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Abstract 
 
Real options present a wide topic in investment litterature nowadays. However, despite big 
advances in the single asset investment pricing, the theory is miser of informations about 
problems involving more than one asset. We show in this paper that using dynamic programming, 
one can find an analytic trigger for a three assets simple exchange problem. Although we get a 
forward investment rule, one can not find the precise option value ex ante but only an average 
value. The precise option value depends on the first exit time from the continuation region which 
is stochastic.  
 This is a quite intuitive effect of the course of dimensionality of the problem. Valuating a 
single asset project gives a single condition for the optimal decision rule. The same holds for the 
simple exchange problem with two assets since the value of the project just depends on the price 
over cost ratio. In a three assets problem, as the project don’t depend anymore of a single state 
variable, one can’t run for a decision rule depending on the first exit time from the continuation 
region. 
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1 Introduction

A firm that observes a rise in demand of its output is induced to increase production
to catch a higher immediate profit. To do so, it may have to invest in additionnal
capacity. Sometimes, these investments have no salvage value. They are firm specific
and hence cannot be recovered should the demand fall or the production cost rise. For
instance, in power generation, a Combined Cycle Gas Turbine looses some of its value
if the price of gas rises sharply and the utilisation of the plant decreases. There is little
incentive for a competitor to buy the plant and hence no way to recover the entire
initial expenditure. Such firm specific investment has a sunk cost : it is irreversible i.e.
it cannot be recovered assuming downturn.

Irreversibility requires to act carefully. On one side, investing too early exposes
to damages assuming downturn. On the other side, waiting implies lost immediate
profits. One needs an investment rule that gives the perfect trade-off between the
option to wait for a safer opportunity and the decision to go ahead with the investment
as soon as one can capture an immediate profit.

The combination of the two features — irreversibility and time flexibility — im-
plies an opportunity cost. Because of irreversibility, the opportunity to wait has a
value that one must take into account in the investment decision. Investing entails not
only the sunk cost of the project but also the cost of abandoning the option to invest
later. The optimal behavior requires to wait until the value of launching the project
just equals its sunk cost plus the opportunity cost of abandoning the right to wait.
This is the well known analogy between investment problems and financial options :
the right to delay an expenditure until an optimal time is similar to an american call
option. The option to wait can accordingly be priced using either contingent claim or
dynamic programming depending on whether the value of the project is or is not per-
fectly correlated with an asset traded on the market.1

Contingent claim analysis is the traditional approach for valuing options in fi-
nance. It requires that the value of the project — here the option — is at all moment
replicated by a portfolio of traded assets. The value ot the option at any time is then
the market value of that portfolio. This approach is quite demanding in term of as-
sumptions. The interested reader can consult Wilmott[18], Shreve[16], Karatzas and
Shreve[7] and Bingham and Kiesel[3]. Theses assumptions do not always fit the real-
ity of investment in some physical assets. For instance, one cannot replicate the value
of a nuclear plant by a portfolio of traded assets, let alone do this on a continuous
basis by continuously trading the elements of that portfolio. We therefore resort to the
alternative approach of dynamic programming in the rest of the paper.

Dynamic programming avoids problems of market completeness or perfect cor-
relation with some traded asset. There is no strong financial assumption except the
existence of an exogeneous discount rate. This approach is more akin to classical cor-
porate finance. It does not require spanning assets but supposes a discount rate that
embeds risk aversion, referred to as a “risk discount rate”. The valuation of the option
to wait by dynamic programming is based on Hamilton-Jacobi-Bellman equation. The
essence of this method is to compare the immediate payoff coming from an immedi-
ate investment to the expected payoff coming from the same delayed investment. One
has to wait until the value of the immediate action exceeds the expected value of the
delayed project.

Finding the optimal timing of an investment in a real asset implies identifying

1A comparison of these two approaches is given in Dixit and Pindyck[4].
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the external conditions that justify the investment. More specifically one is looking
for special values of the demand and/or of the cost that will trigger an irreversible
investment. The set of the values is the border between the continuation region in
which the optimal decision is to wait and the exploitation region, in which we launch
the project. Because this border is initially unknown, real option problems are free
boundary problems and the determination of the unknown bound needs a double
sets of conditions known as value matching and smooth pastings (see section 2).

The notion of real option was developed by Myers[12]. The idea (see Myers[12],
Kester[8]) to link investment opportunities and American call options leads to the
simple result than the option to wait is an advantage that allows one to invest more
safely. McDonald and Siegel[11] show in their seminal paper that the incentive to
wait rises with the uncertainty of the project leading to the famous paradigm stated in
Dixit and Pindyck’s book[4] : “(. . . ) the simple NPV rule is not just wrong; it is often
very wrong.” Pindyck[14] notes the importance of delaying actions : for irreversible
investment, one get one’s money’s worth waiting for new informations and higher
value of the immediate post investment profit.

The theory of real option was extended from individual project valuation to the
analysis of investment behaviour in market economics. Specifically, Leahy[9] shows
that the optimal strategy of a firm acting in a competitive industry follows a myopic
behavior. Oligopolistic situations were discussed by Slade[17], Baldursson[1], Bal-
dursson and Karatzas[6]. Grenadier[5] finally proves than the Leahy’s myopic argu-
ments still holds in symmetric oligopolies for Cournot competition.

The real options litterature usually treats a single uncertainty factor. Directly re-
lated to our paper, the first two assets analysis was conducted by McDonald and
Siegel[11] with the problem of “price and cost uncertainty”.2 Additionnal work on
two assets uncertainty in irreversible investments includes Pindyck[15] and Bertola[2].

This paper extends the work of McDonald and Siegel[11]. It provides analytic so-
lutions for more than two assets real options problems. McDonald and Siegel show
that the two asset problem can be cast in the single state variable case and hence has
a simple solution. With more than 2 assets one cannot reduce the problem to a single
state variable and hence obtain an investment threshold that is given by a single num-
ber. The boundary is a surface and hence the option value is not fully known before
the first exit time of the continuation region. It is this problem with more than 2 assets
that we examine in this paper.

We structure the work as follows : the second section presents the price and cost
uncertainty problem. We prove that the solution found by McDonald and Siegel[11]
is the only form that can solve the equation along with the value matching and the
smooth pasting conditions. The third section is the presentation of the solution of the
3 assets exchange problem. Section 4 shows simulations and gives useful comments.
Section 5 extends the discussion to more than 3 assets. Section 6 gives solutions to
additional problems. Section 7 concludes.

2 The (1,1) exchange problem

The first two asset real option model has been developed by McDonald and Siegel[11],
hereafter referred to as "the price and cost uncertainty" or the (1,1) exchange prob-

2McDonald and Siegel[11] treated the first (one uncertainty) real option model — known as the Mc-
Donald and Siegel example — and the first two uncertainties problem — the price and cost uncertainty
problem — in the same paper.
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lem.3 Consider the American perpetual right to exchange one asset for an other. Every
problem that we will define herafter concerns American and perpetual security. See
Margrabe[10] for a similar non perpetual European right.

Definition 1 (The (1,1) exchange problem). Consider the perpetual American option to pay
the stochastic cost K(t) against a project of stochastic value S(t). When is the right time to
exercise this option?

We make the standard assumption of geometric Brownian motion processes and
write

dS(t) = µSS(t)dt+ σSS(t)dzS(t,ωS)

dK(t) = µKK(t)dt+ σKK(t)dzK(t,ωK)

with E[dzSdzK] = ρSKdtwhere dzS and dzK are respectively the S and KWiener incre-
ments. We note :

• Ω = ΩS ×ΩK the set of all the events for the 2 processes.

• ω ∈ Ω a special event for the set of the 2 processes {S(t), K(t)} i.e.

ω = (ωS,ωK).

The single termω includes the randomness of the two processes.

• We defineFt to be the σ-algebra generated by the two variables {S(s), K(s)}0≤s≤t.
Note that {Ft} is increasing i.e. Fs ⊂ Ft for s ≤ t. The random processes S and
K are Ft-adapted.

We use dynamic programming throughout the paper and note r the risk discount
rate. It is of course not the risk-free interest rate : we work on the the real measure and
adapt consequently the discount rate to risk aversion.

We define the continuation region as the region in which the exchange of asset K
against asset S is not optimal. One can write the Bellman equation on the continuation
region. The value of the project F is obviously a function of the two economic variables
S and K.

F(S, K) = max
{
S− K,

1

1+ rdt
E
[
F(S, K) + dF

∣∣∣S, K]}
In the continuation region

F(S, K) =
1

1+ rdt
E
[
F(S, K) + dF

∣∣∣S, K]
leading to the Bellman partial differential equation

µSSFS + µKKFK +
1

2

(
σ2SS

2FSS + σ2KK
2FKK + 2ρSKσSσKKSFSK

)
− rF = 0 (1)

that directly follows by the two dimensions Ito lemma.4 Note that the differential
equation (1) only holds on the continuation region. We refer to a solution of (1) as a
Bellman function.

3We use dynamic programming instead of contingent claim in order to lay the ground of the method-
ology used in the following sections.

4For a formal derivation see Dixit and Pindyck[4], chapter 6, section 5, Price and cost uncertainty.
Throughout this paper we use standard notation for the derivative e.g. ∂SSF = FSS and so on.
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2.1 The homogeneity argument

McDonald and Siegel[11] state the solution of (1) as the following homogeneous func-
tion.

F(S, K) = AK
(S
K

)β
(2)

Introducing F(S, K) in the differential equation (1), one finds that β satisfies the fol-
lowing quadratic equation

Q(β) ≡ 1
2
β(β− 1)

(
σ2S + σ2K − 2ρSKσSσK

)
+ β(µS − µK) − (r− µK) = 0 (3)

hereafter referred to as the “fundamental quadratic” of the (1,1) exchange. This equa-
tion is known (see e.g. Dixit and Pindyck[4]) to have both a positive and a negative
root, the positive root being greater than one. Because the value of the project increases
with S, one must insert the positive root in the Bellman function.

Dixit and Pindyck[4] discuss various features of the solution of the characteristic
equation. Specifically, the positive and negative roots respectively tend toward 1 and
0 as uncertainty increases.

In order to find the exchange trigger surface, one applies the two following optimal
investment conditions.

1. The value matching condition : at the optimal exercise time τ, the value of the
investment option matches the value of lauching the project i.e.

F(S(τ), K(τ)) = S(τ) − K(τ).

2. The smooth pasting conditions : at the optimal exercise point, the value of the
project must be smooth with respect to the S and K variables. See Dixit and
Pindyck[4] in chapter 4, Appendix C for a formal proof.

[∂SF] (S(τ), K(τ)) = 1

[∂KF] (S(τ), K(τ)) = −1

The derivation of the final result follows McDonald and Siegel[11] and is now stan-
dard.

Proposition 1 (Optimal trigger of the (1,1) exchange problem). The trigger of the (1,1)
exchange problem is given by

T1 ≡
{

(S, K) | S =
β1

β1 − 1
K
}

(4)

where β1 is the positive root of the fundamental quadratic Q(β).

Proof. See McDonald and Siegel[11] or Appendix A.

We note this trigger T1 to indicate that this relation define a 1-dimensional man-
ifold in the S × K space. Note that this result is strikingly similar to the investment
trigger of the single uncertain factor problem. The only difference is that K now rep-
resents a random variable. One can find an expression for the volatility and the drift
of the exchange and thus fall back on the single asset rule. Such simplification also
appears in Margrabe[10].
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The right time to exercise the option is the first exit time from the continuation
region. It is given by a random time τ(ω) defined by

τ(ω) = min
{
t | S(t,ω) =

β1

β1 − 1
K(t,ω)

}
where the vertical bar | means “such that”. If the event S(t,ω) = β1

β1−1
K(t,ω) has zero

measure, we set τ(ω) = +∞.
The continuation region is given by

CR ≡
{

(S, K) | S ≤ β1

β1 − 1
K
}

and because the random time τ : ω → [0,∞] is the first exit time from a given subset
CR ∈ R2, τ is a stopping time (see Oksendal[13]).

2.2 Elaboration of the solution : the uncorrelated case

It is worth elaborating on the form of equation (2), starting from the uncorrelated
exchange problem and seeing what variable separation brings us. Consider the case
where there is no correlation. The partial differential equation simplifies to

µSSFS + µKKFK +
1

2

(
σ2SS

2FSS + σ2KK
2FKK

)
− rF = 0. (5)

Assume a multiplicative form for the solution.

F(S, K) = Af(S)g(K)

with A > 0. The problem becomes separable as one can rewrite this differential equa-
tion as an equality between a function of S and a function of K. One can find the
solution of this two dimensional real option problem by solving two separate one di-
mensional real option problems. Mathematically, one can prove that the multiplicative
solution has to be of the form ASβ1Kλ2 .

Proposition 2 (The power form of the (1,1) exchange). Assuming a separable form for the
Bellman function of the (1,1) exchange, it has the power form

F(S, K) = ASβ1Kλ2 (6)

where β1 and λ2 are the roots of two fundamental quadratics.

Proof. See Appendix A.

Assuming this particular solution, one can then prove that this function has to be
homogeneous of degree one to satisfy the value matching and the smooth pasting
conditions.

Applying the smooth pasting conditions one obtains

Proposition 3 (Condition at trigger). At an optimal exercise time τ, the point (S(τ), K(τ)) ∈
T1 verifies

S(τ) =
(

−
β1

λ2

)
K(τ) (7)

where β1 and λ2 are the exponents of the separable Bellman function (6).
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Proof. Using the solution F(S, K) = ASβ1Kλ2 in the two smooth pasting conditions
leads to the two relations

β1

S(τ)
F(S(τ), K(τ)) = 1 (8)

λ2

K(τ)
F(S(τ), K(τ)) = −1. (9)

The two processes S(t,ω) and K(t,ω) will always be positive because zero is an ab-
sorbant barrier for the geometric Brownian motion. Moreover F(S, K) is the value of
an option, so it has to be greater or equal to zero. Thus these two equations implies
that β1 > 0 and that λ2 < 0. Now, we note that (8) = −(9) i.e.

β1

S(τ)
F(S(τ), K(τ)) = −

λ2

K(τ)
F(S(τ), K(τ))

and we simplify by F(S(τ), K(τ)) leading to

S(τ) =
(

−
β1

λ2

)
K(τ) (10)

which proves the statement.

One observes that the combination of the two smooth pastings leads to one trigger
condition. Simplifying by the function F(S(τ), K(τ)) eliminates the unknown coeffi-
cient A so the set of the two smooth pastings (8) and (9) is equivalently reformulated
as the trigger (7) plus one of these two smooth pastings.

Solving for the value matching condition leads to homogeneity result.

Proposition 4 (Homogeneity in the (1,1) exchange problem). The Bellman function (6)
of the (1,1) exchange problem satisfies

β1 + λ2 = 1 (11)

with β1 > 1 and λ2 < 0.

Proof. See Appendix A.

This proposition shows that homogeneity should not be seen as an assumption. It
is imposed by the value matching and the smooth pasting conditions in the exchange
of two assets.

Knowing that the sum of the positive root β1 and the negative root λ2 must be
equal to one, one can rewrite the general solution with a single exponent.

F(S, K) = AK
(S
K

)β1
(12)

This is just the McDonald and Siegel[11] form. To solve the Bellman differential equa-
tion, β1 has to be the positive root of the quadratic equation

Q(β) ≡ 1
2
β(β− 1)

(
σ2S + σ2K

)
+ β(µS − µK) − (r− µK) = 0.

One can similarly fall back on McDonald and Siegel trigger of Proposition 1 by
using the homogeneity condition β1 + λ2 = 1 on the trigger condition (7).
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This variable separation also shows that one can alternatively write

F(S, K) = AS
(K
S

)λ2
without any difference of results. In the first formulation, the exchange option is ex-
pressed as a dynamic portfolio containing K(t,ωK) perpetual american calls on un-
derlying asset S(t,ωS)/K(t,ωK) and of strike one. In the second, it is expressed as
a dynamic portfolio containing S(t,ωS) perpetual american puts on underlying asset
K(t,ωK)/S(t,ωS) and of strike one. The two options are obviously the same. This
dual view of the problem is known as changing numéraire in risk neutral valuation.
See e.g. Shreve[16], Wilmott[18] or Bingham and Kiesel[3] for exhaustive informations
on changing numéraire.

This discussion gave a motivation for the multiplicative form of the McDonald
and Siegel[11] solution : We first noted that in the absence of correlation, the Bellman
differential equation is separable so the multiplicative form comes naturally in mind.
We then noticed that solving our differential equation with the value matching and
smooth pastings conditions requires homogeneity for the Bellman function. We now
extend these findings to the general correlated case.

2.3 Elaboration of the solution : the correlated case

Putting back correlation in the differential equation, one cannot infer directly a separa-
ble form for the Bellman function and hence Proposition 2 no longer holds. However
one can still try its multiplicative form

F(S, K) = ASβ1Kλ2 .

One observes that this function solves Bellman differential equation with correlation
and has to be homogeneous to solve the value matching and the smooth pasting con-
ditions. Propositions 3 and 4 obviously still hold, leading to

Proposition 5 (The general solution of the (1,1) exchange problem). The Bellman func-
tion of the (1,1) exchange problem is given by

F(S, K) = AK
(S
K

)β1
(13)

with β1 the positive root of a fundamental quadratic Q(β) : R→ R.

Proof. One can check by direct calculus that the solution (13) solves the Bellman partial
differential equation with correlated assets along with the value matching and smooth
pasting conditions. This only requires β1 to be the positive root of the more involved
fundamental quadratic

Q(β) ≡ 1
2
β(β− 1)

(
σ2S + σ2K − 2ρSKσSσK

)
+ β(µS − µK) − (r− µK) = 0

to deal with the correlation between S and K.
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3 The (2,1) exchange problem

The previous problem is a particular case of a wider class of problems defined as the
(n,m) exchange problem.

Definition 2 ((n,m) exchange problem). Consider the perpetual american option to ex-
change a bundle of n stochastic assets against a bundle of m others. When is the right time to
exercise this option?

McDonald and Siegel[11]’s "price and cost uncertainty" is thus a (1,1) exchange
that we extend to a (2,1) exchange problem in this section. Of course, if one can solve
the (2,1) exchange problem, one can also solve the (1,2) exchange problem in a similar
way.

Example 1. [The (2,1) exchange problem] Consider the perpetual American option to pay the
sum of two stochastic sunk costs K1(t) and K2(t) for a project of stochastic value S(t). When
is the right time to exercise this option?

The three assets follow geometric Brownian motions i.e. :

dS(t) = µSS(t)dt+ σSS(t)dzS(t,ωS)

dK1(t) = µK1K1(t)dt+ σK1K1(t)dzK1(t,ωK1)

dK2(t) = µK2K2(t)dt+ σK2K2(t)dzK2(t,ωK2)

We allow for correlation between random processes. Assume E[dzSdzK1 ] = ρSK1dt,
E[dzSdzK2 ] = ρSK2dt, E[dzK1dzK2 ] = ρK1K2dt.

We note :

• Ω = ΩS ×ΩK1 ×ΩK2 the set of events for the 3 processes.

• ω ∈ Ω a special event for the set of the 3 processes {S(t), K1(t), K2(t)} i.e.

ω = (ωS,ωK1 ,ωK2).

The single termω includes the randomness of the three processes.

• We define Ft to be the σ-algebra generated by the random variables
{S(s), K1(s), K2(s)}0≤s≤t. Note that {Ft} is increasing i.e. Fs ⊂ Ft for s ≤ t. The
random processes S, K1 and K2 are Ft-adapted.

The following discussion essentially adapts the procedure of the (1, 1) exchange
problem to derive the Bellman function. We first solve the separable problem and
show that the value matching and the smooth pasting conditions imply a homoge-
neous form for the Bellman function. We then analyse the specific behavior of this
three assets exchange problems.

3.1 The free boundary problem

The investment trigger is the set of all the triplets (S, K1, K2) for which it is optimal to
invest. We shall show that it is a surface — or a 2-dimensional manifold — in the 3
dimensional space S×K1×K2. This 2-dimensional manifold splits the whole space in
two regions : the continuation region and the exploitation region.
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The right time to exercise the option is the first exit time from the continuation
region. In other terms, this is the first time when one hits the trigger surface. This is a
random time τ : Ω→ [0,∞]. We note

τ : ω→ τ(ω).

In a two variables problem — the (1,1) exchange — one observed that the right
time to invest was given by an equation linking the two variables of the problem :
the trigger condition has the form S∗ = αK∗. The set of optimal couples (S∗, K∗) is
therefore a line in the S× K plan. The right time to exercise the option is

τ = min
{
t | S(t) = αK(t)

}
.

In a three variables problem — like the (2,1) exchange — it is thus natural to expect
that the investment trigger is a surface. One should find a 2-dimensional set of triplets
(S∗, K∗1, K

∗
2) satisfying the optimal investment criterion. We expect something of the

form
τ = min

{
t |

(
S(t), K1(t), K2(t)

)
∈ T2

}
with T2 designating a 2-dimensional manifold.

This investment trigger T2 is the unknown bound of a free boundary problem.
Specifically, one needs to find the Bellman function F(S, K1, K2) and the bound surface
T2 such that :

• The Bellman function F(S, K1, K2) solves

µSSFS + µK1K1FK1 + µK2K2FK2

+ ρSK1σSσK1SK1FSK1

+ ρSK2σSσK2SK2FSK2

+ ρK1K2σK1σK2K1K2FK1K2

+
1

2

(
σ2SS

2FSS + σ2K1K
2
1FK1K1 + σ2K2K

2
2FK2K2

)
− rF = 0 (14)

in the continuation region.

• At each point
(
S(τ), K1(τ), K2(τ)

)
∈ T2, the value of the project matches the

investment cost plus the option to defer :

1. In value (value matching)

F
(
S(τ), K1(τ), K2(τ)

)
= S(τ) − K1(τ) − K2(τ).

2. In slope (smooth pastings)

[∂SF]
(
S(τ), K1(τ), K2(τ)

)
= 1

[∂K1F]
(
S(τ), K1(τ), K2(τ)

)
= −1

[∂K2F]
(
S(τ), K1(τ), K2(τ)

)
= −1.
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3.2 The uncorrelated case

Like in the two assets problem, we motivate the form of the Bellman function starting
from the no correlation case. With this assumption, the differential equation in the
continuation region becomes

µSSFS + µK1K1FK1 + µK2K2FK2

+
1

2

(
σ2SS

2FSS + σ2K1K
2
1FK1K1 + σ2K2K

2
2FK2K2

)
− rF = 0.

We can assume the separable multiplicative form

F(S, K1, K2) = Af(S)g(K1)h(K2)

for the Bellman function, where A is a constant to determine.
The function F(S, K1, K2) represents the value of the option to exchange the sum of

K1(t) and K2(t) for S(t). It must be increasing in S and decreasing in both K1 and K2.
The problem is separable as we first assume no correlation between random processes.
Solving using variable separation leads to the following result.

Proposition 6 (The power form of the (2,1) exchange). Assuming a separable form for the
Bellman function of the (2,1) exchange, it has the power form

F(S, K1, K2) = ASβ1K
λ2
1 K

γ2
2 (15)

where β1, λ2 and γ2 are the roots of three fundamental quadratics.

Proof. See Appendix B.

Assuming this particular solution, one will prove that this function has to be homo-
geneous of degree one to solve the value matching and the smooth pasting conditions.

The application of the smooth pasting conditions leads to

Proposition 7 (Conditions at trigger). At an optimal exercise time τ, the point (S(τ), K1(τ), K2(τ)) ∈
T2 verifies

K2(τ) =
(γ2
λ2

)
K1(τ) (16)

S(τ) =
(

−
β1

λ2

)
K1(τ) (17)

where β1, λ2 and γ2 are the exponents of the separable Bellman function (15).

Proof. Introducing the solution F(S(τ), K1(τ), K2(τ)) = ASβ1(τ)Kλ21 (τ)K
γ2
2 (τ) in the

three smooth pasting conditions leads to the three relations

β1

S(τ)
F(S(τ), K1(τ), K2(τ)) = 1 (18)

λ2

K1(τ)
F(S(τ), K1(τ), K2(τ)) = −1 (19)

γ2

K2(τ)
F(S(τ), K1(τ), K2(τ)) = −1. (20)

Because F(S(τ), K1(τ), K2(τ)) is positive, β1 has to be positive and λ2 and γ2 has to be
negative.

Then we note that (18) = −(19) and (19) = −(20). Simplifying by F(S(τ), K1(τ), K2(τ))
in these two equations we obtain the announced statement.
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The three smooth pastings lead to two trigger conditions. The simplification by
the function F(S(τ), K1(τ), K2(τ)) eliminates the unknown coefficient A then the set of
the three smooth pastings (18), (19) and (20) is equivalent to the set of the conditions
at trigger (16) and (17) plus one of these three smooth pastings.

From now on we focus on the two conditions at trigger (16) and (17).

K2(τ)

K1(τ)
=
γ2

λ2

S(τ)

K1(τ)
= −

β1

λ2

For a given triplet (β1, γ2, λ2), these two relations define a 1-dimensional manifold
that gives a relation linking the price S(τ) and the costs K1(τ) and K2(τ) at each exer-
cice time τ. To find the investment trigger, one has to find the set of allowed triplets
{(β1, λ2, γ2)} which we shall show is itself a 1-dimensional manifold. Then one obtains
the trigger surface as the cartesian product of these two 1-dimensional manifolds.

We begin by noting that the right time to exercise the option is the first exit time
from the continuation region given by

τ = min
{
t |

K2(t)

K1(t)
=
γ2

λ2
,
S(t)

K1(t)
= −

β1

γ2
, (β1, λ2, γ2) ∈ Σ

}
.

We now characterise the set Σ.
From Proposition 7 and using the value matching

F(S(τ), K1(τ), K2(τ)) = S(τ) − K1(τ) − K2(τ)

one can express A in terms of value S(τ).

1

A
= β1S

β1−1(τ)Kλ21 (τ)K
γ2
2 (τ) = β1S

β1−1(τ)
(−λ2
β1

)λ2
Sλ2(τ)

(−γ2
β1

)γ2
Sγ2(τ) (21)

Applying the value matching condition with the relations (21), (16) and (17) leads to
homogeneity result.

Proposition 8 (Homogeneity in the (2,1) exchange problem). The Bellman function (15)
of the (2,1) exchange problem satisfies

β1 + λ2 + γ2 = 1 (22)

with β1 > 1 and λ2, γ2 < 0.

Proof. See Appendix B.

Rewriting the Bellman function as

F(S, K1, K2) = AS
(K1
S

)λ2(K2
S

)γ2
(23)

and introducing the homogeneity condition in (21) one obtains the coefficient A in
terms of λ2 and γ2.

A(λ2, γ2) =
1

(1− λ2 − γ2)(1−λ2−γ2)(−λ2)λ2(−γ2)γ2
(24)

11



Note that the homogeneity condition reduces the possible values for the triplets
(β1, γ2, λ2) : one has 3 unknowns values and one condition then the set of possible
triplets become a 2-dimensional manifold.

One can rewrite our stopping time solution as :

τ = min
{
t |

K2(t)

K1(t)
=
γ2

λ2
,
S(t)

K1(t)
=
λ2 + γ2 − 1

λ2
, (λ2, γ2) ∈ Σ ′

}
where the set Σ ′ remains to define. Substituting the solution (23) in the uncorrelated
Bellman partial differential equation (14), one find that the couple (λ, γ) solves the
following equation.

Q(γ, λ) ≡ 1

2
λ(λ− 1)

(
σ2S + σ2K1 − 2ρSK1σSσK1

)
+ λ(µK1 − µS)

+
1

2
γ(γ− 1)

(
σ2S + σ2K2 − 2ρSK2σSσK2

)
+ γ(µK2 − µS)

− (r− µS) = 0.

The right time to exercise the option is thus given by

τ = min
{
t |

K2(t)

K1(t)
=
γ2

λ2
,
S(t)

K1(t)
=
λ2 + γ2 − 1

λ2
, Q(γ2, λ2) = 0

}
.

3.3 The correlated case

The problem is no longer separable in the correlated case and Proposition 6 no longer
holds. One can still try the multiplicative form

F(S, K1, K2) = Sβ1K
λ2
1 K

γ2
2

to check whether it verifies the differential equation (14) with correlation.
One observes that this function solves the Bellman differential equation with corre-

lation and has to be homogeneous to solve the value matching and the smooth pasting
conditions. Propositions 7 and 8 still hold and can be restated as follows :

Proposition 9 (The general solution of the (2,1) exchange problem). The Bellman func-
tion of the (2,1) exchange problem is given by

F(S, K1, K2) = A(λ2, γ2)S
(K1
S

)λ2(K2
S

)γ2
(25)

where (λ2, γ2) belong to the 0-level curve of an interaction fundamental quadratic form
Q(λ, γ) : R2 → R and A(λ2, γ2) is defined by relation (24).

Proof. One can check by direct calculus that the solution (25) solves the Bellman differ-
ential equation with correlated assets along with the value matching and the smooth
pastings conditions.

Substituting the general solution (25) in the differential equation (14), one find that
the couple (λ, γ) has to solve the following equation.

Q(λ, γ) ≡ 1

2
λ(λ− 1)

(
σ2S + σ2K1 − 2ρSK1σSσK1

)
+ λ(µK1 − µS)

+
1

2
γ(γ− 1)

(
σ2S + σ2K2 − 2ρSK2σSσK2

)
+ γ(µK2 − µS)

+ λγ
(
σ2S − ρSK1σSσK1 − ρSK2σSσK2 + ρK1K2σK1σK2

)
− (r− µS) = 0. (26)
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Extending the previous notation, we refer to the binary quadratic form Q(γ, λ)

as the fundamental quadratic form of the problem.5 We refer to the values (λ, γ) for
which this quadratic form vanishes as the 0-level curve6 of Q(γ, λ).

This 0-level curve now reduces the possible set of triplets (β1, λ2, γ2) to a 1-
dimensional manifold. One can then write the final expression of the investment
trigger.

Proposition 10. The right time to exercise the option is the first exit time defined by

τ = min
{
t |

K2(t)

K1(t)
=
γ2

λ2
,
S(t)

K1(t)
=
λ2 + γ2 − 1

λ2
, Q(λ2, γ2) = 0

}
.

Proof. The result was directly derived from the preceding propositions.

We now summarise the steps leading to the solution.

• Using the smooth pastings conditions, one obtains a 1-dimensional manifold for
the investment trigger. This manifold is parametrised by the triplet (β1, γ2, λ2).

• Using the value matching condition and the differential equation, one obtains
two conditions on the triplets (β1, γ2, λ2) : an homogeneity condition and a
quadratic form. Both conditions reduce the allowed triplets (β1, γ2, λ2) to a 1-
dimensional manifold.

• To find the trigger, one has to introduce the 1-dimensional manifold for
(β1, γ2, λ2) in the 1-dimensional manifold for the trigger : this defines the
2-dimensional manifold for the general trigger.

3.4 Remarks

Note four points on Proposition 10 :
1. The right time to exercise the option allows one to determine the trigger surface.

T2 ≡
{

(S, K1, K2) |
K2

K1
=
γ2

λ2
,

S

K1
=
λ2 + γ2 − 1

λ2
, Q(λ2, γ2) = 0

}
(27)

One can write two alternative descriptions of the trigger using the conditions (16) and
(17). Direct calculus leads to the following two other sets.

T2 ≡
{

(S, K1, K2) |
K2

K1
=
γ2

λ2
,

S

K2
=
λ2 + γ2 − 1

γ2
, Q(λ2, γ2) = 0

}
(28)

T2 ≡
{

(S, K1, K2) |
K2

K1
=
γ2

λ2
, S =

λ2 + γ2 − 1

λ2 + γ2
(K1 + K2), Q(λ2, γ2) = 0

}
(29)

The formulation (29) of the trigger is meaningful : it is a direct link between the
revenue and the total cost. Both λ2 and γ2 are negative, thus the real option factor
(λ2 + γ2 − 1)/(λ2 + γ2) in (29) is always higher than 1. We’ll show in Section 4.1 that
it is also strictly increasing with the volatility of the three assets.

5A quadratic form in 2 variables is called a binary quadratic form.
6One can also use the terminology of 0-contour line.
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2. T2 is the cartesian product of the set of possible triplets (S, K1, K2) assuming
known values for the triplet (β1, γ2, λ2) by the set of possible triplets {(β1, γ2, λ2)}.
Since this is the product of two 1-dimensional manifold, the resulting set is a two
dimensional manifold, as expected.

We note{(
S(τ), K1(τ), K2(τ), β1, γ2, λ2

)}
︸ ︷︷ ︸

D=2

=

{(
S(τ), K1(τ), K2(τ)

)
(β1, γ2, λ2)

}
︸ ︷︷ ︸

D=1

⊗
{

(β1, γ2, λ2)

}
︸ ︷︷ ︸

D=1

3. The (2,1) problem differs from the (1,1) problem by a major feature : one does
not know the value of the two exponents in the Bellman solution before reaching the
trigger. The Bellman function is indeed only known when reaching the trigger; it can
take different values because the trigger surface is a manifold of dimension greater
than 1.

4. Finally, the preceding expression for τ is a stopping time. One can write :{
ω | τ(ω) ≤ t

}
={

ω | ∃t0 ≤ 0 :
K2(t0)

K1(t0)
=
γ2

λ2
,
S(t0)

K1(t0)
=
λ2 + γ2 − 1

λ2
, Q(λ2, γ2) = 0

}
Using γ2 = λ2

K2(t0)
K1(t0)

this can be rewritten{
ω | τ(ω) ≤ t

}
={

ω | ∃t0 ≤ 0 :
S(t0)

K1(t0)
=
λ2 + λ2

K2(t0)
K1(t0)

− 1

λ2
, Q
(
λ2, λ2

K2(t0)

K1(t0)

)
= 0

}
∈ Ft

since the process K2(t)
K1(t)

is Ft-mesurable. Then τ(ω) is a stopping time.So one can de-
termine whether or not the trigger has been reached at time t based on informations
available up to time t. This investment rule is therefore appropriate to forward nu-
merical simulation as discussed in the following section.

A convenient reformulation of the trigger obtains after introducing the new
stochastic process

η(t) =
K2(t)

K1(t)
∀t, η(t) ∈ Ft.

One can write

τ(ω) = min
{
t |

S(t)

K1(t)
=
λ2 + λ2η(t) − 1

λ2
, Q(λ2, λ2η(t)) = 0

}
and the trigger is defined by the collection of 1-dimensional manifold C1(η)

T2 = {C1(η)}η>0 =

{
(S, K1, K2) |

S

K1
=
λ2 + λ2η− 1

λ2
, Q(λ2, ηλ2) = 0

}
η>0

parametrised by

η =
K2

K1
.

In order to pave the way for numerical solution, the following section restate the opti-
mal exercise procedure in algorithmic form.
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3.5 Optimal exercise algorithm

1. Based on observations at time t, compute the ratio of the costs, noted η(t).

K2(t)

K1(t)
= η(t)

2. In the fundamental quadratic form, replace γ by ηλ and solve for λ. Set λ2 =

min{λ}.

3. Using the last computed λ2, compute γ2 = ηλ2 to find the trigger value for the
price by

S∗(t) =
λ2 + γ2 − 1

λ2
K1(t).

4. If S = S∗ then t = τ and

F(S, K1, K2) = A(λ2, γ2)S
(K1
S

)λ2(K2
S

)γ2
.

If S 6= S∗ then wait until time t+ dt and return to step 1.

A detailed explanation of the algorithm is given in Appendix B.
As indicated above the value of the Bellman function depends on the first exit time.

As this cannot be predicted one cannot give the precise Bellman function before the
first exit time. One can however define the expected value of the Bellman function
where the expectation is taken over the possible exit times. This cannot be solved
analytically but is amenable to simulation. This is what we turn to in the next section.

4 Simulations

We here illustrate the three assets exchange problem by a few simulations. We conduct
our analysis in four steps.

We first give standard comparative statics. Starting from a basic set of parameters
we illustrate the variation of the trigger with respect to the drift rates, the volatility
rates and the correlations. We show that our solution has a good real option behavior.
The trigger increases with high volatitily rates and high drift rates for the price. The
trigger decreases with the two costs drifts rates since increasing costs imply that it is
more valuable to invest now than wait and incur a bigger cost. As explained before,
the trigger is a function of the K2/K1 ratio. Proper comparative must be conducted
with a fixed cost ratio. We therefore assume a constant K2/K1 ratio for all the compar-
ative statics simulations.

In a second step, we use Monte Carlo simulation to find the probability distribution
of the costs ratio at the first exit time.

We thirdly use this distribution to compute an expected Bellman function of the
exchange problem.

Finally, we check that the binary quadratic form behave well under reasonnable
assumptions on the diffusion processes.
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4.1 Comparative Statics

We illustrate the behavior of our solution. We start from the following set of parame-
ters. The discount rate is 5% and all rates are annual.

µS = 0.03 µK1 = 0.015 µK2 = 0.008

σS = 0.2 σK1 = 0.25 σK2 = 0.2

We split the year in 100 periods of time and scale variances accordingly. Correlations
are ρSK1 = 0.15, ρSK2 = 0.25, ρK1K2 = 0.75. We consider the cost ratio K2/K1 = 0.8 for
the base case simulation and throughout the comparative statics.

For the base case simulation, we find a trigger

S∗ = 3.4965K1

and find a real option factor greater than 1.8 as expected.7 Assume that we want to
see the impact of a change in the µS parameter. We plot the trigger starting from the
base case and changing µS over a broad range of values. We then do the same for µK1
and µK2 and obtain Figure 1, that depicts the impact of the drift rates on the trigger.

We do the same thing for the volatility rates and correlations to obtain Figure 2 and
Figure 3.

Fig. 1: Drift rates impact on trigger

7This factor encompasses the two costs then must be twice bigger than normal. One can check that
putting all drift rates, all volatility rates and all correlations to zero lead to a trigger factor equal to 1.8 i.e.
the deterministic rule since we assumed K2/K1 = 0.8.

S
∗ = 1.8K1 = K1 + 0.8K1 = K1 + K2
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Fig. 2: Volatility rates impact on trigger

Fig. 3: Correlations impact on trigger

Figure 1 shows that the trigger is an increasing function of the drift rate of the
reselling price i.e. the incentive to wait is increasing with the expected profit’s growth.
The value of the option to defer bursts when the drift rates rises up to the discount
rate : it is then always more valuable to wait. However the trigger decreases with the
cost’s drift rates as they reduce the expected spread.

Figure 2 shows that the trigger always increases with the volatility rates. Increasing
uncertainty on the reselling price makes the option to wait for better safety more valu-
able whereas an increasing uncertainty on a cost is an incentive to wait for a downturn
in this cost.

Figure 3 shows that the trigger is a decreasing function of the correlation between
the cost and the reselling price as this correlation reduces the expected spread. Con-
versely, the real option trigger rises with the inter-cost correlation as it increases the
uncertainty over the spread.

We conclude that the three assets model complies with standard intuition on real
options. As the uncertainty increases the option to postpone investment has a greater
value and thus leads to wait. The drift is also a key parameter as a higher expected
growth leads to a bigger incentive to wait for better conditions. The correlation factors
have different impacts depending on their link with the reselling price. A correlation
between the reselling price and a cost decreases the uncertainty over the spread and
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thus reduces the investment trigger. A correlation between costs increases the uncer-
tainty over the spread and thus increases the investment trigger.

4.2 Probability of the first exit time

Section 3.5 summarises the investment rule. As explained earlier it depends on the
first exit time of the continuation region through the stochastic parameter η(τ) defined
as

η(t) =
K2(t)

K1(t)
, ∀t.

At a exercise time τ, this parameter satisfies

K2(τ)

K1(τ)
= η(τ) =

γ2

λ2
S(τ) =

λ2 + γ2 − 1

λ2
K1(τ)

where (γ2, λ2) satisfies the 0-level curve of the fundamental quadratic (26). Suppose
one would know the probability distribution of the random variable η(τ), that is
dP[η(τ) = η]. It’s direct computation can be algebraically tricky, but it can be esti-
mated using direct Monte Carlo method by resorting on our forward investment rule.
Suppose this is done, we note this probability density φ(η).8

dP
[
η(τ) = η

]
= φ(η)dη

One can compute easily an expected value for the project.

Proposition 11 (The expected Bellman function of the project). Consider the (2,1) ex-
change problem. Given the probability density φ(η) of the costs ratio at the first exit time one
can compute an expected Bellman function of the project F̄(S, K1, K2).

F̄(S, K1, K2) =

∫+∞
0

φ(η)A(η)S
(K1
S

)λ2(η)(K2
S

)ηλ2(η)
dη (30)

with A(η) = A(λ2(η), ηλ2(η)).

The expected value of the project is a function of S, K1 and K2. We noted λ2(η)
because λ2 is the negative root of the fundamental interaction quadratic formQ(λ, ηλ)

then it is unique and depends only on the value of the parameter η. For the same
reason, the coefficient A(λ2, ηλ2) is just a function of η.

As we said earlier one can evaluate the probability density of the costs ratio at
the first exit time using Monte Carlo method. This is done by simulating the evolu-
tion of the risk factors using the decision rule on a big number of scenarios to have a
distribution of the η parameter associated with (the) exercise time.

We here give the graph of φ(η), the costs ratio distribution estimated by 15000
investment outcomes for η corresponding to (the) first exit time. This graph shows a
bell-like curve for the costs ratio distribution. One can then have an approximation of
the value of the project.

8To be more explicit

P
»
η−

dη

2
≤ η

`
τ(ω)

´
≤ η+

dη

2
]

–
=

∫{
ω∈Ω : η(τ(ω))∈[η−dη/2,η+dη/2]

} dP(ω) = φ(η)dη.
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Fig. 4: Probabilitity distribution of the costs ratio at the F.E.T.

In figure 4, the grey figure was obtained by generating 15000 paths on Matlab9 and
counting the number of η corresponding to the first exit time (in the graphic F.E.T.)
in each elements of a partition 0.01-fine of the interval [0, 10]. We normalised and
obtained a density distribution. The density distribution is bell shaped, but one can
not infer that it is a normal as the parameter η can never be negative.10

The continuous black curve gives the same distribution filled by a general Γ(α,β)

distribution. We used the Matlab function gamfit and obtained parameter α = 37.48

and β = 0.0275 for the distribution of η at the first exit time.
The two alternatives are pretty concordant. We illustrate the fact that one can ei-

ther use numerical integration to evaluate the expected Bellman function (using δ-fine
partition of possible outcomes for η at the F.E.T.) or fit the probability density in order
to manipulate heavy special functions.

4.3 The value of the project

The density φ(η), allows one to evaluate numerically the expected Bellman function
as a Riemann sum. We obtain the expected Bellman function F̄(S, K1, K2). Since, the
states variables are Ft-measurable, the Bellman function is Ft-measurable as well.

Computing the value of the project for a broad range of values for S, K1 and K2,
we get the following representations. Because F : R3 → R and one can just have a
clear representation of a function from R2 → R, we always fixed S = Si and plotted

9All simulations were made on a Mac Mini 2 Core 2 Duo 2.2 GHz using Matlab 7.4.0. Time needed
to run the 15000 events was around 5 minutes. Matlab files are available on demand. Please contact
Joachim Gahungu at joachim.gahungu@uclouvain.be or +32 10 47 94 27.

100 is an absorbant barrier for the geometric brownian motion.
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F̄(Si, K1, K2) as a function of K1 and K2. We did it for S = (0, 5, 10, 15, 20) and drawn 5
surfaces on each graph.

Fig. 5: The value of the (2,1) exchange

Fig. 6: The value of the (2,1) exchange

We see in these pictures that the estimated Bellman function has a good behavior.
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It is decreasing in both K1 and K2 as one can see following each surface along the two
axes. It is increasing in S as a higher value of S leads to a higher position of the surface.

4.4 Conditions on the fundamental quadratic form

Consider now the fundamental quadratic form Q(λ, γ). As a binary quadratic form,
its 0-level curve contains an infinite number of points. Including the condition γ = ηλ,
the resulting one variable quadratic in λ has two roots.

Q(λ, ηλ) =
1

2
λ(λ− 1)

(
σ2S + σ2K1 − 2ρSK1σSσK1

)
+ λ(µK1 − µS)

+
1

2
ηλ(ηλ− 1)

(
σ2S + σ2K2 − 2ρSK2σSσK2

)
+ ηλ(µK2 − µS)

+ ηλ2
(
σ2S − ρSK1σSσK1 − ρSK2σSσK2 + ρK1K2σK1σK2

)
− (r− µS) (31)

We need to show whether one of this roots has the necessary sign for the Bellman
function to make economic sense. We consider the two following problems.

4.4.1 The exchange of K1 + K2 for S

The economics of the problem imposes that Bellman function of the (2,1) exchange is
decreasing in both K1 and K2 i.e.

F(S, K1, K2) = AS
(K1
S

)λ2(K2
S

)γ2
(32)

with both λ2 and γ2 negative. But λ2 = ηγ2 with η > 0. To make sense, one thus
should determine under what conditions

for all η > 0, Q(λ, ηλ) has a negative root λ2. (33)

Note that these conditions also ensure that the trigger factor in (29) is greater than
one.

4.4.2 The exchange of S for K1 + K2

From the preceding sections, it is clear that the Bellman function of the problem of
exchanging S for K1 + K2 is

F(S, K1, K2) = AS
(K1
S

)λ1(K2
S

)γ1
(34)

with both λ1 and γ1 positive. It leads to the same quadratic form (26) and to (31).
The economics of this problem requires that the Bellman function (34) decreases

with S i.e. λ1 + γ1 > 1. One should thus determine under what conditions

for all η > 0, Q(λ, ηλ) has a positive root λ1 s.t. λ1(1+ η) > 1. (35)

As we will see in Section 6, these conditions also warrants that the trigger factor of
the (1,2) exchange problem is greater than one.
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4.4.3 Conditions on the drift rates

One can not determine analytically under what conditions (33) and (35) hold because
the only relation linking the correlation factors is the covariance matrix which is sup-
posed to be positive definite. This condition is not easily algebraically handleable.

However, one can show using Monte Carlo simulation that (33) and (35) simul-
taneously hold providing the growth parameters µS, µK1 and µK2 are lower than the
discount rate r.11

To summarize, assuming µS, µK1 , µK2 < r, the quadratic

Q(λ, ηλ), η > 0

has a positive and a negative root, respectively λ1 and λ2 such that :

1. λ1(η) + γ1(η) = (1+ η)λ1(η) > 1

2. λ2(η) + γ2(η) = (1+ η)λ2(η) < 0.

5 The (n,m) exchange problem

The dynamic programming approach gives a solution to the general problem of ex-
changing a bundle of n assets for m others. Note d = n+m as the total dimension of
the problem. We extend the above discussion to obtain a forward investment rule and
an expected Bellman function.

Example 2 (The (n,m) exchange problem). Assume one is considering the perpetual amer-
ican option to pay a sum of n stochastic sunk costs i.e. a total cost a1K1(t)+a2K2(t)+ · · · +

anKn(t) for a project whose value is a sum ofm stochastic assets b1S1(t) + b2S2(t) + · · · +

bmSm(t). When is the right time to exercise this option?

We extend the above reasoning and proceeds.

1. We first assume no correlation

(a) Solve by multiplicative variable separation and determine the power form.

(b) Find the conditions at trigger using the smooth pasting conditions.

(c) Find the homogeneity condition using the value matching condition.

(d) Determine the fundamental quadratic form.

2. We then assume correlation

(a) We take the multiplicative power form obtained in (1a) and check that it
solves the Bellman differential equation.

(b) On that basis we determine the fundamental quadratic form.

This formal work is left to the Appendix. We just show the general procedure to
extract the trigger surface.

The investment trigger has to be a d− 1manifold.
For the d assets problem, one has:

11Matlab files available on demand. Please contact Joachim Gahungu at
joachim.gahungu@uclouvain.be or +32 10 47 94 27.
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• one value matching;

• d smooth pastings; these d smooth pastings lead to d − 1 conditions at trigger
and one condition for the A coefficient of the Bellman function.

For given exponents of the Bellman function, the application of the d−1 conditions
at trigger reduces the trigger surface (S1(τ), . . . , Kn(τ)) from a d to a 1-manifold.

It remains to find the admissible set of the d unknown exponents. The value match-
ing condition implies an homogeneity equation, thus reduce the exponents admissible
set from a d to a d− 1manifold.

Moreover the Bellman function has to be solution of the Bellman differential equa-
tion. This implies that the exponents satisfy an equation — the quadratic form — that
reduces this admissible set to a d− 2manifold.

The investment trigger is the cartesian product of the 1-manifold for the trigger
surface (S1(τ), . . . , Kn(τ)) assuming known exponents by the d− 2manifold describ-
ing the allowed exponents. It is a d− 1manifold.

Given the trigger manifold, it remains to identify the first exit time. This is done
by identifying whether the values of the processes allow one to determine univocally
the d exponents. This requires d − 2 additionnal conditions to identify a point of the
d− 2 admissible manifold. These d− 2 additionnal conditions are given by the values
of the processes at the first exit time. They are called the filtration matching relations.

Referring to the (2,1) exchange problem as an example. This problem has three
state variables. One needs 3 − 2 = 1 other relation coming from observations. This
relation is precisely the value of the parameter η(τ) ∈ Fτ.

Using filtration matching conditions, one can solve the (n,m) exchange problem.

Proposition 12 (The solution of the (n,m) exchange problem). Assuming a separable
form for the (n,m) exchange problem, the Bellman function of the problem has the power form

F(S1, · · · , Sm, K1, · · · , Kn) = A
(
Πmi=1S

βi
i

)(
Πnj=1K

λj
j

)
with

βi > 0, ∀i
λj < 0, ∀j

m∑
i=1

βi +

n∑
j=1

λj = 1.

Moreover, the right time to exercise the (n,m) exchange option is given by

τ = min

{
t | Q(~α) = 0 ,

Xk(t)

Xi(t)
=
αk

αi

ci

ck
∀i, ∀k

}
with

Q(~α) ≡
n+m∑
i=1

µiαi +
1

2

n+m∑
i=1

n+m∑
j=1

ρijσij

{
δijαi(αi − 1) + (1− δij)αiαj

}
− ρ.

Proof. See Appendix (C).
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6 Additional problems

This section gives solutions to additional problems. We first treat the (1,2) exchange
problem and then take up the (0,2) and the (2,0) exchange problems. The methodol-
ogy can be applied to multi-assets irreversible investment. Still, we leave these appli-
cations for future work.

Example 3 (The (1,2) exchange problem). Consider the perpetual American option to pay
a stochastic sunk costs K(t) for a project whose value is the sum of two random assets S1(t) +

S2(t). When is the right time to exercise this option?

The Bellman function of this problem is

F(K, S1, S2) = AK
(S1
K

)γ1(S2
K

)λ1
. (36)

For economic reasons, we expectA > 0. γ1 and λ1 are positive as the Bellman function
must be increasing in both S1 and S2. The couple (λ1, γ1) belongs to the 0-level curve
of a quadratic form Q ′(λ, γ).

One then applies the value matching and smooth pasting conditions for this
problem. The project is continuous at the border between the two regions i.e.
F(K(τ), S1(τ), S2(τ)) = S1(τ) + S2(τ) −K(τ). It must also be smooth at this border then
FS1(K(τ), S1(τ), S2(τ)) = FS2(K(τ), S1(τ), S2(τ)) = 1 and FK(K(τ), S1(τ), S2(τ)) = −1.
The three smooth pasting conditions lead to two conditions at trigger.

S2(τ)

S1(τ)
=
λ1

γ1
(37)

K(τ)

S1(τ)
=

(γ1 + λ1 − 1)

γ1
(38)

Note that we showed in Section 4.4 that γ1 + λ1 > 1 provided all the drift rates
lower than the exogeneous discount rate. One pointed out that this condition is of the
essence.

Equation (38) is a relation at trigger. At each moment t one measures S1(t), S2(t)
and K(t). One then uses the information at time t to check if the threshold has been
reached using the standard algorithm. The investment trigger is defined by

T ′(2) ≡
{

(S1, S2, K) |
S2

S1
=
λ1

γ1
,

K(τ)

S1(τ)
=

(γ1 + λ1 − 1)

γ1
, Q(γ1, λ1) = 0

}
.

Using (37), one obtains the intuitive formulation

T ′(2) ≡
{

(S1, S2, K) |
S2

S1
=
λ1

γ1
, S1 + S2 =

( λ1 + γ1
λ1 + γ1 − 1

)
K, Q(γ1, λ1) = 0

}
and because γ1 + λ1 > 1 (see Section 4.4), the real options factor is greater than 1 as
expected.

One alternatively uses the value matching or one smooth pasting to determine the
coefficient A.

A =
(γ1 + λ1 − 1)(γ1+λ1−1)

γ
γ1
1 λ

λ1
1

(39)
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Example 4 (The (0,2) exchange problem). Consider the perpetual American option to pay
a deterministic sunk cost I = K(0) for a project whose value is the sum of two random assets
S1(t) + S2(t). When is the right time to exercise this option?

Intuition suggests to conjecture that the Bellman function of this project is

F(S1, S2) = BI
(S1
I

)γ1(S2
I

)λ1
as this would relax the general form of the (1,2) exchange problem. However, such
a motivation is not mathematically correct as the differential equation of the (1,2) ex-
change problem has one more state variable than the (0,2) exchange problem. We con-
jecture an alternative form of the Bellman function on the basis of variable separation
on the (0,2) exchange problem.

The separable solution of the (0,2) exchange problem differential equation is

F(S1, S2) = AS
γ1
1 S

λ1
2

with γ1 and λ1 positive andA expected to be positive after application of the boundary
conditions. Solving the differential equation using this general function holds if the
couple (γ1, λ1) is on the 0-level curve of an easily computed fundamental quadratic
form Q ′′(γ, λ). One show easily that this special quadratic form is a particular case of
the quadratic of the (1,2) exchange problem with µK = 0 and σK = 0. Thus we know
that λ1 + γ1 > 1.

The boundary conditions are the value matching F(S1(τ), S2(τ)) = S1(τ)+S2(τ)−I

and the two smooth pastings FS1(S1(τ), S2(τ)) = FS2(S1(τ), S2(τ)) = 1.
Solving with the two smooth pasting conditions gives the relation at trigger

γ1

λ1
=
S1(τ)

S2(τ)
(40)

and an expression for A in terms of the price processes at trigger S1(τ).

A =
1

γ1S
γ1−1
1 S

λ1
2

=
1

γ1(
λ1
γ1

)λ1S
γ1+λ1−1
1

(41)

As one can not have the usual relation λ1 + γ1 = 1, we remain with two unknown
powers.

Using the value matching condition, relation (41) for A and the relation at trigger
(40), one obtains the investment rule

S1(τ) =
( γ1

γ1 + λ1 − 1

)
I. (42)

One can then use the standard algorithm with the prices ratio at trigger as a source
of information : given the price ratio at time t, one can find the two powers λ1 and γ1
and check if the investment criterion (42) holds.

The investment trigger has to verify the set of equations

T ′′(2) ≡
{

(S1, S2, K) |
S2

S1
=
λ1

γ1
, S1(τ) =

( γ1

γ1 + λ1 − 1

)
I, Q ′′(γ1, λ1) = 0

}
.

Using (40), one obtains the intuitive formulation

T ′′(2) ≡
{

(S1, S2, K) |
S2

S1
=
λ1

γ1
, S1 + S2 =

( λ1 + γ1
λ1 + γ1 − 1

)
I, Q ′′(γ1, λ1) = 0

}
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and again note than the real options factor is greater than 1.
One can compute the coefficient A.

A =
(λ1 + γ1 − 1)(λ1+γ1−1)

λ
λ1
1 γ

γ1
1 I

(λ1+γ1−1)
=

(λ1 + γ1 − 1)(λ1+γ1−1)

λ
λ1
1 γ

γ1
1

I(1−λ1−γ1)

We thus fall back on our initial intuition as we can write the general solution of the
(0,2) exchange problem as

F(S1, S2) = BI
(S1
I

)γ1(S2
I

)λ1
with

B =
(λ1 + γ1 − 1)(λ1+γ1−1)

λ
λ1
1 γ

γ1
1

.

Example 5 (The (2,0) exchange problem). Consider the perpetual american option to pay
the sum of two stochastic sunk costs K1(t) + K2(t) for a project whose value S(0) = V is
deterministic. When is the right time to exercise this option?

One can prove that the solution of the problem will take the form

F(K1, K2) = BV
(K1
V

)γ2(K2
V

)λ2
with (γ2, λ2) a negative point (i.e. λ2 < 0 and γ2 < 0) of the 0-level curve of the
fundamental quadratic form of the previous problem. The proof is immediate from
the preceding example.

7 Conclusion

In this paper, we solve the real option problem of the exchange between n and m
assets using dynamic programming. Our analysis assumes that each asset follows a
geometric Brownian motion, and that the exchange option is American and perpet-
ual. We are thus in the general framework of real option initiated by Mc Donald and
Siegel[11].

We develop the approach on the simple two to one asset exchange that we later ex-
tend to the general case. We build up intuition by first considering the case of uncorre-
lated risk factors and find a product power form for the solution of the Bellman partial
differential equation. We then note that this solution also solves the Bellman partial
differential equation of the correlated case. In this process, we derive a quadratic rela-
tion that the exponents of the different factors of the product form need to satisfy. We
refer to this relation as the fundamental quadratic form.

The fundamental quadratic form, together with the boundary optimality condi-
tions define a stopping time that triggers the investment. This is obtained as follows.
The value matching condition implies homogenity of degree one of the Bellman func-
tion. This is a second condition on the exponents of the Bellman function that re-
duces the set of possible exponents to a manifold of dimension 1. The smooth pasting
conditions can be reduced to two relations between the three state variables that de-
fine a manifold of dimension 1.These relations involve the exponents of the Bellman
function. All in all these define a trigger described by a manifold of dimension 2. A
2-dimensional trigger is quite intuitive for a three assets problem.
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The Bellman function of the project depends on the value of the assets at the ex-
ercise point. In constrast with standard real option problems, the Bellman function
cannot therefore be computed ex ante, that is, before the first exit time from the con-
tinuation region. We can however compute an ex ante value of the project as an ex-
pectation of the Bellman function using Monte Carlo simulation. We show that this
expectation also satisfies Bellman partial differential equation.

We show in numerical treatment that the solution of this three assets problem has
a good real option behavior. Among other things, the incentive to wait increases with
the volatility of every asset.

We then extend this result to the n to m exchange problem. Using the same rea-
soning we find a trigger of dimensionm+ n− 1.

Then we define the key concept of this paper : the filtration matching conditions.
With more than two assets, one has to use the filtration generated by the processes up
to current time. In a n+m exchange problem, one need n+m− 2 conditions coming
from observations.

Additionnal problems are treated as application of the general method.
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A The (1,1) exchange problem

A.1 Proof of Proposition 1

Proof. We assumed a solution

F(S, K) = AK
(S
K

)β
.

Replacing F by this general solution in the differential equation (1) we find that βmust
be a root of the fundamental quadratic

Q(β) ≡ 1
2
β(β− 1)

(
σ2S + σ2K − 2ρSKσPσI

)
+ β(µS − µK) − (r− µK).

One still needs to apply the 3 boundary conditions. One notes β1 the positive root
of the fundamental quadratic in the following. At the point (S(τ), K(τ)) where in-
vestment is optimal, one has continuity in the value of the project and "high contact"
conditions.

The first condition is the well known value matching

F(S(τ), K(τ)) = S(τ) − K(τ). (43)

At the optimal point the value of the option to wait is just equal to the value of the
running project. One gives up the option to wait for a project where its value is at
least the sunk cost plus the option to defer. The second and third conditions are the
"smooth pasting" conditions.

FK(S(τ), K(τ)) = −1 (44)
FS(S(τ), K(τ)) = 1 (45)

The interpretation of these relations is that if the Bellman function weren’t smooth at
the border between the two regions one could do better exercising at an other point.

The application of these conditions leads to

1

A
= (β1 − 1)

(S(τ)
K(τ)

)β1 1

A
= β1

(S(τ)
K(τ)

)β1−1
.

The trigger relation between S(τ) and K(τ) makes these two relations actually the
same. One find the condition at trigger

S(τ) =
β1

β1 − 1
K(τ)
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and the coefficient A.

A =
(β1 − 1)β1−1

β
β1
1

Note that we obtained the complete solution without even using the value matching
condition. This indicate that once the homogeneity stated, a third boundary condition
is redundant.

A.2 Proof of Proposition 2

Proof. Introducing the solution

F(S, K) = Af(S)g(K)

in the differential equation and dividing by F(S, K), we obtain a separable expression
in S and K. One can express this equation as an equality between a function of S and
a function of K and write these two expressions as equal to a constant k.

µSS
f ′(S)

f(S)
+
1

2
σ2SS

2 f
′′(S)

f(S)
= −µKK

g ′(K)

g(K)
−
1

2
σ2KK

2g
′′(K)

g(K)
+ r = k

Each of these relation describe a — one dimensional — real option problem:

µSSf
′(S) +

1

2
σ2SS

2f ′′(S) − kf(S) = 0

µKKg
′(K) +

1

2
σ2KK

2g ′′(K) − (r− k)g(K) = 0

Standard real options theory gives us the solutions.

f(S) = ASβ1 g(K) = Kλ2

Of course β1 and λ2 are solutions of the two fundamental quadratics associated to
these two equations. Namely we have respectly that β1 is the positive root of QS(β)

and λ2 the negative root of QK(λ).

QS(β) =
1

2
σ2Sβ(β− 1) + µSβ− k

QK(λ) =
1

2
σ2Kλ(λ− 1) + µKλ− (r− k)

The constants k, A and the trigger condition must be determined by the usual bound-
ary conditions (43), (44), (45).

A.3 Proof of Proposition 4

Proof. Use for instance the first smooth pasting condition

β1

S(τ)
F(S(τ), K(τ)) = 1.

This is a condition on the coefficient A i.e.

A =
S(τ)

β1

1

Sβ1(τ)Kλ2(τ)
=

1

β1Sβ1−1(τ)Kλ2(τ)
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and we will use it with the value matching condition and the condition at trigger to
get the homogeneity.

Indeed the value matching yields

F(S(τ), K(τ)) = ASβ1(τ)Kλ2(τ) = S(τ) − K(τ)

then

ASβ1(τ)Kλ2(τ) =
1

β1Sβ1−1(τ)Kλ2(τ)
Sβ1(τ)Kλ2(τ) = S(τ) − K(τ) = S(τ) +

λ2

β1
S(τ)

and
S(τ)

β1
= S(τ) +

λ2

β1
S(τ)

thus
1 = β1 + λ2.

Note that the homogeneous solution of the Proposition (1) allows one to determine
β1. One then find λ2 using λ2 = 1 − β1. One can check that without correlation, the
same constant k holds in the two quadratics QS(β) and QK(λ) defined in the proof of
the Proposition 2 i.e. that

k =
1

2
σ2Sβ1(β1 − 1) + µSβ1 = r−

1

2
σ2Kλ2(λ2 − 1) − µKλ2.

B The (2,1) exchange problem

B.1 Proof of Proposition 6

Proof. Because the problem is separable, there exist two constants k1 and k2 such that
the problem is split in three one dimensional real options differential equations:

µSSf
′(S) +

1

2
σ2SS

2f ′′(S) − k1f(S) = 0

µK1K1g
′(K1) +

1

2
σ2K1K

2
1g
′′(K1) − k2g(K1) = 0

µK2K2h
′(K2) +

1

2
σ2K2K

2
2h
′′(K2) − (r− k1 − k2)h(K2) = 0

Their solution are easily found as

f(S) = Sβ1 g(K1) = K
λ2
1 h(K2) = K

γ2
2

Again β1, λ2 and γ2 are solutions of the three fundamental quadratics associated to
these three equations. The constants k1, k2 and A must be determined by the (2,1)
exchange boundary conditions.
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B.2 Proof of Proposition 8

Using the value matching condition

F(S(τ), K1(τ), K2(τ)) = S(τ) − K1(τ) − K2(τ)

and using the Bellman function and the conditions at trigger given by Proposition 7,
we obtain

F(S(τ), K1(τ), K2(τ)) =
1

β1Sβ1−1(τ)K
λ2
1 (τ)K

γ2
2 (τ)

Sβ1(τ)Kλ21 (τ)K
γ2
2 (τ) =

S(τ)

β1

= S(τ) − K1(τ) − K2(τ) = S(τ) +
λ2

β1
S(τ) +

γ2

β1
S(τ)

or
1

β1
S(τ) = S(τ) +

λ2

β1
S(τ) +

γ2

β1
S(τ).

Hence
β1 + λ2 + γ2 = 1.

B.3 Optimal exercise algorithm (Section 3.5)

One does not know the time at which the investment trigger will be reached. This
investment time is a random time τ described by a rule. We hope that τ is a stopping
time.

Time τ is a stopping time if and only if one can determine whether the threshold
is reached at time t or not from informations up to time t.12 In other words, τ is a
stopping time if one can say if τ ≤ t according to informations up to time t i.e. to
the σ-algebras generated by the random processes up to time t. If our decision rule
is not a stopping time it’s dramatic as one is not able to invest at the precise optimal
moment.

To see that τ is indeed a stopping time, one has to prove that at each moment we
can check if we are at the trigger or not. Because the problem is stationnary, it suffices
to prove that we can check it at a single moment.

At time t one knows all the history of all processes for time before t. Precisely the
sequence of σ-algebras generated by the three processes is the filtration Ft and each
process is adapted to this filtration. One knows precisely at time t the value of the
ratio of the two costs.

Relation (16) must hold at time t if it is optimal to exercise the option. In particular,
one has the observations of the costs ratio. Define

KObs2 (t)

KObs1 (t)
= ηObs(t).

One does not know if the trigger has been reached. Maybe it did. Just in case state

KObs2 (t)

KObs1 (t)
= ηObs(t) =

γ̄2

λ̄2

with for now γ̄2 and λ̄2 candidate powers for the Bellman function of the project. This
is a relation between the two candidates and it is available now at time t i.e. it is

12A fluent and clear description of stopping time is given in Shreve[16]. See Oksendal[13] for mathe-
matical aspects in Ito diffusions.
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Ft-adapted. One can put it in the quadratic form. It becomes a simple one variable
second degree quadratic and one can find his unique negative roots. Thus using back
this relation the values of the candidates λ̄2 and γ̄2 are univoquely determined.

Now we have to check if these candidates are good i.e. if one is at the trigger. If it
is, the observation SObs matches the trigger condition on S. Use for instance relation
(17). One must have13 :

SObs(t) =
λ2 + γ2 − 1

λ2
KObs1 (t)

If the last relation holds the trigger is reached. One can state λ2 = λ̄2 and γ2 = γ̄2.
Then one is still at time t and one knows that τ = t.

If the last don’t holds one has to wait for more informations. One knows that τ > t.
One wait until time t + dt for new values for the costs and price. One computes the
new ηObs and check if for this new ηObs the trigger condition holds.

To sum up, as at time t one knows if τ = t or if τ > t, τ is a stopping time. One
now has a procedure to find the investment trigger.

C The (n,m) exchange problem

C.1 Proof of Proposition 12

Proof. We use the single variable X for the costs {Kk : k = 1, 2, · · · , n} and the prices
{Ss : s = 1, 2, · · · ,m}. We note X = {Xi : i = 1, 2, · · · , n+m} with

X< = (X1, · · · , Xn) = (K1, · · · , Kn)

X> = (Xn+1, · · · , Xn+m) = (S1, · · · , Sm).

Similarly, we note c = {ci : i = 1, 2, · · · , n+m} with

c< = (c1, · · · , cn) = (a1, · · · , an)

c> = (cn+1, · · · , cn+m) = (−b1, · · · ,−bm)

such that the value of the option at the exercise point is simply

F(X(τ)) =

n+m∑
i=1

ciXi(τ).

The standard dynamic programming approach in real options leads us directly to
the differential equation of the (n,m) problem exchange. We use the standard notation
ρij for the correlations between Xi and Xj.

ρii = 1 ∀i
ρij = ρji ∀i,∀j

13With a little algebra, such relation could have be stated in terms of K2 or K1 + K2. One can directly
check that

S
Obs(t) =

λ2 + γ2 − 1

λ2
K
Obs
1 (t) =

λ2 + γ2 − 1

λ2

λ2

γ2
K
Obs
2 (t) =

λ2 + γ2 − 1

γ2
K
Obs
2 (t).

S
Obs(t) =

λ2 + γ2 − 1

λ2
K
Obs
1 (t) =

λ2 + γ2 − 1

λ2 + γ2

λ2 + γ2

γ2
K
Obs
1 (t) =

λ2 + γ2 − 1

λ2 + γ2
(KObs1 (t) + KObs2 (t)).
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and δij is the Cronecker delta i.e.

δij = δji = 0 if i 6= j

δij = 1 if i = j.

We note X(τ) the first exit time of the continuation region. The (n,m) exchange differ-
ential system is given by

n+m∑
i=1

µiXiFi(X) +
1

2

n+m∑
i=1

n+m∑
j=1

ρijσiσjXiXjFij(X) − ρF(X) = 0 (46)

F(X(τ)) =

n+m∑
i=1

ciXi(τ) (47)

Fi(X(τ)) = ci ∀i (48)

The first equation is just the Bellman differential equation. There is no immediate
profit until the exchange occurs thus the simplest form for the differential equation.
The second equation is the value matching condition while the final set of equations
are smooth pastings.

We skip the no-correlated case. We will directly check that the multiplicative
power form solves the Bellman differential equation along with the value matching
and the smooth pastings conditions.

Assume a multiplicative power form for the solution.

F(X) = A

n+m∏
i=1

X
αi
i

First we check that this function is solution of the general differential equation. To do
so we compute :

Fi(X) = αi
A

Xi

n+m∏
j=1

X
αj
j =

αi

Xi
F(X)

Fij(X) =

{ αiαj
XiXj

F(X) if i 6= j
αi(αi−1)

X2i
F(X) if i = j

Put the defined F in the Bellman differential equation. One find that

F(X)

[ n+m∑
i=1

µiαi +
1

2

n+m∑
i=1

n+m∑
j=1

ρijσij

{
δijαi(αi − 1) + (1− δij)αiαj

}
− ρ

]
= 0

The function F is solution of the Bellman differential equation as soon as {αi : i =

1, 2, · · · , n+m} belong to the 0-level curve of an n+m quadratic form.

Q(~α) ≡
n+m∑
i=1

µiαi +
1

2

n+m∑
i=1

n+m∑
j=1

ρijσij

{
δijαi(αi − 1) + (1− δij)αiαj

}
− ρ

Here we showed that with special conditions between the roots, we have a solution
for the Bellman differential equation. Note that we get a n+m dimensions quadratic
form.
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In the (2,1) exchange problem, we found a 2-dimensions quadratic form, instead
of a 3-dimensions quadratic form. That is because of the homogeneity propriety : one
reduce the problem from 3 to 2 dimensions. Here we’ll do the same.

If we show that the Bellman function must be homogeneous of degree one, we can
reduce the fundamental quadratic from n+m to n+m−1 dimensions. Homogeneity
is the second and last part of the proof.

We want to proof that to solve the exchange problem, the Bellman function must
be homogeneous of degree one. Let’s start by the smooth pasting conditions.

Fi(X(τ)) =
αi

Xi(τ)
F(X(τ)) =

αi

Xi(τ)
A

n+m∏
k=1

X
αk
k (τ) = ci ∀i

= AαiX
αi−1
i (τ)

n+m∏
k=1
k6=i

X
αk
k (τ) = ci ∀i

thus A =
ci

αiX
αi−1
i (τ)

∏n+m
k=1
k 6=i

X
αk
k (τ)

∀i.

One has to keep in mind that A is a constant. Then, with i 6= k, one has

A =
ci

αiX
αi−1
i (τ)

n+m∏
l=1
l 6=i

X
αl
l (τ)

︸ ︷︷ ︸(∏
l 6=i
l 6=k

X
αl
l (τ)

)
X
αk
k (τ)

=
ck

αkX
αk−1
k (τ)

n+m∏
l=1
l 6=k

X
αl
l (τ)

︸ ︷︷ ︸(∏
l 6=i
l 6=k

X
αl
l (τ)

)
X
αi
i (τ)

Thus we find
Xk(τ)ck
αk

=
Xi(τ)ci
αi

Thus the implications of the smooth pastings are that, at the trigger

Xk(τ)

Xi(τ)
=
αk

αi

ci

ck
∀i 6= k.

There is n+m variables. There isC2n+m such relations14 although justm+n−1 of these
equations are linearly independant. These relations come from the smooth pastings
and only hold at trigger.

We finish the proof by the application of the value matching condition. This con-
dition also holds only at the investment trigger.

A

n+m∏
l=1

X
αl
l (τ) =

n+m∑
l=1

clXl(τ)

Now use the fact that at the trigger, A is given by

A =
ci

αiX
αi−1
i (τ)

∏n+m
k=1
k6=i

X
αk
k (τ)

∀i.

14Here C2n+m is the number of combinaisons of two elements picked in a set of n+m elements.
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Then for any given i, the value matching condition gives :

ci

αiX
αi−1
i (τ)

∏n+m
l=1
l 6=i

X
αl
l (τ)

X
αi
i (τ)

n+m∏
l=1
l 6=i

X
αl
l (τ) =

n+m∑
l=1

clXl(τ)

Then
ciXi(τ)

αi
=

n+m∑
l=1

clXl(τ) =

n+m∑
l=1

clXi(τ)
αl

αi

ci

cl

thus
n+m∑
l=1

αl = 1.

The Bellman function must be homogeneous of degree one.

F(X) = A

n+m∏
i=1

X
αi
i = AXk

n+m∏
i=1
i 6=k

(Xi
Xk

)αi
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