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1 Introduction

Lately, there has been a resurgence of interest in interest in using Bayesian vector autoregression

(VAR) models for forecasting and policy analysis. Much of this enthusiasm has been generated

by studies demonstrating the strong forecasting performance of computationally convenient

versions of the �Minnesota prior� that dates back to Doan, Litterman, and Sims (1984) and

Litterman (1986).

In an interesting twist that reversed years of untested folk wisdom, Bańbura, Giannone,

Reichlin (2010) demonstrated that large Bayesian VAR models�ones with more than a handful

of variables�outperform their smaller counterparts provided that the priors of the larger models

are su¢ ciently tight. They also show that large Bayesian VAR models perform well against

existing large data set methods, in particular, the factor-augmented vector autoregressions

(FAVAR) models proposed by Bernanke and Boivin (2003). Koop (2010) extends the results of

Bańbura, et. al. (2010), showing that the large Bayesian vector autoregressions also compare

favorably to more complicated and computationally intensive prior speci�cations.

In light of this work, this paper sets forth a sixteen variable Bayesian VAR forecasting

model designed to be used in a monetary policy setting. Until recently, sixteen variables would

have been at the very edge of what researchers would have considered appropriate considering

the problems of collinearity and over�tting. But as recent work helps to underscore, forecast

accuracy is also compromised by arti�cially small systems that introduce errors due to misspec-

i�cation. As in Bańbura, et. al. (2010) and Koop (2010), we implement a natural-conjugate

version of the Minnesota prior (Kadiyala and Karlsson, 1997; Sims and Zha, 1998) that obviates

the need for computationally expensive simulation methods for model estimation. This feature

is particularly appealing in a real-time policy environment where forecasts are updated on a

regular basis. We also make use of the �sum-of-coe¢ cients�prior of Sims (1992).

Because our model is designed to be useful in a monetary policy context, it includes the four

variables that must be forecast by all members of the Federal Open Market Committee (FOMC):

real GDP, the unemployment rate, personal consumption expenditures (PCE) prices, and core

PCE prices (PCE prices less food and energy prices). Our selection of the remaining variables is

motivated by a combination of macroeconomic theory and out-of-sample forecast performance,
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with an emphasis on the former. In particular, we appeal to the �New-Keynesian�(NK) general

equilibrium framework to �ll out the model. Although our focus here is on the reduced-form

models to be used primarily for unconditional forecasting, theory-inspired variable selection

facilitates unconditional forecasting experiments that may help �inform causal hypotheses�

(Doan, Litterman, and Sims; 1984) of monetary policy and the business cycle. The variable

selection also provides a basis for choosing informative over-identifying restrictions for structural

analysis. We provide examples of both unconditional forecasting and structural experiments.

For the latter, we examine the e¤ect of a contractionary monetary policy shock in the vein of

Christiano, Eichenbaum, and Evans (1999).

Like Doan, Litterman, and Sims (1984), our forecast procedure selects hyperparameter

values that control the assertiveness of the priors to maximize out-of-sample forecasting perfor-

mance. In particular, we choose hyperparameter values that maximize the marginal likelihood

of the data. The primary reason for this choice is that these hyperparameters can be shown

to minimize one-step-ahead forecast errors (Geweke and Whiteman, 2006), and considering the

persistence of macroeconomic time series, these forecasts can also be expected to perform well

over longer forecast horizons. Giannone, Lenza, and Primiceri (2010) recommend this proce-

dure on the based on out-of-sample forecasting performance that is superior to that of using

noninformative (or ��at�) priors or factor methods over multiple forecast horizons. We have

also experimented with optimization over various marginal distributions from the predictive

density, but �nd this method problematic for a number of reasons to be discussed herein.

Our results indicate that the Bayesian methods generally and markedly improve forecasting

performance relative to naive random walk (with drift) forecasts and those produced by an

identical model with �at priors. A small exception is for forecasts of the federal funds rate

in which a random walk produces forecasts of similar quality at very short forecast horizons,

which we conjecture is the result of Federal Reserve procedures that maintain the federal funds

rate constant for often lengthy periods of time�precisely the situations in which one could

expect random walk forecasts to do well. Consistent with that observation, the Bayesian model

outperforms the random walk in forecast horizons of a year or more.

With respect to structural analysis, the model produces responses to a contractionary mone-

tary policy shock generally in line with those obtained by Christiano, et. al., with the exception
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of those for the price variables. The pre-established results that output prices fall in response

to the shock, perhaps after a small initial increase. The tendency for prices to rise initially and

has been dubbed the �price puzzle.�In contrast to the consensus view, the price response gener-

ated by our model makes the puzzle even more puzzling. We �nd that the initial price increase

that frames the price puzzle is less pronounced but very long lasting. But the magnitude of

the response is small enough to be fairly characterized as non-existent. In consideration of the

forecasting success of the model with optimized priors over the identical one with �at priors,

we conjecture that the established view on the price response may be the result of over�tting,

but leave the investigation to future work.

The rest of the paper proceeds as follows. In the following section, we present the VAR

model and the Bayesian prior assumptions. In section 3 we motivate the selection of variables,

and section 4 discusses the hyperparameter selection. In section 5 we evaluate the forecast

performance of the model. Section 6 illustrates the computation and uses of predictive densi-

ties and fancharts as measures of forecast uncertainty, and provides two example conditional

forecasting experiments. Section 7 presents the structural analysis and section 8 concludes.

2 Model and Prior Speci�cation

To begin, let Yt = (y1;t; y2;t; : : : ; yn;t)
0 be the data vector of n random variables. The model, or

likelihood, is de�ned by the VAR(p) model

Yt = Bc +B1Yt�1 + � � �+BpYt�p + "t (1)

for t = 1; � � � ; T , where Bc = (c1; c2; : : : ; cn)0 is an n-dimensional vector of constants, B1; : : : ; Bn

are n�n matrices of VAR coe¢ cients, and "t is an n-dimensional Gaussian white noise process

with E"t"0t = �. Each equation in this n-variable system has k = np + 1 regressors. For our

quarterly model, n = 16 and p = 4 meaning that 65 coe¢ cients per equation must be estimated

using some 200-plus observations.

Because the VAR model is richly parameterized, the limited data history means that it

is susceptible to over�tting. The traditional solution to the over�tting problem is to sharply
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restrict the number of variables in the system, risking misspeci�cation instead. Both over�tting

and misspeci�cation compromise forecasting accuracy. To balance these risks, Bayesian methods

are often applied to shrink coe¢ cient estimates in B1; : : : ; Bn and � to their prior means. We

use the Minnesota-type prior introduced by Litterman (1986), but with the Normal-inverted

Wishart (N -iW ) form proposed by Kadiyala and Karlsson (1997) and Sims and Zha (1998).

Among other advantages, the Normal-inverted Wishart prior is also the natural conjugate prior

(i.e. produces a posterior that is also Normal-inverted Wishart).

The prior beliefs regarding the �rst and second moments of the coe¢ cient matrices are as

follows:

E
h
B
(i;j)
k

i
=

8><>: �i, if i = j; k = 1

0, otherwise
; Var

h
B
(i;j)
k

i
= �2

1

`2
�2i
�2j
; ` = 1; : : : ; p: (2)

In the original Minnesota prior, �i = 1 for all variables re�ecting a belief that the system is a

collection of random walks correlated only through the innovations. For non-trending variables,

the setting �i = 0 should be used instead producing a system described a priori by a mixture

of random walk and white-noise processes. These priors retain the original Minnesota prior

notion that recent lags are more economically signi�cant than more distant ones by shrinking

the scale factor 1
`2
on the variances as the lag length increases. The hyperparameter � controls

the overall tightness of the prior so that as �! 0 the prior dominates and as �!1 the prior

becomes increasing non-informative (or ��at�) and the coe¢ cients converge to OLS estimates.

The prior speci�cation in (2) di¤ers from the traditional Minnesota prior in that it is sym-

metric in its treatment of own lags of the dependent variables in each equation and all other

lags. In contrast, the traditional speci�cation allows the coe¢ cients on the own lags to play a

stronger role than the others by letting the prior variances of own-lag coe¢ cients to be larger.

Despite the intuitive attraction, the added �exibility turns out to add little, if anything, to

forecast accuracy (Koop, 2010; Carriero, Clark, and Marcellino, 2011). Furthermore, the sym-

metry of the Normal-inverted Wishart prior facilitates equation-by-equation estimation with

the data matrices augmented by speci�c sets of dummy observations. Estimated properly, the

traditional Minnesota system requires computationally-expensive posterior simulation methods
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although equation-by-equation estimation is often (and improperly) used. Due to its properties

we will alternative refer to the Normal-inverted Wishart prior as the �natural conjugate�prior

or the �symmetric Minnesota�prior.

A �nal di¤erence between the natural conjugate prior and the traditional Minnesota prior

as implemented by Litterman (1986) involves the treatment of the error-covariance matrix of

innovations �. Whereas the natural conjugate prior treats the elements of � as objects to

be estimated, the traditional implementation of the Minnesota prior assumes � to be a �xed

diagonal matrix where each diagonal element is given by the OLS standard regression error

estimate of the univariate AR(p) process for the corresponding variable. Although we estimate

�, we follow the standard practice of setting the scaling parameters �2i in (2) in accordance

with the traditional implementation.

To describe the prior and posterior distributions, it is useful to express the VAR system (1)

more compactly as

Y = XB + " (3)

Here, Y is a T � n matrix of dependent variable observations and X is a T � k matrix of

independent variable observations with k = np+1. In this formulation, the t-th row of Y is the

1�n vector of dependent variables y0t and the t-th row of X is the 1�k vector
�
1; y0t�1; : : : ; y

0
t�p
�
.

The matrix B = [Bc B1 � � � Bp] is the corresponding k� n matrix of VAR coe¢ cients and " is

the T � n matrix of disturbance terms with the t-th row given by "0t.

The prior can now be written:

vec (B) j� s N (vec (B0) ;�
 
0) ; � s iW (S0; �0) (4)

where the prior parametersB0, 
0, S0, and �0 are chosen to produce a VAR system (1) satisfying

the prior moment conditions in (2). Multiplication by the likelihood function produces the

corresponding posterior kernel

vec (B) j�; Y s N
�
vec

�
B
�
;�
 
0

�
; � s iW

�
S; �

�
: (5)
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where

B =
�

�10 +X 0X

��1 �

�10 B0 +X

0Y
�


 =
�

�10 +X 0X

��1
� = �0 + T:

Additionally,

S = bB0X 0X bB +B00
�10 B0 +B0 + b"0b"� bB0
�1 bB
where bB = (X 0X)�1X 0Y is the OLS estimate of B and b" = Y �X bB are the OLS residuals (Zell-
ner, 1973). To implement the natural conjugate prior we follow the mixed estimation method

proposed by Litterman (1986) and augment the data matrices with dummy observations.

We also evaluate the model using the sum-of-coe¢ cients prior (Sims,1992; Sims and Zha

1998) in addition to the symmetric Minnesota prior (Robertson and Tallman, 1999; Bańbura,

et. al. 2010). The sum-of-coe¢ cients prior allows for the inexact di¤erencing of variables in

the system by imposing the restriction

B1 + � � �+Bn = In

implying that the VAR coe¢ cients on own lags sum to one. Letting � be the hyperparameter

controlling the degree of tightness applied to the sum-of-coe¢ cients prior, as �! 0 the system

approaches one estimated in di¤erenced form; as �!1 the e¤ect of the prior on the posterior

vanishes. To implement both priors, an additional set of dummy observations is added to

the data matrices previously augmented to implement the symmetric Minnesota prior. The

Appendix presents expressions for the dummy observations necessary to implement both priors.

3 Variable Selection

We approach the problem of variable selection from two perspectives. First, the model is to

be used primarily for unconditional forecasting for monetary policy so that we include the four

variables for which each FOMC member must submit a forecast. Our secondary objective,

is to choose variables which help construct a theoretically coherent forecast narrative, or at
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least a partial understanding of why forecasts changes over time. Story-telling ability, albeit

limited, can be obtained by unconditional forecasting exercises conducted with the reduced-

form model. Furthermore, Sims and Zha (1998) show that the reduced form is a special case

of a larger set of models and that the natural conjugate prior works with a particular class of

identifying structures. As a consequence, a careful selection of variables motivated by theoretical

considerations should help generate more useful identi�cation schemes than variables chosen

solely for their forecasting ability.

Given that our model is to be used in a monetary policy setting, we choose variables that

can be associated with the New-Keynesian (NK) class of dynamic stochastic general equilibrium

models (DSGE)�models that have been gaining in�uence among policymakers at the world�s

major central banks.1 Table 1 presents the sixteen model variables beginning with the four

that must be forecast: real GDP, the unemployment rate, personal consumption expenditures

(PCE) prices, and PCE prices excluding food and energy prices, commonly referred to as �core�

PCE prices. Real GDP, as the most comprehensive measure of aggregate output, is an obvious

choice for FOMC monitoring. The year-over-year percent change in the core PCE is currently

the FOMC�s preferred measure for gauging the in�ation rate that underlies the more noisy

over PCE in�ation rate. Nevertheless, energy and food prices also impact consumer welfare

and potentially core prices, so forecast for the overall rate are also mandatory. Finally, the

unemployment rate provides indirect evidence on capacity utilization, of interest not only for

welfare considerations, but for its potential to in�uence in�ation dynamics.

To these four variables, we add the federal funds rate�the primary operating instrument of

monetary policy. In NK models, a monetary policy reaction function (e.g. the Taylor rule)

closes the model and determines the equilibrium federal funds rate. The addition of hourly

labor compensation and labor productivity �ll out the core of the model. In�ation dynamics

in NK models depend largely on some notion resource utilization typically expressed as an

�output gap,�or the distance between actual output and its �exible-price analogue. In basic

NK models, the output gap is proportional to the real marginal cost of labor. To allow for these

in�ation mechanics, we include labor compensation and productivity measures which together

imply a measure of unit labor costs. The price indexes in the model further imply measures of

1See Gali, ch. 3, for an introduction to the basic model.
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real unit labor costs.

To this seven-variable core we add nine more variables. In�ation dynamics are not only

impacted by labor input costs, but also by the cost material inputs to �rms which we proxy

with the Commodity Research Bureau�s index of commodity prices. Although there is no direct

measure of the productivity of materials, we suspect that labor productivity provides a useful

proxy measure. As with labor costs, the two PCE indexes imply approximate real commodity

price measures.

In addition to real GDP, we round out the real sector of the model with real consumption,

real personal disposable income, and nonfarm payroll employment. Distinguishing consump-

tion from total output is not only proper from a DSGE modeling perspective, it implicitly

provides information on the smaller but more volatile expenditure components of �xed invest-

ment, inventory investment, and net exports. Real disposable income introduces �scal policy

information on taxes and transfers and also facilitates the computation of a personal saving

rate. And, aside from being one of the most heavily monitored economic indicators, the inclu-

sion of payroll employment captures �rm and household employment decisions on the extensive

margin. Information on the intensive margin, or hours worked, is implied by the simultaneous

consideration of real GDP (output) and labor productivity (output divided by hours).

Finally we introduce a number of �nancial market variables, mainly because of their demon-

strated ability to predict changes in real activity. Considering that investment decisions are

more tied to longer-term interest rates, we introduce yields on 10-year U.S. Treasury notes and

Aaa-rated corporate bonds. These provide information on term spreads (10-year Treasury yield

minus the federal funds rate) and credit spreads (Aaa corporate yield minus 10-year Treasury

yield). We also include the S&P 500 index of equity prices and the S&P 500 dividend yield.

Summing these two gives the return on equities which can be compared to either the federal

funds rate or the 10-year Treasury yield to extract measures of the equity premium. Finally,

we include a nominal trade-weighted exchange rate as a key international variable.

Table 1 also indicates how each of the variables is transformed for the Bayesian VAR. All

variables enter in log-levels with the exception of the interest rates which enter in levels. Table 1

also indicates that for all variables the �rst own-lag coe¢ cient is shrunk to one in the symmetric

Minnesota prior, i.e. �i = 1 for all 1 = 1; 2; : : : 16.
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The raw data in this paper runs from 1959Q1 through 2011Q2. Variables available at the

monthly frequency are transformed to quarterly by averaging over the three months of the

quarter. With the exception of �nancial variables, all variables are seasonally adjusted.

4 Hyperparameter Selection

Considering the complexity of economies and the number of historical correlations in the VAR

models that represent them, it is di¢ cult to imagine using purely introspective methods to select

hyperparameters. To bypass that obstacle, the literature suggests several empirical Bayesian

approaches to hyperparameter choice. The most popular approach for forecasting applications

involves choosing hyperparameters that optimize some pre-de�ned criteria.

We have experimented with two general optimization methods of hyperparameter selec-

tion: 1) minimizing out-of-sample forecast error metrics based on various marginal distribu-

tions of the posterior predictive density, and 2) optimizing over the marginal likelihood of the

data. Choosing hyperparameter settings based on minimizing density-weighted forecast errors

is problematic for a number of reasons. One must �rst decide how to weight the marginal

predictive densities for each of the model variables that comprise the objective function. In our

experiments, we chose hyperparameters that maximized forecast performance for each of the

four variables reported to the FOMC singly (real GDP, unemployment rate, PCE de�ator, and

core PCE de�ator), and an arithmetic average of the four. As a general characterization, the

resulting hyperparameter settings vary markedly across the �ve weighting schemes. In addition,

optimal hyperparameters varied not only by weighting scheme, but also by forecast horizon.

In other words, settings that work well for the near-term do not necessarily perform well over

longer forecast horizons. Finally, it is our experience that the hyperparameters chosen on out-

of-sample forecasting ability can vary widely depending on the data sample, making it di¢ cult

to understand why forecasts change from period to period.

In light of these observations, we prefer to use hyperparameters that maximize the marginal

likelihood of the data sample. As an in-sample construct, it is not susceptible to the problems

enumerated above. And, because these priors maximize the probability that the model is the

true model, it gives the best chance of producing a zero one-step-ahead forecast error (Geweke
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and Whiteman, 2006). Considering the persistence of macroeconomic time series, optimal one-

step-ahead performance is likely to carry over to longer forecast horizons. Giannone, Lenza, and

Primiceri (2010) provide support for these arguments by demonstrating the superiority of the

marginal likelihood approach in out-of-sample forecasting exercises when compared to identical

models that use �at priors or models using factor methods over multiple forecast horizons.

In principle, the optimal hyperparameters are given by

[��; ��] = argmax
[�;�]2R2+

ln p (Y ) :

where

p(Y ) =

Z
p(Y j�)p(�)d�

is the marginal likelihood. An attractive feature of the marginal density associated with Normal-

inverted Wishart prior is that it can be obtained in closed-form as

p(Y ) = (
1

�
)
nT
2 � j(I +X
0X0)�1j

n
2 � jS0j

v0
2

�
�n(

v0+T
2 )

�n(
v0
2 )

� jS0 + (Y �XB0)
0
(I +X
0X0)�1(Y �XB0)j

� v0+T
2 :

(See Clark, et. al. (2010) or Giannone, et. al. (2010) for derivations.) In practice, we evaluate

the marginal likelihood over a discrete grid of candidate hyperparameters de�ned by � 2 [0.10,

0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50, 1] and � 2 [0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50,

0.75, 1, 2, 3, 5, 10, 15] for each forecasting exercise.

To establish the claim that the marginal likelihood approach generates stable hyperparame-

ters, we compute the optimal set recursively from 1970Q1 to 2011Q2 (i.e. the 1970Q1 values

use the 1959Q1�1969Q4 sample, those for 1970Q2 use the 1959Q1�1970Q1 sample and so on).

Figure 1 display the optimal values of �, and � over time. As can be seen, they are roughly

constant after the sample size grows beyond a certain size corresponding to a sample ending

roughly in 1984 for � and in 1983 for �, converging approximately to 0.20 and 0.25, respectively.

It is interesting to note that both remain essentially constant throughout the 2007Q4�2009Q2
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recession period and subsequent recovery. In spite of the rapidly changing economic condi-

tions of the time, this procedure assigns virtually no forecast error to changes in the model

hyperparameters from period-to-period.

5 Forecast Evaluation

Our main purpose in this section is to evaluate the forecasting performance of our medium-

scale model using standard accuracy metrics for point forecasts. In what follows, we restrict

our attention to the four model variables GDPR, UR, PCXFE, and RFF. Note that this set

is not identical to the one for which FOMC members are required to submit forecasts. From

that set we have dropped the overall PCE price (PC ) index because it is highly collinear to the

core PCE price index and therefore unlikely to add little independent insight on the forecast

performance of the model. In its place, we have added the e¤ective federal funds rate (RFF )

in light of its key role in monetary policy.

Given the posterior mean of the parameters, computing H-step-ahead point forecasts is

straightforward. In terms of the H-step ahead predictive density, it is the forecast path gener-

ated by a draw of model parameters from the posterior density (5) corresponding to the mean B

and zero disturbance errors. Using the VAR system (1), the one-step ahead forecast is obtained

as

bYt+1 = Bc +B1Yt +B2Yt�1 + : : :+BpYt�p+1
The remaining h = 1; : : : ;H � 1 step-ahead point forecasts are computed by recursive substi-

tution. For example, the H = 2 forecast is then computed

bYt+2 = Bc +B1 bYt+1 +B2Yt + : : :+BpYt�p+2
and so on. More generally,

bYt+h = Bc +B1 bYt+h�1 +B2 bYt+h�2 + : : :+Bp bYt+h�p; h = 1; : : : ;H (6)
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where bYt+h = Yt+h�p for h � p.
The forecast evaluations are conducted on a recursive basis in which the sample period is

lengthened by one observation for each forecast. The maximum forecast horizon is two years

or H = 8 quarters. We will evaluate the model�s ability to forecast each of the four variables

of interest from the �rst quarter of 1970 (1970Q1) onwards. Given that our data set runs

from 1959Q1 to 2011Q2 and that our model uses p = 4 lags, the initial estimation sample

runs from 1960Q1 to 1969Q4, followed by the 1960Q1�1970Q1 period, an so on.2 As in other

recent studies, the evaluations are conducted in �pseudo real time�meaning that we do not use

vintage (or �real time�) data , i.e. data that was available when a forecast would have been

initially performed. Forecast performance statistics are also reported for the evaluation period

running from 1987Q1 to 2010Q4. This sub-period is often singled out as one characterized by a

single and distinct monetary policy regime and therefore worthy of separate consideration. We

provide the results to facilitate comparisons to other studies.

Point forecast evaluations are based on the mean square forecast error (MSFE) statistic.

Letting T0 denote the beginning of the evaluation period minus one period (1969Q4 or 1986Q4)

and T1 the end period (2011Q2), the mean square forecast error is given by the expression

MSFEi;h =

PT1�h
t=T0

(Y datai;t+h � bYt+h)2
T1 � h� T0 + 1

for each forecast variable i 2 fGDPR;UR;PCXFE;RFFg and forecast horizon h = 1; : : : ;H.

Note that variables entering the VAR as log-levels are exponentiated to return them to raw levels

before computing the MSFEs. We report MSFE statistics relative to three di¤erent benchmark

model forecasts. The �rst, is produced by a model comprised of independent random walks with

drift (denoted RW ), i.e. a model in which the VAR system (1) is restricted such that B1 is the

identity matrix, B2 = � � � = Bp = 0, and Bc is the vector of drift terms estimated by ordinary

least sqares. The second benchmark model is the univariate AR(4) process for each variable

that enters the VAR (denoted AR). Each univariate model forecast is produced using the

same procedure as the Bayesian VAR forecast. Speci�cally, the AR(4) models are estimated
2We also perform forecast evaluations using a rolling sample of 10 years (40 quarters) starting from the initial

sample period of 1960Q1�1969Q4, followed by 1960Q2�1970Q1, and so on. The results prove to be quite similar
to those generated with the recursive scheme and are not presented here for the sake of brevity, but are available
upon request from the authors.
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under the Minnesota prior (in this case the symmetry property is not meaningful) and the

sum-of-coe¢ cients prior with hyperparameter setting that maximize the marginal likelihood.

This comparison evaluates the forecast value of the cross-correlation information contained in

Bayesian VAR model coe¢ cients. And lastly, we evaluate the forecasting accuracy gained by

using our informative priors by comparing the Bayesian VAR forecasts to those generated by

the same system under �at priors (OLS). De�ningMSFEBV ARi;h as the MSFE for the Bayesian

VAR with optimized hyperparameters and MSFEmi;h where m 2 fRW;AR;OLSg as the ones

corresponding to each benchmark model, the relative mean squared forecast error (RMSFE)

statistic is expressed as the ratio of the former to the latter,

RMSFEi;h =
MSFEBV ARi;h

MSFEmi;h
,

so that values less than one imply superior forecasts from the optimized Bayesian VAR model.

Since forecasts for trending variables are typically reported as growth rates, the tables below

also report RMSFEs for the annualized quarterly growth rates implied by the forecasts of real

GDP and the core PCE in addition to the four variables enumerated above.

Table 2 reports the relative mean square forecast errors with the model that implements

only the symmetric Minnesota, or equivalently, a model in which � is set to an arbitrarily

large number so that the sum-or-coe¢ cients prior is essentially inoperative. Each forecast run

implements the hyperparameter � that maximizes the marginal likelihood in sample. Table

3 reports the same set of statistics for the model where both hyperparameters are optimized.

Comparing the two tables reveals evidence largely in favor of adding the sum-of-coe¢ cients

prior. Forecasts for real activity improve substantially with sizeable accuracy gains recorded

for both real GDP (in levels and growth rates) and the unemployment rate. Note however,

that the real GDP growth forecast beats the random walk forecast only in the �rst two forecast

quarters in the full 1970Q1�2011Q2 evaluation period, and the �rst four quarters in the post�

1986 period. Forecasts for the federal funds rate are dramatically improved, although the

improved forecast is only about as accurate as the random walk for the �rst four quarters in the

1970Q1�2011Q2 evaluation period, and substantially worse in the post�1986 period. Bańbura,

et. al. (2010) and Koop (2010) report similar results for the federal funds rate. We conjecture
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that this result is an artifact of the Federal Reserve operating procedure that changes the target

federal funds rate on an infrequent basis which often leaves e¤ective rate roughly unchanged

for lengthy periods�precisely the conditions in which a random walk forecast could be expected

to do well. But for longer forecast horizons, the auto- and cross-correlations of the Bayesian

VAR help to outperform the random walk. The core PCE forecast both in levels and in growth

rates are the only ones in which accuracy is not improved by the sum-of-coe¢ cients prior, but

the accuracy loss is minor on both counts.

In Table 4, we report the RMSFEs generated by the Bayesian VAR model and the Bayesian

AR(4) benchmark models. The results generally mimic those reported for the random walk

comparison in Table 3 with two exceptions. As can be expected, the RMSFEs are generally

higher in Table 4 simply indicating that as a generalization of the random walk with drift, the

AR(4) speci�cation captures higher-order dynamics and that the small number of lags coupled

with the informative priors can reasonably be expected to neutralize the disadvantages caused

by over�tting. The other exception is that the Bayesian AR(4) forecasts for the core PCE and

its growth rate are far superior to the Bayesian VAR analogues at all forecast horizons. This

suggests to us that the symmetry property that treats the prior precision of own-lags may be

overly restrictive for the case of aggregate price and in�ation forecasting. If so, a case could

possibly be made for the traditional Minnesota prior, or even a more �exible speci�cation,

but only by sacri�cing the computational conveniences of using the Normal-inverted Wishart

conjugate prior.

Before leaving this section, we assess the gains from using Bayesian prior information in the

�rst place. Table 5 expresses the forecast accuracy of the Bayesian formulation with both the

symmetric Minnesota and sum-of-coe¢ cients prior as in Table 3, relative to forecasts produced

with �at priors (� and � set to arbitrarily large numbers). Because approximately sixteen

years of data is expended estimating the model using �at priors, results are only available for

the 1987Q1�2011Q2 period. Comparing Table 4 to Table 3 reveals that the forecasts produced

with the informative priors improve overwhelmingly on the �at priors, with the largest accuracy

gains recorded for the federal funds rate and the smallest for core PCE prices.
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6 Forecast Uncertainty and Conditional Projections

Point forecasts provide a useful focal point for policy discussions, but a complete rendering of

a forecast requires its probabilistic properties. For reasons obvious to professional economists

and policymakers, an intelligible decision-making process requires a probabilistic assessment

of alternative outcomes. By de�nition (considering that the real numbers are dense), a point

forecast can never be technically correct. Although the point seems trivial, it is easily lost on

a public that continually chide forecasters for �always getting it wrong.�O¤ering a range of

likely and not-so-likely outcomes in the monetary policy discussion also brings the potential of

improving the monetary policy dialogue with the public. The many advantages of a probabilistic

approach to policymaking (and some potential pitfalls) have been discussed at length by Sims

(2007). The advantages have become more apparent as central banks move toward either

explicit or de-facto in�ation targeting regimes.

In this section, we introduce the posterior predictive density, the fundamental forecast object

of Bayesian VAR models, and demonstrate its two basic applications: 1) to characterize the

extent of forecast uncertainty, and 2) to assess the likelihood of forecasts that satisfy as set of

conditions or speci�c sets of future disturbances.

6.1 The Posterior Predictive Density and Fan Charts

Prediction in a Bayesian framework is based on the posterior predictive density (or �predictive

density�for short). The predictive density provides a complete probability assessment of future

values of the model variables given current and past observations of those variables.

Let Y T = (y01; : : : ; y
0
T )
0 represent the entire history of the data Yt. Given history, we wish

to make predictions h periods into the future. If we let Y T+1;T+H =
�
y0T+1; y

0
T+2;; : : : ; y

0
T+H

�0
represent an arbitrary forecast path in the set of all possible future paths, then constructing

the predictive density requires us to assign a probability to each path. The predictive density

is thus

p
�
Y T+H j Y T

�
=

Z
p
�
Y T+1;T+h; � j Y T

�
d� (7)

where p
�
Y T+1;T+H ; � j Y T

�
is the joint density of model parameters and future variable obser-

vations. Using the rules of probability, the integrand can be written in a way that highlights
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the two sources of forecast uncertainty:

p
�
Y T+1;T+H ; � j Y T

�
= p

�
Y T+1;T+H j Y T ; �

�
p
�
� j Y T

�
; (8)

The �rst term on the right-hand side of (8) describes the uncertainty on future observables

given the observed data and model parameters, or equivalently, the forecast uncertainty due to

future disturbances that impact the VAR. The second term is the model posterior distribution

describing parameter uncertainty. Since both distributions have analytical expressions under the

Normal-inverted Wishart prior, simple Monte Carlo methods are used to produce a numerical

analogue of the predictive density.3

To use the h-step ahead predictive density to measure the forecast uncertainty of a single

forecast variable (h-steps ahead), the marginal predictive density is constructed in by integrating

all other VAR variables out of (7) and setting them equal to their expected values. The fan

chart representation of the forecast uses the h = 1; : : : ;H marginal predictive densities to

illustrate forecast uncertainty over the entire forecast horizon. Figures 2 and 3 provide fan charts

constructed with nine density probability bands ranging from 10% to 90% at each point in the

forecast horizon with the darker shades indicating higher probabilities. The �gure 2 forecast

is produced using the 1959Q1�2009Q2 sample, and �gure 3 displays the one corresponding to

the 1959Q1�2005Q4 subsample. A comparison of the two �gures shows that there is more

dispersion of forecasts surrounding the point forecast produced from the more recent sample

indicating more forecast uncertainty, despite having been produced with more observations�the

result of introducing an exceptionally large recession to the historical sample.4 For example,

forecasts for year-on-year real GDP growth for 2006Q4 (i.e. from the perspective of 2005Q4)

ranges between 0:4 percent and 4:0 percent with 70 percent probability (�gure 3) while the

year-on-year growth projection for 2010Q4 (from the perspective of 2009Q4) has a 70 percent

range between 1:7 percent and 6:9 percent, or 520 basis points versus 360 basis points in the

earlier period. The corresponding �gures for 2007Q4 and 2011Q4 are 430 and 552 basis points,

respectively. Similar results hold for the unemployment rate, core PCE in�ation, and the federal

3The details of the algorithm are available from the authors upon request .
4One could control for the number of observations by using a rolling sample.
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funds rate.5

6.2 Conditional Projections

Because the predictive density assigns likelihoods to all possible forecast paths, the Monte Carlo

methods used to produce the approximate numerical density are easily applied to gauge the

likelihoods of speci�c sets of economically interesting paths. A simple application would be to

compute the probability of a �recession�in the coming year by �agging all forecast paths which

contain two or more consecutive quarters of negative growth in the �rst four quarters of the

forecast horizon and subsequently expressing the number of qualifying paths relative to the total

number of simulations. Conditional (marginal) predictive densities can then be constructed to

evaluate the broader economic conditions that are likely to prevail in a recessionary environment.

For example: What is the likely range of in�ation rates along the recession paths? How likely

is it that the unemployment rate will exceed ten percent in the next two years if there is a

recession?

In other cases, policymakers may interested in gauging the likelihood of speci�c outcomes

following an outsized event equivalent to a large forecast error (or errors) produced by one or

more of the model�s equations. In these cases, the analysis is based on the predictive densities

produced by forecasts that condition on assumed constants for one or more variables in a given

forecast period or in multiple periods. Although no causal interpretation of the experiment is

available, the results may help �inform causal hypotheses�(Doan, Litterman, and Sims; 1984).

For example, one may be interested in studying the e¤ects of an unexpectedly large observation

in commodity prices (a large forecast error) on a given baseline forecast. We close this section

by considering both examples.6

5The result for the federal funds rate is somewhat arti�cial since the level speci�cation of that equation allows
projections for which the rate is negative. We choose the level speci�cation to facilitate comparison to studies
that generally favor using simple levels for asset yields.

6Another method for introducing extra-sample information proposed by Robertson, Tallman, and Whitman
(2005) use a minimum entropy method to operate directly on the predictive densities to satisfy a set of zero-
moment conditions. Although we do not consider it here, we consider it a promising avenue for further research.
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6.2.1 Example: Recession probabilities

In this example, we recursively simulate the sequence of predictive densities for h = 1; : : : ; 4

steps ahead for each quarter in the range of dates beginning in 1970Q1 and ending 2011Q2.

That is, the �rst four densities are constructed using the 1959Q1�1969Q4 sample period, the

next set of four using the 1959Q1�1970Q1 period, and so forth. We then use the marginal

predictive densities for real GDP computed at each recursion to assess the probability that

the economy will experience two or more consecutive declines in real GDP in the ensuing four

quarters. The probabilities are plotted in Figure 4 along with shaded regions depicting NBER-

de�ned recession periods.7 Although the Bayesian VAR model is not designed to produce

recession probabilities like various incarnations of nonlinear models do, Figure 4 shows that

the predictive densities are quite informative in forecasting recessions. Nearly all recessions are

preceded by sharp increases in the recession probability with few discernible false positives.

6.2.2 Example: A shock to commodity prices

Here, we use the Bayesian VAR model to analyze the e¤ects of a commodity price surge on

a given forecast. Numerous rapid increases in energy and other commodity prices that have

occurred since the latter part of the1990s make this example especially relevant in current

policy environments. The experiment compares two forecasts: the unconditional, or �baseline�

forecast, and one that is conditioned on a 25 percent increase in commodity prices (translating

approximately to a 100 percent annual rate to facilitate quantitative comparison) in the initial

forecast period. The size of the shock is large but not unprecedented when compared to some

of the consecutive-quarter shocks witnessed in the mid-2000s. The baseline and conditional

forecast densities are constructed for h = 1; 2; : : : ; 8 steps ahead using the 1959Q1-2011Q2 data

sample.

Figure 5 displays the results of the experiment. One should �rst note that the commodity

price response is highly persistent�although the forecasted commodity price growth path quickly

falls in the subsequent periods (as indicated in Figure 5), there are no ensuing periods of negative

7These are the probabilities that policymakers would have faced throughout this period if they had access to
the most recent data set�the one used thoughout this paper. A more complete analysis would apply the historical
data actually available to policymakers at each recursion.
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growth to bring the level of commodity prices back down to baseline levels. After an initial

rise, growth in real activity slows as indicated by the behavior of real GDP growth, employment

growth and the unemployment rate in Figure 5. The decrease in real activity is accompanied by

rising in�ation. Overall PCE in�ation is quickly pushed higher but quickly attenuates, falling

back down to the baseline level. Core PCE in�ation rises less and more gradually than overall

PCE in�ation, but the increase is more persistent.

Although cause and e¤ect is not identi�ed by these results, they hue closely to a the story told

by the NK-DSGE model about the e¤ects of a truly exogenous supply shock. The supply of a key

commodity (e.g. oil) contracts and its price rises. Growth in the productivity of complementary

inputs slows�notably labor productivity�reducing output and employment growth. Slower labor

productivity growth places upward pressure on unit labor cost which are passed in some measure

to output prices over a number of periods. Although the causal chain is not identi�ed by the

reduced-form model, it useful to know that the dominant theme of the experiment is in overall

agreement with theory. Note, however, that the initial rise in real activity is at odds with the

theoretical narrative and indicates that many forces are at work here underscoring the danger

of reading too much into conditional forecasts. That stated, the results do stimulate one�s

thinking regarding causal mechanisms. Is it that periods of rising commodity prices have been

associated with rapid economic growth due to strong demand for natural resources that drive up

commodity prices? If so, then the experiment�s results could be interpreted as the NK-DSGE

in�ation mechanism layered with commodity price and growth dynamics with e¤ects that linger

and dominate at the outset of the experiment.

7 Structural Analysis

As stressed in section 3, variable selection in our Bayesian VAR is motivated by theory as

well as forecast performance. In particular, variables were chosen to correspond to those one

might �nd in an expanded version of a NK-DSGE model. Because our model variables are

germane to the monetary policy discussion, we consider a structural analysis along the lines of

Christiano, Eichenbaum, and Evans (1999) to identify the e¤ects of a monetary policy shock.

Whereas they impose their identi�cation scheme on VAR using classical statistical techniques,
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the identi�cation also works with the natural conjugate prior Bayesian VAR considered here

(Sims and Zha, 1998).

Christiano, et. al. (1999) motivate their identi�cation with a monetary policy rule for the

central bank,

Rt = f (
t) + vt ; (9)

where Rt is the monetary policy instrument (i.e. the federal funds rate), 
t is the central

bank�s information set, vt is the monetary policy shock, and f is assumed to be linear. The

key identifying assumption is that vt is orthogonal to 
t. To implement the scheme, the data

vector is partitioned as follows:

Yt =

266664
X1t

Rt

X2t

377775 : (10)

Vector X1t contains the variables for which their contemporaneous values appear in 
t; these

variables are characterized as �slow moving�in that they do not respond contemporaneously to

monetary policy shocks. They comprise the �rst block because they are ordered ahead of the the

monetary policy instrument Rt in the VAR. In contrast, the variables in X2t are �fast moving�

because they can respond instantaneously to a monetary policy shock. Broadly speaking, real

quantities and price levels are classi�ed as slow moving and �nancial variables as fast moving.

That is, monetary policy has an immediate e¤ect on the �nancial variables, but in�uences price

levels and real quantities with a lag. In terms of the present model variables, the partition is

de�ned by

X1t = [GDPRt Y PDRt CONSRt PCXFEt PCt PCOMMt (11)

PRODNFt COMPNFt EMPNFt URt]
0 ,

X2t = [RTCM10t RAAAt SP500t SPY IELDt EXCHt]
0 , (12)

and Rt = FFEDt. Although, (10)�(12) represents a complete recursive orthogonalization

de�ned by the unique ordering of all variables, the dynamic response of all variables Yt to a
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policy shock is una¤ected by the ordering of variables within X1t and X2t. Since we are only

interested in the e¤ects of monetary policy, the order of variables as written in (11) and (12) is

unimportant.

Formally, the identi�cation of monetary policy shocks is achieved by the standard triangular

decomposition of the variance covariance matrix: � = A�10 D
�
A�10

�0
. In this expression, A0 is

a lower diagonal matrix with ones along the main diagonal and D =diag(�). The structural

model may be expressed generically as

A0Yt = Ac +A1Yt�1 + � � �+ApYt�p + ut (13)

By comparison to the reduced form (1), we see that Ac = A0Bc, Aj = A0Bj , for j = 1; : : : ; p,

and ut = A0"t is the period-t vector of mutually uncorrelated, or �fundamental,� shocks.

To compute the impulse responses and the associated probability bands, we sample from the

model posterior and for each draw of (B1; B2; : : : ; Bp;�) we compute A0, the implied coe¢ cient

matrices Aj , and the impulse responses (13). The probability bands are computed from the

empirical distribution of impulse responses.

Table 6 and Figure 6 summarize the e¤ects of a contractionary 100 basis point shock to

the federal funds rate. Christiano, et. al. (1999) summarize the agreement in the literature

regarding the properties of such responses. Our results regarding real activity are in broad

agreement with previous results: the positive shock federal funds rate is highly persistent;

measures of real activity (in our case real GDP, real disposable income, real consumption

expenditures and employment) decline in hump-shaped fashion (and in unemployment rate rises

with a hump-shape), and productivity declines initially and gradually returns to trend. As in

other studies, commodity prices fall after an initial delay, but the decline is not as persistent

and returns to trend within three years of the shock.

In another, and much starker contrast, our impulse responses for output prices (overall

and core PCE indexes) are essentially �at compared to previous �ndings which show declining

prices after a brief delay, or even and initial increase. Christiano, et. al. (1999) have referred

to the paradoxical initial rise as the �price puzzle.� If anything, our price responses can be

characterized as a super-persistent price puzzle, in which the price responses remain slightly
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positive for an extended period: after �ve years, both the response to the overall PCE index

and the core PCE index have yet to fall back to zero.

We o¤er a number of conjectures for the observed di¤erence. First, Christiano, et. al.

(1999) use the GDP de�ator as there overall price measure which includes non�nal goods prices

which may be inherently more volatile. We prefer the PCE indexes because of their direct

relevance to monetary policy. To investigate, we replaced the two PCE indexes in the model

with the single GDP de�ator and observed little di¤erence in the two price responses. Second,

our sample is updated to run through the second quarter of 2011. The 2000�s added a number

of years of continued price stability with core PCE in�ation that averaged roughly two percent

per annum. In monetary policy terms, enhanced central bank credibility may have served to

more �rmly anchor expectations so that observed in�ation tolerated larger movements in the

federal funds rate. But when we estimate using the data only through 2000, the output price

response is little changed. Lastly, our model speci�cation is larger and speci�ed di¤erently than

others and uses Bayesian priors, whereas most previous results were produced with smaller and

classically-estimated VAR models.

To investigate the last conjecture, we re-estimate the model with �at priors to match the

classical techniques used by others. Here we �nd the likely explanation for the di¤erence. Fig-

ure 7 shows that the responses of both the core PCE and the overall PCE price indexes, which

go slightly positive initially (the price puzzle), but turn downward after about a year and enter

negative after roughly two years, consistent with the consensus result. The contradictory re-

sponses raises the question of whether the classically-estimated responses are largely artifacts of

over�tting to which VAR systems without shrinkage priors are prone. Or perhaps the likelihood

approach of choosing optimal hyperparameters is inappropriate. We are inclined not to think

the latter given that maximizing the marginal likelihood also rewards in-sample �t and leads

to superior forecasts for the price variables. Nevertheless, these results are insu¢ cient to form

a conclusion and further investigation will be required.

It is also worth examining the response of the �nancial variables to the monetary contraction.

As one would expect, the 10-year U.S. Treasury yield rises with the federal funds rate but

by a much smaller amount (20 basis points compared to 100) �attening the yield curve and

reducing its level�an overall movement qualitatively consistent with an expectations hypothesis
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of the yield curve.8 These responses imply a term spread (10-year yield less the federal funds

rate) that initially contracts by roughly 80 basis points and gradually returns to the pre-shock

level after about 12 quarters. The AAA corporate bond yield, jumps initially less than the

10-year Treasury yield (basis 7 points), but has more of a hump-shaped response rising to

roughly 20 basis points after �ve or six quarters. That means that after an initial 5 basis

point contraction, the credit spread (AAA corporate yield minus the 10-year Treasury yield)

widens before gradually returning to pre-shock levels. The dividend yield on equities mimics

the response of the AAA corporate yield but its magnitude is far smaller. Equity prices fall in

the �rst two quarters and gradually return to their pre-shock level. And �nally, the response

of the exchange rate is strongly positive with some delay and is highly persistent.

In addition to the impulse responses, Table 6 also reports variance decompositions, that

gives the proportion of h-step ahead forecast error variance due to monetary policy shocks for

h = 1; 8; 12; 16; and 20 quarters ahead. As in Christiano, et. al. (1999), the monetary policy

shock is responsible for only a small percentage of in�ation but rather large fractions of real

activity. Consistent with the relatively muted impulse responses of core and overall PCE, the

monetary policy variance contributions to in�ation are even smaller than those reported by

reported by Christiano, et. al. (1999). Alternatively, the contributions to the nominal bonds

yields and the exchange rate are substantial, but not so much for equity prices and dividend

yields.

8 Conclusion

Motivated by recent literature demonstrating the forecasting superiority of large Bayesian VAR

systems with tight priors over smaller systems and other large dataset methods, this paper

constructs a medium-scale Bayesian VAR model with sixteen variables chosen to be useful in

the analysis of monetary policy. In particular, the variables are chosen to cohere with those

contained in dynamic general equilibrium models of monetary policy. We examine forecast

accuracy and report favorable results similar to those in the large Bayesian VAR studies of

8Although these are not real returns (for which no identifying assumption can be made here), recall that
in�ation is little changed by the monetary shock so that the responses of nominal yields are close to those for
ex-post real yields.
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Bańbura, et. al. (2010) and Koop (2010).

We provide predictive density characterizations of forecast uncertainty and show how they

are used to construct conditional predictive densities that provide richer characterizations of

uncertain economic environments. In particular, we provide two examples of conditional fore-

casting: recession forecasting and the forecast consequences of a large commodity price shock.

Finally, we use the model to study the response of the economy to an exogenous mone-

tary policy shock along the line of Christiano, et. al. (1999). Our results generally accord

with previously established ones with a single exception: we �nd that output prices are es-

sentially una¤ected by the monetary shock. Our initial investigation suggest that the discord

is generated by our application of Bayesian techniques compared to the classical approaches

previously adopted, suggesting that the consensus view may be an artifact of over�tting to

which classically-estimated VAR models are prone. These results are inconclusive and further

investigation is required.

25



References
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Appendix: Implementing the Priors

We follow the standard approach and implement the prior distribution using a mixed es-
timation approach. Speci�cally, we augment the original data set with dummy observations
and estimate the model using equation-by-equation ordinary least squares. Implementing the
symmetric Minnesota prior involves adding the following sets of dummy observations to the
original data set:

Ydum1 =

0BBBBBB@

diag(�1�1;:::;�n�n)
�

0n(p�1)�n
�����������������

diag(�1; : : : ; �n)
�����������������

01�n

1CCCCCCA

Xdum1 =

0BBBB@
Jp
diag(�1;:::;�n)

� 0np�1
������������� ����

0n�np 0n�1
������������� ����

01�np �

1CCCCA
The �rst block of dummies in Ydum1 and Xdum1 implements the prior beliefs regarding the
autoregression coe¢ cients, the middle blocks generate the prior for the covariance matrix, and
the �nal blocks implement the noninformative prior for the intercept. Assigning a small value
to � implies that the prior mean for the intercept is essentially zero.

The sum-of-coe¢ cient prior is incorporated by augmenting the data set with the following
dummy observations.

Ydum2 =
��� diag(�1�1;:::;�n�n)

�

���
Xdum2 =

��� (12:::p)
diag(�1�1;:::;�n�n)
� 0n�1

���
where the parameter � controls the degree of shrinkage applied to the prior. The parameter �i
is the initial mean of the variable yit.
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Tables and Figures

Table 1. Description of the Data Set and Transformation

Code Series (i) Transform �i

GDPR Real GDP (chained 2005 dollars) log-level 1
UR Unemployment rate level 1
PC PCE price index log-level 1
PCXFE Core PCE price index log-level 1

RFF E¤ective federal funds rate level 1
COMPNF Nonfarm business compensation log-level 1
PRODNF Nonfarm business productivity log-level 1

CONSR Real personal consumption expenditures log-level 1
YPDR Real personal disposable income log-level 1
EMPNF Payroll employment: total nonfarm log-level 1
PCOMM KR-CRB spot commodity price index: all commodities log-level 1
RTCM10 10-year Treasury note yield at constant maturity level 1
RAAA Moody�s seasoned Aaa corporate bond yield level 1
SP500 S&P 500 composite stock price index log-level 1
SPYIELD S&P 500 composite dividend yield (percent) level 1
EXCH Trade-weighted exchange value of US$ vs. major currencies log-level 1
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Table 2. Forecast Comparison: Symmetric Minnesota Prior v. Random Walk
Relative Mean Squared Forecast Error

h GDPR GDPR (%ch) PCXFE PCXFE (%ch) RU FFR

1970Q1 - 2011Q2
1 0.751 0.925 0.147 0.146 0.558 1.099
2 0.812 1.011 0.147 0.222 0.617 1.323
3 0.910 1.256 0.157 0.289 0.697 1.468
4 0.984 1.317 0.168 0.340 0.783 1.603
5 1.036 1.562 0.182 0.411 0.853 1.721
6 1.082 1.610 0.201 0.507 0.903 1.887
7 1.126 1.797 0.224 0.580 0.936 2.016
8 1.181 2.084 0.252 0.657 0.973 2.120

1987Q1 - 2011Q2
1 0.639 0.717 0.142 0.147 0.504 1.678
2 0.716 0.980 0.151 0.212 0.568 1.940
3 0.810 1.119 0.160 0.243 0.719 1.948
4 0.882 1.189 0.171 0.262 0.869 1.895
5 0.912 1.193 0.181 0.292 0.963 1.855
6 0.931 1.188 0.196 0.351 1.013 1.805
7 0.941 1.216 0.215 0.420 1.038 1.765
8 0.946 1.272 0.239 0.523 1.028 1.749

Notes for the table: The table lists the mean squared forecast error of the Bayesian VAR model relative
to mean squared forecast error from the random walk with drift model. It reports the RMSFEs for the
real GDP level, real GDP growth (quarterly at annual rate), core PCE level, core in�ation (quarterly at
annual rate), the unemployment rate, and the federal funds rate for h = 1; 2; : : : ; 8 step-ahead forecasts
for the evaluation period 1970Q1�2011Q2. The hyperparameter � maximizes the marginal likelihood at
each iteration.
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Table 3. Forecast Comparison: Minnesota and Sum-of-Coe¢ cients Priors v. RandomWalk

Relative Mean Squared Forecast Error
h GDPR GDPR (%ch) PCXFE PCXFE (%ch) RU FFR

1970Q1 - 2011Q2
1 0.659 0.806 0.161 0.157 0.463 0.980
2 0.663 0.851 0.182 0.268 0.473 1.099
3 0.710 1.081 0.213 0.374 0.500 1.017
4 0.746 1.110 0.242 0.442 0.546 0.993
5 0.792 1.294 0.270 0.537 0.599 0.958
6 0.827 1.280 0.296 0.603 0.640 0.905
7 0.868 1.401 0.321 0.673 0.685 0.881
8 0.921 1.576 0.352 0.762 0.746 0.858

1987Q1 - 2011Q2
1 0.580 0.635 0.153 0.150 0.383 1.580
2 0.614 0.849 0.185 0.255 0.371 1.701
3 0.667 0.929 0.214 0.312 0.453 1.479
4 0.709 0.982 0.239 0.337 0.545 1.252
5 0.734 1.033 0.254 0.340 0.618 1.086
6 0.748 0.991 0.268 0.363 0.670 0.957
7 0.769 1.029 0.277 0.374 0.712 0.845
8 0.799 1.076 0.292 0.432 0.741 0.758

Notes for the table: The table lists the mean squared forecast error of the Bayesian VAR model relative
to mean squared forecast error from the random walk with drift model. It reports the RMSFEs for the
real GDP level, real GDP growth (quarterly at annual rate), core PCE level, core in�ation (quarterly at
annual rate), the unemployment rate, and the federal funds rate for h = 1; 2; : : : ; 8 step-ahead forecasts
for the evaluation period 1970Q1�2011Q2. The hyperparameters � and � maximizes the marginal
likelihood at each iteration.
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Table 4. Forecast Comparison: Bayesian VAR v. Bayesian AR(4)
Relative Mean Squared Forecast Error

h GDPR GDPR (%ch) PCXFE PCXFE (%ch) RU FFR

1970Q1 - 2011Q2
1 0.855 0.919 1.253 0.994 0.740 0.892
2 0.852 0.900 1.517 1.059 0.682 0.980
3 0.853 1.077 1.642 1.006 0.641 0.906
4 0.862 1.099 1.626 0.909 0.640 0.906
5 0.886 1.263 1.565 0.873 0.674 0.864
6 0.911 1.243 1.493 0.801 0.722 0.844
7 0.943 1.345 1.409 0.749 0.778 0.819
8 0.992 1.520 1.333 0.764 0.849 0.794

1987Q1 - 2011Q2
1 0.823 0.861 1.594 1.495 0.687 1.827
2 0.841 0.991 2.087 1.785 0.734 1.694
3 0.834 0.956 2.482 1.903 0.781 1.498
4 0.845 0.998 2.680 1.887 0.860 1.279
5 0.843 1.039 2.794 1.827 0.926 1.107
6 0.846 0.998 2.814 1.744 0.995 0.982
7 0.861 1.036 2.809 1.614 1.034 0.878
8 0.889 1.083 2.663 1.563 1.065 0.799

Notes for the table: The table lists the mean squared forecast error of the Bayesian VAR model relative
to mean squared forecast error from the corresponding Bayesian AR(4). It reports the RMSFEs for the
real GDP level, real GDP growth (quarterly at annual rate), core PCE level, core in�ation (quarterly at
annual rate), the unemployment rate, and the federal funds rate for h = 1; 2; : : : ; 8 step-ahead forecasts
for the evaluation period 1970Q1�2011Q2. The hyperparameters � and � maximizes the marginal
likelihood at each iteration in both VAR and AR(4) models.
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Table 5. Forecast Comparison: Informative v. Flat Priors
Relative Mean Squared Forecast Error

h GDPR GDPR (%ch) PCXFE PCXFE (%ch) RU FFR

1987Q1 - 2011Q2
1 0.435 0.355 0.624 0.574 0.374 0.234
2 0.412 0.371 0.769 0.733 0.342 0.231
3 0.421 0.425 0.785 0.666 0.380 0.256
4 0.459 0.491 0.799 0.643 0.394 0.246
5 0.481 0.559 0.762 0.524 0.414 0.221
6 0.497 0.477 0.709 0.455 0.443 0.201
7 0.510 0.439 0.657 0.429 0.465 0.187
8 0.507 0.460 0.621 0.419 0.473 0.181

Notes for the table: The table lists the mean squared forecast error of the Bayesian VAR model relative
to mean squared forecast error from the VAR estimated with �at priors. It reports the RMSFEs for the
real GDP level, real GDP growth (quarterly at annual rate), core PCE level, core in�ation (quarterly at
annual rate), the unemployment rate, and the federal funds rate for h = 1; 2; : : : ; 8 step-ahead forecasts
for the evaluation period 1987Q1�2011Q2. The hyperparameters � and � maximizes the marginal
likelihood at each iteration.
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Table 6. Impulse Responses and Variance Decomposition: Monetary Policy Shock

Vars/Horizon Impulse Responses Variance Decomposition
0 4 8 12 16 20 1 4 8 12 16 20

GDPR 0.00 -0.31 -0.51 -0.55 -0.52 -0.46 0.0 2.5 6.4 9.2 10.4 10.8
YPDR 0.00 -0.16 -0.24 -0.25 -0.23 -0.19 0.0 1.1 2.0 2.5 2.6 2.5
CONSR 0.00 -0.31 -0.43 -0.43 -0.39 -0.34 0.0 4.4 7.1 8.1 8.2 7.9
PCXFE 0.00 0.05 0.12 0.14 0.12 0.08 0.0 0.2 0.7 0.7 0.5 0.4
PC 0.00 0.08 0.12 0.10 0.05 0.01 0.0 0.5 0.6 0.4 0.3 0.2
PCOMM 0.00 -0.12 -1.18 -1.65 -1.67 -1.54 0.0 0.0 0.7 2.0 2.9 3.3
PRODNF 0.00 -0.16 -0.10 -0.03 0.00 0.00 0.0 1.4 1.4 1.0 0.7 0.6
COMPNF 0.00 0.06 0.09 0.05 -0.02 -0.08 0.0 0.1 0.3 0.2 0.1 0.1
EMPNF 0.00 -0.18 -0.47 -0.60 -0.62 -0.59 0.0 1.9 7.2 13.1 17.8 20.9
UR 0.00 0.11 0.25 0.29 0.27 0.24 0.0 2.0 8.1 14.0 17.6 19.3
RFF 1.00 0.66 0.36 0.15 0.07 0.04 83.0 53.8 37.6 32.0 29.6 28.2
RTCM10 0.21 0.16 0.12 0.08 0.05 0.03 11.6 8.3 6.5 5.2 4.3 3.7
RAAA 0.15 0.16 0.15 0.12 0.09 0.06 10.6 9.2 8.6 7.5 6.6 5.9
SP500 -0.67 -0.48 -0.49 -0.15 0.12 0.31 0.7 0.9 0.7 0.5 0.4 0.4
SPYIELD 0.02 0.03 0.01 -0.01 -0.03 -0.03 0.8 1.9 1.3 1.0 1.0 1.1
EXCH 0.50 0.99 1.59 1.87 1.97 1.99 2.0 3.9 7.3 10.4 12.5 13.8
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Figure 1: Marginal Likelihood Optimized Priors. Notes for the �gure: The plots represent the
values of � and � that maximize the marginal likelihood at each date from 1970Q1 to 2011Q2. The
optimization was performed over a discrete grid, � 2 [0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50, 1] and
� 2 [0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50, 0.75, 1, 2, 3, 5, 10, 15].
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Figure 2: Fan Chart Density Forecasts: 2006Q1�2007Q4. Notes for the �gure: The model was
estimated till 2005Q4, and then upto eight step ahead density forecasts were computed. The shaded
regions represent 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% probability intervals. Shaded
intervals become lighter with interval size.
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Figure 3: Fan Chart Density Forecasts: 2009Q3�2011Q4. Notes for the �gure: Fancharts corre-
sponds to the h = 1; 2; : : : ; 8 step ahead predictive density forecast using the model estimated over the
1959Q1�2009Q2 period. The shaded regions represent 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and
90% probability intervals. Shaded intervals become lighter with interval size.
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Figure 4: Recession Probabilities. Notes for the �gure: Shaded regions represent NBER-de�ned
recession periods.
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Figure 5: Unconditional and Conditional Forecasts: 2011Q3-2014Q2. Notes for the �gure: Solid
lines represents the unconditional forecast; dashed lines represent the forecast conditional on a value of
PCOMM 25 percent higher than the unconditional forecast in the initial forecast period. All quantities
reportes quarterly annualized growth rates with the exception of the unemployment rate which is in
levels.
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Figure 6: Impulse Responses: Monetary Policy Shock. Notes for the �gure: The �gure displays
the impulse response functions corresponding to a contractionary monetary policy shock of 100 basis
points. Solid black lines represent the median response; the shaded regions indicate the posterior coverage
intervals for the 70 and 90 percent probability bands. The model is estimated from 1959Q1 to 2011Q2.
Note that unit labor costs and real unit labor costs are inferred from the primitive model variables of
compensation and productivity; real unit labor costs are de�ated with the core PCE index.
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Figure 7: Impulse Responses: Monetary Policy Shock with Flat Priors. Notes for the �gure:
The �gure displays the impulse response functions of the VAR estimated with �at priors generated
by contractionary monetary policy shock of 100 basis points. Solid black lines represent the median
response; the shaded regions indicate the probability intervals for the 70 and 90 percent probability
bands. The model is estimated from 1959Q1 to 2011Q2. Note that unit labor costs and real unit labor
costs are inferred from the primitive model variables of compensation and productivity; real unit labor
costs are de�ated with the core PCE index.
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