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Abstract 
In this paper, we consider a décision-maker facing a financial risk flanked by a background 
risk, possibly non-financial, such as health or environmental risk. A decision has to be made 
about the amount of an investment (in the financial dimension) resulting in a future benefit 
either in the same dimension (savings) or in the order dimension (environmental quality or 
health improvement). In the first case, we show that the optimal amount of savings decreases 
as the pair of risks increases in the bivariate increasing concave dominance rules of higher 
degrees which express the common preferences of all the decision-makers whose two-
argument utility function possesses direct and cross derivatives fulfilling some specific 
requirements. Roughly speaking, the optimal amount of savings decreases as the two risks 
become "less positively correlated" or marginally improve in univariate stochastic dominance. 
In the second case, a similar conclusion on optimal investment is reached under alternative 
conditions on the derivatives of the utility function. 
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1 Introduction and motivation

In many fields of decision science, the importance of the degree of correlation between the
risks faced by private or public decision-makers has been stressed for a long time. The
literature on the topic is abundant and a survey would require a paper of its own. However,
we start with some examples taken from this literature in order to illustrate the focus of the
present paper.

In finance, the early contributions around the capital asset pricing model have illustrated
the impact of the covariance between the return of an asset and that of the market for the
value of that asset. For example, Sharpe (1970, page 89) already noted that “the reward
for bearing risk is [...] equal to some constant times the covariance between the security’s
rate of return and that for a market as a whole”.

In the field of insurance, Doherty & Schlesinger (1983) have shown that Arrow’s
famous result about the optimality of the deductible may no longer hold true when the
insured faces a background risk that is correlated with the risk to be insured.

Finally, in a recent paper devoted to the impact of background risks for the adoption
of new prospects, Tsetlin & Winkler (2005) observe that “the optimal decisions in the
correlated background risk setting can be very different from the decisions that would be
recommended if the correlation were ignored and can be very sensitive to the sign and
magnitude of the correlation”. Although these papers - as well as many others in the field -
are written in an expected utility framework, it is worth mentioning that sometimes also a
non expected utility approach is adopted. See, e.g., Eichner & Wagener (2003,2008).

It is important to notice that for all papers mentioned so far - as well as a vast majority
of other ones in the literature - correlated risks are analyzed in the framework of a uni-
dimensional utility function. However, in many real-world circumstances the two possibly
correlated risks are expressed in different dimensions. For this reason, a multidimensional
utility function was introduced into the analysis of agents’ attitude toward risk with refer-
ence to the effect of the presence of a background risk on risk aversion. See for instance
Kihlstrom & Mirman (1974), Pratt (1988) and Finkelshtain, Kella & Scarsini
(1999). So far however, a multidimensional risk framework was not used in many problems
involving optimal investment decisions. The main purpose of this paper is to fill this gap.

To illustrate the topics discussed in this paper, consider for instance an healthy individual
who makes current expenditures (buying expensive diets, regular check-ups, etc.) in order
to improve his future health status. When such a decision is made, this individual knows his
current wealth and his current health status. However, for the period where the benefits are
going to be obtained, there is a joint uncertainty about the level of these variables. Again,
we are interested to know how the joint presence of these risks and their possible positive
correlation affects the current monetary investment in health.

In this example, the current investment is in one dimension (money) and the future
benefit is in the other dimension (health). Notice, however, that this does not need to be the
case. For instance, in the standard savings problems, current costs and future benefits are
expressed in the same (monetary) dimension and, usually, the utility obtained in each period
is assumed to be unidimensional. Here, we extend this case and we consider a decision-maker
who has in each period a bidimensional utility (e.g., wealth and health) and we examine how
an increased correlation between the future values of these two arguments affects the current
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savings choice.
The results derived in the present paper complement previous studies that were devel-

oped mostly in the context of savings decisions. In a paper devoted to the properties of
bivariate utility functions, Eeckhoudt, Rey & Schlesinger (2007) examine how cur-
rent savings are affected when future wealth and health are independent random variables.
In a sense, the results they obtain represent a benchmark case for the present paper. Al-
most simultaneously, Courbage & Rey (2007) analyzed the conditions for the existence
of positive precautionary savings in the presence of a non-financial background risk in some
specific cases while Menegatti (2008a) provided a correct interpretation of some results
derived in that paper. Menegatti (2008b) also examined optimal savings in the presence
of a small income risk and a small background risk. Relying on a bivariate Taylor expansion,
he showed that the existence of precautionary savings depends on two terms capturing the
direct effect of income risk and its interaction with background risk.

Our main objectives here are to extend the results of these papers in two directions. First,
we will not concentrate exclusively on savings problems in which the costs and benefits of a
decision are expressed in a single dimension. Instead, we will also consider problems where
two different dimensions of the decision-maker’s welfare are affected by his choices. Besides,
we do not limit ourselves to small risks but we consider the preferences of decision-makers
who dislike an “increase in correlation” between income risk and background risk. Such
increases are described by higher degree bivariate stochastic dominance rules, and extend
the idea of Epstein & Tanny (1980) to general risks. This clarifies the conditions leading
to an increase in precautionary savings.

The paper is organized as follows. In Section 2, besides introducing notation, we present
in a formal manner the problems of choice that have been informally described so far. Then,
Section 3 recalls the definition of the s-increasing concave stochastic dominance rules, gen-
erated by the common preferences of all the decision-makers with a s-increasing concave
utility function. Section 3 allows for the inclusion of a background risk by considering bi-
variate utility functions. The univariate s-increasing concave dominance rules are extended
to dimension 2 by means of the (s1, s2)-increasing concave dominance expressing the com-
mon preferences of all the decision-makers with a (s1, s2)-increasing concave utility function.
These tools are applied to precautionary savings in Section 4 and to investment in health
improvements in Section 5. Finally, Section 6 concludes.

2 The choice problem

We consider a decision-maker who has in each of two periods a bivariate utility ut(·, ·), t =
0, 1, defined on wealth x and another attribute denoted as h (health, say). Current monetary
resources are known with certainty and denoted x0. In the current period, the available
quantity of the other attribute is also known with certainty and denoted h0. Uncertainty
prevails about the quantities of each attribute that will be available in the future. These
random variables are denoted respectively as X and H, with corresponding expectations
E[X] and E[H].

In this context we examine two kinds of problem. The first one we investigate is a
savings problem in which the sacrifice of current consumption increases future consumption
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opportunities. In the second problem, today’s expenditures increase the level of the other
resource denoted h (i.e. improving future health status)

When we consider the savings problem, the decision-maker’s objective is to select the
optimal amount of wealth to be transferred from period 0 to period 1. The choice of saving
a is thus made in order to maximize total utility U defined as

U(a) = u0(x0 − a, h0) +
1

1 + ρ
E[u1(a(1 + r) + X, H)]

where ρ is the subjective discount rate applied to future utility and r is the rate of return on
savings. To simplify notation, we assume, without loss of generality, that the intertemporal
discount rate and the interest rate are both equal to 0. The optimal amount of savings a? is
then determined as the solution of the equation

u
(1,0)
0 (x0 − a, h0) = E[u

(1,0)
1 (X + a, H)] (2.1)

where u
(k1,k2)
t denotes the (k1, k2)th cross derivative of ut, that is, u

(k1,k2)
t = ∂k1+k2

∂xk1∂hk2
ut(x, h).

With reference to the second problem, we assume that the decision-maker has to choose
now how much of resources x0 is to be devoted to an investment (a) that will improve
his future health by an amount m · a where m represents the productivity of the current
monetary sacrifice expressed in units of the other attribute. More precisely, the decision-
maker’s objective is to select a in order to maximize U defined by

U(a) = u0(x0 − a, h0) +
1

1 + ρ
E[u1(X, H + m · a)].

To simplify notation, we assume, without loss of generality, that the intertemporal discount
rate is equal to 0 and that the productivity m is equal to 1. The associated first-order
condition for a maximum is then given by

u
(1,0)
0 (x0 − a, h0) = E[u

(0,1)
1 (X, H + a)]. (2.2)

As for (2.1), we denote as a? the solution of (2.2).
In these two problems the optimal choice depends on the decision-maker’s attitude both

toward intertemporal allocation of wealth and toward risk. With reference to this second
aspect, in our framework, the decision-maker faces two risks, related respectively to the
uncertainty on X and the one on H. This paper will focus on the effect of the correlation
between these two risks. Henceforth, we assume that u0 is concave in its first argument, i.e.
u

(2,0)
0 ≤ 0. This ensures that the left-hand side of (2.1) and the left-hand side of (2.2) both

increase in a.

3 Common preferences of decision-makers with (s1, s2)-

increasing concave utility functions

In order to introduce bivariate stochastic dominance rules, we first recall some well-known
results about the unidimensional case. This also enables us to introduce some notation.
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For s = 1, 2, . . ., let us define the class Us−icv of the regular s-increasing concave functions
as the class containing all the functions u defined on (a subset of) the real line with derivatives
u(1), u(2), . . . , u(s) such that (−1)k+1u(k) ≥ 0 for k = 1, 2, . . . , s. The class Us−icv thus contains
the non-decreasing functions with derivatives of degrees 1 to s with alternating signs. Many
commonly used utility functions belong to Us−icv for all s (as their derivatives alternate in
sign, beginning with positive marginal utility). For instance, all the completely monotone
utility functions, including the logarithmic, exponential and power utility functions belong
to Us−icv for all s.

The common preferences of all the decision-makers with s-increasing concave utility func-
tions generate the s-increasing concave dominance rule, called the s-increasing concave order.
More precisely, given two random variables X and Y , X is said to be smaller than Y in the
s-increasing concave order, denoted by X �s−icv Y when E[u(X)] ≤ E[u(Y )] for all the
functions u in Us−icv, provided the expectations exist.

The orders �s−icv are closely related to the increasing sth degree risk of Ekern (1980).
For more details, we refer the interested readers to Denuit, Lefèvre & Shaked (1998)
and Denuit, De Vijlder & Lefèvre (1999).

Let us now consider utility functions u defined on (a subset of) the real plane. This
allows to account for bidimensional consequences. For instance, one dimension corresponds
to monetary variables, income, say, and the other one corresponds to non-monetary variables
related to the health status, like the life expectancy for instance.

Recall from Denuit, Lefèvre & Mesfioui (1999) the definition of the bivariate
(s1, s2)-increasing concave order where s1 and s2 are positive integers. To this end, let
us introduce the class U(s1,s2)−icv of the regular (s1, s2)-increasing concave functions defined
as the class of all the functions u such that (−1)k1+k2+1u(k1,k2) ≥ 0 for all k1 = 0, 1, . . . , s1,
k2 = 0, 1, . . . , s2, with k1 + k2 ≥ 1. Eeckhoudt, Rey & Schlesinger (2007) pro-
vided equivalence between the signs of the cross-derivatives u(k1,k2) and individual prefer-
ences within a particular class of simple lotteries. This leads for instance to the concepts of
cross-prudence and cross-temperance, exhibited by the elements of U(s1,s2)−icv for s1 and s2

large enough. See also Denuit, Eeckhoudt & Rey (2008).
Let us consider two bivariate random vectors (X1, X2) and (Y1, Y2). Then, (X1, X2)

is said to be smaller than (Y1, Y2) in the (s1, s2)-increasing concave ordering, denoted by
(X1, X2) �(s1,s2)−icv (Y1, Y2), when E[u(X1, X2)] ≤ E[u(Y1, Y2)] for all the functions u in
U(s1,s2)−icv, provided the expectations exist. We indicate that some special cases of these
orderings have been considered before in economics, e.g. in Atkinson & Bourguignon
(1982). We refer to Denuit & Eeckhoudt (2008) for a thorough study of the conditions
under which �(s1,s2)−icv holds true.

Let us now relate the bivariate �(s1,s2)−icv rankings to their univariate counterparts. First,
it is easily seen that

(X1, X2) �(s1,s2)−icv (Y1, Y2) ⇒ X1 �s1−icv Y1 and X2 �s2−icv Y2 (3.1)

so that �(s1,s2)−icv marginally agrees with �s1−icv and �s2−icv. The reciprocal implication
in (3.1) is true when X1 and X2 are mutually independent. More precisely, denoting as
(X⊥

1 , X⊥
2 ) and (Y ⊥

1 , Y ⊥
2 ) two pairs of mutually independent random variables, we have the

following equivalence between a joint �(s1,s2)−icv ranking and the two marginal �s1−icv and
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�s2−icv rankings:

(X⊥
1 , X⊥

2 ) �(s1,s2)−icv (Y ⊥
1 , Y ⊥

2 ) ⇔ X⊥
1 �s1−icv Y ⊥

1 and X⊥
2 �s2−icv Y ⊥

2 . (3.2)

Henceforth, we use the superscript “⊥” to emphasize that the corresponding random vari-
ables are mutually independent.

Finally, a key feature of the bivariate extension �(s1,s2)−icv is that

(X1, X2) �(s1,s2)−icv (Y1, Y2) ⇒ X1 + X2 �(s1+s2)−icv Y1 + Y2. (3.3)

This implication follows from the fact that the bivariate function (x1, x2) 7→ u(x1 + x2)
belongs to U(s1,s2)−icv when u belongs to U(s1+s2)−icv.

4 Application to savings

Savings decisions are usually taken in a context where uncertainty affects the future. A first
source of uncertainty is related to the variability of future wealth, generating the so-called
income risk. However, very often the income risk cannot be considered in isolation, as it is
usually flanked by one or more uninsurable background risks (such as health or environmental
risks, for instance). Neglecting these background risks can lead to misleading conclusions
about decision-maker’s optimal choices.

The framework in Section 2 makes it possible to consider how these joint risks affect
current savings decisions. In this context, we now address two questions: first, what is the
effect of uncertainty on optimal savings in the presence of a background risk and second, how
does a deterioration in the higher degree stochastic dominance affect the optimal amount of
savings in the 2-period model.

Let us now establish the main result of this section, which will allow us to answer these
questions. It is expressed in terms of a �(s1,s2)−icv ranking, as this order relation accounts
for both marginal changes and modifications in the dependence structure. Specifically, we
show that the optimal amount of saving a? defined as the solution of (2.1) is monotone
with respect to �(s1,s2)−icv provided the utility function u1(·, ·) satisfies some higher degree
concavity properties which, as we have seen, have implications for the signs of successive
direct and cross derivatives of u.

Proposition 4.1. If u1 ∈ U(s1+1,s2)−icv then

(X1, H1) �(s1,s2)−icv (X2, H2) ⇒ a?
1 ≥ a?

2

where a?
i , i = 1, 2, is the solution of (2.1) with (Xi, Hi) substituted for (X,H), respectively.

Proof. To establish that the inequality a?
1 ≥ a?

2 indeed holds, we need to prove that

E[u
(1,0)
1 (X1 + a, H1)] ≥ E[u

(1,0)
1 (X2 + a, H2)] (4.1)

is valid for any a ≥ 0. To see this, note that solving (2.1) for a?
1 is equivalent to find

the intersection point between the non-decreasing curve a 7→ u
(1,0)
0 (x0 − a, h0) and the left-

hand side of (4.1) viewed as a function of a. Similarly, solving (2.1) for a?
2 requires the
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determination of the intersection point between the same curve and the right-hand side of
(4.1) viewed as a function of a. Both sides of (4.1) are non-increasing in a because u is

concave in its first argument (as s1 + 1 ≥ 2). If we define the function v as v = −u
(1,0)
1 , we

clearly see that v(k1,k2) = −u
(k1+1,k2)
1 . Hence,

u1 ∈ U(s1+1,s2)−icv ⇒ v ∈ U(s1,s2)−icv.

Since we assumed that (X1, H1) �(s1,s2)−icv (X2, H2) we must have E[v(X1, H1)] ≤ E[v(X2, H2)],
which shows that the inequality (4.1) is indeed valid. This ends the proof.

This theorem contains as a special case a result derived by Eeckhoudt & Schlesinger
(2008) for the case of a univariate utility function.

Now that we are equipped with this general result, let us apply it to different situations.
Recall that a? has been defined as the solution of (2.1). Similarly, define a as the solution
of (2.1) with (E[X], E[H]) substituted for (X, H), â as the solution of (2.1) with (X, E[H])
substituted for (X,H), and ã as the solution of (2.1) with (E[X], H) substituted for (X, H).
Henceforth, we compare these different amounts of savings under various assumptions.

The amounts a, â and ã can be compared under very general conditions, as they involve
a single source of risk for â and ã and no randomness for a. We then get from Proposition
4.1 that

(X, E[H]) �(2,1)−icv (E[X], E[H]) ⇒ a ≤ â provided u1 ∈ U(3,1)−icv. (4.2)

and
(E[X], H) �(1,2)−icv (E[X], E[H]) ⇒ a ≤ ã provided u1 ∈ U(2,2)−icv (4.3)

Let us now investigate the standard case of an income risk X flanked by an independent
background risk H. Then, by (3.2) we have

(X, H) �(1,2)−icv (X, E[H]) ⇒ â ≤ a? provided u1 ∈ U(2,2)−icv. (4.4)

and
(X, H) �(2,1)−icv (E[X], H) ⇒ ã ≤ a? provided u1 ∈ U(3,1)−icv (4.5)

Finally, using together (4.2) and (4.4) we get

a ≤ a? provided u1 ∈ U(3,2)−icv.

The same inequality is obtained from (4.3) and (4.5).
Some of the previous comparisons have a clear economic interpretation. First, when

the inequality ã ≤ a? holds, the amount of optimal savings under uncertainty is larger
compared to the situation where future income is known with certainty. This positive extra-
saving a? − ã is called positive “precautionary saving”. Second, when the inequality a ≤ a?

holds, the amount of optimal savings increases compared to the situation where both future
income and future health status (environmental quality) are both known with certainty.
This positive extra-saving a?−a is called “two-source precautionary saving” by Menegatti
(2008b). Finally, the comparison between a? and ã identifies the partial effect of uncertainty
on savings due to background risk. Indeed, when the inequality â ≤ a? holds, the case where
the amount of optimal savings increases compared to the situation where future health status
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(environmental quality) is known with certainty. We can call this positive extra-saving a?− â
the “precautionary saving due to background risk”.

The effect of the marginals on the optimal savings is also clear from Proposition 4.1 in
the independent case. Specifically, consider independent random variables X⊥

1 , X⊥
2 , H⊥

1 ,
and H⊥

2 . By (3.2), we easily get

X⊥
1 �s1−icv X⊥

2

H⊥
1 �s2−icv H⊥

2

}
⇒ a?

1 ≥ a?
2 provided u1 ∈ U(s1+1,s2)−icv.

Hence, a deterioration of the income risk and/or of the background risk in a higher degree
concave sense leads the decision-maker to increase optimal savings when u1 ∈ U(s1+1,s2)−icv,
which means that the direct and cross derivatives of u1 exhibit the appropriate sequence of
signs.

Now that the effect of letting some components (income or background risk) become
random is well understood as long as they remain independent, let us allow for some kinds
of dependence between X and H. Indeed, in general, it seems reasonable to believe that
when the background risk H is positively related to the income risk X, every source of
uncertainty increases saving, so that we have a positive “precautionary saving”, a positive
“precautionary saving due to background risk” and a positive “two-source precautionary
saving”.

Let us start the analysis of this point with the following simple and intuitive example.

Example 4.2. Assume that both Xi and Hi, i = 1, 2, only assume two values, x1 and x2

for Xi, with x1 < x2, and h1 and h2 for Hi, with h1 < h2, say. The marginal distributions
of Xi and Hi are given by Pr[Xi = x1] = 1 − Pr[Xi = x2] = pX and Pr[Hi = h1] =
1−Pr[Hi = h2] = pH . Hence, both (X1, H1) and (X2, H2) have the same univariate marginals.
Without real loss of generality, we assume that pX ≤ pH . Let us now consider ρ such that
−pXpH ≤ ρ ≤ pX(1− pH) and define the joint distribution of (Xi, Hi) as

Pr[Xi = x1, Hi = h1] = pXpH + ρi

Pr[Xi = x2, Hi = h1] = (1− pX)pH − ρi

Pr[Xi = x1, Hi = h2] = pX(1− pH)− ρi

Pr[Xi = x2, Hi = h2] = (1− pX)(1− pH) + ρi.

When the dependence parameter ρ increases, we face a correlation increasing transformation
as defined by Epstein & Tanny (1980) and a correlation averse decision-maker should then
dislike an increase in ρ. It is easily seen that

ρ2 ≤ ρ1 ⇒ (X1, H1) �(1,1)−icv (X2, H2) ⇒ a?
1 ≥ a?

2

provided u1 ∈ U(2,1)−icv by virtue of Proposition 4.1. Thus, we deduce that the optimal
amount of savings increases with the dependence parameter ρ in this case.

This simple model, thus, confirms our intuition: increasing the positive dependence be-
tween X and H (in the �(1,1)−icv-sense) increases the optimal savings as soon as u1 is (2,1)-
increasing concave, i.e. when the derivatives of u1 satisfy u(1,1) ≤ 0, u(2,0) ≤ 0, u(1,0) ≥ 0,
u(0,1) ≥ 0 and u(2,1) ≥ 0.
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Given this simple example, let us now examine some more general kinds of dependence
between X and H. First, recall that (X, H) is said to be positively quadrant dependent
(PQD, in short) if the inequality Pr[X > x,H > h] ≥ Pr[X > x] Pr[H > h] holds for
all x and h or, equivalently, if the inequality Pr[X ≤ x, H ≤ h] ≥ Pr[X ≤ x] Pr[H ≤ h]
holds for all x and h. We see from this definition that when (X,H) is PQD, its components
X and H are more likely to be large together (or to be small together) compared with
the theoretical situation in which X and H are independent. Similarly, (X, H) is said to
be negatively quadrant dependent (NQD, in short) if the inequality Pr[X > x, H > h] ≤
Pr[X > x] Pr[H > h] holds for all x and h or, equivalently, if the inequality Pr[X ≤ x, H ≤
h] ≤ Pr[X ≤ x] Pr[H ≤ h] holds for all x and h.

These dependence notions can be defined with the help of �(1,1)−icv. To this end, let us
define the random couple (X⊥, H⊥) with mutually independent components and such that
X⊥ and X are identically distributed, as well as H⊥ and H. Then, we know from Denuit &
Eeckhoudt (2008) that (X, H) PQD ⇔ (X,H) �(1,1)−icv (X⊥, H⊥) and (X, H) NQD ⇔
(X⊥, H⊥) �(1,1)−icv (X, H). Denoting as a⊥ the solution of (2.1) with (X⊥, H⊥) substituted
for (X,H), we then have the following result which directly follows from Proposition 4.1.

Property 4.3. Assume that u1 ∈ U(2,1)−icv. Then,

(i) (X, H) PQD ⇒ a? ≥ a⊥;

(ii) (X, H) NQD ⇒ a? ≤ a⊥.

Positive dependence (formalized by PQD) increases the optimal amount of savings com-
pared to independence, whereas negative dependence (formalized here by NQD) decreases it
provided u1 ∈ U(2,1)−icv, that is, provided the partial derivatives of u1 exhibit the appropriate
sequence of signs.

Another case to be analysed is the hypothesis of a positive correlation between the two
risks which can be formalised by assuming that E[X|H] is non-decreasing in H. This means
that the income decreases on average when health deteriorates. This ensures for instance
that X and H are positively correlated as Cov[X, H] = Cov

[
E[X|H], H

]
≥ 0 since the

covariance between two non-decreasing functions of the same random variable H is always
non-negative.

Given this assumption, the next result states sufficient conditions to have a positive
precautionary saving and to have a positive two-source precautionary saving.

Property 4.4. Assume that E[X|H] is non-decreasing in H. Then

(i) u1 ∈ U(3,1)−icv ⇒ a? ≥ ã;

(ii) u1 ∈ U(3,2)−icv ⇒ a? ≥ a.

Proof. ¿From Proposition 4.1, we have to show that (X, H) �(2,1)−icv (E[X], H) holds true
to establish the validity of (i). Consider v ∈ U(2,1)−icv. As a first step, note that since v is
concave in its first argument, we have

E[v(X + a, H)] = E
[
E[v(X + a, H)|H]

]
≤ E[v(E[X|H] + a, H)].

8



As E[X|H] and H are comonotonic by assumption, we know that (E[X|H], H) is the least
desirable (in the �(1,1)−icv-sense) element among all the random couples (S1, S2) with the
same marginal distributions. Taking in particular (S⊥1 , S⊥2 ) with independent components,
we thus have

(E[X|H], H) �(1,1)−icv (S⊥1 , S⊥2 ).

This simply follows from the fact that the joint distributions function of (E[X|H], H) dom-
inates all those of (S1, S2) by virtue of the Fréchet-Höffding inequality. Now, we have from
(3.2) that

(S⊥1 , S⊥2 ) �(2,1)−icv (E[S1], S
⊥
2 ).

Note that E[S1] = E
[
E[X|H]

]
= E[X]. Hence, we get by transitivity that (X, H) �(2,1)−icv

(E[X], H), which ends the proof of (i).
Let us now turn to (ii). As U(3,2)−icv ⊂ U(3,1)−icv, we know that a? ≥ ã by (i). Furthermore,

as U(3,2)−icv ⊂ U(2,2)−icv, we know from (4.3) that ã ≥ a. The announced result then follows
by combining these two inequalities.

It would be tempting to conclude that the opposite results hold true in case of negative
dependence between X and H, if E[X|H] is non-increasing in H, say. However, matters are
much more complicated in this case, as there is an adverse effect of letting some components
become random but a beneficial effect due to negative correlation (so that the background
risk hedges the income risk). The question then becomes which effect dominates. These
conclusions are coherent with those obtained by Menegatti (2008b) in the case of small
risks. In this case Menegatti (2008b) derives the conditions describing the comparison
between a? and ã and between a? and a. These two conditions are given by

a? ≥ ã ⇔ Var[X]u(3,0) + 2Cov[X, H]u(2,1) ≥ 0

and
a? ≥ a ⇔ Var[X]u(3,0) + 2Cov[X, H]u(2,1) + Var[X]u(1,2) ≥ 0

It is easy to see that, given the conditions on the utility function in Property 4.4, a positive
correlation between X and H ensures that these two inequalities are satisfied while a negative
correlation generates ambiguous results. In many applications, however, a non-negative
correlation is expected between X and H (think about health and income, for instance) so
that the case of negative dependence is less relevant for the problems treated in the present
paper.

Let us now perform the same analysis for the background risk H. Specifically, we inves-
tigate whether there is a positive precautionary saving efect, that is, whether the optimal
amount of savings increases when X and H are positively related compared to the situa-
tion where H is known with certainty. The existence of a positive two-source precautionary
saving is also studied.

Property 4.5. Assume that E[H|X] is non-decreasing in X. Then

(i) u1 ∈ U(2,2)−icv ⇒ a? ≥ â;

(ii) u1 ∈ U(3,2)−icv ⇒ a? ≥ a.

9



Proof. Result (i) holds true if we can prove that (X, H) �(1,2)−icv (X, E[H]). This can be
established proceeding as in Property 4.4(i). Specifically, taking v ∈ U(1,2)−icv we have

E[v(X, H)] ≤ E[v(X, E[H|X])]

by Jensen inequality. Now, since (X, E[H|X]) is comonotonic and denoting as (S⊥1 , S⊥2 ) a
random couple with the same marginal distributions as (X, E[H|X]), we have

(X, E[H|X]) �(1,1)−icv (S⊥1 , S⊥2 ) �(1,2)−icv (S⊥1 , E[S⊥2 ])

so that
E[v(X, E[H|X])] ≤ E[v(S⊥1 , E[S⊥2 ])] = E[v(X, E[H])]

whence (i) follows. Now, considering (ii), the result follows from the inclusions U(3,2)−icv ⊂
U(2,2)−icv, so that (i) applies and U(3,2)−icv ⊂ U(3,1)−icv, so that (4.3) holds true.

There are many cases in which the assumptions behind Properties 4.4-4.5 hold true. For
instance, this will be the case if Pr[X > x|H = h] is non-decreasing in h for every x, and if
Pr[H > h|X = x] is non-decreasing in x for every h, a situation referred to in the literature
as conditional increasingness. Many well-known copula families enjoy this property, so that
the results derived in this section apply when the dependence structure of (X, H) is described
by such copulas. We refer the reader to Chapters 4-6 in Denuit et al. (2005) for more
details.

5 Application to health investments

The second kind of problem described in Section 2 concerns a current investment improving
future environmental quality or health status. As an illustration, we consider here that the
second argument of the utility function is health quality.

As in the case of the savings problem, this decision is usually taken in the presence of
different sources of uncertainty pertaining either to future resources (“income risk”, described
by the random variable X) or to future health quality (“non-financial background risk”,
described by the random variable H). Both these different sources of uncertainty affect the
optimal choice of the decision-maker. As in in Section 4, we can identify some plausible
consequences of the features of correlation between the two risks on optimal investment. In
this respect, there are essentially two concerns:

- there is risk both on the value of the future resources and on future health status. A
common intuition suggests that risk on health should induce a risk-averse decision-
maker to increase his current investment in health improvement while we have less
intuition about the impact of the risk on future resources.

- it is very likely that the two risks are positively correlated since a deterioration in the
health status is usually accompanied by a lower income.

Let us first derive the main result of this section, which parallels Proposition 4.1.

10



Proposition 5.1. If u1 ∈ U(s1,s2+1)−icv then

(X1, H1) �(s1,s2)−icv (X2, H1) ⇒ a?
1 ≥ a?

2

where a?
i , i = 1, 2, is the solution of (2.2) with (Xi, Hi) substituted for (X, H), respectively.

Proof. The proof is analogous to that of Property 4.1. Specifically, defining v = −u
(0,1)
1 we

have that v(k1,k2) = −u
(k1,k2+1)
1 so that u1 ∈ U(s1,s2+1)−icv ⇒ v ∈ U(s1,s2)−icv. Hence,

(X1, H1) �(s1,s2)−icv (X2, H2) ⇒ E[v(X1, H1)] ≤ E[v(X2, H2)]

⇒ E[u
(0,1)
1 (X1, H1)] ≥ E[u

(0,1)
1 (X2, H2)]

⇒ a?
1 ≥ a?

2,

which ends the proof.

As in the previous section, define a? as the solution of (2.2), a as the solution of (2.2) with
(E[X], E[H]) substituted for (X, H), â as the solution of (2.2) with (X, E[H]) substituted
for (X, H), and ã as the solution of (2.2) with (E[X], H) substituted for (X, H). We then
get from Proposition 5.1 that

(E[X], H) �(1,2)−icv (E[X], E[H]) ⇒ a ≤ ã provided u1 ∈ U(1,3)−icv (5.1)

and
(X, E[H]) �(2,1)−icv (E[X], E[H]) ⇒ a ≤ â provided u1 ∈ U(2,2)−icv. (5.2)

It is interesting to compare (4.2)-(4.3) to (5.2)-(5.1).
Let us now investigate the standard case of an income risk X flanked by an independent

background risk H. Then, by (3.2) we have

(X, H) �(2,1)−icv (E[X], H) ⇒ ã ≤ a? provided u1 ∈ U(2,2)−icv (5.3)

and
(X, H) �(1,2)−icv (X, E[H]) ⇒ â ≤ a? provided u1 ∈ U(1,3)−icv. (5.4)

Finally, using together inequalities (5.1) and (5.3), or alternatively inequalities (5.2) together
with (5.4), we get

a ≤ a? provided u1 ∈ U(2,3)−icv.

The interpretation of these results is similar to the interpretation given in Section 4. When
the inequality ã ≤ a? holds, the amount of optimal investment under uncertainty is larger
compared to the situation where future income is known with certainty, generating a positive
extra-investment in health due to income risk. When the inequality â ≤ a? holds, the amount
of optimal investment increases compared to the situation where future health status is
known with certainty, generating a positive extra-investment in health due to health risk.
Finally, when the inequality a ≤ a? holds, the amount of optimal investment increases
compared to the situation where both future income and future health status are known
with certainty, generating a positive extra-investment in health due to the contemporaneous
presence of the two risks.
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The effect of the marginals on the optimal investments is also clear in the independent
case, that is, when the income X⊥

i is independent of the background risk H⊥
i , i = 1, 2. From

(3.2), we easily get

X⊥
1 �s1−icv X⊥

2

H⊥
1 �s2−icv H⊥

2

}
⇒ a?

1 ≥ a?
2 provided u1 ∈ U(s1,s2+1)−icv.

Let us now consider the impact of dependence on optimal investments. As in the applica-
tion to saving, it seems plausible to to believe that when the background risk H is positively
related to the income risk X, every source of uncertainty increases optimal investment. The
following analysis examines this problem.

Coming back to Example 4.2, we can provide a first intuitive result.

Example 5.2 (Example 4.2 Ctd). Taking u1 ∈ U(1,2)−icv we see that

ρ2 ≤ ρ1 ⇒ (X1, H1) �(1,1)−icv (X2, H2) ⇒ a?
1 ≥ a?

2

so that optimal investments increase with the dependence parameter ρ in this simple model.

The impact of switching from mutually independent X and H to PQD or NQD ones is
also clear, as shown in the next result which follows from Proposition 5.1 exactly as Property
4.3 was deduced from Proposition 4.1.

Property 5.3. Assume that u1 ∈ U(1,2)−icv. Then,

(i) (X, H) PQD ⇒ a? ≥ a⊥;

(ii) (X, H) NQD ⇒ a? ≤ a⊥.

Finally we can examine the case of positive correlation formalized by the increasingness
of X in H, or of H in X, on average. Proceeding as we did for Properties 4.4 and 4.5, we
get the following results.

Property 5.4. Assume that E[H|X] is non-decreasing in X. Then,

(i) u1 ∈ U(1,3)−icv ⇒ a? ≥ â;

(ii) u1 ∈ U(2,3)−icv ⇒ a? ≥ a.

Proof. To establish (i), we need to prove that (X, H) �(1,2)−icv (X, E[H]), which has been
shown to hold in the proof of Property 4.5. Result (ii) then follows from the inclusions
U(2,3)−icv ⊂ U(1,3)−icv and U(2,3)−icv ⊂ U(2,2)−icv so that by (i) and (5.2) we have a? ≥ â ≥ a.

Property 5.5. Assume that E[X|H] is non-decreasing in H. Then

(i) u1 ∈ U(2,2)−icv ⇒ a? ≥ ã;

(ii) u1 ∈ U(2,3)−icv ⇒ a? ≥ a.
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Proof. Item (i) follows from the stochastic inequality (X, H) �(2,1)−icv (E[X], H), which
has been shown to be valid in the proof of Property 4.4. Then, (ii) is deduced from the
inclusions U(2,3)−icv ⊂ U(2,2)−icv and U(2,3)−icv ⊂ U(1,3)−icv so that by (i) together with (5.1)
we get a? ≥ ã ≥ a.

Note that the conditions on function u1 in Property 5.4(i) and Proposition 5.1, requiring
respectively u1 ∈ U(1,3)−icv and u1 ∈ U(s1,s2+1)−icv, correspond to conditions u1 ∈ U(3,1)−icv

and u1 ∈ U(s1+1,s2)−icv in Property 4.4(i) and Proposition 4.1. Finally, considering these
conditions together, it is easy to see that if u1 ∈ U(3,3)−icv then the conditions for all the
results in Properties 4.4, 4.5, 5.4 and 5.5 are satisfied. The same occurs with reference to
Propositions 4.1 and 5.1 if u1 ∈ U(s1+1,s2+1)−icv.

6 Conclusion

The impact of background risks on optimal decisions has been an intensive topic of research
for the last twenty years. So far, the debate took place mostly under the assumption that
the decision-maker has a univariate objective which forces the two risks to be expressed in
the same dimension.

The purpose of this paper was to extend the discussion to the (realistic) case of back-
ground risks in a multidimensional setting, with a special emphasis on the impact of a
positive correlation between these risks. While some nuances appear when the current effort
and the future results are either in the same or in a different dimension, basically some
regularity conditions on the alternating signs of successive direct and cross derivatives of the
bidimensional utility function lead to results in line with the basic intuition that a positive
correlation between income and background risks induces more effort today to face them. As
a result, the basic message that was already present in the early contributions on background
risks and precautionary motives by Kimball (1990) and Eeckhoudt & Kimball (1992)
is reinforced and substantially extended.
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