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Abstract 

In many empirical problems, the evaluation of treatment effects is complicated by sample 

selection such that the outcome is only observed for a non-random subpopulation. In the 

absence of instruments and/or tight parametric assumptions, treatment effects are not point 

identified, but can be bounded under mild restrictions. Previous work on partial 

identification has primarily focused on the "always selected" (whose outcomes are observed 

irrespective of the treatment).  This paper complements those studies by considering further 

populations, namely the "compliers" (whose selection states react to the treatment) and the 

selected population. We derive sharp bounds under various assumptions (monotonicity and 

stochastic dominance) and provide an empirical application to a school voucher experiment. 
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1 Introduction

The sample selection problem, see for instance Gronau (1974) and Heckman (1974), arises when

the outcome of interest is only observed for a non-randomly selected subpopulation. This may flaw

causal analysis and is an ubiquitous phenomenon in many fields where treatment effect evaluations

are conducted, such as labor, health, and educational economics. E.g., in the estimation of the

returns to a training it is an issue when only a selective subgroup of training participants and

non-participants finds employment which is a condition for observing earnings. Similar problems

are inherent in clinical trials when some of the participants in medical treatments pass away

(“truncation by death”) before the health outcome is measured. As a further example, consider

the effect of randomly provided private schooling on college entrance examinations. The sample

selection problem arises if only a non-random subgroup of students takes the exam.

Principal stratification, see Frangakis and Rubin (2002), provides a natural framework for

characterizing sample selection problems, as it allows defining populations (i.e., principal strata)

in terms of their behavior w.r.t. selection under different treatment states. This is useful because

the selection problem does not arise within a particular stratum consisting of individuals with

the same selection behavior, i.e., being of the same “type”. Thus, treatment effects are identified

if the imposed assumptions and the data imply that a principal stratum is observed both under

treatment and non-treatment. Therefore, the principal stratification framework enables us to

explicitly state under which assumptions identification works for particular latent populations.

In the sample selection literature in economics going back to Heckman (1974, 1976, 1979),

identification often relies on tight parametric restrictions, such as distributional assumptions and

effect homogeneity across different populations. Albeit the literature has moved towards more

flexible models, see for instance Das, Newey, and Vella (2003) and Newey (2009), it typically

imposes strong assumptions on the unobserved terms likely to be violated in many applications,

as confirmed by the specification test proposed in Huber and Melly (2011). In the absence of

unattractive parametric restrictions and/or instruments for sample selection, treatment effects
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are not point identified, but upper and lower bounds can still be obtained under fairly mild

restrictions. This is the approach pursued in this paper.

Partial identification of economic parameters in general goes back to Manski (1989, 1994)

and Robins (1989). In the context of the sample selection problem, several contributions in the

fields of principal stratification and econometrics derive bounds on treatment effects. Zhang and

Rubin (2003) (see also Zhang, Rubin, and Mealli, 2008) bound the average treatment effects in

one particular stratum, namely the “always selected” population, whose outcomes are observed

both under treatment and non-treatment. To this end, the authors explore the identifying power

of two assumptions both separately and jointly: (i) monotonicity of selection in the treatment

and (ii) stochastic dominance of the potential outcomes of the always selected over those of

other populations. Imai (2008) shows that the bounds of Zhang and Rubin (2003) are sharp and

additionally considers the identification of quantile treatment effects. Also Lee (2009) focuses on

the always selected in the evaluation of the average wage effects of the Job Corps, the largest job

training program for disadvantaged youths in the USA. As Zhang and Rubin (2003), he imposes

monotonicity of selection (but not stochastic dominance) and proves sharpness of the bounds.

Blanco, Flores, and Flores-Lagunes (2011) assess the same program, but add assumptions on

the order of mean potential outcomes within and across subpopulations to obtain tighter bounds.

Still for the always selected, Grilli and Mealli (2008) impose the stochastic dominance assumption

along with a restriction on the relative size of the principal strata to bound the relative effects of

two university degree programs on employment.

The main reason why the literature mainly concentrates on the always selected appears to be

that it is the only principal stratum for which outcomes can be observed both under treatment and

non-treatment, see the discussion in Zhang and Rubin (2003), Zhang, Rubin, and Mealli (2008),

and Lee (2009). However, as argued by the latter, it depends on the context of the treatment

whether this is a population of policy interest. In contrast to the aforementioned contributions,

Lechner and Melly (2007) bound the effects on those treated and selected. When evaluating the

wage effects of a job training program, this group corresponds to the training participants with
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employment and is directly observed in the data. Note that this is a mixed population consisting

of always selected and those who work under treatment, but would not work without treatment,

i.e., the “compliers” in selection w.r.t. treatment. Lechner and Melly (2007) argue that it is more

intuitive to bound the effects for this observed group rather than a latent principal stratum.

Furthermore, they claim that in the context of training programs, the treated and selected are

the most interesting population because it is them who benefit from the potential wage effects of

the training.

In the light of the previous discussion, we argue that it is, depending on the evaluation

problem at hand, useful to look at further target populations in addition to the ones covered

in the literature so far. E.g., it is the compliers whose selection state reacts on the treatment

and it appears interesting in many application whether this is observed along with (and may be

rooted in) a particular treatment effect. Taking the wage effects of a job training program as

an example, one might want to learn whether the change in the employment state due to the

training is accompanied by an increase in the potential wage. If yes, this points to an increase

in productivity that may be at least partly responsible for finding employment. Furthermore,

in particular applications, the compliers might also bear more policy relevance than the always

selected. E.g., consider a school voucher experiment investigating the effect of private schooling

on test scores in a college entrance exam which are only observed conditional on taking the exam.

As the compliers do so only under private schooling, they are likely to come from educationally

more disadvantaged families than the always selected. This might exactly be the group policy

makers want to target.

Furthermore, we might prefer to make causal statements rather for larger shares of the en-

tire population than for smaller groups. The largest possible group for which at least one poten-

tial outcome (under treatment or non-treatment) is observed constitutes the selected population,

which is again a mixture of several principal strata. Indeed, policy makers might want to learn

about the average effects on all individuals whose outcomes are observed, without thinking in

terms of different principal strata. Also Newey (2007) considers this population, however, inves-
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tigating point identification based on continuous instruments. Finally, there is also a statistical

argument to look at populations other than the always selected. In fact, if neither monotonicity

nor unattractive parametric assumptions are imposed and if the share of “never selected” (whose

outcomes are not observed irrespective of the treatment state) is larger than the one of the al-

ways selected, no informative bounds can be obtained for the latter. However, informative (albeit

generally quite large) bounds are still available for the selected population.

The main contribution of this paper is the derivation of sharp bounds on average treatment

effects among compliers, “defiers” (outcomes observed if not treated and not observed if treated),

and the selected population, which have not been considered in previous work. We show that

under the monotonicity and/or stochastic dominance assumptions, informative bounds can be

derived even when the outcomes of particular strata are only observed in one treatment arm.

For instance, one useful result is that under both assumptions, the lower bound on the selected

population coincides with that on the always selected. This is relevant for many applications where

particular interest lies in whether the lower bound includes a zero effect. Thus, the assumptions

may bear considerable identifying power, which is demonstrated in an application to a school

voucher experiment in Colombia previously analyzed by Angrist, Bettinger, and Kremer (2006).

The remainder of this paper is organized as follows. Section 2 formally characterizes the sam-

ple selection problem based on principal stratification. Section 3 discusses partial identification of

treatment effects for the compliers and the selected population under no assumptions (worst case

bounds) as well as under monotonicity and/or stochastic dominance. Estimators are presented

in Section 4. An empirical application to a school voucher experiment in Colombia is provided

in Section 5. Section 6 concludes.

2 The selection problem

As in the standard treatment evaluation framework, assume that we are interested in the effect of

a binary treatment, T ∈ {1, 0}, on an outcome Y , at a specific time after assignment. Using the
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potential outcome framework, see for instance Neyman (1923), Fisher (1935), and Rubin (1977),

we will denote by Yi(1) and Yi(0) the two potential outcomes that individual i would receive

under treatment and non-treatment. Even under randomization of the treatment, post-treatment

complications might introduce selection bias and flaw causal inference. One particular form of

such complications is sample selection, implying that the outcome of interest is only observed

for a non-random subpopulation. To address this problem let S ∈ {1, 0} be an observed binary

post-treatment selection indicator which is 1 if the outcome of some individual is observed and 0

otherwise. Furthermore, we denote by Si(1) and Si(0) the two potential selection states. Then,

we can express the selection indicator and the observed outcome as functions of the respective

potential states:

S = T · S(1) + (1− T ) · S(0),

Y = T · Y (1) + (1− T ) · Y (0) if S = 1 and not observed otherwise.

I.e., at best (if S = 1) one of the two potential outcomes is observed. As at least one

potential outcome remains unknown, both point and partial identification of treatment effects

require further assumptions. The first restriction maintained throughout the discussion is the

so-called Stable Unit Treatment Value Assumption (SUTVA, e.g., Rubin, 1990), which rules out

interference between units and general equilibrium effects of the treatment:

Assumption 1:

Yi(t)⊥Tj ∀j 6= i,

Si(t)⊥Tj ∀j 6= i.

“⊥” denotes independence. This standard assumption implies that the potential post-treatment

variables of any subject i are unrelated to the treatment status of any other individual.

Causal inference requires the specification of the treatment assignment mechanism. If ran-

domly assigned, the treatment is independent of the potential values of the post-treatment vari-
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ables S, Y . However, in many observational studies randomization is assumed to hold only condi-

tional on some observed pre-treatment covariates X. This assumption is known in the literature

as conditional independence assumption (CIA), also referred to as “selection on observables” or

“unconfoundedness”, see for instance Imbens (2004) and Imbens and Wooldridge (2009). It im-

plies that the potential outcomes and selection states are independent of the treatment assign-

ment conditional on the pre-treatment variables.

In the sample selection framework, Lee (2009), Mealli and Pacini (2008a) and Mealli and

Pacini (2008b), among others, assume that the joint distribution of the potential post-treatment

variables is independent of the treatment given X. Imposing joint independence is stronger

than necessary. In fact, the following sequential marginal independence assumption (given X) is

sufficient for identification:1

Assumption 2:

T⊥(S(1), S(0))|X = x,

and

(Y (1), Y (0))⊥T |(S(1), S(0)), X = x ∀x ∈ X (unconfoundness),

where X denotes the support of X. In the further discussion, conditioning on X will be kept

implicit, such that all results either refer to the experimental framework, see also the application

further below, or to an analysis within cells with the same values of X.

As shown in Table 1 and discussed in Zhang and Rubin (2003), the population can be divided

into four principal strata (denoted as G), according to the value the selection indicator S(t)

takes under different treatment states. The terms “always selected”, “compliers”, “defiers”, and

“never selected” are in the spirit of Imbens and Angrist (1994) and Angrist, Imbens, and Rubin

(1996). They, however, use equivalent expressions for a different problem, namely to characterize

non-compliance w.r.t. instruments in the presence of endogeneity.

By Assumption 2, the stratum G some individual belongs to is independent of the treatment

1Assumption 2 can be replaced by T⊥(S(1), S(0))|X = x and Y (0)⊥T |(S(1), S(0)), X = x, ∀x ∈ X , if the
inference is conditional on T = 1, i.e., if one is only interested in treatment effects on the treated.
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Table 1: Principal strata

Principal strata (G) S(1) S(0) appellation

11 1 1 Always selected
10 1 0 Compliers
01 0 1 Defiers
00 0 0 Never selected

assignment and the potential outcomes are independent of the treatment conditional on the

principal stratum. Therefore, any treatment effect defined within a principal stratum is a well

defined causal parameter. The problem for identification is that either S(1) or S(0) but never

both are known for any individual such that the principal stratum to which a subject belongs is

not directly observed. Without further assumptions neither the principal strata proportions nor

the distributions of the potential outcomes within each stratum are identified. To see this, note

that the observed values of T and S generate the following four observed subgroups, denoted as

o(T, S), which are all mixtures of two principal strata.

Table 2: Observed subgroups and principal strata

Observed subgroups o(T, S) principal strata Y observed

o(1, 1) = {i : Ti = 1, Si = 1} subject i belongs either to 11 or to 10 yes
o(1, 0) = {i : Ti = 1, Si = 0} subject i belongs either to 01 or to 00 no
o(0, 1) = {i : Ti = 0, Si = 1} subject i belongs either to 11 or to 01 yes
o(0, 0) = {i : Ti = 0, Si = 0} subject i belongs either to 10 or to 00 no

Therefore, also the probability to belong to an observed subgroup is a mixture of principal

strata proportions, henceforth denoted as πss′ ≡ Pr(S(1) = s, S(0) = s′). Let Ps|t represent

the observed selection probability conditional on treatment, Pr(S = s|T = t), in the population

of interest. Under Assumption 2, which ensures that the strata proportions conditional on the

treatment are equal to the unconditional strata proportions, the relation between the observed

Ps|t and the latent πss′ is as follows:

Thus, point identification of causal effects can only be obtained by imposing unattractive

parametric assumptions, see for instance the discussion in Mealli and Pacini (2008b), Zhang,

Rubin, and Mealli (2009), and Heckman (1974, 1976, 1979). However, intervals of treatment

effects for particular strata that are consistent with the observed data can be derived under
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Table 3: Observed probabilities and principal strata proportions

Observed cond. selection prob. princ. strata proportions

P1|1 ≡ Pr(S = 1|T = 1) π11 + π10

P0|1 ≡ Pr(S = 0|T = 1) π01 + π00

P1|0 ≡ Pr(S = 1|T = 0) π11 + π01

P0|0 ≡ Pr(S = 0|T = 0) π10 + π00

milder assumptions. As mentioned before, treated and non-treated units are only observed for

the always selected (stratum 11), i.e. those selected irrespective of the treatment state. For this

reason, most of the literature on bounding treatment effects under sample selection focuses on

stratum 11, see Zhang and Rubin (2003), Grilli and Mealli (2008), Zhang, Rubin, and Mealli

(2008), and Lee (2009), with the exception of Lechner and Melly (2007).

We, however, argue that the always selected are generally not the only population of interest

and show that informative bounds can also be derived for other populations under assumptions

which seem plausible in many applications. In particular, we are interested in the effects in

stratum 10 and in the entire selected population (S = 1). Stratum 10 consists of those individuals

selected with and not selected without treatment. Thus, they can be referred to as “compliers” in

selection w.r.t. the treatment. This stratum is interesting in many applications as it encounters

the marginal population that changes the selection state due to the treatment. Taking the wage

effects of a job training program as an example, we might be interested in whether the change in

the employment state due to the training is accompanied by an increase in the potential outcomes.

If yes, this points to an increase in productivity that may be at least partly responsible for finding

employment. Furthermore, consider a school voucher experiment investing the effect of private

schooling on college entrance examinations. As the compliers take the test only under private

schooling, they are likely to be more disadvantaged and academically less challenged at home

than the always selected. This may be exactly the population policy makers want to target.

The selected population is a mixture of always selected, compliers, and defiers (stratum 01:

selected under non-treatment, not selected under treatment) and therefore encounters individuals

with different “selection behaviors”. Still, policy makers might want to learn about the effects on
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all individuals whose outcomes are observed irrespective of their stratum affiliations. Also Newey

(2007) considers the average effect on the selected population, however, based on a continuous in-

strument for selection allowing for point identification. After all, the selected population contains

all subjects for which at least one outcome (under treatment and/or non-treatment) is observed

such that reasonable bounds on the effects may still be attained under the assumptions discussed

below. In contrast, for the never selected bounds are most likely very uninformative. Thus, the

selected group appears to be the largest possible subpopulation for which useful inference appears

to be feasible.

To better understand how principal stratification is related to the econometric literature on

sample selection, we conclude this section by formulating the identification problem in terms of a

structural model (see also Huber, 2010, Mealli and Pacini, 2008a, and Mellace and Rocci, 2010):

Y = ϕ(T,U),

S = I{ς(T, V ) ≥ 0},

T = I{ψ(ζ) ≥ 0}, (1)

where I{·} is the indicator function, ϕ, ς, ψ are unknown functions, and U, V, ζ are unobserved

terms. ζ⊥U, V by random assignment (or conditional on X by the conditional independence

assumption in observational studies). The selectivity of S depends on the relationship of the

unobserved terms U and V . Note that the sample selection problem disappears when conditioning

on V because then, S and U are conditionally independent. Even though V is unknown, the

problem can be controlled for if there exists a function G(V ) such that

U⊥S|G(V ).

Imbens (2006) calls such a function “type of unit”. Principal stratification is a natural choice of
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G(·), as

G(v) = G(v′) if ς(t, v) = ς(t, v′) ∀ t, v 6= v′ ,

G(v) 6= G(v′) if ς(t, v) 6= ς(t, v′) for some t, v 6= v′ ,

and U⊥S|G(V ) by construction. Once we condition on the “type of unit”, selection becomes

ignorable. Principal stratification represents the coarsest possible choice of the type function. As

pointed out by Imbens (2006), the optimal type function is any functional that is constant on

sets of values of V which, for all values t, lead to the same value of S.

3 Assumptions and partial identification

The identification strategies discussed below are based on the fact that the expected values of the

observed outcomes in a particular treatment state come from a mixture of two latent strata:

E(Y |T = 0, S = 1) =
π11

π11 + π01
· E(Y |T = 0, G = 11) +

π01
π11 + π01

· E(Y |T = 0, G = 01)

and

E(Y |T = 1, S = 1) =
π11

π11 + π10
· E(Y |T = 1, G = 11) +

π10
π11 + π10

· E(Y |T = 1, G = 10).

Horowitz and Manski (1995) have shown that whenever it is possible to bound the mixing prob-

abilities, in our case π11
π11+π01

, π01
π11+π01

and π11
π11+π10

, π10
π11+π10

, respectively, sharp bounds can be ob-

tained for any parameter of the mixture components that respects stochastic dominance. We will

use this fact to derive bounds for the average treatment effect (ATE) on various populations. A

similar argument can be used to bound any parameter that respects stochastic dominance as, for

instance, the quantile treatment effect (QTE).
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3.1 Worst case bounds

Assume that the support of the potential outcomes is bounded, i.e., Y (1), Y (0) ∈ [Y LB, Y UB],

where Y LB, Y UB are the values at the lower and upper end of the support, respectively.This

condition rules out infinite upper or lower bounds on the ATE in any population even without

imposing restrictions other than Assumptions 1 and 2. In the absence of further assumptions

Zhang and Rubin (2003) derive the worst case bounds of the ATE on the always selected (stratum

11), henceforth denoted as ∆11, which are shown to be sharp in Imai (2008). In order to obtain

their results, note that Table 3 provides us with the following equations:

P1|0 − π01 = π11 ⇒ π01 ≤ P1|0,

P0|1 − π01 = π00 ⇒ π01 ≤ P0|1,

P1|1 − P1|0 + π01 = π10 ⇒ π01 ≥ P1|0 − P1|1,

such that

π01 ∈ [max(0, P1|0 − P1|1),min(P1|0, P0|1)]. (2)

For the sake of brevity, let Ȳt,s ≡ E(Y |T = t, S = s), i.e., the mean of Y given T = t and

S = s (which is only observed for S = 1). Furthermore, let FYt,s(y) ≡ Pr(Y ≤ y|T = t, S = s)

and F−1Yt,s
(q) ≡ inf{y : FYt,s(y) ≥ q}, i.e., the conditional cdf and quantile function of Y given

T = t and S = s. Finally, let Ȳt,s(min |q) ≡ E(Y |T = t, S = s, y ≤ F−1Yt,s
(q)) and Ȳt,s(max |q) ≡

E(Y |T = t, S = s, y ≥ F−1Yt,s
(1 − q)). The upper and the lower bound of the ATE on the always

selected, denoted as ∆UB
11 and ∆LB

11 , in Zhang and Rubin (2003), are

∆UB
11 = min

π01

[Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |(P1|0 − π01)/P1|0)],

∆LB
11 = max

π01

[Ȳ1,1(min |(P1|0 − π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)]. (3)

Thus, the authors suggest to optimize over all possible values of the defiers’ share π01 that are
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consistent with the data to obtain the upper and lower bound. A first contribution of the present

work is to show that numerical optimization is not necessary. As outlined in the appendix, ∆UB
11

and ∆LB
11 can be simplified to

∆UB
11 = Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0),

∆LB
11 = Ȳ1,1(min |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(max |(P1|0 − πmax
01 )/P1|0), (4)

where πmax
01 ≡ min(P1|0, P0|1). The intuition of this result is that since we are able to bound

any strata proportion, we can apply the findings in Horowitz and Manski (1995) to bound the

mean of the always selected under treatment and non-treatment. The reason why one does not

require numerical optimization is that the upper and lower bounds are maximized and minimized,

respectively, when π01 = πmax
01 , see the appendix. Note that the bounds are only informative (i.e.,

tighter than Y UB − Y LB) if P1|0 > P0|1, which has also been noticed by Lee (2009). This

implies that π11 > π00, i.e., that the share of always selected is larger than the share of never

selected. If this is the case (and only then the bounds for the always selected are meaningful),

then (P1|0−πmax
01 )/P1|1 = (P1|0−P0|1)/P1|1 and (P1|0−πmax

01 )/P1|0 = (P1|0−P0|1)/P1|0, such that

the bound only depends on this ratio of observed proportions. Equivalent bounds can be derived

keeping any other stratum proportion fixed, e.g. π11, instead of π01.

In contrast to previous work we will now also derive bounds for the compliers (stratum 10),

the defiers (stratum 01), and the selected population. It is obvious from our previous discussion

that the share of compliers in o(1, 1) is π10/(π11 + π10) = (P1|1 − P1|0 + π01)/P1|1, i.e., the

fraction of those who are not always selected. This allows us to bound the upper and lower

values of the mean potential outcome under treatment by Ȳ1,1(max |(P1|1 − P1|0 + πmin
01 )/P1|1)

and Ȳ1,1(min |(P1|1−P1|0 + πmin
01 )/P1|1), respectively, where πmin

01 ≡ max(0, P1|0−P1|1). However,

nothing can be said about the mean potential outcome under non-treatment, as there are no

compliers in o(0, 1). This requires us to assume the theoretical upper and lower bounds of the

outcome Y UB and Y LB. Then, the sharp upper and lower bounds of the ATE on the compliers,
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denoted as ∆UB
10 and ∆LB

10 , are

∆UB
10 = Ȳ1,1(max |(P1|1 − P1|0 + πmin

01 )/P1|1)− Y LB,

∆LB
10 = Ȳ1,1(min |(P1|1 − P1|0 + πmin

01 )/P1|1)− Y UB. (5)

These bounds are informative only if P1|0−P1|1 < 0⇒ π10 > π01, i.e., if there are more compliers

than defiers. In this case, (P1|1 − P1|0 + πmin
01 )/P1|1 = (P1|1 − P1|0)/P1|1. The proofs for the

sharpness of these and all other bounds proposed below are provided in the appendix.

Similarly, the share of defiers in o(0, 1) is π01/(π11 + π01) = π01/P1|0. This allows us to

bound the upper and lower value of the mean potential outcome under non-treatment by

Ȳ0,1(max |πmin
01 /P1|0) and Ȳ0,1(min |πmin

01 /P1|0), respectively. Since there are no defiers in o(1, 1),

we again need to invoke Y UB and Y LB. The sharp upper and lower bounds for the ATE on the

defiers, denoted as ∆UB
01 and ∆LB

01 , are

∆UB
01 = Y UB − Ȳ0,1(min |πmin

01 /P1|0),

∆LB
01 = Y LB − Ȳ0,1(max |πmin

01 /P1|0). (6)

These bounds are only informative if P1|0 − P1|1 > 0 ⇒ π01 > π10, i.e., if the defiers’ share is

at least as large as the compliers’ share. If this is true, then πmin
01 /P1|1 = (P1|0 − P1|1)/P1|1.

This is, together with the identification result for the compliers, an interesting finding because

it implies that without imposing monotonicity of selection in the treatment (as outlined below),

bounds are informative either for the defiers or for the compliers, but never for both populations.

It also implies that unless P1|1 − P1|0 = 0, either positive (if P1|1 − P1|0 > 0) or negative (if

P1|0 − P1|1 > 0) monotonicity of S in T is consistent with the data, but not both at the same

time. See the discussion in the next subsection.

Finally, we derive the worst case bounds for the selected population, which is a mixed popu-
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lation of always selected, compliers, and defiers. Their respective shares are given by

2 · π11
2π11 + π10 + π01

=
2 · (P1|0 − π01)
P1|1 + P1|0

,

π10
2π11 + π10 + π01

=
P1|1 − P1|0 + π01

P1|1 + P1|0
,

π01
2π11 + π10 + π01

=
π01

P1|1 + P1|0
.

Note that assuming the upper bound of the mean potential outcome under treatment for the

always selected, Ȳ1,1(max |P1|0/P1|1) implies assuming the lower bound of the mean potential

outcome under treatment for the compliers, Ȳ1,1(min |1−P1|0/P1|1), and vice versa, as the weighted

average of both must always yield Ȳ1,1. For the same reason, assuming the upper bound of the

mean potential outcome under non-treatment for the always selected is equivalent to assuming the

lower bound of the mean potential outcome under non-treatment for the defiers. In Appendix

A.1.4 we use this fact to obtain unambiguous expressions for the bounds on the ATE on the

selected population (∆S=1) for some fixed defiers’ share π01. Furthermore, the appendix also

shows that we need not optimize over the range of all the possible values of the defiers’ share. In

fact, setting π01 = πmax
01 leads to sharp bounds on ∆S=1. Then, the upper bound is

∆UB
S=1 =

2 · (P1|0 − πmax
01 )

P1|1 + P1|0
· (Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0))

+
P1|1 − P1|0 + πmax

01

P1|1 + P1|0
· (Ȳ1,1(min |(P1|1 − P1|0 + πmax

01 )/P1|1)− Y LB)

+
πmax
01

P1|1 + P1|0
· (Y UB − Ȳ0,1(max |πmax

01 /P1|0))

which, as simple calculus shows, can be expressed as

∆UB
S=1 =

(P1|0 − πmax
01 )

P1|1 + P1|0
· (Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0))

+
P1|1

P1|1 + P1|0
· Ȳ1,1 +

πmax
01

P1|1 + P1|0
· Y UB

−
P1|1 − P1|0 + πmax

01

P1|1 + P1|0
· Y LB −

P1|0

P1|1 + P1|0
· Ȳ0,1. (7)
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The lower bound is given by

∆LB
S=1 =

2 · (P1|0 − πmax
01 )

P1|1 + P1|0
· (Ȳ1,1(min |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(max |(P1|0 − πmax
01 )/P1|0))

+
P1|1 − P1|0 + πmax

01

P1|1 + P1|0
· (Ȳ1,1(max |(P1|1 − P1|0 + πmax

01 )/P1|1)− Y UB)

+
πmax
01

P1|1 + P1|0
· (Y LB − Ȳ0,1(min |πmax

01 /P1|0))

which can be rewritten as

∆LB
S=1 =

(P1|0 − πmax
01 )

P1|1 + P1|0
· (Ȳ1,1(min |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(max |(P1|0 − πmax
01 )/P1|0))

+
P1|1

P1|1 + P1|0
· Ȳ1,1 +

πmax
01

P1|1 + P1|0
· Y LB

−
P1|1 − P1|0 + πmax

01

P1|1 + P1|0
· Y UB −

P1|0

P1|1 + P1|0
· Ȳ0,1. (8)

Note that the identification region shrinks as the shares of compliers and/or defiers decreases.

In the special case that both shares are zero the ATE on the selected population is point identified.

If the share of only one population is equal to zero the bounds are equivalent to those under

monotonicity which we will derive in the next subsection. Another result worth noting is that

the bounds on the selected population are always informative. E.g., if P1|0 < P0|1, the bounds

become

∆UB
S=1 =

P1|1

P1|1 + P1|0
· Ȳ1,1 +

P1|0

P1|1 + P1|0
· Y UB −

P1|1

P1|1 + P1|0
· Y LB −

P1|0

P1|1 + P1|0
· Ȳ0,1

=
P1|1

P1|1 + P1|0
· (Ȳ1,1 − Y LB) +

P1|0

P1|1 + P1|0
· (Y UB − Ȳ0,1)

and

∆LB
S=1 =

P1|1

P1|1 + P1|0
· Ȳ1,1 +

P1|0

P1|1 + P1|0
· Y LB −

P1|1

P1|1 + P1|0
· Y UB −

P1|0

P1|1 + P1|0
· Ȳ0,1

=
P1|1

P1|1 + P1|0
· (Ȳ1,1 − Y UB) +

P1|0

P1|1 + P1|0
· (Y LB − Ȳ0,1),
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which happen to be equal to the bounds under π11 = 0, i.e., in the absence of always selected.

Thus, even though informative bounds cannot be derived for the always selected if P1|0 < P0|1,

they can still be derived for the selected population.

3.2 Monotonicity

A commonly imposed assumption in the literature on partial identification of treatment effects

under sample selection is weak monotonicity of selection w.r.t. the treatment:

Assumption 3:

Pr(S(1) ≥ S(0)) = 1 (monotonicity of selection).

In terms of the structural model in (1) this can be stated as

Assumption 3SM:

Pr(ς(1, v) ≥ ς(0, v)) = 1 ∀v in the support of V .

The monotonicity assumption requires that the potential selection state never decreases in

the treatment and, thus, rules out the existence of the defiers (stratum 01). A symmetric result

is obtained by assuming Pr(S(0) ≥ S(1)) = 1 which implies that stratum 10 does not exist.

As already mentioned before, assuming Pr(S(1) ≥ S(0)) = 1 (positive monotonicity) is only

consistent with the data if P1|1 − P1|0 ≥ 0 and Pr(S(0) ≥ S(1)) = 1 (negative monotonicity) if

P1|0−P1|1 ≥ 0. These are necessary, albeit not sufficient conditions for the respective monotonicity

assumption. For the sake of brevity and due to the symmetry of the argumentation, we will only

focus on Assumption 3 (positive monotonicity) in the subsequent discussion.

The plausibility of monotonicity depends on the empirical context. E.g., it is not necessarily

satisfied in the evaluation of the returns to a job training. In fact, employment (S) might

react negatively on the training (T ) due to reduced job search effort while being trained, a

phenomenon known as “lock-in” effect. Monotonicity might therefore only be plausible in later
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periods after the accomplishment of the training. The assumption seems more innocuous when

evaluating the effectiveness of private schooling on college entrance examinations, given that

private schooling offers a better education than public alternatives and affects the preferences for

academic achievement. It appears reasonable to assume that students are more likely to take the

test when receiving better education or motivation to pursue an academic career such that defiers

can be ruled out.

Monotonicity has been considered in Lee (2009), Zhang and Rubin (2003), and Zhang, Rubin,

and Mealli (2008) to bound the ATE on the always selected (stratum 11) and in Lechner and

Melly (2007) to derive bounds for the treated and selected population. Lee (2009) shows that the

following bounds are sharp for the ATE on the always selected:

∆UB
11 = Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1,

∆LB
11 = Ȳ1,1(min |P1|0/P1|1)− Ȳ0,1. (9)

The intuition of this result is that under monotonicity, o(0, 1) consists only of individuals belonging

to stratum 11 such that Ȳ0,1 is the mean potential outcome of the always selected under non-

treatment. Furthermore, P1|0 = π11. Therefore, the share of the always selected in o(1, 1) is

π11/(π11 + π10) = P1|0/P1|1. In the most extreme cases, either the upper or lower P1|0/P1|1 share

of the outcome distribution in o(1, 1) represents the potential outcomes of the always selected

under treatment, which gives rise to the upper and lower bounds on ∆11 that are tighter than

the worst case bounds. Two points are worth noting. First, we have seen in the last section

that if π00 > π11, informative bounds are only obtained for the selected population and either

the compliers or the defiers, without further assumptions. By introducing monotonicity we also

identify meaningful bounds for the always selected, which turn out to be more informative than

under the stochastic dominance assumption discussed further below. Second, if P1|0 − P1|1 > 0,

the bounds are not informative, because π01 cannot be zero. As discussed before, the data can

provide evidence against (positive or negative) monotonicity.
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We now derive the bounds on the ATE on the compliers, ∆10, which are just special cases of

the worst case bounds given that π01 = 0. Therefore, they are sharp given the sharpness of the

worst case bounds. Thus, under monotonicity it immediately follows that ∆10 is bounded by

∆UB
10 = Ȳ1,1(max |(P1|1 − P1|0)/P1|1)− Y LB,

∆LB
10 = Ȳ1,1(min |(P1|1 − P1|0)/P1|1)− Y UB. (10)

It is obvious that monotonicity does not shrink the bounds for the compliers, as the worst case

bounds under non-treatment are unaffected by ruling out defiers. However, the assumption

assures that the bounds are informative. Indeed, in the worst case scenario the bounds were only

informative if P1|0 − P1|1 < 0 which implies that the lower bound on the defiers’ share is zero

(πmin
01 = 0), see (2).

Assumption 3 has identifying power for the selected population, which is now only a mixture

of always selected and compliers. The respective proportions of these groups are

2 · π11
2 · π11 + π10

=
2 · P1|0

P1|1 + P1|0

π10
2 · π11 + π10

=
P1|1 − P1|0

P1|1 + P1|0
.

Again, the bounds are just a special case of the worst case bounds under π01 = 0 and given by

∆UB
S=1 =

2 · P1|0

P1|1 + P1|0
· (Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1)

+
P1|1 − P1|0

P1|1 + P1|0
· (Ȳ1,1(min |1− P1|0/P1|1)− Y LB),

=
P1|0

P1|1 + P1|0
· Ȳ1,1(max |P1|0/P1|1)− 2 ·

P1|0

P1|1 + P1|0
· Ȳ0,1

+
P1|1

P1|1 + P1|0
· Ȳ1,1 −

P1|1 − P1|0

P1|1 + P1|0
· Y LB, (11)
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∆LB
S=1 =

2 · P1|0

P1|1 + P1|0
· (Ȳ1,1(min |P1|0/P1|1)− Ȳ0,1)

+
P1|1 − P1|0

P1|1 + P1|0
· (Ȳ1,1(max |1− P1|0/P1|1)− Y UB),

=
P1|0

P1|1 + P1|0
· Ȳ1,1(min |P1|0/P1|1)− 2 ·

P1|0

P1|1 + P1|0
· Ȳ0,1

+
P1|1

P1|1 + P1|0
· Ȳ1,1 −

P1|1 − P1|0

P1|1 + P1|0
· Y UB. (12)

The identification region shrinks as the complier population decreases and ∆S=1 is point identified

in the absence of compliers such that P1|1−P1|0 = 0. Then, the selected population consists only

of always selected individuals.

3.3 Stochastic dominance

Assumption 4 formalizes stochastic dominance which has been considered by Zhang and Rubin

(2003), Grilli and Mealli (2008), Zhang, Rubin, and Mealli (2008), and Lechner and Melly

(2007), see also Blundell, Gosling, Ichimura, and Meghir (2007) for a related, but somewhat

different form of dominance.

Assumption 4:

Pr(Y (t) ≤ y|G = 11) ≤ Pr(Y (t) ≤ y|G = 10), t ∈ {0, 1},

and

Pr(Y (t) ≤ y|G = 11) ≤ Pr(Y (t) ≤ y|G = 01), t ∈ {0, 1} (stochastic dominance).

I.e., the potential outcome among the always selected at any rank of the outcome distribu-

tion and in any treatment state is at least as high as that of the compliers or the defiers, re-

spectively.2 Taking the evaluation of the returns to a job training as example, it implies that

the always selected have potential wages that are at least as high as the ones of other groups.

2For our purpose, which is the derivation of bounds on the ATE, the weaker mean dominance assumption, i.e.
E[Y (t)|G = 11] ≥ E[Y (t)|G = 10] and E[Y (t)|G = 11] ≥ E[Y (t)|G = 01], t ∈ {0, 1}, is sufficient. However,
stochastic dominance is required when considering other parameters as for instance the quantile treatment effect
(QTE).
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To justify Assumption 4, note that the always selected are employed irrespective of the training.

Therefore, they are likely to be more motivated and/or able than other populations. Zhang, Ru-

bin, and Mealli (2008) argue that ability tends to be positively correlated with wages and thus,

the stochastic dominance assumption (or “positive selection”) appears to be plausible. Similar

arguments hold for the evaluation of private schooling with regard to the performance in col-

lege entrance examinations. As the always selected are those taking the exam with and without

private schooling, it seems reasonable to assume that their potential test scores are higher than

those of other groups.

Under Assumption 4, Imai (2008) shows that the following bounds proposed by Zhang and

Rubin (2003) are sharp for the ATE on the always selected:

∆UB
11 = Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1,

∆LB
11 = Ȳ1,1 − Ȳ0,1(max |(P1|0 − πmax

01 )/P1|0). (13)

As E[Y (t)|G = 11] ≥ E[Y (t)|G = 10], E[Y (t)|G = 11] ≥ E[Y (t)|G = 01] for t ∈ {0, 1}, the means

Ȳ1,1, Ȳ0,1 constitute the lower bounds of E[Y (1)|G = 11] and E[Y (0)|G = 11], respectively. Thus,

Assumption 4 is likely to shrink the worst case bounds because Ȳ0,1 ≥ Ȳ0,1(min |(P1|0−πmax
01 )/P1|0)

and Ȳ1,1 ≥ Ȳ1,1(min |(P1|0−πmax
01 )/P1|1). Note that width of the bounds is maximized if the share

of the always selected is smaller than the one of the never selected. Then, Ȳ1,1(max |(P1|0 −

πmax
01 )/P1|1) = Ȳ1,1(max |0) and Ȳ0,1(max |(P1|0 − πmax

01 )/P1|0) = Ȳ0,1(max |0) such that they are

uninformative which requires us to use the theoretical upper bound Y UB.

Stochastic dominance implies the following bounds for the ATE on the compliers:

∆UB
10 = Ȳ1,1 − Y LB,

∆LB
10 = min

π01

[
Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)

]
. (14)

The intuition is that any mean potential outcome of the compliers is at best as high as that of the

always selected, such that Ȳ1,1 and Ȳ0,1(max |(P1|0−π01)/P1|0) are upper bounds for E[Y (1)|G =
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10] and E[Y (0)|G = 10], respectively. Thus, the bounds are likely to be tighter than the worst case

bounds since Ȳ1,1 ≤ Ȳ1,1(max |(P1|1 − P1|0 + π01)/P1|1) and Ȳ0,1(max |(P1|0 − π01)/P1|0) ≤ Y UB.

In particular, stochastic dominance bears considerable identifying power for the lower bound

of the effect, since it does not depend on Y UB anymore. This is a relevant result for empirical

applications, where the lower bound is often more interesting than the upper bound, as it provides

evidence on the existence of a positive effect. Note that since Ȳ1,1(min |(P1|1−P1|0 +π01)/P1|1) is

minimized for π01 = πmin
01 and Ȳ0,1(max |(P1|0 − π01)/P1|0) is maximized for π01 = πmax

01 , we need

to minimize ∆LB
10 over all possible values of π01.

In an analogous way, the bounds of the ATE on the defiers can be derived as

∆UB
01 = max

π01

[
Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |π01/P1|0)

]
,

∆LB
01 = Y LB − Ȳ0,1. (15)

As for the compliers, any mean potential outcome of the defiers can be at best as high as

the one of the always selected such that Ȳ1,1(max |(P1|0 − π01)/P1|1) constitutes the upper

bound under treatment and Ȳ0,1 the upper bound under non-treatment. These bounds are

likely to be narrower than the worst case bounds since Ȳ1,1(max |(P1|0 − π01)/P1|1) ≤ Y UB and

Ȳ0,1 ≤ Ȳ0,1(max |π01/P1|0). Since Ȳ1,1(max |(P1|0 − π01)/P1|1) is maximized for π01 = πmax
01 and

Ȳ0,1(min |π01/P1|0) is minimized for π01 = πmin
01 , we need to maximize ∆UB

01 over all possible

values of π01.

Finally, the bounds of the ATE on the selected population are identified by

∆UB
S=1 =

P1|0

P1|1 + P1|0
· Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)−
2 · P1|0 − πmax

01

P1|1 + P1|0
· Ȳ0,1

+
P1|1

P1|1 + P1|0
· Ȳ1,1 −

P1|1 − P1|0 + πmax
01

P1|1 + P1|0
· Y LB,

∆LB
S=1 =

P1|1 + P1|0 − πmax
01

P1|1 + P1|0
· Ȳ1,1 −

P1|0

P1|1 + P1|0
· Ȳ0,1(max |(P1|0 − πmax

01 )/P1|0))

−
P1|0

P1|1 + P1|0
· Ȳ0,1 +

πmax
01

P1|1 + P1|0
· Y LB. (16)
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For both the upper and the lower bound of ∆S=1, stochastic dominance eliminates either Y UB

or Y LB present in the worst case scenario. Intuitively, the identification region must shrink since

the bounds for always selected, compliers, and defiers become narrower. E.g., in the case that

the never selected outnumber the always selected the bounds become

∆UB
S=1 =

P1|1

P1|1 + P1|0
· (Ȳ1,1 − Y LB) +

P1|0

P1|1 + P1|0
· (Y UB − Ȳ0,1),

∆LB
S=1 =

P1|1

P1|1 + P1|0
· Ȳ1,1 +

P1|0

P1|1 + P1|0
· (Y LB − Ȳ0,1 − Y UB). (17)

Interestingly, these bounds are are tighter than the ones on ∆11. Once again, we obtain more

informative bounds for the selected population than for the always selected if π00 > π11.

3.4 Monotonicity and stochastic dominance

In the subsequent discussion, we investigate the identifying power of a combination of Assump-

tions 3 and 4. This was first considered by Zhang and Rubin (2003) who derive the following

bounds for the ATE on the always selected which are shown to be sharp by Imai (2008):

∆UB
11 = Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1,

∆LB
11 = Ȳ1,1 − Ȳ0,1. (18)

These bounds are a simplification of those under stochastic dominance for the special case that

π01 = 0. The upper bound is the same as under monotonicity and is, thus, not affected by

additionally assuming stochastic dominance. The latter has no further impact on the conditional

means to be compared. However, the lower bound is tightened by the fact that Ȳ1,1 now constitutes

the lower bound of the mean potential outcome of the always selected under treatment.
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In the same manner, the bounds on the compliers simplify to

∆UB
10 = Ȳ1,1 − Y LB,

∆LB
10 = Ȳ1,1(min |1− P1|0/P1|1)− Ȳ0,1. (19)

The upper bound is the same as under stochastic dominance and is not affected by adding

monotonicity. The reason is that ruling out defiers does not change the comparison outcome

under non-treatment, which is still the theoretical lower bound (as compliers are not observed

under non-treatment). Also for the lower bound, monotonicity does not bring any benefits for

the same reasons as under Assumption 3: For all admissible values π01 ≥ 0, π01 = 0 minimizes

the lower bound of the mean potential outcome under treatment. Therefore, setting π01 = 0 by

assumption does neither increase the lower bound of the mean potential outcome, nor of ∆10.

The bounds of the ATE on the selected population are identified by

∆UB
S=1 =

P1|0

P1|1 + P1|0
· Ȳ1,1(max |P1|0/P1|1)− 2 ·

P1|0

P1|1 + P1|0
· Ȳ0,1

+
P1|1

P1|1 + P1|0
· Ȳ1,1 −

P1|1 − P1|0

P1|1 + P1|0
· Y LB,

∆LB
S=1 =

2P1|0

P1|1 + P1|0
· (Ȳ1,1 − Ȳ0,1) +

P1|1 − P1|0

P1|1 + P1|0
· (Ȳ1,1 − Ȳ0,1)

= Ȳ1,1 − Ȳ0,1. (20)

Compared to just invoking monotonicity, the upper bound of ∆S=1 is unaffected by the intro-

duction of stochastic dominance. This is due to the fact that Ȳ1,1 still represents the weighted

average of the mean potential outcomes under treatment of the always selected and the compliers

(even if the potential outcomes are now restricted in a particular way by stochastic dominance).

Nor does the assumption change the bound of any other potential outcome relevant to the upper

bound. Stochastic dominance does, however, change the lower bound on ∆S=1. Ȳ0,1 now rep-

resents the mean potential outcome under non-treatment for all selected individuals because it

constitutes the upper bound on the compliers’ mean potential outcome. Therefore, an interesting
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result of imposing both assumptions is that the lower bound now coincides with the one for the

always selected.

3.5 Monotone treatment response

As the last identifying assumption considered, we briefly discuss the so called “monotone treat-

ment response” assumption suggested by Manski (1997):

Assumption 5:

Pr(Y (1) ≥ Y (0)) = 1 (montone treatment response).

Assumption 5 restricts the effect of the treatment to be non-negative implying that the lower

bound under any other assumptions discussed so far may not be smaller than zero. Apart from

Angrist, Bettinger, and Kremer (2006), who use this assumption together with Assumption 3

to bound the ATE of private school vouchers, monotone treatment response has received little

attention in the literature on partial identification under sample selection.3 This may be due to

the limited attractiveness of a priori restricting the direction of the effect when the latter is un-

known to the researcher. We will, therefore, not invoke Assumption 5 in the application discussed

further below.

4 Estimation

While the focus of our paper lies on identification, this section briefly sketches estimation, which

is based on the sample analogs of the bounds derived under the various assumptions. To this

3However, it has been very influential elsewhere, see for instance Gerfin and Schellhorn (2006), González (2005),
and Kreider and Hill (2009) for empirical applications in health and labor economics. Furthermore, Blanco, Flores,
and Flores-Lagunes (2011) consider a somewhat related assumption which restricts the ATE on the always selected
to be non-negative.
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end, we define the following sample parameters:

P̂1|1 ≡
∑n

i=1 Si · Ti∑n
i=1 Ti

, P̂0|1 ≡ 1−
∑n

i=1 Si · Ti∑n
i=1 Ti

,

P̂1|0 ≡
∑n

i=1 Si · (1− Ti)∑n
i=1(1− Ti)

, P̂0|0 ≡ 1−
∑n

i=1 Si · (1− Ti)∑n
i=1(1− Ti)

,

ˆ̄Y1,1 ≡
∑n

i=1 Yi · Si · Ti∑n
i=1 Si · Ti

, ˆ̄Y0,1 ≡
∑n

i=1 Yi · Si · (1− Ti)∑n
i=1 Si · (1− Ti)

,

ˆ̄Yt,s(max |q) ≡
∑n

i=1 Yi · I{Si = s} · I{Ti = t} · I{Y ≥ ŷ1−q}∑n
i=1 I{Si = s} · I{Ti = t} · I{Y ≥ ŷ1−q}

,

ˆ̄Yt,s(min |q) ≡
∑n

i=1 Yi · I{Si = s} · I{Ti = t} · I{Y ≤ ŷq}∑n
i=1 I{Si = s} · I{Ti = t} · I{Y ≤ ŷq}

,

ŷq ≡ min

{
y :

∑n
i=1 Si · Ti · I{Yi ≤ y}∑n

i=1 Si · Ti
≥ q
}
,

where I{·} is the indicator function. Using these expressions instead of the population parame-

ters in the formulas for the bounds immediately yields feasible estimators. However, note that

depending on the parameters considered, particular common support conditions have to be sat-

isfied. E.g., the estimation of P̂1|1, P̂0|1 and P̂1|0, P̂0|0 requires that Pr(T = 1) > 0 and Pr(T =

1) < 1, respectively (or that 0 < Pr(T = 1) < 1 for the joint estimation of P̂1|1, P̂0|1, P̂1|0, P̂0|0).

Likewise, ˆ̄Y1,1 demands that E(S ·D) > 0 and ˆ̄Y0,1 that E(S ·D) < 1.

√
n-consistency and asymptotic normality of the estimators of the bounds for the compliers

and the selected population under both monotonicity and stochastic dominance directly follows

from the results of Lee (2009). To see this, first consider the estimators of ∆UB
11 ,∆

LB
11 under

monotonicity alone:

∆̂UB
11 = ˆ̄Y1,1(max |P̂1|0/P̂1|1)− ˆ̄Y0,1,

∆̂LB
11 = ˆ̄Y1,1(min |P̂1|0/P̂1|1)− ˆ̄Y0,1.

In the appendix, Lee (2009) shows
√
n-consistency and asymptotic normality using a GMM

framework based on Theorems 2.6 and 7.2 of Newey and McFadden (1994). As argued therein,

it is obvious that it suffices to show the desirable properties for ˆ̄Y1,1(max |P̂1|0/P̂1|1) and

25



ˆ̄Y1,1(max |P̂1|0/P̂1|1) (or just one of them due to the symmetry of the problem) because these

estimators are independent of the observed mean outcome under non-treatment ˆ̄Y0,1.

Now consider the estimators for the compliers under monotonicity:

∆̂UB
10 = ˆ̄Y1,1(max |1− P1|0/P1|1)− Y LB,

∆̂LB
10 = ˆ̄Y1,1(min |1− P1|0/P1|1)− Y UB. (21)

Y LB, Y UB are constants not relevant for the properties of the estimators. Furthermore, note

that the problem of estimating ˆ̄Y1,1(max |1 − P1|0/P1|1) is symmetric to ˆ̄Y1,1(max |P̂1|0/P̂1|1)

(and ˆ̄Y1,1(min |1−P1|0/P1|1) to ˆ̄Y1,1(max |P̂1|0/P̂1|1)). Therefore, Lee’s results immediately apply

to the estimators of the bounds for the compliers. This in turn implies
√
n-consistency and

asymptotic normality of ∆̂UB
S=1, ∆̂

LB
S=1, as the selected population is just a weighted average of

the always selected and compliers. Finally, note that imposing stochastic dominance in addition

to monotonicity replaces some parameters in the estimators by simple conditional means, which

again entails
√
n-consistency and asymptotic normality of all estimators.

5 Application

In this section, we use our methods to re-evaluate the school voucher experiment of Angrist,

Bettinger, and Kremer (2006). As mentioned before, the authors investigate the effects of school

vouchers provided to high school students in the course of Colombia’s PACES program (taking

place between 1991 and 1997). The outcome we focus on are the reading scores achieved in the

centralized college entrance examinations, the ICFES, several years later. Many of the vouchers

that covered half the cost of private secondary schooling were randomly assigned by a lottery

among applicants such that Assumption 2 appears likely to hold. The experimental estimates

in Angrist, Bettinger, and Kremer (2006) suggest that vouchers increase reading test scores on

average by roughly 0.7 points (or roughly 0.12 standard deviations) and this result is significant

at the 5% level.
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However, only 30.2% (or 1223 students) of the 4044 applicants actually took the test. There-

fore, the experimental estimates might be flawed by selection bias. E.g., if the treatment posi-

tively affects the likelihood to take the test such that also a priori less motivated students are

induced to participate, then the distribution of motivation differs across treated and non-treated

students conditional on being tested. If motivation positively affects the test scores, this entails a

(downward) bias of the estimated effect. For this reason, Angrist, Bettinger, and Kremer (2006)

use both censored regression to control for sample selection and derive nonparametric bounds

on the ATE of the always selected population based on Assumptions 3 (monotonicity of selec-

tion) and 5 (monotone treatment response). On balance, they still find substantial gains from

the PACES program.

We complement their analysis by estimating the ATE under different sets of assumptions and

for several populations. To be specific, we invoke Assumption 3 (monotonicity of selection) and/or

Assumption 4 (stochastic dominance) to bound the ATE on the always selected, compliers, and

the selected population. Both assumptions appear to be plausible in this context. Monotonicity

roots in the presumption that the treatment weakly increases participation in the exam because

private schools are plausibly more committed to the academic success of their (paying) students,

which may serve as measure of school quality. Stochastic dominance seems reasonable because

the always selected are those taking the exam irrespective of the treatment and are, thus, likely

to have higher potential test scores than other groups, for instance due to ability or motivation.

We do not consider Assumption 5 (monotone treatment response) which restricts the direction

of the effects.

Estimation is based on the approach outlined in the last section. Concerning inference, we

compute the confidence intervals based on the method described in Imbens and Manski (2004),

which contains the treatment effect of interest with a probability of at least 95%:

(
∆̂LB − 1.645 · σ̂LB, ∆̂UB + 1.645 · σ̂UB

)
,
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where ∆̂LB, ∆̂UB are the estimated bounds and σ̂LB, σ̂UB denote their respective estimated stan-

dard errors. We compute the latter by bootstrapping the original sample 1999 times and esti-

mating ∆̂LB, ∆̂UB in each bootstrap replication in order to estimate their distributions. As worst

case bounds Y UB and Y LB, we take the maximum and minimum test scores observed among test

takers.

The estimates of the conditional selection probabilities, P̂1|1 = 0.328, P̂1|0 = 0.267, P̂0|1 =

0.672, and P̂0|0 = 0.733, allow us to bound the strata proportions. Table 4 reports these bounds

and shows that the lower bound on the share of the never selected is larger than the upper

bound on the share of any other population and in particular than the one of the always selected.

Therefore, without monotonicity the bounds on this population will be uninformative in the

worst case scenario and quite large under stochastic dominance. Moreover, the lower bound of

the compliers’ share is larger than zero such that positive monotonicity is consistent with the

data whereas negative is not. In Table 4 we also provide the estimated strata proportions and

the mixture probabilities under Assumption 3 (monotonicity), which are then point identified.

Table 4: Estimated (bounds on the) proportions of latent strata

Latent strata Bounds without monotonicity Proportions under monotonicity

Always selected [0.000, 0.267] 0.267
Compliers [0.061, 0.328] 0.061
Never selected [0.406, 0.672] 0.672
Defiers [0.000, 0.267] -
Always selected among selected 0.897
Compliers among selected 0.103

Table 5 presents the results for the always selected, compliers, and the selected population

under various assumptions. The bounds of the ATE estimates are given in square brackets, the

95% confidence intervals in round brackets. The worst case bounds are not informative for the al-

ways selected and very wide for any other population. Invoking monotonicity narrows the bounds

substantially for the always selected and the selected population, even though the identification

region still includes a zero effect. As discussed before, monotonicity has no identifying power for

the compliers as a zero proportion of π01 implies the widest bounds possible.
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The stochastic dominance assumption entails narrower bounds than the worst case scenario for

all three populations. However, for the always selected, the identification region is substantially

larger than under monotonicity. Using both assumptions jointly brings important improvements.

The lower bounds of the ATEs on the always selected and the selected population are now

significantly larger than zero and point to a positive effect of private schooling. Also the upper

bounds do not appear unreasonably high. For the selected population, this is due to the small

share of compliers (10.28%) to which the theoretical upper bound Y UB applies. For the compliers

alone, the bounds are not more informative than under stochastic dominance, as monotonicity

does not further narrow the bounds for reasons discussed in Section 3.

Table 5: ATE estimates and confidence intervals

Assumptions Always selected Compliers Selected

Worst case bounds [-31.000, 32.000] [-24.083, 24.799] [-16.632, 17.368]
Not informative (-25.658, 26.106) (-16.891, 17.628)

Monotonicity [-0.942, 2.218] [-24.083, 24.799] [-1.805, 3.115]
(-1.731, 2.978) (-25.658, 26.106) ( -2.824, 4.122)

Stochastic dominance [ -13.396, 17.079] [ -13.439, 17.604] [-8.706, 17.368]
( -14.666, 18.755) ( -14.566, 20.852) (-9.403, 18.068)

Mon. + stoch. dom. [0.683, 2.218] [-7.004, 17.604] [0.683, 3.115]
(0.152, 2.978) (-8.626, 17.932) (0.152, 4.122)

Note: Bounds in square brackets and confidence intervals in round brackets.

Confidence intervals are based on 1999 bootstraps.

All in all our results give support to the conclusions of Angrist, Bettinger, and Kremer (2006)

suggesting that the PACES program in Colombia had a positive effect on the reading scores in

college entrance examinations. The lower bounds of the ATEs on those who would take the

test irrespective of private schooling (supposedly the most able and motivated) and on all test

takers are positive when invoking both monotonicity and stochastic dominance. Furthermore, the

Imbens and Manski (2004) confidence intervals suggest that these ATEs are significantly different

from zero. For the compliers alone, however, we cannot reject the null hypothesis of a zero effect

based on our assumptions.
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6 Conclusion

This paper discusses the partial identification of average treatment effects (ATE) in the presence

of sample selection, implying that outcomes are only observed for a non-random subpopulation.

The previous work considering this problem has predominantly focussed on bounding the ATE

on the “always selected”, whose outcomes are observed irrespective of the treatment received.

Here, we also derived sharp bounds for other populations such as the “compliers” (selected under

treatment, not selected under non-treatment) and the selected population (all individuals whose

outcomes are observed), which is a mixture of several groups.

These populations appear to be relevant for policy recommendations in many empirical con-

texts. Taking, for instance, the compliers, one might be interested whether switching the selec-

tion state as a reaction on the treatment comes along with (and may be rooted in) a particular

treatment effect. An example is the effect of a training on wages, which might induce formerly

unemployed individuals to work because their potential wage surpasses their reservation wage af-

ter the training. Furthermore, it might be preferable to make causal statements rather for larger

than for smaller shares of the total population. The largest subgroup for which outcomes are

observed is the selected population, such that results obtained for these individuals are likely to

have more external validity than those based on smaller (and unobservable) subgroups.

In the discussion on identification, we have argued that the combination of monotonicity (of

selection in the treatment) and stochastic dominance (of the potential outcomes of the always

selected over those of others) assumptions may bear considerable identifying power even for

populations whose outcomes are, in contrast to the always selected, only observed in one treatment

state. In particular, it has been shown that the lower bound of the ATE on the selected population

coincides with the lower bound for the always selected. This is an important result, as we are

often most interested in the lower bound, which gives evidence about the existence of a positive

effect. Its practical relevance has been demonstrated by means of an empirical application to a

school voucher experiment.
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Finally, the paper also shows that principal stratification provides an adequate framework for

a better understanding of the identifying assumptions involved, because they are expressed in

terms of individual selection behavior rather than the less tangible relation of error terms in some

structural model. For example, we have found that if the share of the always selected is smaller

than the one of never selected, bounds on the always selected are not informative if we do not

assume monotonicity of selection in the treatment. In contrast, we can still bound the ATE on

the selected population. This might be hard to see from the equations characterizing a structural

model.
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A Appendix

A.1 Worst case scenario

A.1.1 Proof of the sharpness of the simplified bounds on ∆11

The bounds in Zhang and Rubin (2003) are

∆UB
11 = min

π01

[Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |(P1|0 − π01)/P1|0)], (A.1)

∆LB
11 = max

π01

[Ȳ1,1(min |(P1|0 − π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)]. (A.2)

Imai (2008) shows that these bounds are sharp, but they can be simplified such that optimization is not required:

Ȳ1,1(max |(P1|0−π01)/P1|1) ≡ E(Y |T = 1, S = 1, y ≥ F−1
Y1,1

(1−(P1|0−π01)/P1|1)) is maximized when 1− P1|0−π01

P1|1
=

P1|1−P1|0+π01

P1|1
, is maximized. Since

P1|1−P1|0+π01

P1|1
is increasing in π01, it is maximized when π01 = πmax

01 . Similarly

Ȳ0,1(min |(P1|0 − π01)/P1|0) is minimized when
P1|0−π01

P1|0
, which is decreasing in π01, is minimized, namely when

π01 = πmax
01 . Noticing that

P1|0−π01

P1|1
and 1 − P1|0−π01

P1|0
= π01

P1|0
are decreasing and increasing functions of π01,

respectively, ends the proof.

A.1.2 Proof of the sharpness of the bounds on ∆10

Lemma 1 together with Proposition 1 in Imai (2008) shows that Ȳ1,1(max |(P1|1 − P1|0 + π01)/P1|1) and

Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1) are the sharp upper and lower bounds of E(Y |T = 1, G = 10). Since the

sampling process does not impose any restrictions on the distribution of Y given T = 0 and G = 10 for a fixed

value of π01, the bounds are sharp. Finally, since π01 is unknown, the bounds are obtained by maximizing

(minimizing) the upper (the lower) bound w.r.t. to its admissible values. However, as 1 − P1|1−P1|0+π01

P1|1
and

P1|1−P1|0+π01

P1|1
are decreasing and increasing in π01,respectively, πmin

01 is the optimal choice in both cases.

A.1.3 Proof of the sharpness of the bounds on ∆01

Lemma 1 together with Proposition 1 in Imai (2008) shows that Ȳ0,1(max |π01/P1|0) and Ȳ0,1(min |π01/P1|0) are the

sharp upper and lower bounds of E(Y |T = 0, G = 01). Since the sampling process does not impose any restriction

on the distribution of Y given T = 1 and G = 01 for a fixed value of π01, the bounds are sharp. Finally, since

π01 is unknown, the bounds are obtained by maximizing (minimizing) the upper (the lower) bound w.r.t. to its

admissible values. However, since 1− π01
P1|0

and π01
P1|0

are decreasing and increasing in π01, respectively, πmin
01 is the

optimal choice in both cases.
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A.1.4 Proof of the sharpness of the bounds on ∆S=1

We will show the sharpness of the upper bound, the proof for the lower bound is analogous. First of all, notice

that if w is a random variable which is distributed as a two components mixture

f(w) = p · f(w1) + (1− p) · f(w2) p ∈ [0, 1],

then

E(w) = p · E(w|w ≥ F−1
w (1− p)) + (1− p) · E(w|w ≤ F−1

w (1− p)), (A.3)

where E(w|w ≥ F−1
w (1− p)) is the upper bound of E(w1) and E(w|w ≤ F−1

w (1− p)) is the lower bound of E(w2).

Given (A.3), the observed outcomes can be written as

Ȳ1,1 =
P1|0 − π01

P1|1
· Ȳ1,1(max |(P1|0 − π01)/P1|1) +

P1|1 − P1|0 + π01

P1|1
· Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1) (A.4)

or

Ȳ1,1 =
P1|0 − π01

P1|1
· Ȳ1,1(min |(P1|0 − π01)/P1|1) +

P1|1 − P1|0 + π01

P1|1
· Ȳ1,1(max |(P1|1 − P1|0 + π01)/P1|1) (A.5)

and

Ȳ0,1 =
P1|0 − π01

P1|0
· Ȳ0,1(min |(P1|0 − π01)/P1|0) +

π01

P1|0
· Ȳ0,1(max |π01/P1|0) (A.6)

or

Ȳ0,1 =
P1|0 − π01

P1|0
· Ȳ0,1(max |(P1|0 − π01)/P1|0) +

π01

P1|0
· Ȳ0,1(min |π01/P1|0). (A.7)

Moreover, notice that

∆S=1 =
2 · (P1|0 − π01)

P1|1 + P1|0
·∆11 +

P1|1 − P1|0 + π01

P1|1 + P1|0
·∆10 +

π01

P1|1 + P1|0
·∆01 (A.8)

For the upper bound, substituting ∆11 by ∆UB
11 , ∆10 by ∆UB

10 and ∆01 by ∆UB
01 in (A.8) would give a sharp upper

bound on ∆S=1. However, such a bound would contradict (A.3) since it is impossible to have the upper bounds

for the always selected and the compliers and the lower bounds for the always selected and the defiers at the same
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time in the mixture. This, however, shows that the admissible sharp upper bound would be the maximum of

∆UB
S=1 =

2 · (P1|0 − π01)

P1|1 + P1|0
· (Ȳ1,1(min or max |(P1|0 − π01)/P1|1)− Ȳ0,1(min or max |(P1|0 − π01)/P1|0))

+
P1|1 − P1|0 + π01

P1|1 + P1|0
· (Ȳ1,1(min or max |(P1|1 − P1|0 + π01)/P1|1)− Y LB)

+
π01

P1|1 + P1|0
· (Y UB − Ȳ0,1(min or max |π01/P1|0)). (A.9)

From (A.4),(A.5), (A.6) and (A.7) we have, respectively,

Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1) =
P1|1

P1|1 − P1|0 + π01
· Ȳ1,1 −

P1|0 − π01

P1|1 − P1|0 + π01

· Ȳ1,1(max |(P1|0 − π01)/P1|1) (A.10)

Ȳ1,1(max |(P1|1 − P1|0 + π01)/P1|1) =
P1|1

P1|1 − P1|0 + π01
· Ȳ1,1 −

P1|0 − π01

P1|1 − P1|0 + π01

· Ȳ1,1(min |(P1|0 − π01)/P1|1) (A.11)

Ȳ0,1(min |π01/P1|0) =
P1|0

π01
· Ȳ0,1 −

P1|0 − π01

π01

· Ȳ0,1(max |(P1|0 − π01)/P1|0) (A.12)

Ȳ0,1(max |π01/P1|0) =
P1|0

π01
· Ȳ0,1 −

P1|0 − π01

π01

· Ȳ0,1(min |(P1|0 − π01)/P1|0) (A.13)

Substituting these expressions in (A.9), we obtain after some simple algebra

∆UB
S=1 =

P1|0 − π01

P1|1 + P1|0
· (Ȳ1,1(min or max |(P1|0 − π01)/P1|1)− Ȳ0,1(min or max |(P1|0 − π01)/P1|0))

+
P1|1

P1|1 + P1|0
· Ȳ1,1 −

P1|1 − P1|0 + π01

P1|1 + P1|0
· Y LB +

π01

P1|1 + P1|0
· Y UB −

P1|0

P1|1 + P1|0
· Ȳ0,1.

This is maximized for Ȳ1,1(max |(P1|0−π01)/P1|1)−Ȳ0,1(min |(P1|0−π01)/P1|0). For a given value of π01 this bound is

sharp. Finally, we again need to maximize w.r.t. π01. However, we will show that ∆UB
S=1 is maximized for π01 = πmax

01 .

Indeed, by taking its derivative w.r.t. π01, defining Ȳ1,1(max |(P1|0−π01)/P1|1)− Ȳ0,1(min |(P1|0−π01)/P1|0) ≡ ∆Y ,

and performing some simple algebra one obtains

Y UB − Y LB + P1|0 ·
∂∆Y

∂π01
≥ π01 ·

∂∆Y

∂π01
+ ∆Y . (A.14)

which is always satisfied, because Y UB − Y LB is generally larger than ∆Y and P1|0 ≥ π01. (A.14) holds as an

equality only if π01 = P1|0 = πmax
01 . This ends the proof.
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A.2 Monotonicity

Any bounds derived under monotonicity are special cases of the worst case bounds given π01 = 0 and, therefore,

they are sharp.

A.3 Stochastic dominance

First of all, we will prove the following lemma:

Lemma 1: If w is a random variable which is distributed as a two components mixture

f(w) = p · f(w1) + (1− p) · f(w2) p ∈ [λ0, λ1],

and F (w1 ≤ t) ≥ F (w2 ≤ t) ∀t ∈ (−∞,+∞), and if g(·) is a function that respect stochastic dominance, the

following bounds are sharp:

g(F (w1 ≤ t)) ∈ [g(Lλ1), g(U)],

where

Lγ =


F (w≤t)

γ
if t < F−1

w (γ),

1 if t ≥ F−1
w (γ),

U = F (w ≤ t).

Proof : The lower bound is sharp because of Lemma 1 in Imai (2008). Similar to Lemma 2 in Imai (2008), the

identification region of F (w1 ≤ t) is Ψw1 ≡
{
F (w≤t)−(1−λ1)ψw2

λ1
: ψw2 ≤ F (w ≤ t)

}
such that U ≡ F (w ≤ t) ≤ ψw1

stochastically dominates any admissible value of the identification region of F (w1 ≤ t). This proves the sharpness

of the upper bound.

A.3.1 Proof of the sharpness of the bounds on ∆10

Lemma 1 shows that Ȳ1,1 and Ȳ1,1(min |(P1|1−P1|0 +π01)/P1|1) are the sharp upper and lower bounds on E(Y |T =

1, G = 10). Under Assumption 4 the lower bound of E(Y |T = 0, G = 10) remains Y LB . On the other hand, the

upper bound cannot be larger than Ȳ0,1(max |(P1|0 − π01)/P1|0). This implies that the upper bound is sharp while

the lower bound is sharp for any fixed value of π01. The sharp lower bound is obtained minimizing over all possible

values of π01.
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A.3.2 Proof of the sharpness of the bounds on ∆01

Lemma 1 shows that Ȳ0,1 and Ȳ0,1(min |πmin
01 /P1|0) are the sharp upper and lower bounds for E(Y |T = 0, G = 01).

Under Assumption 4 the lower bound of E(Y |T = 1, G = 01) remains Y LB . On the other hand, the upper bound

cannot be larger than Ȳ1,1(min |(P1|0 − π01)/P1|1). This implies that the lower bound is sharp while the upper

bound is sharp for any fixed value of π01. The sharp upper bound is obtained maximizing over all possible values

of π01.

A.3.3 Proof of the sharpness of the bounds on ∆S=1

We only prove the sharpness of the upper bound, the proof for the lower bound is analogous. The sharp upper

bound would be obtained substituting ∆11 with ∆UB
11 , ∆10 with ∆UB

10 and ∆01 with ∆UB
01 in (16). Again, such a

bound would contradict (A.3).

Therefore, we have four admissible solutions:

1. ∆UB
11 , Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1)− Y LB and Ȳ1,1 − Ȳ0,1. After some algebra we have

∆UB1
S=1 =

P1|0

P1|1 + P1|0
· Ȳ1,1(max |(P1|0 − π01)/P1|1)−

2 · P1|0 − π01

P1|1 + P1|0
· Ȳ0,1

+
P1|1

P1|1 + P1|0
· Ȳ1,1 −

P1|1 − P1|0 + π01

P1|1 + P1|0
· Y LB

2. Ȳ1,1 − Ȳ0,1, ∆UB
10 and Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1.

∆UB2
S=1 =

π01

P1|1 + P1|0
· Ȳ1,1(max |(P1|0 − π01)/P1|1)−

2 · P1|0 − π01

P1|1 + P1|0
· Ȳ0,1

+
P1|1 + P1|0 − π01

P1|1 + P1|0
· Ȳ1,1 −

P1|1 − P1|0 + π01

P1|1 + P1|0
· Y LB

3. Ȳ1,1(max |(P1|0 − π01)/P1|1) − Ȳ0,1(max |(P1|0 − π01)/P1|0), Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1) − Y LB and

∆UB
01

∆UB3
S=1 =

P1|0

P1|1 + P1|0
· Ȳ1,1(max |(P1|0 − π01)/P1|1)−

P1|0

P1|1 + P1|0
· Ȳ0,1

−
P1|0 − π01

P1|1 + P1|0
· Ȳ0,1(max |(P1|0 − π01)/P1|0)

+
P1|1

P1|1 + P1|0
· Ȳ1,1 −

P1|1 − P1|0 + π01

P1|1 + P1|0
· Y LB
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4. Ȳ1,1 − Ȳ0,1(max |(P1|0 − π01)/P1|0), ∆UB
10 and ∆UB

01

∆UB4
S=1 =

π01

P1|1 + P1|0
· Ȳ1,1(max |(P1|0 − π01)/P1|1)−

P1|0

P1|1 + P1|0
· Ȳ0,1

−
P1|0 − π01

P1|1 + P1|0
· Ȳ0,1(max |(P1|0 − π01)/P1|0) +

P1|1 + P1|0 − π01

P1|1 + P1|0
· Ȳ1,1

−
P1|1 − P1|0 + π01

P1|1 + P1|0
· Y LB

To show that ∆UB
S=1 = ∆UB1

S=1 is the sharp upper bound it is sufficient to show that

P1|0

P1|1 + P1|0
· Ȳ1,1(max |(P1|0 − π01)/P1|1) +

P1|1

P1|1 + P1|0
· Ȳ1,1 ≥

π01

P1|1 + P1|0
· Ȳ1,1(max |(P1|0 − π01)/P1|1) +

P1|1 + P1|0 − π01

P1|1 + P1|0
· Ȳ1,1

and

2 · P1|0 − π01

P1|1 + P1|0
· Ȳ0,1 ≤

P1|0 − π01

P1|1 + P1|0
· Ȳ0,1(max |(P1|0 − π01)/P1|0) +

P1|0

P1|1 + P1|0
· Ȳ0,1

Simple algebra shows that the two inequalities are always satisfied. In order to show that we do not need to

maximize ∆UB
S=1 over all possible values of π01, it is sufficient to see that its first derivative w.r.t. π01, given by

Ȳ0,1 − Y LB + P1|0 ·
∂Ȳ1,1(max |(P1|0 − π01)/P1|1)

∂π01

is always positive, since Ȳ0,1 − Y LB > 0 and P1|0 ·
∂Ȳ1,1(max |(P1|0−π01)/P1|1)

∂π01
> 0. Therefore ∆UB

S=1 is maximized for

π01 = πmax
01 .

A.4 Monotonicity and stochastic dominance

All bounds derived under monotonicity and stochastic dominance are special cases of the bounds derived under

stochastic dominance alone given that π01 = 0. Therefore, the bounds are sharp.
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