, Where, e.g., ZQnTl =2T 22§t<s§T E (thzls) . For ZQnTla we have

ti—1t2—1 n n n n
7 32 — X 2 2 2 2 2 3
2nT1 = 2T Q151 X252, Tin Tiy Tiy
2<t1 <to<T s1=1 so9=1i1=1ip=1i3=1i4=1
XwiaME (Ei1t15i2t16i1518i2616’i3825i452)
t1—1ta—1 n
3252
_ E E § E § E E -2 -2 -2 -2 2 2
- n2T4 atlslatzsgall U U U wlllzwi3i4 + O (1/T)
2<t1<t2<T s1=1s2=171=14d3=143=1144=1
T t1—1ta—1 n
162 . -
= n2T4 Z Z Z Z Z Z Z Z atlélatzézptlwplsu +0(1/T)
ltz 181 182 121 122 1’L3 1’L4 1
2

- [2 Y 2y S| roam.

nT’ — £
1<t#s<T i=1 j=1
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Similarly, by Assumption A2 and Lemmas E.2 and E.3(ii)

t1—1

b2
ZQnT2 = 322T4 Z Z Z Z Z Z Z Oétlsatzslat282o'“20' 20’ 20. 2

2<t1<to<T s=1 1<s1<s2<ta—111=14p=114i3=14i4=1

X§i2i3i4E (€i1t1€i185i255i3515i432)
t1i—1 n n

3262
= 274 E § E E E E Oftlsatgsatgtlo—“ U U U §122324W1114<111213

2<t1<t2<T s=1 i1=114i2=11i3=11i4=1

t1—1 n n n n
1
< ofr )| Y ol (zzzz||)

2<ty <to<T s=1 i1=1is=1i3=1i,=1

= O0(T"*)0(T)0(1)=0(1),

where recall ;5 = F (e;€1€x:) . Analogously we can show that Zs,r; = o(1) for | = 3,4,...,9. It
follows that

2 2
b n n
<TZZnTt> = % Z a?szzp?j +O(1)7

1<t#£s<T i=1 j=1

1 T 1 T 2 ] T 2
ar <T 3 ZZT,t> _z <T 3 ng,t> 5 (T 3 zgmﬂ o).
t=2 t=2 t=2

Consequently’ % Z?:Q Z?%T,t nT2 Zl<t76s<T a’ts Zz 1 Z] 1 plj - ( ) and (11) follows by the defi-
nition of Q. m

and

Proposition A.3 T',,r2 =o0p (1).

Proof. Let 62 = TSS;/T. By a geometric expansion, 1/6% — 1/0? = —(62 — 02)/0} + (62 —
02)?/(0l52). Tt follows that
o2 _52)?
oy = \/>Z (ESS; — £/Qz,) 1+[Z (B85 — ey T o) 42)

—I'pr 201 + 722, say.

Noting that u; = &f — XZ*(B —B)+T + (f; — T) + ayip and Miy = 0 where f and T are defined in
(A.2), we have

10
53 =T8S;/T = uMu;/T = > TSSy/T, (A.8)
=1
where
TSSi = e’ Me?, TS8Siy = (B~ B) X' MX;(B—B), TSSis=F MF,
TSS;y = —2' MX; (B - ), TS8S;5 = 27 ME", TSSi = —2F MX; (B - B),
TSS” = 28;"M(fi — ?)7 TSSig = (fz — f)/]\f(fz — f), TSSlg = 2?*/M(fl — ?),

TSSi0=—2(8 — B) X' M(f; — T).
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Under Hy, we have f; — f = 0. Thus 7.5S;; =0 for | = 7,...,10. We want to show that

max |T 78S, — o; | = Op (Unr), and max T-'TSS; = op (vpr) forl=2,...,6, (A.9)

1<i<n 1<i<n

where v, = nt/AT—1/2,

For T'S\S;1, we have
T 'TSSi — o7 = (T 'eiMe; — 07) — 2T 'ei M Sre + T~ (Sre) M Sre. (A.10)

We first bound the last term in (A.10). By the idempotence of M and the Markov inequality, =" (Sre)’
MSre < T7V||Sre||> = Op (n='T~'h~'). For the first term in (A.10), we want to show that
maxi<i<y |€iMe; /T — 02| = Op (vnr) . Write e/Me; /T = T—1 Zt 1 (&4t — ) =71 Zt L€ — 22

Let &, = 2, — 02. Then by Assumption A2(iv) and the Chebyshev inequality, for any € > 0

T
P <1rgia<xn % Zgit > evnT> <€ v, ZE <T Zf,t> =0 (nT*A/2U;7):) =0(1).

It follows that maxj<;<, |T* Z;‘le €2, — 07| = Op(vyr). Similarly, maxi<i<, [Ei] = Op(v2y) =
op (vnr). Tt follows that e,Me;/T = 0% + Op (v,r) uniformly in i. Then by the Cauchy-Schwarz
inequality, we can readily show that the second term in (A.10) is Op (n’l/szl/thl/Q) =op (Unr) -
Consequently, the first result in (A.9) follows and maxi<i<, T~ 'TSS;1 = Op (1).

For T'SS;5, we have

- 2
< _ “1v. _ 2} _ —1p—1

1rélla<xn{T 'TSS} < C’H,B BH max {T I1X; — ST X|| Op (n'T71) Op(+/n/T + 1),
where we use the fact that maxj<;<, 7' || X; — SpX|* = Op(y/n/T + 1) under our moment condi-
tions. For T'SS;3, noting that |[£|| = || — S7F|| = O (T/2h»+1), we have T~'T'SS;3 < T~ ||f - STFH2
=0 (h2p+2) . By the Cauchy-Schwarz inequality, we have

max T~V |TSSu| < max (T7'788:)" (T71788,)"* = 0p (n—1/4T—3/4+n—1/2T—1/2) =op (Un1),
1<i<n 1<i<n
-1 ) < —1 . 1/2 -1 . 1/2 — p+1 =
1r£iaanT |TSS;5] < 11%1?5(” (T TSSzl) (T TSSw,) Op (h ) op (UnT), and
max T~ |TSS¢6| < max (TflTSsig)l/2 ( -l188,; )1/2 op (UnT) .

1<i<n 1<i<n
Consequently, we have max;<;<, |07 — 02| = Op (v,r). Then by Assumption A5

maxij<i<n |32 |2 51/2 =

=t 7 /
Pnro2 < - = E |ESS; — €Qe]
minj<i<n 0; Ui

2

, 1/2
) ~> 212 n
VR maxi<i<n |‘71A ail (s Z (ESS; — 82@&')2)

: A 42
minj<i<n 0,0; im1

V0P (v3r) Op (1) = Op (n/22AT71) — o (1),

because one can easily show that 23" | (ESS; — £lQe;)’ = 0p(1).
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6
For I';y7 21, we have T'yr 01 = >, T'nr 211, where

b n
FnT,Qll = \/;ZO';4 (E'SSZ — EQQEZ') (TﬁlTSSil — O’?) y and
i=1

| ST

\/520;4 (ESSl — E;QE,') (T_lTSS“) for [ = 2, 76
i=1

Following the proof of Proposition A.1 and the above analysis for 7'SS;;, we can show that I'yr 21, =
p(l)forli=1,..,6. m

B Proof of Corollary 3.2

Given Theorem 3.1, it suffices to show that: (i) f?nT = Bur+op (1), and (ii) QnT =Qo+op(l). We
first prove (i). By (A.3) and the fact that Mip = 0, we have

10
wQu; = ZBnTﬁila (B.1)
=1
where
Byrin = E?/QQ‘, B = (B - 5)/)@/@)@(3 —B), Bnrsz = f*/Qf*v
2 3 T —x/ = ~
Buraa = —267QXH(B = f), Buras = 27°QF Buris = —2f QX7 (8- P),
Burar =28 Q(f — 1) Buras = —2(8—B) X' Q(fi — ), Burue = 2¢}'Q(fi — 1),

Buri0 = (£ — £)Q(f; — ),

Q = MQM, and f and f* are defined in (A.2). Under Hy, we have f; — f = 0. Thus By = 0 for
1=17,...,10. By (3.2) and (B.1), it suffices to show that

nTl \/>Z rLT i1 — nT \/>Z */ 5 — & Q8 ] =op (1)

BnT,l = 77/71/2131/2 Z'—l 672BnT,il = op (1) for | = 2, ,6

Recalling ¢} = ¢; — Ste, we decompose B,,r,1 as follows

Bura = nl/%l/2 2;1 6;% [(ei — Sre) Q (e — Ste) — E{Qgi]
= n71/2%pY/2 Z B 8;2 [s Qei — €iQei] —2n~ 1/2p1/2 Z elQSre
+n 22N G0 (Sre) QSre

Brri1 — 2Bpr12 + BnT,13-

Noting that Q —Q = (It — L)Q (It — L) — Q = LQL — QL — LQ and both Q and L are symmetric,

we have

Bura =n" /2012 Zé_l G, %e;LQLe; — 2n 21/ Zr.l_l 0;%€iQLe; = Buria — 2Bar 110-
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Following the proof of Proposition A.3, we can show that B, 7,114 = Bnr,11a +0p (1), where Byr.114 =
n=1/2p1/2 2?21 ~2el LQLe;. Even though @ is not posmve semidefinite (p.s.d.), it can be written as
the difference between two p.s.d. matrices: Q = Q*—T I, where Q* —dlag(Hu, vy HTT) . So we can
write Byr11a = n~ /20231 072l LQ* Le; —n V2T Y2 072l LLe; = Buri1al — BaT 1142
Noting that

n T
n—1/2p1/2 Zil 0 B (8, LQ" Le;) = T—2p—1/2p1/2 Z Z i Qi

i=1 t=1

= 0 (T—1n1/2b1/2) tr(Q*) =0 (T_1n1/2bl/2) 0 (b)) =0(1),

E |B7LT,11a1|

and similarly E |B,r1142] = O (T_1n1/2b1/2) = o0(1), we have B,r11. = op (1) by the Markov
inequality. Similarly, B,r 115 = op (1) . Consequently B,r 11 = op (1). Analogously, we can show that
B = op (1) for | = 2,3. It follows that B,r1 = op (1).

Using the fact that |[tr (AB)| < Amax (A)tr(B) for any conformable p.s.d. matrix B and sym-
metric matrix A (see, e.g., Bernstein, 2005, p. 309) and that Apax (M) = 1, we can show that
||X;"QX;‘||2 =tr(MQM XX MQMX:X;}) < || X'QX;||*. It follows that

Burs — 71/21,1/22 5:2(B - B)XQX;(B - B)
w3 g H > 5 IXQx;
_ n71/2b1/20p ((nT)_1> Op (nbil) =0p (n*l/QTflbfl/Z) =op (1)

IN

where we use the fact that ;" ; 7; % [| X;/QX;| = Op (nb~"') . Similarly, we have

Burs = n~U2pl/? Z"_ 352f*'c_2f* < n-l/2pl/2 Zﬁ_l 52

Z Hy =T [F/T) = s (/) F°| 37 7

= a0, (5 ) Op (n) = OP( 1/2h2p+2b—1/2):0p(1).

— U2l

By the repeated use of the Cauchy-Schwarz inequality, we can show that By, = op (1) for [ = 4,5,
and 6.

To show (ii), it suffices to show that DV,p = n=t 31" | Py l(pm p;;) = op (1). Noting that
2?2 —y? = (z —y)* + 2 (x — y) y, we can decompose DV,p as follows

n n

DVyr = % Z Z(ﬁzj - pij)2 + %ZZ@” — pij)Pij = DVyr1 + 2D Virs.

i=1 j=1 i=1 j=1

Following the argument in the proof of Proposition A.3, we can show that

2
u, Mu wij —
D = 133 () DV b0 (),
1=1 j=1 v v
L uMu Wij R
Drirs = 133 (S - )= D on 1)
1=1 j=1
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where DV ,p1 =n~ 1300 S o; 20'J (W Mij — wi;)® and DV ypg = ! D1 2= PO 10;1(17;Mﬂj
—wij). ~

By (A.3) and the fact that Mir = 0, we have that under Ho, u;Mu; = ;' Me} + (8 — )’ X' M X7
(B — B) + T ME — (e MX; + e/ MX7)(B — B) + (e +¢3) ME —F'M (X7 +X3) (B - ) =
Z?:I DVyr.iji. We can prove that DV, 71 = op (1) by showing that

_ 1 n n B B

DVnTl,l = = Zzai QCTj 2 (DVnT,ijl - Wij)Q =op (1) , and
i=1 j=1

_ 1 n n B B

DvnTl,l = ﬁ ZZO’Z- 20]» 2 (DVnT,ijl)2 =op (]_) fOI‘ l = 2, ,6
i=1 j=1

Similarly we can prove DV, 72 = op (1) by using the above decomposition for w;Mu;. The details are

omitted for brevity.

C Proof of Theorem 3.3

By (3.2) we have

— b1/2 n

Qurlor = nwz (ESS; — @,Qu;)

— \/7202 ESS; — £.Qs;) — \/72 ESS; — £.Q¢)) (,\2 —;)

ZJ—Q wQu; — Q) + \/72 (w,Qu; — ;Qz;) (,0\12012>

nT 1— FnT 2= FnT 3+ FnT 4, Say, (Cl)

where I'yyp 1 and I'yp o are as defined in the proof of Theorem 3.1, and &; = T'SS;/T. It is easy to
show that Q,7 = Qo + op (1) under Hy (vy,p) with 7, = n=/4T=1/2p~ 1/4. It suffices to show that:
(1) Tpra 4N (00, ), (ii) Tpro =op (1), (iil) Tnrs = op (1), and (iv) I'ypa = op (1). We complete
the proof by Propositions C.1-C.4 below.

Proposition C.1 T',7; 4, N (B0, Qo) under Hy (v,7)-

Proof. Decompose I';,r1 = I'yr11 — D12 where I'yyprq1 and I'ypqo are defined in (A.1). Us-
ing the notation defined in the proof of Proposition A.1l, it suffices to show: (i) Dpr1 = Dpr1 —
Lprae 4, N (0,90), (ii) Dpr2 = ©9 + op (1), and (iii) D,rs = op (1) for s = 3,...,10, where ©¢ =
M, 7)o Onr and O = n~1/201/242, 5™ 072 AL (H—L)Api =n T2 07 AL (H — L) Ay,

(i) follows the proof of Proposition A.1. We are left to prove (ii) and (iii).
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For (ii), letting ws and S be as defined in the proof of Lemma E.2, by (E.1) we have

n n T T
b _ 1 _ _ _ t S
Durn = [ F oA - DA = S oSS (1) A (1) 8 (5)
ni:l n 1=1 t=1 s=1
I L& ! M, (1]
= = SN [ A s L s (ar

v [/01 wpt (7) dT/Ol wh.s (7) dT} o 1} A (;) Ani (%) +o()

|T(1-b)|—1 T

s, 1/b—t/(Tb) ) st st
T ;:1 o, E E {/ i) +w; ulu Th w(u)w | u Th U

t=Tb]+1 s=1 (/~

/1/bw<z_sz) dz/l/bw(ST—bt_ (Z/_jfb>)dz’ 71—1 Ani (;) An; (%)+0(1)
0 0

X
1 & [T(A=0)]-1  (7—t)/(Tb) 1
= = o;? Z / {/ [1+wy u(u—2)] w) w(u—2v)du
i=1 t=|Tb|+1 Y —t/(Th) -1
(T—1)/(Tb) (T—1)/(Tb) ! " '
X / w(z)dz/ w(z —v)d'| 1304 =) An|=+vb)dv+o(l)
—t/(Tb) —t/(Tb) T T

120;2/1Am (1)?dr Cyw+0(1),
i 0
where C,, = fil {fil (14 w5 u(u—v)] w(u)w(u—v) du[fil w(z—v)dz]~t — 1} dv. That is, D,
=0,r =06y +o0(1).

For (iii), following the proof of Proposition A.1, we can show that D, = op (1) under Hy(v,,r1)
for I = 3,...,7. It suffices to prove (iii) by showing that D,,r; = op (1) under H;(v,p) for [ =8, ..., 10.

For D,,pg, write

Dy1g

n ~ B b n ~ B
HED SET AT BENED SO Tl I 1
i=1 =1
= 2Dp78,1 — 2Dn71s2.
It is easy to show that D,rs1 = (b/n)l/2 Op(v,p(nY/?T=1/2p=1 £ pl/2T1/2)) = Op(n= /AT 1p=3/1 4

n~H4Y4) = op (1), and D, = Op(n~/*b*/4\/log (nT)) = op (1) . It follows that D,71s = op (1).
By the Cauchy-Schwarz inequality, D,,r; = op (1) for [ =9,10. =

Proposition C.2 T,z 2 = op (1) under Hy (7,,7) -

Proof. Analogously to the proof of Proposition A.3, we can write
n 2

b 52—02 b (52 - 02)?
Iy = —/= ESS; — Qi) — s - ESS; — €iQei) ~——5——
T,2 \/;;( SS ngS ) 0_4 + n Z( SS ngg ) 0_40.2

i i=1 i1

*FnT,Ql + FnT,QQa say.
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Note that 77 = }21 TSS;/T by (A.8). First, we want to show that

max |T 78S, — o; | = Op (Upr) and max T 78S, = op (Upr) for i =2,...,10, (C.2)

1<i<n 1<i<n

where v,p = n/AT71/2. By (A.9), it suffices to show that max;<;<, T"'TSS; = op (vnr), for
I =7,...,10. In the sequel, we will frequently use the fact that maxi<;<nsup.¢p |fZ (1) — ?(’7’)| =
O (v,r) and 8 — 8 = op (v,,r) under Hy (v,,7) by Lemma E.6(ii). Following the study of T'SS;s in
Proposition A.3, we can show that maxi<;<, T~ 'T'SS;7 = op (vnr). For T'SS;s we have

TTSSis = T 920 ALMAL < T 20 | Al
T
t
= n V2r-2pt/2 ZA?M <T> =0 (nil/zT*Ilfl/Q) = 0 (vnr)
t=1

uniformly in ¢. By the Cauchy-Schwarz inequality, maxj<i<n T-1TSS;; = op () for I =9,10. Con-
sequently, we have max; <<, [53 —0?| = Op (v,7). By the proof of Proposition A.3, £ 37 | (ESS; — £Qe;)?
= Op (1). It follows that

1/2

n'/?maxi<;<n |0’ —o?

Iy <

n 1/2
|"Ii Z ESSl — E;QEi)Z] = ’I’Ll/QOp (’UZT) = 0op (1) .
i=1

m1n1<z<n (T O’

To analyze I, 7 21, using (A.8) we can write

Lpro1 = \/>Z ESS; —¢; QSz ZFnT 2115

where I';7011 = (b/n)l/2 Y o; Y (ESS; — €iQe;) (T71TSS;i—0?), and Ty 01 = (b/n)l/2 S0y —4
(ESS; — €lQe;)T~1TSS,; for I = 2,...,10. Following the proof of Proposition A.1 and the analysis for
T'SS;; in the proof of Corollary 3.2, we can show that I'yp01; = op (1) for [ =1, ..., 10. It follows that

Iyror=op(l). m

Proposition C.3 T',r3 = op (1) under Hy (7y,7)-

Proof. By the proof of Corollary 3.2, we can write

b n 10
—2 [~ A =
Turs=1/= Y 0,2 (@Qu: — €/Qei) = > Bury
i =1
1= =

where B,r1 = (b/n)l/2 S 072 (Bur,in — €.Qsi), and B = (b/n)l/2 S 07 Bur for | =
2, ..., 10. Following the argument in the proof of Corollary 3.2, we can readily show that B,7; = op (1)
for I =1,2,...,6 as in the case when Hy holds. It remains to prove that B,7; = op (1) for { = 7,...,10

under Hy (v,,7) . Noting that Apax (M) = 1, we have

2 n

_ B o _ pl/2 3
Bnrio = \[ZU 2 £)Q(fi —f) < #Z o ALLQA,,
i1

- _1lea’2ZA t/)T) (Hy =T ") =0 (T ) =0(1).
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By the Cauchy-Schwarz inequality, we have B,r7 = o(1) and B,rs = op (1). Decompose B,19 =
2n Y2230 02ElQ £, — an1/2p1/2 S 072 (Sre)Q I = 2B,19.1 — 2By192. By moments
calculation and the Chebyshev inequality, we can show that EnT(M = Op (Tl/zhp“bl/Q) =op(1),
and B,r92 = Op (Tl/zhp“bl/z) = op (1). Consequently B,r9 =op (1). m

Proposition C.4 T4 = op (1) under Hy (7,,7) -

Proof. Analogously to the proof of Proposition A.3, we can write
2
b n _ o2 — o2
F'rLT,4 = A\ = Quz —& QE Qui - 6;@‘51') <Z47/\21)
V n p 0,04

= —TIyra + 1742, say.
We prove the proposition by showing that I',;74; = op (1) for [ = 1,2. For I'pp 41, write I'yyp 41 =
10
21:1 Tyr,a1 (1), where

b e _ .
Lonran (1) = \/;ZUZ Y (Burin — €iQe:) (07 — 07)
=1
b - —4 ~2 2
FnT,41 (l) = *ZO’Z- BnT,il (Ui —0'1-) fOI‘lZQ,...,lO
n
i=1

and Byr; are defined after (B.1). Further decompose I'yp41 (1) = Z:r? 1 T a1 (1,m) by using the
decomposition 52 = Y12 TSS;;/T in (A.8), where Tpra1 (1,1) = (b/n) > X0 074 (Bur.in — €,Qe:)
(T~TSS; —02) and a1 (1,m) = (b/n)"> S0, 0774 (Burin — €,Qei) T2 TS Sy, for m =2, ..., 10.
It is easy to show that I'yp41 (1,m) = op (1) for m = 1,...,10. Consequently I',r41 (1) = op (1).
Similarly, we can show I'yyr a1 (1) = (b/n)l/2 S 07 Bar ll( —o0?) for | = 2,...,10 by using the
decomposition of o7 in (A.8). It follows that I';,r 41 = op (1).

For I, 1 42, we can apply the decomposition of 2,Q; in (B.1) to demonstrate that (b/n)l/2 S [aiQu;
—elQei| = op (n1/2) . Then I'yyp 42 = op (nl/Qv%T) =op(n/T)=o0p (1) by (C2). m

D Proof of Theorem 3.4

As in the proof of Theorem 3.3, we have the decomposition

~

QannT = fnTl - fﬂTQ - fnT?) + fnT4a (Dl)

where T',ry, | = 1, 2, 3, 4, are defined analogously to 'y in (C.1) with o? being replaced by &; =
o2 + Tip, Tio = fol AZ(1)dr — fo 7)d7)?, and recall A; (1) = f; (7) — f (7) under H;. By (A.8),
o2 =T"1 Z}il TS5S;. Under Hy, by Lemma E.6(iii) the results in (A.9) become

max |T~'TS5S; — 07| = op (1) and 113ia<anflTssu =op (1) forl=2,...,6. (D.2)

1<i<n
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We can also show that T-'T'SS;; = op (1) uniformly in 4 for [ = 7, 9, and 10. For T'SS;s, we have

uniformly in ¢,

T7'TSS,s =T IZ (t/T) — /N d7-</A dT> +0(1)="Tio+o0(1),

where A; = T3] A; (t/T) . 1t follows that uniformly in i

62 =07+ Tip+op(l)=37 +op(1). (D.3)

2

That is, @7 is the probability limit of 67 under H;. We prove the theorem by showing that (i) A, =

(n* 2T /)= 'Tpry = E4 +o0p (1), and (ii) Apry = (nY/2THY2) T = 0p (1) for I = 2,3, 4.
Following the proof of Propositions A.1 and C.1, we can show that A, 7 = (nl/szl/Q)_l T, =

Anr1 +op (1), where Ay = (n'/2TH/2)~1D,1y. Following the analysis of D, 7o in the proof of

Proposition C.1, we have

n

1
nT

zltlsl

Ai (t/T) A (s/T) /77 = Oa +0(1),

nTl

where ©,4 is defined analogously to ©g with (07, A,;) being replaced by (77, A;). This proves (i).
Following the proof of Propositions A.3 and C.2-C.4, we can show that A,r; = op (1) for | = 2,3, 4.

E Some Useful Lemmas

In this Appendix, we present some technical lemmas that are used in the proofs of the main results in
the paper.

Lemma E.1 Let \i7 = fol Wy (% — T) dr. Then % < minj<i<r A < maxyj<i<7 M7 = 1.

Proof. First, write \;p = fol w(fF—7)d(3) = Ol/bw (u— ) du = flg)(jfg ) (u) du.
Clearly, maxj<j< Ay = 1. I Th < ¢ < T (1 —b), then Ay = [, w (u)du= 1.1t 1 < t = Te < Tb for

some € € (0,b), then
1/b—t/(Tb) 1 1 1
)\tT:/ w(s)ds:/ w(u)duZ/w(u)du:f
—t/(Tb) —e 0 2
where the last equality follows from the symmetry of w and the fact that f_ll w (u) du = 1. Similarly, if

T(1- b) <t=Te<T for some € € (1 —b,1), then we have fol wy (% —7)dr = f_lﬁ(z,fl{)(Tb) w (u) du =

[ w(u)du> f L w (u) du = %. This proves the lemma. m

Lemma E.2 maxi<; s<r |}_Its| <y (Tb)_1 for some constant Cy < oo where Hy, denote the (t,s)th
-1
element of H, H = fo T)dr, and H (1) = Wy, (1) zl[)l] (1) (21[71] () Wy (1) zl[:] (7')) Zl[al] () Wy (7).
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Proof. Let S, (1) = T’lzl[jl] (1) Wy (1) zl[jl] (7). Then

Sy (1) =S + 0(1) uniformly in 7 € (0,1), (E.1)
1 0 2 .
where S = 0 and wy = f LW du. By (E.1), Lemma E.1, and Assumption A4, we have
w2
|Au| = T / 2y (1) 180 (M) 208 (1) W ()W (7)
0

Q

71 / L) 7L (1) T (1) i (7) 7
T-l/

t s 1
o <T — T) Wp (T — ’7') dT()\tT)\sT) ‘
1
0
1

IN

lwb
s [(SE) () (57 (=) artrran |
C (Tb)*l/0 wy, (; - T) dr/M\p + C (Th) ™ / %wb (; - T) dr

1

C(Tb)" (1+/ || w (u) dT) < Cy (Th) ™,
-1

where A = B denotes A=B(1+0(1)). =

Lemma E.3 (i) A_Tl =03 cipcr at, = O(1), (i) Ars = Tt Z?:l Zf:l ZL |asae| = O (1),
and (i11) Ars = HH — LH =0 (b‘l/z) , where recall ags = Hys — T~ denotes the (t,s)th element of
H— L, and L =T Lirily.

IA

IA

Proof. For (i) it is easy to show that Ary = Ap; +O (b), where Ap; = bZlSt;ﬁsST HZ. By (E.1),

_ b ! _ _
in o~ g 3 [ A0S 0w 0w (|

1<t#£s<T

- 2 S [ G-5)G-2)

1<t#s<T

2
b 1/6=t/(T%) -1 t—s\|1 t—s 9
= 7= Z {/t/(Tb) [1 +wyu (u + Th > Fv (u)w (u + Tb> du y (AT AsT)

1<t#£s<T

2

lT(-b)]-1 T

- % 3 Z{/ [1+w21u<u+tT_bs>}Zw(u)w(wt;bs)du}

t=|Tb|+1 s=1

1/ t Vb st t -
x{/o w(z—Tb>dz/0 w(Tb—(z'—Tb)>dz’} +0 )

| TA=dI=1 (r—t)/(Th) 1 2
= 7 Z / </ [1+w2_1u(u—v)}w(u)w(u—v)du)
t=|Tb|+1 7 —t/(T0) -1
1/b—t/(Tb) 1/b—t/(Tb) —2
x(/ w(z)dz/ w(z'—v)dz’) dv+o(1)
—t/(Tb) —t/(T)
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/blb/ll </11 [1+W2_1u(u_”)] w(u)w(U—U)du)2 (/llw(z)dz/llw(z’_v)dzl)_dedU/
+o (1)
2 2

/_11 (/_11 [1+w21u(u—v)]w(u)w(u—u)du> </_11w(z—v)dz> dv+o(1)=0(1).

By the same token, we can show (ii). For (iii), noting that |H — L||2 = <tte<T aZ, + Zle a?, =
OB ) +0(T~2),||H-L|=00""?) asT 1 =0(1). m

Lemma E.4 Let ¢ = &[T 2" (t/T) Ky, (t/T) 27 (¢/T)] 2% (¢/T) . Then (i) Ory = T2 sy
letsl knas = O(1); (i) Cra = T™2h Y opuyer k3 o = O (1), (iii) Crs = TV Y |eu| = O (1);
(iv) Cra =T 'Y, i, = O(1).

Proof. (i) Let S, 5 (1) = (t/T) K, (t/T) zh (t/T) The (j,1)th element of S, () is
st (1) = 75 Zle (S}ZT) T2y (STZT) For any 7 € (0,1), we have by the definition of Riemann
integral that

T i 1/h—7/(Th)
1 T T\J -2 r T i
sa(r) = =S (L -~ k(= — — :/ w2k (u) du + 0 (1)
I I I

= /1 w2k (w) du + o (1).

—1
That is, S, (7) =S, +0(1) for any 7 € (0,1), where

Ho M1 - Ky

L Y 2 R Lt
Sp: . . . . )

/J’p :up+1 o /1’217

and p; = f_ll vk (v) dv for j =0,1,...,2p. It follows that

_ L rq-1]q 571 s—t\" s—t
Cri = TThtzlg €S, [LTh’m’( Th ) ] k‘( T ) +o(1)

(T—1)/(Th)

- T Z/ S |611§;1 [1,U,...,Up]| k(v)dv+o(1)
t

| TA=mI=1 (1—t)/(Th)
- T /t/(Tl) €18, (1, v, 0] K (v) do + 0 (1)
t=|Th|+1 7 —t/(Th

_ [|e’1§;1[l,v,...,vak:(v)dv—&-o(l):O(l).

This proves (i). By the same token,
—t s—t\"
Al R
€1Sp |: ) Th 30y Th

1
Crs = ﬁZZ
1
/‘6'1851[1,1},...,1}1’]’2k(v)zdv—l—o(l):O(l).
-1

t=1 s=1
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Similarly, we can prove (iii)-(iv). ®
Lemma E.5 sup.¢( 1) €15 (7)e =Op ( log (nT) / (nTh)) .
Proof. The proof is analogous to that of (A.11) in Chen, Gao, and Li (2010, pp. 27-30). =

Lemma E.6 Suppose Assumptions A1-A5 hold. Recall vy, = n~YAT=1/2b=1/2 in Hy (v,7). Then
as (n,T) — oo

(i) B, B8=0p (n’l/zT’l/Q) under Hy;

(ii) B—pB=op (Vpr) under Hy (7y,,p) provided that A6 also holds;

(iii) B—pB=op (1) under Hy provided that A6 also holds.

Proof. (i) This can be done by following the proof of Theorem 3.1 in CGL (2010). Note that CGL
also proves the asymptotic normality under the independence of {(e;;, v;;)} across ¢ and the assumption
that g; in Assumption A1l is the same for all i (g; = g, say). One can verify that the above probability
order can be attained even if we relax their independence condition to our m.d.s. condition and their
homogenous trending assumption on g to our heterogeneous case.

(ii) Recalling that F =4, ® f and S,,7F = S, rF, we have

B—B=(X"MpX*) " X*Mp(e*+F )+ (X*'MpX*) ' X*Mp(F —F) = dy +do, say. (E.2)

The first term also appears under Hy and thus di = Op (n_l/QT_l/Q). The second term vanishes
under Hy and plays asymptotically non-negligible role under H; (7,,r) . Let d» = X* Mp(F —F). Note
that

1

dy=X"(F-F)— XD (D'D) ' DF - F). (E.3)

Similarly to the proof in CGL (2010), we can show that the leading term on the right hand side of the
above equation is X*(F — F). Noting that X;; = g; (t/T) + v;y and X* = (I — S,,7)X, we have

X"(F-F) = ZZ[Xn—eiS(t/T)X] [fi (¢/T) = F (t/T)]
= > > o [fi ¢/T) = F(t/T)] 22{61 (t/T)V}[fi (¢/T) = f (t/T)]

i—1 t=1 i=1 t=1
n T
+3 3 g (¢/T) =g (/D)) [ f: (¢/T) = F (/1))
=1 t=1
+ZZ (t/T) — ey S (t/T)G] [fi (t/T) — f (t/T)]
= ‘1/7le —Vurs + Vs + Vyry, (E4)

where V' = (Ulll? -~'7UiT7 "'7U;L17 ""U;LT)/7 ?(t/T) =n' Z?:l 9i (t/T)v gi = (gi(l/T)/7 o Gi (T/T)/)/
and G = (g}, ...,g,)". Clearly ¥,z = 0 for | = 2,4 by the definition of f. Noting that max;<;<, SUPp< <1
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|fi (1) — ?(T” = O (v,r), we have

1<is<no<r<1

E|T,n|* = ZZZE(%W) Lfi (¢/T) = F(¢/T)] [f; (¢/T) = f (t/T)]
< <max sup |f; (1) — f (7 ) TZZ\E 1UJ1)

i=1 j=1
= O(var) O(nl) = o(nT),

implying that 71 = op(vnT). For ¥, 73, we have

n

T
[Wors| < max sup |fi (1) — f(7)] Z'gl (t/T) =g (t/T)|

1<7.<n0< <1 P!

0 (rur TZ( / 9:(7) = (a7 + O(1/7))

= O(Ypr)o(nT) =o(y,rnT).

Consequently, we have shown that X*(F — F) = Op(v/nT) 4 o(vy,7nT). Tt follows X*Mp(F
F) = Op(vnT). Noting that (nT) "' X*MpX* = Op (1), we have (X*MpX*) ™" X* Mp(F — F)
op (V7). Thus B—pB=op (v,p) under Hy (v,,7)-

(iii) Using the notation above, we continue to have d; = Op(n~Y/27-1/2) and (nT)™" X*MpX* =
Op (1) under H;. For dy, we analyze the dominant term X*'(F — F) by using the same decomposition
n (E.4). Clearly, we still have \IJnT2 =0, Y73 = op(nT) and ¥,,ry = 0. For ¥, 7y, noting that
maxi<i<n SUPg<r<1 | fi (7) (r)] = ) under Hy, we have E(||[¥,71|*) = O (nT), which implies
that U,,71 = Op(v/nT). Thus X*(F — F) = op(nT) and B-p= op (1) under H;. m

Remark. If g; (1) — g (7) = 0 for all 7 € [0,1], then from the proof of (ii) and (iii) we can see that
B—B=0p (n=1/2T-1/2) also holds under Hj (v,7) and Hy (1) as ¥,,75 = 0 in this case.

Lemma E.7 || X — S,7X|? = Op (nT).

Proof. Recall g; = (g; (1/T),...,: (T/T)) and G = (g}, ...,g,)". Noting that X;; = g; (t/T) + v,

we have

I1X — Sz X|J?

= YN Xe - aS /) X

i=1 t=1

n
=1
i=1

lvie = xS (¢/T)V + [9: (¢/T) = g (¢/T)] + [g (¢/T) = xS (¢/T) G|

n

n T n T n T
= DD vhva 2 D leaSETIVIF+ 33 o (4/T) =g #/T)F + 33 9 (t/T) = a8 (4/T) G

=1t=1 i=1 t=1 =1 t=1 i=1 t=1

-
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n T n T

Z verSE/T)V +23 0 vl (9:(H/T) =g (/1)) +2> > v, (@ (1t/T) — e1S (t/T) G)

=1 t=1 =1 t=1

+
[\)
M=

N
Il
—
~
Il
-

5
™=

s
Il
-
-
I
—

(erSt/T)V) (G(t/T) = erS (t/T) G +2ZZ (erS(t/T) V) (9; (t/T) — g (/T))

i=1 t=1

(9: (t/T) =g (/7)) (g (t/T) — e1S (t/T) G ZHHT“ say.

NE
M=

+2

s
I
—
o~
Il
-

It is easy to show that: II, 71 = Op (nT') by the Markov inequality, IT,,7 2 = Op (nT log (nT') /(nTh)) =
op (nT), I3 = O (nT') by the property of Riemann integral, II,,7 4 = O (nTh2p+2) = o(nT) by the
Taylor expansion. For the remaining terms, it is clear that II,,7, = 0 for » =9, 10, and we can show
that Z,?:(; II,7» = Op (nT') by the Cauchy-Schwarz inequality. m
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