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Our previous work develops methods to study optimal policy in 
Markov jump-linear-quadratic (MJLQ) models with forward-looking 
variables: models with conditionally linear dynamics and conditionally 
quadratic preferences, where the matrices in both preferences and 
dynamics are random (Svensson and Williams, 2007a, 2007b). In 
particular, each model has multiple “modes”—a finite collection of 
different possible values for the matrices, whose evolution is governed 
by a finite-state Markov chain. In our previous work, we discuss how 
these modes could be structured to capture many different types of 
uncertainty relevant for policymakers. Here we put those suggestions 
into practice. We start by briefly discussing how an MJLQ model can 
be derived as a mode-dependent linear-quadratic approximation of 
an underlying nonlinear model, and we then apply our methods to a 
simple empirical mode-dependent New-Keynesian model of the U.S. 
economy, using a variant of a model by Lindé (2005).

In Svensson and Williams (2007b), we study optimal policy design 
in MJLQ models when policymakers can or cannot observe the current 
mode, but we abstract from any learning and inference about the 
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current mode. Although in many cases the optimal policy under no 
learning (NL) is not a normatively desirable policy, it serves as a useful 
benchmark for our later policy analyses. In Svensson and Williams 
(2007a), we focus on learning and inference in the more relevant 
situation, particularly for model-uncertainty applications in which 
the modes are not directly observable. Thus, decisionmakers must 
filter their observations to make inferences about the current mode. 
As in most Bayesian learning problems, the optimal policy typically 
includes an experimentation component reflecting the endogeneity of 
information. This class of problems has a long history in economics, 
and solutions are notoriously difficult to obtain. We developed 
algorithms to solve numerically for the optimal policy.1 Given the 
curse of dimensionality, the Bayesian optimal policy (BOP) is only 
feasible in relatively small models. Confronted with these difficulties, 
we also considered adaptive optimal policy (AOP).2 In this case, the 
policymaker in each period updates the probability distribution of the 
current mode in a Bayesian way, but the optimal policy is computed 
each period under the assumption that the policymaker will not learn 
from observations in the future. In our setting, the AOP is significantly 
easier to compute, and in many cases it provides a good approximation 
to the BOP. Moreover, the AOP analysis is of some interest in its own 
right, as it is closely related to specifications of adaptive learning that 
have been widely studied in macroeconomics.3 The AOP specification 
also rules out the experimentation that some may view as objectionable 
in a policy context.4

In this paper, we apply our methodology to study optimal 
monetary policy design under uncertainty in dynamic stochastic 

1. In addition to the classic literature (on such problems as a monopolist learning 
its demand curve), Wieland (2000, 2006) and Beck and Wieland (2002) examine 
Bayesian optimal policy and optimal experimentation in a context similar to ours 
but without forward-looking variables. Tesfaselassie, Schaling, and Eijffinger (2006) 
examine passive and active learning in a simple model with a forward-looking element 
in the form of a long interest rate in the aggregate demand equation. Ellison and Valla 
(2001) and Cogley, Colacito, and Sargent (2007) study situations like ours, but their 
expectational component is as in the Lucas supply curve (Et–1πt, for example) rather 
than our forward-looking case (Etπt+1, for example). More closely related to our present 
paper, Ellison (2006) analyzes active and passive learning in a New-Keynesian model 
with uncertainty about the slope of the Phillips curve.

2. The literature also refers to optimal policy under no learning, adaptive optimal 
policy, and Bayesian optimal policy as myopia, passive learning, and active learning, 
respectively.

3. See Evans and Honkapohja (2001) for an overview. 
4. AOP is also useful for technical reasons, as it gives us a good starting point for 

our more intensive numerical calculations in the BOP case.
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general equilibrium (DSGE) models. We begin by summarizing the 
main findings from our previous work, leading to implementable 
algorithms for analyzing policy in MJLQ models. We then turn to 
analyzing optimal policy in DSGE models. To quantify the gains 
from experimentation, we focus on a small empirical benchmark 
New-Keynesian model. In this model, we compare and contrast 
optimal policies under no learning, AOP, and BOP. We analyze 
whether learning is beneficial—it is not always so, a fact that at least 
partially reflects our assumption of symmetric information between 
the policymakers and the public—and then quantify the additional 
gains from experimentation.5

Since we typically find that the gains from experimentation are 
small, the rest of the paper focuses on our adaptive optimal policy, 
which shuts down the experimentation channel. As the AOP is much 
easier to compute, this allows us to work with much larger and more 
empirically relevant policy models. In the latter part of the paper, we 
analyze one such model, an estimated forward-looking model that is 
a mode-dependent variant of Lindé (2005). There, we focus on how 
optimal policy should respond to uncertainty about the degree to which 
agents are forward-looking, and we show that there are substantial 
gains from learning in this framework.

The paper is organized as follows. Section 1 presents the MJLQ 
framework and summarizes our earlier work. Section 2 presents our 
analysis of learning and experimentation in a simple benchmark New-

5. In addition to our own previous work, MJLQ models have been widely studied 
in the control-theory literature for the special case in which the model modes are 
observable and there are no forward-looking variables (see Costa, Fragoso, and Marques, 
2005, and the references therein). Do Val and Basar (1999) provide an application of 
an adaptive-control MJLQ problem in economics. Zampolli (2006) uses such an MJLQ 
model to examine monetary policy under shifts between regimes with and without an 
asset-market bubble. Blake and Zampolli (2006) extend the MJLQ model with observable 
modes to include forward-looking variables and present an algorithm for the solution 
of an equilibrium resulting from optimization under discretion. Svensson and Williams 
(2007b) provide a more general extension of the MJLQ framework with forward-looking 
variables and present algorithms for the solution of an equilibrium resulting from 
optimization under commitment in a timeless perspective, as well as arbitrary time-
varying or time-invariant policy rules, using the recursive saddlepoint method of Marcet 
and Marimon (1998). That paper also provides two concrete examples: an estimated 
backward-looking model (a three-mode variant of Rudebusch and Svensson, 1999) and 
an estimated forward-looking model (a three-mode variant of Lindé, 2005). Svensson 
and Williams (2007b) also extend the MJLQ framework to the more realistic case of 
unobservable modes, although without introducing learning and inference about the 
probability distribution of modes. Svensson and Williams (2007a) focus on learning 
and experimentation in the MJLQ framework.
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Keynesian model, and section 3 presents our analysis in an estimated 
empirical New-Keynesian model. Section 4 presents some conclusions 
and suggestions for further work.

1. MJlq analysis of opTiMal poliCy

This section summarizes our earlier work (Svensson and Williams, 
2007a, 2007b). We start by describing our MJLQ model and then 
briefly discuss approximate MJLQ models. Finally, we explore the 
three types of optimal policies considered: optimal policy with no 
learning, adaptive optimal policy, and Bayesian optimal policy. 

1.1 An MJLQ Model

We consider an MJLQ model of an economy with forward-looking 
variables. The economy has a private sector and a policymaker. We let 
Xt denote an nX vector of predetermined variables in period t, xt an nx 
vector of forward-looking variables, and it an ni vector of policymaker 
instruments (control variables).6 We let model uncertainty be 
represented by nj possible modes and let jt ∈ Nj ≡ {1, 2, …, nj} denote 
the mode in period t. The model of the economy can then be written 

X A X A x B i Ct jt t jt t jt t jt t+ + + + + ++ + +1 11 1 12 1 1 1 1 1 1= ε ,  (1)

Et jt t jt t jt t jt t jt tH
+ + + + +

1 1 21 22 2 2=x A X A x B i C ε ,  (2)

 
where εt is a multivariate normally distributed random i.i.d. nε vector 
of shocks with mean zero and contemporaneous covariance matrix Inε. 
The matrices A11j, A12j, …, C2j have the appropriate dimensions and 
depend on the mode j. Given that a structural model here is simply a 
collection of matrices, each mode can represent a different model of 
the economy. Thus, uncertainty about the prevailing mode is model 
uncertainty.7

The matrices on the right-hand side of equation (1) depend on the 
mode jt+1 in period t + 1, whereas the matrices on the right-hand side 

6. The first component of Xt may be unity, to allow for mode-dependent intercepts 
in the model equations.

7. See also Svensson and Williams (2007b), where we show how many different 
types of uncertainty can be mapped into our MJLQ framework.
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of equation (2) depend on the mode jt in period t. Equation (1) then 
determines the predetermined variables in period t + 1 as a function of 
the mode and shocks in period t + 1 and the predetermined variables, 
forward-looking variables, and instruments in period t. Equation (2) 
determines the forward-looking variables in period t as a function of 
the mode and shocks in period t, the expectations in period t of the next 
period’s mode and forward-looking variables, and the predetermined 
variables and instruments in period t. The matrix A22j is nonsingular 
for each j ∈ Nj.

The mode jt follows a Markov process with the transition 
matrix P ≡ [Pjk].8 The shocks εt have mean zero and are i.i.d. with 
probability density ϕ, and we assume, without loss of generality, 
that εt is independent of jt.

9 We also assume that C1jεt and C2kεt are 
independent for all j, k ∈ Nj. These shocks, along with the modes, 
are the driving forces in the model. They are not directly observed. 
For technical reasons, it is convenient but not necessary that they 
are independent. We let pt = ( p1t,...,pnjt

 )′ denote the true probability 
distribution of jt in period t. We let pt+τt  denote the policymaker’s 
and private sector’s estimate in the beginning of period t of the 
probability distribution in period t + τ. The prediction equation for 
the probability distribution is

pt+1|t = P′pt|t. (3)

We let the operator Et[⋅] in the expression Et Hjt+1
xt+1 on the left-

hand side of equation (2) denote expectations in period t, conditional 
on the policymaker’s and the private sector’s information in the 
beginning of period t, including Xt, it, and ptt, but excluding jt and εt. 
The maintained assumption is thus symmetric information between 
the policymaker and the (aggregate) private sector. Since forward-
looking variables will be allowed to depend on jt, parts of the private 
sector—but not the aggregate private sector—may be able to observe 
jt and parts of εt. While we focus on the determination of the optimal 
policy instrument it, our results also show how private sector choices 
as embodied in xt are affected by uncertainty  and learning. The 
precise informational assumptions and the determination of ptt are 
specified below.

8. Obvious special cases are P = Inj
, when the modes are completely persistent, and 

Pj. = ′p , (j ∈ Nj), when the modes are serially i.i.d. with probability distribution p.
9. We can still incorporate additive mode-dependent shocks since the models allow 

mode-dependent intercepts (as well as mode-dependent standard deviations).
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We let the policymaker’s intertemporal loss function in period t be

E L jt t t t t
τ

τ
τ τ τ τδ

=0

, , ,
∞

+ + + +∑ ( )X x i ,
 

(4)

where δ is a discount factor satisfying 0 < δ < 1, and the period loss, 
L(Xt, xt, it, jt), satisfies 

L jt t t t

t

t

t

'

jt

t

t

t

X x i
X
x
i

W
X
x
i

, , ,( )≡





































,

 
(5)

where the matrix Wj (j ∈ Nj) is positive semidefinite. We assume 
that the policymaker optimizes under commitment in a timeless 
perspective. As explained below, we then add the term 

Ξt t jt tE−1
1
δ

H x
 (6)

to the intertemporal loss function in period t. As we show below, the nx 
vector Ξt–1 is the vector of Lagrange multipliers for equation (2) from 
the optimization problem in period t – 1. For the special case in which 
there are no forward-looking variables (nx = 0), the model consists of 
equation (1) only, without the term A12jt+1

xt the period loss function 
depends on Xt, it, and jt only; and there is no role for the Lagrange 
multipliers Ξt–1 or the term in equation (6).

1.2 Approximate MJLQ Models

While in this paper we start with an MJLQ model, the usual 
formulations of economic models are not of this type. However, the 
same type of approximation methods that are widely used to convert 
nonlinear models into their linear counterparts can also convert 
nonlinear models into MJLQ models. We analyze this issue in 
Svensson and Williams (2007b) and present an illustration, as well. 
Here we briefly discuss the main ideas. Rather than analyzing local 
deviations from a single steady state as in conventional linearizations, 
for an MJLQ approximation we analyze the local deviations from 
(potentially) separate, mode-dependent steady states. Standard 
linearizations are justified as asymptotically valid for small shocks, 
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since an increasing time is spent in the vicinity of the steady state. 
Our MJLQ approximations are asymptotically valid for small shocks 
and persistent modes, since an increasing time is spent in the vicinity 
of each mode-dependent steady state. Thus, for slowly varying 
Markov chains, our MJLQ models provide accurate approximations 
of nonlinear models with Markov switching.

1.3 Types of Optimal Policies

We distinguish three cases: optimal policy when there is no 
learning (NL), adaptive optimal policy (AOP), and Bayesian optimal 
policy (BOP). By NL, we refer to a situation in which the policymaker 
and the aggregate private sector have a probability distribution ptt 
over the modes in period t and update the probability distribution 
in future periods using the transition matrix only, so the updating 
equation is

pt+1|t+1 = P′pt|t (7)

That is, the policymaker and the private sector do not use observations 
of the variables in the economy to update the probability distribution. 
The policymaker then determines optimal policy in period t conditional 
on ptt and equation (7). This is a variant of a case examined in 
Svensson and Williams (2007b).

By AOP, we refer to a situation in which the policymaker in 
period t determines optimal policy as in the NL case, but then uses 
observations of the realization of the variables in the economy to 
update its probability distribution according to Bayes’ theorem. In this 
case, the instruments will generally have an effect on the updating 
of future probability distributions, and through this channel they 
separately affect the intertemporal loss. However, the policymaker 
does not exploit that channel in determining optimal policy. That is, 
the policymaker does not do any conscious experimentation. By BOP, 
we refer to a situation in which the policymaker acknowledges that 
the current instruments will affect future inference and updating 
of the probability distribution and takes this separate channel into 
account when calculating optimal policy. BOP thus includes optimal 
experimentation, whereby the policymaker may, for instance, 
pursue policy that increases losses in the short run but improves 
the inference of the probability distribution and therefore lowers 
losses in the longer run.
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1.3.1 Optimal policy with no learning

We first consider the NL case. Svensson and Williams (2007b) 
derive the equilibrium under commitment in a timeless perspective 
for the case in which Xt, xt, and it are observable in period t, jt is 
unobservable, and the updating equation for ptt is given by equation 
(7). Observations of Xt, xt, and it are then not used to update ptt.

It is useful to replace equation (2) by the two equivalent 
equations,

Et Hjt+1
xt+1 = zt (8)

and

0 = 21 22 2 2A X A x z B i Cjt t jt t t jt t jt t+ − + + ε , (9)

where we introduce the nx vector of additional forward-looking 
variables, zt. Introducing this vector is a practical way of keeping 
track of the expectations term on the left-hand side of equation (2). 
Furthermore, it is practical to use equation (9) to solve xt as a function 
of Xt, zt, it, jt, and εt: 

x x X z i A z A X B i Ct t t t t t jt t jt t jt t jt tj= , , , , 22
1

21 2 2 ε ε( )≡ − − −





−







.  (10)

For a given jt, this function is linear in Xt, zt, it, and εt.
To solve for the optimal decisions, we use the recursive saddlepoint 

method.10 We thus introduce Lagrange multipliers for each forward-
looking equation, the lagged values of which become state variables 
and reflect costs of commitment, while the current values become 
control variables. The dual period loss function can be written

E L j p L jt t t t t t t
j

jt t t t t t
   X z i X z i, , , , , , , , , ,|γ ε γ






 ≡∑ ∫ εε ε εt t td







 ( )ϕ ,

where X Xt t t≡ ′ ′ ′−( , )1Ξ  is the (nX + nx) vector of extended predetermined 
variables (that is, including the nx vector, Ξt–1), γt is an nx vector of 

10. See Marcet and Marimon (1998), Svensson and Williams (2007b), and Svensson 
(2007) for details of the recursive saddlepoint method. 
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Lagrange multipliers, and ϕ(⋅) denotes a generic probability density 
function (for εt, the standard normal density function), and where

  L j L jt t t t t t t t t t t tX z i X x X z i, , , , , , , , , ,γ ε ε

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
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
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





− ′ + ′−

, ,

1
, , ,1

i

z x X z i

t t

t t t jt t t t

j

jγ Ξ
δ

H  tt t,ε






.

 (11)

As discussed in Svensson and Williams (2007b), the failure of 
the law of iterated expectations leads us to introduce a collection of 
value functions,V̂ (st, j), which condition on the mode, while the value 
function V̂ (st) averages over these and represents the solution of the 
dual optimization problem. The somewhat unusual Bellman equation 
for the dual problem can be written



 
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E L
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t t t
t t

s s s

X
z i

( )≡ ( )≡ ( )∑ˆ ˆ

maxmin

, ,

= ,

|

( , )γ
zz i s z it t t t t t t t t t t t t tj V g j j j, , , , , , , , , , , ,1 1 1γ ε γ ε( )+ ( )( )+ + +δ ˆ ε





≡
( )

+
∑ ∫ ∑γ

γ ε

t t t
j jt t

t t t t t

k j

p
L j

P
maxmin

( , )
|

, , , , ,

z i

X z i 

δ kk t t t t t t

t t
V g j k kˆ s z i, , , , , , , ,1

1
γ ε ε

ε ε
+

+
( )( )


















( ) ( )ϕ ϕ dd dt tε ε +1.

 (12)

where s Xt t t t≡ ′ ′ ′( , )|
 p denotes the perceived state of the economy (it 

includes the perceived probability distribution, ptt, but not the true 
mode) and (st, jt) denotes the true state of the economy (it includes 
the true mode of the economy). As we discuss in more detail below, 
it is necessary to include the mode jt in the state vector because the 
beliefs do not satisfy the law of iterated expectations. In the BOP case, 
beliefs do satisfy this property, so the state vector is simply st. Also, in 
the Bellman equation we require that all the choice variables respect 
the information constraints, and they thus depend on the perceived 
state st but not directly on the mode j.

The optimization is subject to the transition equation for Xt, 

X A X A x X z i B i Ct jt t jt t t t t t jt t jt tj+ + + + +
+ ( )+ +1 11 1 12 1 1 1 1 1

= , , , , ε ε ++1 ,  (13)

where we have substituted x ( Xt, zt, it, jt, εt) for xt; the new dual 
transition equation for Ξt,

Ξt = γt, (14)
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and the transition equation (7) for ptt. Combining equations, we have 
the transition for st,
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It is straightforward to see that the solution of the dual optimization 
problem (equation 12) is linear in X t for given ptt, jt, 
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x x s x X z s i s

X
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j j

F j F

= , , , , , ,

,|

ε ε( )≡ ( ) ( )( )

≡ ( ) +




xX p xx pε εt t t tj| ,( ) .

 (17)

This solution is also the solution to the original primal optimization 
problem. We note that xt is linear in εt for given ptt and jt. The 
equilibrium transition equation is then given by 

s s s z s i s st t t t t t t t t t t t tg j j g j j+ + +( )≡ ( ) ( ) ( )1 1 1= , , , , , , , , , ,ˆ ε ε γ ε ++ +( )1 1,εt .  (18)

As can be easily verified, the (unconditional) dual value function 
V̂ (st) is quadratic in X t for given ptt, taking the form 

   
 V V wt t t t t t ts X XXX( )≡ ′ ( ) + ( )p | | .p

The conditional dual value function V̂ (st, jt) gives the dual intertemporal 
loss conditional on the true state of the economy, (st, jt). It follows that 
this function satisfies
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ˆ
ˆ ˆ
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The function V̂ (st, jt) is also quadratic in X t for given ptt and jt, 

ˆ ˆ ˆ .V j V j w jt t t t t t t t t ts X X, , ,| |( )≡ ′ ( ) + ( ) 
 XX p p

It follows that we have


   V p V jt t j jt t t tXX p pXX| | | ,( )≡ ( )∑ ˆ ;

w p w jt t j jt t t tp p| | | ,( )≡ ( )∑ ˆ .

Although we find the optimal policies from the dual problem, 
we use the value function for the primal problem (with the original, 
unmodified loss function) to measure true expected losses. This value 
function, with the period loss function EtL(Xt, xt, it, jt) rather than 
Et 
L ( X t, zt, it, γt, jt, εt), satisfies

V V p j d

V

t t t
j

jt t j t t t t

t

s s x s
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( )≡ ( )− ′ ( ) ( )

( )− ′

− ∑ ∫



Ξ ε ε ε

Ξ

1 |
1

, ,

=

δ
ϕΗ

tt
j

jt t j tp j− ∑ ( )1 |
1

, ,0
δ

Η x s .

 (19)

where the second equality follows since x(st, jt, εt) is linear in εt for 
given st and jt. It is quadratic in X t for given ptt,

V V wt t t t t t ts X X( )≡ ′ ( ) + ( ) 
 XX p p| | ,

where the scalar w(ptt) in the primal value function is identical to that 
in the dual value function. This is the value function conditional on 
X t and ptt after Xt has been observed but before xt has been observed, 

taking into account that jt and εt are not observed. Hence, the second 
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term on the right-hand side of equation (19) contains the expectation 
of Hjt

xt conditional on that information.11

In Svensson and Williams (2007a, 2007b), we  present algorithms 
to compute the solution and the primal and dual value functions for 
the no-learning case. For future reference, we note that the value 
function for the primal problem also satisfies

V p V jt j jt t ts s( )≡ ( )∑ | ,


,

where the conditional value function, 


V (st, jt), satisfies


V j

L j j

P V g j k
t

t t t t

k jk t t t

s
X x s i s

s
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, , , , ,

, , , ,
( )

( ) ( )( )

+∫ ∑ +

ε

ε εδ ˆ 11

1 1
,

.
( )( )


















( ) ( ) ∈( )+ +

k
d d j Nt t t t jϕ ϕε ε ε ε ,  (20)

1.3.2 Adaptive optimal policy

Consider now the case of adaptive optimal policy, in which the 
policymaker uses the same policy function as in the no-learning 
case, but each period updates the probabilities on which this policy is 
conditioned. This case is thus simple to implement recursively, as we 
have already discussed how to solve for the optimal decisions and below 
we show how to update probabilities. However, the ex ante evaluation 
of expected loss is more complex, as we show below. In particular, 
we assume thatC2 0jt

≡ and that both εt and jt are unobservable. The 
estimate ptt is the result of Bayesian updating, using all information 
available, but the optimal policy in period t is computed under the 
perceived updating equation (7). That is, we disregard the fact that 
the policy choice will affect future pt+τt+τ and that future expected 
loss will change when pt+τ t+τ changes. Under the assumption that 
the expectations on the left-hand side of equation (2) are conditional 
on equation (7), the variables zt, it, γt, and xt in period t are still 
determined by equations (16) and (17).

To determine the updating equation for ptt, we specify an explicit 
sequence of information revelation as follows, in nine steps. The timing 
assumptions are necessary to spell out the appropriate conditioning 
for decisions and updating of beliefs.

11. To be precise, the observation of Xt, which depends on C1jt
εt, allows some 

inference of εt, εtt. The variable xt will depend on jt and on εt, but on εt only through 
 C2jtεt. By assumption, C1jεt and C2kεt are independent. Hence, any observation of Xt 

and C1jεt does not convey any information about C2jεt, so EtC2jt
εt = 0.
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First, the policymaker and the private sector enter period t with 
the prior ptt–1. They know Xt–1, xt–1 = x(st–1, jt–1, εt–1), zt–1 = z(st–1), 
it–1 = i(st–1), and Ξt–1 = γ(st–1) from the previous period.

Second, the mode jt and the vector of shocks εt are realized in the 
beginning of period t. The vector of predetermined variables Xt is then 
realized according to equation (1).

Third, the policymaker and the private sector observe Xt. They 
then know that X Xt t t

'≡ ′ ′−( , )1Ξ . They do not observe jt or εt.
Fourth, the policymaker and the private sector update the prior 

ptt–1 to the posterior ptt according to Bayes’ theorem and the updating 
equation

p
j j

jt t
t t t t t t t

t t t t
|

1 1 1 | 1

1 1 1

=
| = , , , ,

| , , ,

ϕ

ϕ

X X x i

X X x i
− − − −

− − −

( )p

ptt t
jt t jp j N

| 1
| 1 ,

−
−

( )
∈( ),  (21)

where again ϕ(⋅) denotes a generic density function.12 Then the 
policymaker and the private sector know that s Xt t t t≡ ′ ′ ′( , )|

 p .
Fifth, the policymaker solves the dual optimization problem, 

determines it = i(st), and implements or announces the instrument 
setting it.

Sixth, the private sector and policymaker form their 
expectations, 

z x x st t jt t jt t tE E= |
1 1 1 1H H
+ + + +≡ 




.

In equilibrium, these expectations will be determined by equation 
(16). These expectations are by assumption formed before xt is 
observed. The private sector and the policymaker know that xt will, 
in equilibrium, be determined in the next step according to equation 
(17). Hence, they can form expectations of the soon-to-be determined 
xt conditional on jt = j,13 

x x sjt t t j| = , ,0( ).  (22)

12. The policymaker and private sector can also estimate the shocks εtt as 
εtt = Σjpjttεjtt, where εjtt ≡ Xt – A11jXt–1 – A12jxt–1 – B1jit–1 (j ∈ Nj). However, because 
of the assumed independence of C1jεt and C2kεt, j, k ∈ Nj, we do not need to keep track 
of εjtt.

13. Note that 0 instead of εjtt enters above. The inference εjtt above is inference 
about C1jεt, whereas xt depends on εt  through C2jεt. Since we assume that C1jεt and C2jεt 
are independent, there is no inference of C2jεt from observing Xt. Hence, EtC2jt

εt ≡ 0. 
Because of the linearity of xt in εt, the integration of xt over εt results in x(st, jt, 0t).
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The private sector and the policymaker can also infer Ξt from

Ξ γt t= s( ).  (23)

This allows the private sector and the policymaker to form the 
expectations 

z z s x s xt t t jt t t j k jk jt t k k t jtE P p= = | =
1 1 , | , 1|( ) 



+ + +∑H H ,  (24)

where

x x
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and where we have exploited the linearity of xt = x(st, jt, εt) and 
xt+1 = x(st+1, jt+1, εt+1) in εt and εt+1. Under AOP, zt is formed conditional 
on the belief that the probability distribution in period t + 1 will be 
given by pt+1t+1 = P′ptt, not by the true updating equation that we 
are about to specify.

Seventh, after the expectations zt have been formed, xt is 
determined as a function of Xt, zt, it, jt, and εt by equation (10).

Eighth, the policymaker and the private sector then use the 
observed xt to update ptt to the new posterior pt t|

+ according to Bayes’ 
theorem, via the updating equation

p
j j

p jjt t
t t t t t t t

t t t t t t
jt t|

|

|
|=

| = , , , ,

| , , ,
+ ( )

( )
∈

ϕ

ϕ

x X z i

x X z i

p

p
, NN j( ).  (25)

Ninth, the policymaker and the private sector then leave period 
t and enter period t + 1 with the prior pt+1t given by the prediction 
equation



91Optimal Monetary Policy under Uncertainty in DSGE Models

p pt t t t+
+′1| |= .P  (26)

In the beginning of period t + 1, the mode jt+1 and the vector of shocks 
εt+1 are realized, and Xt+1 is determined by equation (1) and observed 
by the policymaker and the private sector. The sequence of the nine 
steps above then repeats itself. For more detail on the explicit densities 
in the updating equations (21) and (25), see Svensson and Williams 
(2007a).

The transition equation for pt+1t+1 can be written

pt t t t t t t t tQ j j+ + + +( )1| 1 1 1= , , , , , ,s z i ε ε ,  (27)

where Q(st, zt, it, jt, εt, jt+1, εt+1) is defined by the combination of equation 
(21) for period t + 1 with equations (13) and (26). The equilibrium 
transition equation for the full state vector is then given by

s
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(28)

where the third row is given by the true updating equation (27) 
together with the policy function (16). Thus, in this AOP case, there 
is a distinction between the “perceived” transition equation (15) and 
the equilibrium transition equation (18), both of which include the 
perceived updating equation (7) in the bottom block, and the “true” 
equilibrium transition equation (28), which replaces the perceived 
updating equation (7) with the true updating equation (27).

Note that V(st) in equation (19), which is subject to the perceived 
transition equation (15), does not give the true (unconditional) value 
function for the AOP case. This is instead given by 

V p V jt j jt t ts s( )≡ ( )∑ | ,


,
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where the true conditional value function, 


V (st, jt), satisfies


V j

L j j

P V g j k
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(29)

That is, the true value function V (st) takes into account the true 
updating equation for ptt, equation (27), whereas the optimal policy, 
equation (16), and the perceived value function, V(st) in equation 
(19), are conditional on the perceived updating equation (7) and 
thereby the perceived transition equation (15). Also, V (st) is the 
value function after X t has been observed but before xt is observed, 
so it is conditional on ptt rather than on pt t|

+ . Since the full transition 
equation (28) is no longer linear given the belief updating in equation 
(27), the true value function V (st) is no longer quadratic in X t for 
given ptt. Thus, more complex numerical methods are required to 
evaluate losses in the AOP case, although policy is still determined 
simply as in the NL case.

As we discuss in Svensson and Williams (2007a), the difference 
between the true updating equation for pt+1t+1, (27), and the perceived 
updating equation (7) is that in the true updating equation, pt+1t+1 
becomes a random variable from the point of view of period t, with 
mean equal to pt+1t. This is because pt+1t+1 depends on the realization 
of jt+1 and εt+1. Bayesian updating thus induces a mean-preserving 
spread over beliefs, which in turn sheds light on the gains from 
learning. If the conditional value function 


V (st, jt) under NL is 

concave in ptt for given X t and jt, then by Jensen’s inequality the 
true expected future loss under AOP will be lower than the true 
expected future loss under NL. That is, the concavity of the value 
function in beliefs means that learning leads to lower losses. While 
it is likely that 


V  is indeed concave, as we show in applications, it 

need not be globally so, and thus learning need not always reduce 
losses. In some cases, the losses incurred by increased variability of 
beliefs may offset the expected precision gains. Furthermore, under 
BOP, it may be possible to adjust policy so as to further increase the 
variance of ptt, that is, to achieve a mean-preserving spread that 
might further reduce the expected future loss.14 This amounts to 
optimal experimentation.

14. Kiefer (1989)  examines the properties of a value function, including concavity, 
under Bayesian learning for a simpler model without forward-looking variables.
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1.3.3 Bayesian optimal policy

Finally, we consider the BOP case, in which optimal policy is 
determined while taking the updating equation (27) into account. That 
is, we now allow the policymaker to choose it taking into account that 
his actions will affect pt+1t+1, which in turn will affect future expected 
losses. In particular, experimentation is allowed and is optimally 
chosen. Hence, for the BOP case, there is no distinction between the 
“perceived” and “true” transition equations.

The transition equation for the BOP case is 

s
X

s z it

t

t

t t

t t t t t t tg j j+

+

+ +

+≡





















1

1

1| 1

1= , , , , , , ,Ξ γ ε
p

εε

ε

t

jt t jt t t t t t jt t jt
j

+

+ + + +

( )

≡

+ ( )+ +

1

11 1 12 1 1 1 1, , , ,A X A x s z i B i C
11 1

1 1, , , , , ,
.

ε

γ
ε ε

t

t

t t t t t t tQ j j

+

+ +( )





















s z i

 

(30)

Then the dual optimization problem can be written as equation 
(12) subject to the above transition equation (30). Matters simplify 
somewhat in the Bayesian case, however, as we do not need to 
compute the conditional value functions V̂ (st, jt), which were 
required in the AOP case given the failure of the law of iterated 
expectations. The second term on the right-hand side of equation 
(12) can be written as 

E V j E V jt t t t t t
ˆ ˆs s s+ + + +( )≡ ( )



1 1 1 1, , .

Since, in the Bayesian case, the beliefs do satisfy the law of iterated 
expectations, this is then the same as 

E V j E Vt t t t t
ˆ s s s s+ + +( )



 ( )



1 1 1, = .

See Svensson and Williams (2007a) for a proof.
Thus, the dual Bellman equation for the Bayesian optimal 

policy is
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 (31)

where the transition equation is given by equation (30).
The solution to the optimization problem can be written
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x x s x X z s i s Xt t t t t t t t t t t t t tj j F j= , , , , , , , , ,|ε ε ε( )≡ ( ) ( )( )≡ ( ) 
x p ..  (33)

Because of the nonlinearity of equations (27) and (30), the solution 
is no longer linear in X t for given ptt. The dual value function, V
(st), is no longer quadratic in X t for given ptt. The value function of 
the primal problem, V(st), is given by, equivalently, equation (19); 
equation (29) with the equilibrium transition equation (28) and with 
the solution (32); or 
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(34)

 

It it is also no longer quadratic in X t for given ptt. More complex and 
detailed numerical methods are thus necessary in this case to find the 
optimal policy and the value function. Therefore, little can be said in 
general about the solution of the problem. Nonetheless, in numerical 
analysis it is very useful to have a good starting guess at a solution, 
which here comes from the AOP case. In our examples below, we 
explain in more detail how the BOP and AOP cases differ and what 
drives the differences.
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2. learning and experiMenTaTion in a siMple new-
keynesian Model

We consider the benchmark standard New-Keynesian model, 
consisting of a New-Keynesian Phillips curve and a consumption 
Euler equation:15 

π δ π γ επ πt t t jt t tE y c= 1+ + + ;
 

(35)

y E y i E c c gt t t jt t t t y yt g t= 1 1+ +− −( )+ +σ π ε ;
 

(36)

g gt t g t+ ++1 , 1= ρ ε .  (37)

Here πt is the inflation rate, yt is the output gap, δ is the subjective 
discount factor (as above), γ jt is a composite parameter reflecting the 
elasticity of demand and frequency of price adjustment, and σ jt is the 
intertemporal elasticity of substitution. There are three shocks in the 
model: two unobservable shocks, επt and εyt, which are independent 
standard normal random variables, and the observable serially 
correlated shock, gt. This last shock is interpretable as a demand 
shock coming from variation in preferences, government spending, 
or the underlying efficient level of output. Woodford (2003) combines 
and renormalizes these shocks into a composite shock representing 
variation in the natural rate of interest.

In the standard formulations of this model, the shocks are 
observable and policy responds directly to the shocks. However, some 
components of the shocks need to be unobservable in order for there to 
be a nontrivial inference problem for agents. We have assumed that 
both the slope of the Phillips curve, γ jt, and the interest sensitivity, 
σ jt, vary with the mode, jt. For the former, this could reflect changes 
in the degree of monopolistic competition (which also lead to varying 
markups) or changes in the degree of price stickiness. The interest 
sensitivity shift is purely a change in the preferences of the agents 
in the economy, although it could also result from nonhomothetic 
preferences coupled with shifts in output (in which case the preferences 
themselves would not shift, but the intertemporal elasticity would vary 
with the level of output). Unlike our illustration above, there are no 
switches in the steady-state levels of the variables of interest here, 

15. See Woodford (2003) for an exposition. 
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as we consider the usual approximations around a zero inflation rate 
and an efficient level of output.

2.1 Optimal Policy: No Learning, Adaptive Optimal 
Policy, and Bayesian Optimal Policy

Here we examine value functions and optimal policies for this 
simple New-Keynesian model under no learning (NL), adaptive 
optimal policy (AOP), and Bayesian optimal policy (BOP). We use the 
following loss function: 

L y it t j t t= 2 2 2π λ µ+ + .  (38)

We set the following parameters, mostly following Woodford’s 
(2003) calibration, as follows: γ1 = 0.024, γ2 = 0.075, σ1 = 1.000/0.157 
= 6.370, σ2 = 1.0, cπ = cy = cg = 0.5, and ρ = 0.5. We set the loss function 
parameters as: δ = 0.99, λj = 2γj, and µ = 0.236. Most of the structural 
parameters are taken from Woodford (2003), while the two modes 
represent reasonable alternatives. Mode 1 is Woodford’s benchmark 
case; mode 2 has a substantially smaller interest rate sensitivity (one 
consistent with logarithmic preferences) and a larger response, γ, of 
inflation to output. We set the transition matrix to 

P =
0.98 0.02
0.02 0.98

.












We have two forward-looking variables, xt ≡ (πt, yt)′, and 
consequently two Lagrange multipliers, Ξt–1 ≡ (Ξπ,t–1, Ξy,t–1)′. We 
have one predetermined variable (Xt ≡ gt) and the estimated mode 
probabilities, ptt ≡ (p1tt, p2tt)′ (of which we only need keep track of 
one, p1tt). Thus, the value and policy functions, V(st) and i(st), are 
all four dimensional: st = (gt, Ξ′t–1, p1tt)′. We are therefore forced for 
computational reasons to restrict attention to relatively sparse grids 
with few points. The following plots show two-dimensional slices of 
the value and policy functions, focusing on the dependence on gt and 
p1tt (which we for simplicity denote by p1t in the figures). In particular, 
all of the plots are for Ξt–1 = (0, 0)′. Figure 1 shows losses under NL 
and BOP as functions of p1t and gt. Figure 2 shows the difference 
between losses under NL, AOP, and BOP. Figures 3 and 4 show the 
corresponding policy functions and their differences.



Figure 1. Losses from No Learning and Bayesian Optimal 
Policy 

A. Loss (versus p):
no learning

B. Loss (versus p):
Bayesian optimal policy

C. Loss (versus g):
no learning

D. Loss (versus g):
Bayesian optimal policy

Source: Authors’ calculations.



Figure 2. Differences in Losses from No Learning, Adaptive 
Optimal Policy, and Bayesian Optimal Policy 

A. Loss difference (versus p):
AOP – NL

B. Loss difference (versus p):
BOP – AOP

C. Loss difference (versus g):
AOP – NL

D. Loss difference (versus g):
BOP – AOP

Source: Authors’ calculations.



Figure 3. Optimal Policies under No Learning and Bayesian 
Optimal Policy 

A. Policy (versus p):
no learning

B. Policy (versus p):
Bayesian optimal policy

C. Policy (versus g):
no learning

D. Policy (versus g):
Bayesian optimal policy

Source: Authors’ calculations.



Figure 4. Differences in Policies under No Learning and 
Bayesian Optimal Policy

A. Loss difference: BOP – AOP

B. Loss difference: BOP – AOP

Source: Authors’ calculations.



101Optimal Monetary Policy under Uncertainty in DSGE Models

In Svensson and Williams (2007a) we show that learning implies 
a mean-preserving spread of the random variable pt+1t+1 (which under 
learning is a random variable from the vantage point of period t). Hence, 
concavity of the value function under NL in p1t implies that learning is 
beneficial, since then a mean-preserving spread reduces the expected 
future loss. However, figure 1 illustrates that the value function is 
actually slightly convex in p1t, so learning is not beneficial here. In 
contrast, the value function is concave and learning is beneficial in a 
backward-looking example in Svensson and Williams (2007a).

Consequently, AOP gives higher losses than NL, as shown in 
figure 2. Furthermore, somewhat surprisingly, BOP gives higher 
losses than AOP (although the difference is very small). This is all 
counter to an example with a backward-looking model in Svensson 
and Williams (2007a).

Why is this different in a model with forward-looking variables? 
It may at least partially be a remnant of our assumption of symmetric 
beliefs and information between the private sector and the policymaker. 
Backward-looking models generally find that learning is beneficial. 
Moreover, with backward-looking models, the BOP is always weakly 
better than the AOP, as acknowledging the endogeneity of information 
in the BOP case need not mean that policy must change. (That is, the 
AOP policy is always feasible in the BOP problem.) Neither of these 
conclusions holds with forward-looking models. Under our assumption 
of symmetric information and beliefs between the private sector and 
the policymaker, both the private sector and the policymaker learn. 
The difference then comes from the way that private sector beliefs also 
respond to learning and to the experimentation motive. Having more 
reactive private sector beliefs may add volatility and make it more 
difficult for the policymaker to stabilize the economy. Acknowledging the 
endogeneity of information in the BOP case then need not be beneficial 
either, as it may induce further volatility in agents’ beliefs.16 

3. learning in an esTiMaTed eMpiriCal new-keynesian 
Model

The previous section focused on a simple small model to explore 
the impacts of learning and experimentation. Since computing 

16. In the forward-looking case, we solve saddlepoint problems, and moving 
from AOP to BOP expands the feasible set for both the minimizing and maximizing 
choices. 
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BOP is computationally intensive, there are limits to the degree of 
empirical realism of the models we can address in that framework. 
In this section, we focus on a more empirically plausible model, using 
a version of Lindé’s (2005) model that we estimated in Svensson and 
Williams (2007b). This model includes richer dynamics for inflation 
and the output gap, which both have backward- and forward-looking 
components. However, these additional dynamics increase the 
dimension of the state space, which implies that it is not very feasible 
to consider the BOP. We therefore focus on the impact of learning on 
policy and compare NL and AOP. In Svensson and Williams (2007b), 
we computed the optimal policy under no learning, and here we see 
how inference on the mode affects the dynamics of output, inflation, 
and interest rates.

3.1 The Model

The structural model is a mode-dependent simplification of Lindé’s 
(2005) model of the U.S. economy and is given by 

π ω π ω π γ επ πt fj t t fj t j t j tE y c= 11 1+ −+ −( ) + + ;
 

(39)
y E y y y

i E

t fj t t fj yj t yj t

rj t t t

= 1 11 1 2

1

β β β β

β π

+ − −

+

+ −( ) + −( )





− −(( )+ cyj ytε .

Here j ∈{1, 2} indexes the mode, and the shocks, επt, εyt, and εit, are 
independent standard normal random variables. In particular, we 
consider a two-mode MJLQ model in which one mode has forward- and 
backward-looking elements and the other is backward-looking only. 
Thus we specify that mode 1 is unrestricted, while in mode 2 we restrict 
ωf = βf = 0, so that the mode is backward-looking. For estimation, we 
also impose a particular instrument rule for it, but we do not include 
that here since our focus is on optimal policy.

In Svensson and Williams (2007b), we estimate the model on U.S. 
data using Bayesian methods. The maximum posterior estimates are 
given in table 1, with the unconditional expectation of the coefficients 
for comparison. Apart from the forward-looking terms (which are 
restricted), the variation in the other parameters across the modes is 



103Optimal Monetary Policy under Uncertainty in DSGE Models

relatively minor. There are some differences in the estimated policy 
functions (not reported here), but relatively little change across modes 
in the other structural coefficients. The estimated transition matrix 
P and its implied stationary distribution p are given by 

P =
0.9579 0.0421
0.0169 0.9831

, =
0.2869
0.7131

.






















p

Table 1. Estimates of the Constant-Coefficient Model and a 
Restricted Two-Mode Lindé Model

Parameter Mean Mode 1 Mode 2

ω f 0.0938 0.3272 0.0000
γ 0.0474 0.0580 0.0432
β f 0.1375 0.4801 0.0000
βr 0.0304 0.0114 0.0380
βy 1.3331 1.5308 1.2538
cπ 0.8966 1.0621 0.8301
cy 0.5572 0.5080 0.5769

Source: Authors’ calculations.

Mode 2 is thus the most persistent and has the largest mass in the 
invariant distribution. This is consistent with our estimation of the 
modes, as shown in figure 5. Again, the plots show both the smoothed 
and filtered estimates. Mode 2, the backward-looking model mode, 
was experienced the most throughout much of the sample, holding for 
1961–68 and then, with near certainty, continually since 1985. The 
forward-looking model held in periods of rapid changes in inflation, 
holding for both the run-ups in inflation in the early and late 1970s 
and the disinflationary period of the early 1980s. During periods of 
relative tranquility, such as the Greenspan era, the backward-looking 
model fits the data the best.



Figure 5. Estimated Probabilities of Being the Different 
Modesa

A. Probabiliy in mode 1

B. Probabiliy in mode 2

Source: Authors’ calculations.
a. In the figure, solid lines graph the smoothed (full-sample) inference, while dashed lines represent the filtered 
(one-sided) inference.
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3.2 Optimal Policy: No Learning and Adaptive Optimal 
Policy

Using the methods described above, we solve for the optimal policy 
functions 

i Ft i t t t= ,|p X( ) 

where now X t t t t t t y ty y i≡ ′− − − − − −( , , , , , )1 1 2 1 , 1 , 1π πΞ Ξ . In Svensson and 
Williams (2007b), we focus on the observable and no-learning cases, 
and we assume that the shocks επt and εyt are observable. We thus set 
C2 ≡ 0 and treat the shocks as additional predetermined variables. 
To focus on the role of learning, we now assume that those shocks 
are unobservable. If they were observable, then agents would be 
able to infer the mode from their observations of the forward-looking 
variables. We use the following loss function:

L y i it t t t t= ,2 2
1

2
π λ ν+ + −( )−  (40)

which is a common central bank loss function. We set the weights to 
λ = 1 and ν = 0.2, and fix the discount factor in the intertemporal loss 
function to δ = 1.

For ease of interpretation, we plot the distribution of the impulse 
responses of inflation, the output gap, and the instrument rate to the 
two structural shocks in figure 6. We consider 10,000 simulations of 
fifty periods, and we plot the median responses for the optimal policy 
under NL and AOP and the corresponding optimal responses for the 
constant-coefficient model.17

Compared with the constant-coefficient case, the mean impulse 
responses are consistent with larger effects of the shocks that are 
also longer lasting. In terms of the optimal policy responses, the AOP 
and NL cases are quite similar, and in both cases the peak response 
to shocks is nearly the same as in the constant-coefficient case, but 
it comes with a delay. Again compared with the constant-coefficient 
case, the responses of inflation and the output gap are larger and more 
sustained when there is model uncertainty.

17. The shocks are επ0 = 1 and εy0 = 1, respectively, so the shocks to the inflation 
and output-gap equations in period 0 are mode dependent and equal to cπj and cyj (j = 
1, 2, 3), respectively. The distribution of modes in period 0 (and thereby all periods) is 
again the stationary distribution.



Figure 6. Unconditional Impulse Responses to Shocks 
under the Optimal Policy for the Two-Mode Version of the 
Lindé Modela

A. Response of π to π shock B. Response of π to y shock

C. Response of y to π shock D. Response of y to y shock

E. Response of i to π shock F. Response of i to y shock

Source: Authors’ calculations.
a. In the figure, solid lines represent the median responses under AOP, dashed lines represent the median responses 
under NL, and dot-dashed lines represent the constant-coefficient responses.
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Learning can be beneficial, however, as the optimal policy under 
AOP dampens the responses to shocks, particularly for shocks to 
inflation. Since the optimal policy responses are nearly identical, this 
seems to be largely due to more accurate forecasts by the public, which 
lead to more rapid stabilization.

While these impulse responses are revealing, they do not capture 
the full benefits of learning, as by definition they simply provide the 
responses to a single shock. To gain a better understanding of the role 
of learning, we simulated our model under the NL and AOP policies 
to compare the realized economic performance. Table 2 summarizes 
various statistics resulting from a thousand simulations of a thousand 
periods each. Thus, for example, the entry for the average πt is the 
average across the thousand simulations of the sample average (over 
the thousand periods) of inflation, while the standard deviation of πt 
is the average across simulations of the standard deviation (in each 
time series) of inflation. In the table, the average period loss (Lt) under 
AOP is less than half that under NL. Figure 7 plots the distribution 
across samples of the key components of the loss function. There we 
plot a kernel smoothed estimate of the distribution from the thousand 
simulations. The figure shows that the distribution of sample losses 
is much more favorable under AOP than under NL.

In figure 8 we show one representative simulation to illustrate 
the differences. The figure reveals that the stabilization of inflation 
and the output gap are more effective under AOP than NL for very 
similar instrument rate settings.
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Figure 7. Distribution across Samples of Various Statistics 
under the Optimal Policy for the Two-Mode Version of the 
Lindé Model

A. Distribution of E tπ
2 B. Distribution of Eyt

2

C. Distribution of Eit
2 D. Distribution of ELt

Source: Authors’ calculations.



Figure 8. Simulated Time Series under the Optimal Policy 
for the Two-Mode Version of the Lindé Modela

A. Inflation 

B. Output gap 



Figure 8. (continued)
C. Interest rate 

D. Probability in mode 1

Source: Authors’ calculations.
a. In panels A, B, and C, solid lines denote AOP, while dashed lines graph NL. In panel D, the solid line represents 
the probability of mode 1, the dotted line represents the true mode, and the dashed gray line represents the 
unconditional probability of mode 1. 
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4. ConClUsions

In this paper, we have presented a relatively general framework 
for analyzing model uncertainty and the interactions between 
learning and optimization. While this is a classic issue, very little 
has been done to date for systems with forward-looking variables, 
which are essential elements of modern models for policy analysis. 
Our specification is general enough to cover many practical cases 
of interest, yet remains relatively tractable in implementation. 
This is definitely true when decisionmakers do not learn from 
the data they observe (our case of no learning, NL) or when they 
do learn but do not account for learning in optimization (our case 
of adaptive optimal policy, AOP). In both of these cases, we have 
developed efficient algorithms for solving for the optimal policy, 
which can handle relatively large models with multiple modes and 
many state variables. However, in the case of the Bayesian optimal 
policy (BOP), which takes the experimentation motive into account, 
we must solve more complex numerical dynamic programming 
problems. Thus to fully examine optimal experimentation, we 
are haunted by the curse of dimensionality, forcing us to study 
relatively small and simple models.

An issue of much practical importance is the size of the 
experimentation component of policy and the losses entailed in 
abstracting from it. While our results in this paper are far from 
comprehensive, they suggest that the experimentation motive 
may not be a concern in practical settings. The above and similar 
examples that we have considered indicate that the benefits of 
learning (moving from NL to AOP) may be substantial, whereas 
the benefits from experimentation (moving from AOP to BOP) are 
modest or even insignificant. If this preliminary finding stands up to 
scrutiny, experimentation in economic policy in general and monetary 
policy in particular may not be very beneficial, in which case there 
is little need to face the difficult ethical and other issues involved 
in conscious experimentation in economic policy. Furthermore, the 
AOP is much easier to compute and implement than the BOP. More 
simulations and cases need to be examined for this to truly be a 
robust implication.
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