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Cores and Stable Sets for

Interval-Valued Games

S.Z. Alparslan-Gök ∗† R. Branzei ‡ S. Tijs §

Abstract

In this paper, interval-type solution concepts for interval-valued co-
operative games like the interval core, the interval dominance core and
stable sets are introduced and studied. The notion of I-balancedness is
introduced, and it is proved that the interval core of an interval-valued
cooperative game is nonempty if and only if the game is I-balanced.
Relations between the interval core, the dominance core and stable
sets of an interval-valued game are established.

JEL Classification: C71
Keywords: cooperative games, interval games, the core, the domi-

nance core, stable sets

1 Introduction

Interval cooperative games are introduced by Branzei, Dimitrov and Tijs
(2003) and Branzei et al. (2004) in the context of bankruptcy situations.
Inspiring was the work of Yager and Kreinovich (2000) where an algorithm
for fair division is presented. Methods of interval arithmetic and analysis
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(cf. Moore, 1995) have played a key role for new models of games based on
interval uncertainty. Two-person zero-sum non-cooperative games with inter-
val strategies and interval-valued payoff function are studied by Shashikhin
(2004). Interval matrix games arising from situations where the payoffs vary
within closed intervals for fixed strategies are introduced in Collins and Hu
(2005). Carpente et al. (2005) propose a method to associate a coalitional
interval game to each strategic game. Alparslan Gök, Miquel and Tijs (2007)
introduce different notions of balancedness and cores for interval-valued co-
operative games using selections of such games, and focus on two-person
interval-valued cooperative games. Throughout the foregoing literature mo-
tivation from different points of view for studying interval-valued games is
provided. This paper deals with interval-type solution concepts for coopera-
tive interval-valued games such as the interval core, the interval dominance
core and stable sets. The interval core and the interval dominance core are
set-valued interval-type solution concepts on the class of interval-valued co-
operative games, i.e. multi-functions that associate with each interval-valued
game a set of payoff vectors whose components are (closed) intervals of real
numbers. The interval core of an interval-valued game may be the empty
set or may contain (infinitely) many elements. We introduce the notion of
I-balancedness and extend the Bondareva-Shapley theorem for traditional
cooperative games to the interval setting. The interval dominance core as-
sociates with each interval-valued game the subset of undominated elements
of the interval imputation set. A stable set of an interval-valued game is a
subset of the interval imputation set of the game satisfying both internal and
external stability. We study relations between the interval core, the interval
dominance core and stable sets on the class of interval-valued games.
The paper is organized as follows. In Section 2 we recall basic notions and
facts from the theory of interval-valued cooperative games. In Section 3 we
introduce the interval core and the notion of I-balancedness, study properties
of the interval core and prove that an interval-valued cooperative game has
a nonempty interval core if and only if the game is I-balanced. We illustrate
via examples the difference between the interval core of an interval-valued
game and its core, and some relations between the I-balancedness of such a
game and other types of balancedness (cf. Alparslan Gök, Miquel and Tijs
(2007)). Unanimity interval-valued games are introduced and the structure
of the interval core of such a game is explicitly described. Section 4 deals
with the interval dominance core and stable sets, and their relations with
the interval core on the class of arbitrary interval-valued cooperative games
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and on the subclass of unanimity interval-valued games. In Section 5 we
introduce the notion of convex interval-valued game showing that convexity
is a sufficient condition for the non-emptiness of the interval core but not a
necessary one, and suggest some topics for further research regarding cores
and stable sets for interval-valued cooperative games.

2 Preliminaries

A cooperative n-person game in coalitional form is an ordered pair < N, v >,
where N = {1, 2, ..., n} (the set of players) and v : 2N → R is a map,
assigning to each coalition S ∈ 2N a real number, such that v(∅) = 0. This
function v is called the characteristic function of the game, v(S) is called the
worth (or value) of coalition S. Often we identify a game < N, v > with its
characteristic function v. The set of coalitional games with player set N is
denoted by GN . We refer the reader to Tijs (2003) and Part I in Branzei,
Dimitrov and Tijs (2005, 2008) for an introduction in classical cooperative
game theory.
Let I(R) be the set of all closed intervals in R. A cooperative n-person interval
game in coalitional form is an ordered pair < N,w > where N := {1, 2, . . . , n}
is the set of players, and w : 2N → I(R) is the characteristic function which
assigns to each coalition S ∈ 2N a closed interval w(S) ∈ I(R), such that
w(∅) = [0, 0]. For each S ∈ 2N , the worth set (or worth interval) w(S)
of the coalition S in the interval game w is a closed interval which will be
denoted by [w(S), w(S)], where w(S) is the lower bound and w(S) is the
upper bound of w(S). The family of all interval games with player set N is
denoted by IGN . Note that if all the worth intervals are degenerate intervals,
i.e., w(S) = w(S), then the interval game < N,w > corresponds to the
classical cooperative game < N, v > where v(S) = w(S). This means that
traditional cooperative games can be embedded in a natural way in the class
of interval-valued cooperative games. In the sequel, we recall some definitions
and results from Alparslan Gök, Miquel and Tijs (2007), where the focus is
on balancedness and cores for two-person interval-valued cooperative games.
Let < N,w > be an interval game; then v : 2N → R is called a selection of
w if v(S) ∈ w(S) for each S ∈ 2N . The set Sel(w) of selections of w plays
a key role in defining the imputation set and the core of an interval-valued
cooperative game. Thus, the imputation set I(w) of < N,w > is defined
by I(w) = ∪{I(v)|v ∈ Sel(w)}, and the core C(w) of < N,w > is defined
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by C(w) = ∪{C(v)|v ∈ Sel(w)}. Clearly, C(w) 6= ∅ if and only if there
exists a v ∈ Sel(w) with C(v) 6= ∅. We notice that in an obvious way each
degenerate interval-valued game, where each worth interval w(S) consists of
one point, can be identified with a classical cooperative game and conversely,
each classical cooperative game can be associated with a degenerate interval-
valued game. To be more precise a classical cooperative game < N, v > can
be identified with < N,w >, where w(S) = [v(S), v(S)] for each S ∈ 2N .
A map λ : 2N \{∅} → R+ is called a balanced map if

∑

S∈2N\{∅} λ(S)eS = eN .
An interval game < N,w > is called strongly balanced if for each balanced
map λ it holds that

∑

λ(S)w(S) ≤ w(N). The family of all strongly balanced
interval-valued games with player set N is denoted by BIGN .

Proposition 2.1. (Alparslan Gök, Miquel and Tijs (2007)) Let < N,w >
be an interval game. Then, the following three assertions are equivalent:

(i) For each v ∈ Sel(w) the game < N, v > is balanced.

(ii) For each v ∈ Sel(w), C(v) 6= ∅.

(iii) The interval game < N,w > is strongly balanced.

From Proposition 2.1 it follows that C(w) 6= ∅ for a strongly balanced
game < N,w >, since for all v ∈ Sel(w), C(v) 6= ∅.
We call an interval game < N,w > strongly unbalanced, if there exists a
balanced map λ such that

∑

λ(S)w(S) > w(N). Then, C(v) = ∅ for all
v ∈ Sel(w), which implies that C(w) = ∅.
If all the worth intervals of an interval-valued game < N,w > are degenerate
intervals then strong balancedness corresponds to balancedness and strong
unbalancedness corresponds to unbalancedness for the classical cooperative
game < N, v >.

3 The interval core

Let I =
[

I, I
]

and J =
[

J, J
]

be two intervals. We say that I is weakly better

than J , which we denote by I < J , iff I ≥ J and I ≥ J . Note that in case
I < J , the following conditions hold:

(i) for each a ∈ J there is a b ∈ I such that a ≤ b;

(ii) for each b ∈ I there is an a ∈ J such that a ≤ b.
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In this paper, n-tuples of intervals, I = (I1, I2, . . . , In), where Ii ∈ I(R)
for each i ∈ N , will play a key role. For further use we denote by I(R)N

the set of all n-dimensional vectors whose components are elements in I(R).
Let Ii be the payoff interval of player i, and I = (I1, I2, . . . , In) be an n-
person interval-payoff vector. Then, according to Moore (1995), we have
∑

i∈S Ii =
[
∑

i∈S I i,
∑

i∈S I i

]

∈ I(R) for each S ∈ 2N \ {∅}. Next, we
define interval-type solution concepts for interval-valued cooperative games
w ∈ IGN . Instead of w({i}), w({i, j}), etc., we often write w(i), w(i, j), etc.
The interval imputation set I(w) of the interval-valued game w, is defined
by

I(w) :=

{

(I1, I2, . . . , In) ∈ I(R)N |
∑

i∈N

Ii = w(N), w(i) 4 Ii, for all i ∈ N

}

.

We note that
∑

i∈N Ii = w(N) is equivalent with
∑

i∈N I i = w(N) and
∑

i∈N I i = w(N), and w(i) 4 Ii is equivalent with w(i) ≤ I i and w(i) ≤ I i,
for each i ∈ N .
Furthermore,

∑

i∈N Ii = w(N) implies for all i ∈ N and for all t ∈ w(N)
there exists xi ∈ Ii such that

∑

i∈N xi = t.
The interval core C(w) of the interval-valued game w, is defined by

C(w) :=

{

(I1, I2, . . . , In) ∈ I(R)N |
∑

i∈N

Ii = w(N),
∑

i∈S

Ii < w(S), for all S ∈ 2N \ {∅}

}

.

Here,
∑

i∈N Ii = w(N) is the efficiency condition and
∑

i∈S Ii < w(S),
S ∈ 2N \{∅}, are the stability conditions of the payoff interval-valued vectors.
Clearly, C(w) ⊂ I(w) for each w ∈ IGN .

Example 3.1. (LLR-game) Let < N,w > be a three-person interval-valued
glove game with w(1, 3) = w(2, 3) = w(1, 2, 3) = J < [0, 0] and w(S) = [0, 0]
otherwise. The interval core is C(w) = {([0, 0], [0, 0], J)} .

Proposition 3.1. Let w ∈ IGN . The interval imputation set I(w) of w is
nonempty if and only if w(N) <

∑

i∈N w(i).

Proof. First, suppose that I(w) 6= ∅. Take I = (I1, I2, . . . , In) ∈ I(w). Then
Ii < w(i), for each i ∈ N . So,

∑

i∈N Ii <
∑

i∈N w(i) by interval calculus and
∑

i∈N Ii = w(N) by the efficiency condition of I(w).
Next suppose that w(N) <

∑

i∈N w(i).
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Then, I = (w(1), w(2), . . . , w(n − 1), In), where In = [In, In] = [w(n) +
δ, w(n)+ ǫ] with ǫ = w(N)−

∑

i∈N w(i) ≥ 0 and δ = w(N)−
∑

i∈N w(i) ≥ 0,
is an element of the interval imputation set.

Remark 3.1. The interval core C(w), can be easily computed by solving a
system of linear inequalities of the form:

∑

i∈N I i = w(N);
∑

i∈N I i = w(N)

and
∑

i∈S I i ≥ w(S);
∑

i∈S I i ≥ w(S), for each S ∈ 2N \{∅}. We notice that
the time complexity of the algorithm for computing the interval core C(w) for
w ∈ IGN is the same as the time complexity of the algorithm for computing
the core C(v) for v ∈ GN .

Remark 3.2. We notice that the elements of the sets C(w) and C(w) are of
different type, implying that we cannot compare the sets with respect to the
inclusion relation. Specifically, the elements of C(w) are vectors x ∈ R

N ,
whereas the elements of C(w) are vectors I ∈ I(R)N . But, if all the worth
intervals of the interval-valued game < N,w > are degenerate intervals then
the interval core C(w) corresponds in a natural way to the core C(w), since
([a1, a1], . . . , [an, an]) is in the interval core C(w) if and only if (a1, . . . , an) is
in the core C(w) for each ai ∈ R and i = 1, . . . , n. Furthermore, we could
have situations in which C(w) = ∅ and C(w) 6= ∅, as Example 3.1 illustrates.

Example 3.2. Let < N,w > be a two-person interval-valued game with
w(1, 2) = [6, 8], w(1) = [2, 4], w(2) = [5, 6] and w(∅) = [0, 0]. For this game
C(w) = ∅. But, C(w) 6= ∅ since C(v) 6= ∅ for some selections v ∈ Sel(w).

Proposition 3.2. Let w ∈ IGN . If the interval core C(w) is nonempty then
the core C(w) is nonempty.

Proof. Take (I1, I2, . . . , In) ∈ C(w). Then,
∑

i∈N Ii = w(N) for each i ∈

N , implying that
∑

i∈N I i = w(N) and
∑

i∈N I i = w(N), and
∑

i∈S Ii <

w(S), implying that
∑

i∈S I i ≥ w(S) and
∑

i∈S I i ≥ w(S). Let < N, v >
be the selection of w with v(S) = w(S), v(N) = w(N) and let xi = I i.
Then,

∑

i∈S xi ≥ w(S) and
∑

i∈N xi = w(N) which shows that C(w) is
nonempty.

Proposition 3.3. Let w ∈ IGN . Then, the interval core C(w) of w is a
convex set.

Proposition 3.4. The interval core C : IGN →→ I(R)N is a superadditive
map.
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Proof. Let w1, w2 ∈ IGN . Clearly, w1 + w2 ∈ IGN . We will show that

C(w1) + C(w2) ⊆ C(w1 + w2).

Take (I1, I2, . . . , In) ∈ C(w1) and (J1, J2, . . . , Jn) ∈ C(w2). Then,

∑

k∈N

Ik +
∑

k∈N

Jk = w1(N) + w2(N) ⇒
∑

k∈N

(Ik + Jk) = (w1 + w2)(N),

and, for each S ∈ 2N \ {∅},
∑

k∈S Ik < w1(S) and
∑

k∈S Jk < w2(S),

implying that
∑

k∈S Ik ≥ w1(S) and
∑

k∈S Jk ≥ w2(S) Then, for each
S ∈ 2N \ {∅},

∑

k∈S

Ik +
∑

k∈S

Jk ≥ w1(S) + w2(S) ⇒
∑

k∈S

(Ik + Jk) ≥ (w1 + w2)(S).

Similarly,
∑

k∈S(Ik + Jk) ≥ (w1 + w2)(S). Hence, the interval core is a
superadditive map.

On the class of traditional cooperative games, the core (cf. Gillies (1953))
has the property of relative invariance with respect to strategic equiva-
lence. This result can be easily extended to interval-valued games as we
see in Proposition 3.5. For this extension we need the notion of additive
interval-valued games. A game < N, a > is called an additive interval-
valued game if for each S ∈ 2N , a(S) =

∑

i∈S a({i}). For such a game
C(a) = {(a({1}), a({2}), . . . , a({n}))} .

Proposition 3.5. The interval core C : IGN →→ I(R)N is relative invari-
ant with respect to strategic equivalence, i.e. for each w, a ∈ IGN with a
being an additive interval-valued game, and for each k > 0 we have
C(kw + a) = kC(w) + C(a).

An interval-valued game w ∈ IGN is called I-balanced if for each bal-
anced map λ : 2N \ {∅} → R+ we have

∑

S∈2N\{∅} λ(S)w(S) 4 w(N). The

class of I-balanced games is denoted by IBIGN . In the following proposition
a relation between balancedness (in terms of selections) and I-balancedness
is given.

Proposition 3.6. Let < N,w > be a strongly balanced interval-valued game;
then < N,w > is I-balanced.
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Proof. Take a balanced map λ : 2N \ {∅} → R+. Then

w(N) ≥ w(N) ≥
∑

S∈2N\{∅}

λ(S)w(S) ≥
∑

S∈2N\{∅}

λ(S)w(S).

So,
∑

S∈2N\{∅} λ(S)w(S) 4 w(N). Hence, < N,w > is I-balanced.

Note that the converse of the Proposition 3.6 is not true since there exists
v ∈ Sel(w) with C(v) 6= ∅, implying that the core C(w) is nonempty, but
the interval core may be empty as we learn from the Example 3.2.
In the classical theory of cooperative games it is proved (Bondareva (1963)
and Shapley (1967)) that a game v ∈ GN is balanced iff C(v) is nonempty. In
the next theorem we extend this result to interval-valued cooperative games
by using the duality theorem from linear programming theory (see Theorem
1.32 in Branzei, Dimitrov and Tijs, 2005).

Theorem 3.1. Let w ∈ IGN . Then the following two assertions are equiva-
lent:

(i) C(w) 6= ∅;

(ii) The game w is I-balanced.

Proof. First, using Remark 3.1, we note that C(w) 6= ∅ if and only if the
following two equalities hold simultaneously:

w(N) = min

{

∑

i∈N

I i|
∑

i∈S

I i ≥ w(S), for each S ∈ 2N \ {∅}

}

, (4)

w(N) = min

{

∑

i∈N

I i|
∑

i∈S

I i ≥ w(S), for each S

}

. (5)

We consider the matrix A whose columns are the characteristic vectors eS,
S ∈ 2N \ {∅}, and apply the duality theorem of linear programming. Then,
(4) holds true if and only if

w(N) = max







∑

S∈2N\{∅}

λ(S)w(S)|
∑

S∈2N\{∅}

λ(S)eS = eN , λ ≥ 0







, (6)
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and (5) is satisfied if and only if

w(N) = max







∑

S∈2N\{∅}

λ(S)w(S)|
∑

S∈2N\{∅}

λ(S)eS = eN , λ ≥ 0







. (7)

Now, note that (6) holds if and only if
∑

S∈2N\{∅}

λ(S)w(S) ≤ w(N), for each λ ≥ 0 such that
∑

S∈2N\{∅}

λ(S)eS = eN , (8)

whereas (7) is guaranteed if and only if
∑

S∈2N\{∅}

λ(S)w(S) ≤ w(N), for each λ ≥ 0 such that
∑

S∈2N\{∅}

λ(S)eS = eN . (9)

Finally, we note that (8) and (9) express together the I-balancedness of
w.

Let us note that the interval-valued game in Example 3.2 is not I-
balanced since w(1)+w(2) < w(12). According to Theorem 3.1 we conclude
that C(w) = ∅.

Remark 3.3. If C(w) is not empty, then C(w) and C(w) are both nonempty.

We note that if all the worth intervals of the interval-valued game
< N,w > are degenerate intervals, then strongly balancedness and I-balancedness
of the game also correspond to the classical balancedness.
Next, we introduce the notion of unanimity interval-valued game and prove
that such games are I-balanced games. Let J ∈ I(R)N and let T ∈ 2N \{∅}.
The unanimity interval-valued game based on J < [0, 0] and T is defined by

uT,J(S) =

{

J, T ⊂ S
[0, 0] , otherwise,

for each S ∈ 2N .

Proposition 3.7. For each unanimity interval-valued game uT,J the corre-
sponding interval core C(uT,J) is equal to

K =

{

(I1, . . . , In) ∈ IN(R)|
∑

i∈N

Ii = J, I i ≥ 0 for all i ∈ N, Ii = [0, 0] for i ∈ N \ T

}

.
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Proof. In order to show that C(uT,J) ⊂ K, let (I1, . . . , In) ∈ C(uT,J). Clearly,
for each i ∈ N we have Ii ≥ uT,J({i}) and uT,J({i}) = [0, 0]. So, I i ≥
0 for all i ∈ N . Furthermore,

∑

i∈N Ii = uT,J(N) = J . Since also
∑

i∈T Ii =
J , we conclude that Ii = 0 for i ∈ N \ T . So, (I1, . . . , In) ∈ K.
In order to show that K ⊂ C(uT,J), let (I1, . . . , In) ∈ K. So, I i ≥ 0 for all i ∈
N , Ii = [0, 0] if i ∈ N \T ,

∑

i∈N Ii = J . Then (I1, . . . , In) ∈ C(uT,J), because
it also holds:

(i)
∑

i∈S Ii = [0, 0] = uT,J(S) if T \ S 6= ∅,

(ii)
∑

i∈S Ii =
∑

i∈N Ii = uT,J(N) = J = uT,J(S) if T ⊂ S.

Remark 3.4. On the class of traditional cooperative games, the unanimity
games < N, uT > are defined by

uT (S) =

{

1, T ⊂ S
0, otherwise,

for each T ∈ 2N \ {∅}. The core C(uT ) of the unanimity game < N, uT > is
given by

C(N, uT ) =

{

x ∈ R
N|

n
∑

i=1

xi = 1, xi = 0 if i ∈ N \ T

}

.

The core C(uT,[1,1]) of the unanimity interval-valued game uT,J with J = [1, 1]
is

C(uT,[1,1]) =

{

I ∈ I(R)N |
∑

i∈N

Ii = [1, 1], I i ≥ 0 for all i ∈ N, Ii = [0, 0] for i ∈ N \ T

}

.

Hence, the interval core of the unanimity interval-valued game based on the
degenerate interval J = [1, 1] corresponds to the core of the unanimity game
in the traditional case. We recall that traditional unanimity games are convex
games; in Section 5 we define convex interval-valued games and notice that
unanimity interval-valued games are also convex.

10



4 The interval dominance core and stable sets

Let w ∈ IGN , I = (I1, . . . , In), J = (J1, . . . , Jn) ∈ I(w) and S ∈ 2N \ {∅}.
We say that I dominates J via coalition S, and denote it by I domS J , if

(i) Ii < Ji for all i ∈ S,

(ii)
∑

i∈S Ii 4 w(S).

For S ∈ 2N \ {∅} we denote by D(S) the set of those elements of I(w) which
are dominated via S.
For I, J ∈ I(w), we say that I dominates J and denote it by I dom J if
there is an S ∈ 2N \ {∅} such that I domS J .
I is called undominated if there does not exist J and a coalition S such that
J domS I.
The interval dominance core DC(w) of an interval-valued game w ∈ IGN

consists of all undominated elements in I(w), i.e. the complement in I(w)
of ∪

{

D(S)|S ∈ 2N \ {∅}
}

.
For w ∈ IGN a subset A of I(w) is a stable set if the following conditions
hold:

(i) (Internal stability) There does not exist I, J ∈ A such that I dom J or
J dom I.

(ii) (External stability) For each I /∈ A there exist J ∈ A such that
J dom I.

Next, we study relations between the interval core, interval dominance core
and stable sets for interval-valued cooperative games.

Theorem 4.1. Let w ∈ IGN and let A be a stable set of w. Then, C(w) ⊆
DC(w) ⊆ A.

Proof. In order to show that C(w) ⊆ DC(w) let us assume that there is
I ∈ C(w) such that I /∈ DC(w). Then, there is a J ∈ I(w) and a coalition
S ∈ 2N \ {∅} such that J domS I. Thus, J(S) 4 w(S) and Ji < Ii for all
i ∈ S implying that I /∈ C(w). To prove next that DC(w) ⊆ A it is sufficient
to show I(w) \ A ⊂ I(w) \ DC(w). Take I ∈ I(w) \ A. By the external
stability of A there is a J ∈ A with J dom I. The elements in DC(w) are
not dominated. So, I /∈ DC(w), i.e., I ∈ I(w) \ DC(w).
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The inclusions stated in the previous theorem may be strict. The follow-
ing example, inspired by Tijs (2003), illustrates that the inclusion of C(w) in
DC(w) might be strict.

Example 4.1. Let < N,w > be the three-person interval-valued game with
w(1, 2) = [2, 2], w(N) = [1, 1] and w(S) = [0, 0] if S 6= {1, 2} , N . Then
D(S) = ∅ if S 6= {1, 2} and D({1, 2}) = {I ∈ I(w)|I3 < [0, 0]}. The ele-
ments I in I(w) which are undominated satisfy I3 = [0, 0]. Since the interval
dominance core is the set of undominated elements in I(w), the interval
dominance core of this game is nonempty but the interval core is empty.

The next proposition shows that on the class of unanimity games the
interval core and the interval dominance core coincide.

Proposition 4.1. Let < N, uT,J > be the unanimity interval-valued game
based on coalition T and the payoff interval J < [0, 0]. Then, DC(uT,J) =
C(uT,J) = K.

Proof. The second equality is already proved in Proposition 3.5. To prove
the first equality note first that C(uT,J) ⊂ DC(uT,J) by Theorem 4.1. We
only have to prove that DC(uT,J) ⊂ C(uT,J) or we need to show that for
each I /∈ C(uT,J) we have I /∈ DC(uT,J). Take I /∈ C(uT,J). Then, there is a
k ∈ N \ T with Ik 6= [0, 0]. Then, I

′

domT I, where I
′

i = [0, 0] for i ∈ N \ T
and I

′

i = Ii + 1
|T |

Ik for i ∈ T . So, I /∈ DC(uT,J).

The next example illustrates the fact that the interval core might coincide
with the interval dominance core also for games which are not unanimity
interval-valued games.

Example 4.2. Consider the game w in Example 3.1. We will show that
DC(w) = C(w). Take I = (I1, I2, I3) ∈ I(w). Note that if I1 6= [0, 0] then
([0, 0], I2 + 1

2
I1, I3 + 1

2
I2) dom{2,3} (I1, I2, I3). So, I /∈ DC(w). Similarly,

if I2 6= [0, 0] then I /∈ DC(w). Hence, DC(w) ⊂ {([0, 0], [0, 0], J)} = C(w)
by Example 3.1. On the other hand we know, in view of Theorem 4.1, that
C(w) ⊂ DC(w). So, we conclude that DC(w) = C(w).

5 Concluding remarks

An interesting subclass of interval-valued cooperative games is the class of
convex interval-valued games.
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An interval-valued cooperative game is convex if and only if w(S) + w(T ) 4

w(S ∪ T ) + w(S ∩ T ) for all S, T ∈ 2N .
Convex interval-valued games turn out to have always a nonempty core. An
example of a convex game is the unanimity interval-valued game uT,J . Con-
vexity of an interval-valued game is a sufficient condition for the nonempti-
ness of the interval core of the game. However, convexity of an interval-
valued game is not a necessary condition for the nonemptiness of its inter-
val core, as we see in Example 3.1. The LLR-game is not convex, since
J +[0, 0] = w(1, 2, 3)+w(1) 6< w(1, 3)+w(2, 3) = J +J , but its interval core
is nonempty. For further results on convex interval-valued games we refer to
Alparslan Gök, Branzei and Tijs (2008).

We end this section with some remarks on possible further research re-
garding cores and stable sets for interval-valued cooperative games. It is
interesting to find sufficient conditions for the equality of the interval core
and the interval dominance core. Trying to prove the convexity of the interval
dominance core of any interval-valued game might be useful. Also studying
the stable sets of an interval-valued game in terms of selections is another
valuable topic for the extension of the theory of interval-valued games.

References

[1] S.Z. Alparslan Gök, S. Miquel and S. Tijs, Cooperation under interval
uncertainty, Mathematical Methods of Operations Research (2008), to
appear.

[2] S.Z. Alparslan Gök, R. Branzei and S.Tijs, Convex games with interval
uncertainty, Working Paper (2008).

[3] O.N. Bondareva, Certain applications of the methods of linear pro-
gramming to the theory of cooperative games, Problemly Kibernetiki
10 (1963) 119-139 (in Russian).

[4] R. Branzei, D. Dimitrov, S. Pickl and S. Tijs, How to cope with division
problems under interval uncertainty of claims, International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 12 (2004) 191-
200.

[5] R. Branzei, D. Dimitrov and S.Tijs, Shapley-like values for interval
bankruptcy games, Economics Bulletin 3 (2003) 1-8.

13



[6] R. Branzei, D. Dimitrov and S. Tijs, Models in Cooperative Game The-
ory: Crisp, Fuzzy and Multi-Choice Games, Lecture Notes in Economics
and Mathematical Systems, Springer-Verlag Berlin Vol. 556 (2005).

[7] R. Branzei, D. Dimitrov and S. Tijs, Models in Cooperative Game The-
ory, Springer-Verlag Berlin (forthcoming) (2008).

[8] L. Carpente, B. Casas-Méndez, I. Garćıa-Jurado and A. van den Nouwe-
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