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Abstract

As distributed generation (DG) continues to expand, larger low-voltage
networks will be required in the future. However, regulated distribution
network operators (DNOs) need to invest in new infrastructure without
knowing a relevant determinant of network costs, the future amount of
DG. Due to uncertainty, optimal network capacity needs to reflect the
expected demand for capacity over all possible DG states. Therefore, not
all capacity will be used if a low level of DG occurs. Optimal regula-
tion that is set under asymmetric information about future DG needs to
create incentives for the DNO to invest in this ‘excess capacity’and also
encourage optimal network utilization. In this case, an option menu that
includes fixed fees and positive network charges on DG-producers fulfills
these requirements and implements the first-best optimum. On the con-
trary, price-cap and revenue-cap regulation lead to either underinvestment
or high information rents to the DNO.
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1 Introduction

In Europe, many low-voltage networks will become obsolete within ten to fifteen
years. The imminent depreciation of existing networks requires that distribution
network operators (DNOs) invest in new network infrastructure. Concerns arise
whether DNOs will invest optimally, particularly in the optimal network size
when replacing their old infrastructure with a new one. These concerns arise
for two reasons.
First, DNOs face large uncertainty about the diffusion of new technologies.

Uncertainty concerns the propagation of small-scale distributed generation (DG)
that may be an important driver of network costs. Depending on the cost and
the effi ciency of DG technologies, such as solar photovoltaic (PV), micro-CHP,
and heat pumps,1 electricity production by households may become a driver of
network capacity. However, the replacement of polluting cars by new clean elec-
tric cars may also substantially raise households’consumption of electricity. The
uncertainty about future demand for network capacity may affect investment
into the network because network investments are lumpy, with high investment
costs, and have the economic lifetime of 40 to 50 years. This implies that if the
invested capacity becomes insuffi cient in the meantime, extending the network
with additional cables is extremely expensive.2

Second, regulation influences the DNOs’investment incentives. Regulation
can improve incentives by adequately taking into account the effects of new
technological developments and the relating uncertainty. The current regulatory
practices with respect to DG vary over Europe. For instance, energy regulators
in the Netherlands and the UK, have already been considering DG as a potential
cost driver. They allow higher revenues to DNOs that have a larger amount of
DG connected to the network (see NMa 2010 and Jamasb and Marantes 2011).3

Furthermore, DNOs in the UK may also impose user tariffs on DG, while in the
Netherlands this tariff is set at zero by law (Niesten 2010 and De Joode et al.
2010). In most other EU countries, the regulation does not account for DG and
there are no tariffs for DG producers (Nieuwenhout et al. 2010).
Taking both these factors into consideration, we address three questions.

First, what is the socially optimal level of investment under uncertainty about
the development of DG technologies? Second, how can it be implemented by ex-
ante regulation? Finally, what are the effects of other commonly used regulatory
regimes, and why are these regimes suboptimal under uncertainty?
We analyze these questions in a one-shot sequential game theoretical model

with households, a DNO, and the regulator. Households consume and produce
electricity by employing DG devices at home. Both consumption and production
fluctuate over time, and the maximum of the peak electricity inflow (peak-
consumption) and outflow (peak-production) determines the amount of network

1Strictly speaking, heat pumps are not considered as DG-technologies, but they produce
electricity as well, similarly to DG.

2This is especially true for underground cables because the costs of digging into the ground
to lay cables down are substantial.

3 In the Netherlands, only mid- and large-scale DG producers are considered.
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capacity a household needs to buy (measured in kW). Ex ante, the households’
peak-consumption is known to all players, but there is uncertainty about DG.
In particular, the DG state may turn out to be either low or high. The DNO
invests under uncertainty, after which it observes the realized state and sets
network tariffs for households. We allow for a three-part tariff, consisting of
two separate linear network-capacity tariffs on peak-consumption and peak-
production and a fixed fee.4 Similarly to other theoretical papers on incentive
regulation (e.g., Lewis and Sappington 1988), we assume that the information
about the realized state of DG is private to the DNO and cannot be verified by
the regulator. In practice, the regulator observes only aggregated information
about households’peaks, since collecting detailed information on the allocation
of DG and consumption peaks over the entire network would involve substantial
costs.
Therefore, the regulator cannot write a contract conditional on the DG state.
We find that if a high future DG production is likely —for instance because

DG technologies will become cheaper or DG will generate high revenues —then
the optimal network capacity is fully determined by DG peak and exceeds the
capacity that is needed for peak-consumption.5 We distinguish this situation
as a DG-driven network and further focus on it as it represents the most rel-
evant case for us.6 Due to uncertainty, it is optimal in this case to install the
amount of network capacity that is not fully used in the low DG state in or-
der to be able to accommodate more DG in the high state. In the high state,
the DG peak is higher than the consumption peak and there is no excess ca-
pacity. This optimum represents the first-best solution. The relating optimal
linear tariff on DG capacity - in contrast with the most common EU practice,
which is zero - is positive while the linear tariff on peak-consumption is zero.
These tariffs encourage optimal network usage and can be seen as an alternative
to physical demand rationing, such as network service interruptions. Further-
more, the DG tariff contains a mark-up due to uncertainty; therefore, the fixed
charge is negative in order to reduce the relating rents of the DNO. In the low-
production state, the network capacity exceeds households’peak-consumption
and -production. Therefore, both linear tariffs become zero, and the positive
fixed fee compensates for the optimal excess network capacity installed under
uncertainty.
We also argue that since the DNO has superior information on the allocation

of households’peaks, the regulator can make use of this information by offering
an option menu. An option menu contains three-part tariffs for each potential
state of the world, which tariffs correspond to optimal prices. In this way, the
option menu can implement the first-best optimum. Our results also show that
current regulatory practices differ from the optimal pricing scheme. With no

4This tariff structure is flexible and is often used in network industries (see e.g., Laffont
and Tirole 1991, Lewis and Sappington 1988).

5Chen et al. (2006) have put a similar argument forward.
6 If consumption determines network capacity, then the DNO invests under certainty and

sets a single positive consumption and zero DG tariff. The regulator can also observe demand
and determine the respective single price cap.
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price discretion, as in the case of price-cap regulation, the DNO earns a high
information rent. At the other extreme, full price discretion, such as under
revenue-cap regulation, ruins investment incentives by allowing the DNO to
increase profits by simply rationing household demand for network capacity by
means of high tariffs.
Relating literature
Due to the novelty of the problem, no economic literature exists that ana-

lyzes the effects of regulation on investment in distributed generation by house-
holds and in the optimal network size by the DNO under uncertain demand.
Nonetheless, our results relate to the literature on incentive regulation, partic-
ularly about information problems on the demand side of the market.
First of all, the literature on optimal investments of regulated monopolies

under uncertain demand is limited. Dobbs (2004) shows that intertemporal
price-cap regulation provides little investment incentives for the DNO. Since
Dobbs analyzes the optimal timing of investments, his results about delayed
investments can be translated as underinvestment for our case. However, his
paper does not consider asymmetric information about demand and does not
specify optimal regulation.
Second, a somewhat more extensive literature exists that analyzes the effects

of asymmetric information about demand on pricing decisions and determines
the relating optimal regulation. Lewis and Sappington (1988) analyze a single-
product monopoly when fixed fees are possible. They recommend an option
menu and thus price discretion if the firm’s marginal costs are non-decreasing
because then the monopoly can employ its superior knowledge about demand
when setting prices and achieve the first-best outcome. The most important
differences between Lewis and Sappington (1988) and our paper are that we
consider multiple products - peak-consumption and -production - and the in-
vestment decisions of regulated monopolies
Regarding the first difference, the two-product model of Armstrong and

Vickers (2000) is more closely related to our analysis. They find that whether
price discretion is necessary depends on the nature of demand shocks, and how
shocks influence price elasticities. However, compared to our paper, they as-
sume information asymmetry relating to both products and no fixed fees (i.e.,
only second-best optimum is possible). Because of these differences, we find
unambiguously that to achieve the first-best optimum, the DNO should be of-
fered price discretion in the form of an option menu consisting of two sets of
three-part tariffs.
In addition, Armstrong and Vickers also do not consider incentives for in-

vestment, particularly under uncertainty about demand, which makes our result
different from the standard literature on incentive regulation under unknown de-
mand.
Finally, our results about offering multiple products resembles the peak-load

pricing literature (see e.g., Crew et al. 1995). According to this literature, the
optimal peak-period tariff is higher than the off-peak tariff because peak drives
network costs. In our case of a DG-driven network, DG determines network
capacity, and therefore, the linear tariff on DG should be higher than the linear
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tariff on peak-consumption.

The paper proceeds as follows. In Section 2, we describe our model. We find
the social optimum in Section 3 and the relating optimal regulation in section 4.
We evaluate several commonly used regulatory regimes in Section 5. In Section
6, we discuss policy implications. In Section 7, we draw conclusions.

2 Model

A monopoly distribution network operator (DNO) provides network infrastruc-
ture in a local area, through which households can transport electricity. We con-
sider them as homogenous and therefore from now on focus on a representative
household. A household is a consumer and a producer of electricity. We refer to
the household’s electricity production as distributed generation (DG), for which
it needs to install one type of DG-devices, such as solar PVs or micro-CHP.7

The household has to buy also network capacity to be able to flow electricity
out of and into the network at any moment in time. This capacity can be seen
as the size or the number of cables laid down between the transformer and the
household, and is measured in kW. Peaks in consumption and production over
the entire period determine this capacity. We assume that the future cost of
installing DG devices can be high or low, thus reducing or increasing peak DG
production, respectively. The future development of DG technologies and so the
costs are unknown the DNO at the time of investment in a new network. There-
fore, to determine the network size, the DNO maximizes its expected profit.
The DG cost is revealed to the DNO and the household only after the net-

work has been built. Then the DNO offers a take-it-or-leave-it contract to the
household, who in turn either accepts or rejects it. The contract specifies lin-
ear tariffs for peak-consumption and peak-production, and a fixed fee. As we
mentioned in the introduction, this type of non-linear pricing is commonly used
in network industries. The linear tariffs control network usage and, therefore,
represent an alternative to other forms of rationing, such as licenses or bans.
At the same time, a fixed fee allows for the effi cient marginal-cost pricing and
can be used as an instrument to redistribute welfare between the DNO and
households.
Furthermore, the DNO’s tariffs are subject to regulation. Similarly to the

analyses of monopoly regulation with unknown demands by Lewis and Sapping-
ton (1988) and Armstrong and Vickers (2000), we assume that actual demands
are not observable by the regulator, although it can be verified that the firm is
serving all demand at its prices. The regulator has to face high costs in order
to observe the actual allocation of peak-consumption and -production over the
entire network. This means that regulatory contracts that use ex post informa-
tion on realized demand are infeasible. In particular, global price-cap regulation

7 In this model, we only focus on the presence of new technologies in the production side.
We could model consumption-side developments, such as electric cars, in a similar way.
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whereby the regulator caps the average price offered by the firm using the real-
ized outputs as weights is ruled out. Therefore, we restrict our attention to ex
ante regulation regimes. Optimal regulation should be such that it motivates
the DNO to install the welfare-maximizing amount of capacity and to achieve
its optimal utilization.

t=5

Households
consume
and produce
electricity

t=3

DNO chooses
contract from
regulatory
scheme

t=1

DNO invests
in network
size

DGproduction
state reveals to
households and
DNO

t=0

Regulator
determines
regulatory
scheme

t=4

Households
can install
DG and buy
network
capacity

Figure 1. Timing of decisions

We solve this model (illustrated also in Figure 1) by backward induction for
two cases. First, we calculate the social optimum as if the regulator operated the
DNO and could choose the network capacity and set prices conditional on the
DG cost (Section 3). After that, we determine the optimal regulatory contract
(Section 4).

2.1 Representative household

We assume that households are homogeneous, therefore we consider a single
representative household. This household consumes and produces electricity.
Since electricity consumption and production patterns are stochastic and their
peak and off-peak moments vary in time, consumption may reach its peak at the
moment when there is no production, and vice versa. For example, a solar panel
does not produce electricity in the dark evening hours, while consumption may
reach its maximum in these hours of the day. On the contrary, at the production
peak, which is at daylight, the household may consume very little electricity. A
reliable connection to the network has to be such that it accommodates peak-
consumption and -production at any moment in time, therefore even in cases
when only consumption or production occurs and at the same time peaks. To
take this worst-case scenario into consideration, we argue that the household’s
maximum load approximates peak-consumption q or peak-production z, both
measured in kW.8

8The following mathematical formulation underlies this argument. Let Q(t) and Z(t) de-
note consumption and production load at time t, respectively. The network capacity a house-
hold buys should be as large as it allows for the maximum difference between consumption
and production loads over time, that is, maxt |Q(t)− Z(t)|. Using our notations, we know
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We assume that households derive utility from both products q and z, and
their preferences are separable in them. On top of that, the household has to
pay to the DNO to be able to transport electricity into and out of the network.
Demand for peak-consumption and -production will therefore depend on these
utilities and the capacity tariffs.
We denote the household’s preferences for q by the net utility function v(q).

Since the household can only increase peak-consumption by having more electric
equipment at home, which is increasingly expensive, we assume that the net
utility function has an inverted-U shape with a global maximum at qmax =
arg max v(q) > 0.9

Similarly, we assume that the household’s net utility of z is expressed by the
function p(z). Since the produced electricity can be sold in the market,10 this net
utility is simply the profit that a household can make at a given peak-production.
For simplicity, we assume that the revenue is expressed by a linear function rz.
In addition, costs can be seen as relating to a single fixed investment, however, z
determines the size of investment. Therefore, DG costs depend on z. For simple
exposition, we express DG costs by the convex function cz(1+z)

2 , where r, c > 0.
Consequently, we obtain the following quadratic functional form: p(z) = rz −
cz(1+z)

2 .11 This function has a global maximum at the point zmax = (r− c/2)/c.
Due to the uncertainty about the future development of DG technologies,

the DG-cost parameter c is initially unknown, only its distribution is common
knowledge. This parameter can take two values: cH corresponds to low DG costs
and consequently high DG state (H) and cL corresponds to high DG costs and
so low DG state (L). The probability of cH and cL is β and 1− β, respectively.
For the sake of simplicity, we also assume that cL = 2r, implying that DG is
not profitable in the low state: zL = 0. Furthermore, we assume that cH < 2r,
so that zmax,H > 0. Because no DG production occurs in state L, we drop the
indices H,L next to c and z. Therefore, state H is characterized by the low cost
parameter c and the relating peak-production z and net profit p(z) ≥ 0; and
state L is characterized by no production.
The household decides how much q and z to buy from the DNO. We assume

that the DNO charges the household three-part tariffs, comprising linear tariffs

that q = maxtQ(t) and z = maxt Z(t). It is also plausible to assume that there are moments
when consumption and production is zero: mintQ(t) = mint Z(t) = 0. As a consequence, it
may occur that for t̂ = argmaxQ(t) : Z(t̂) = 0 and for t̃ = argmaxZ(t) : Q(t̃) = 0, where t̂ 6=
t̃. It then follows that maxt |Q(t)− Z(t)| = maxt |Q(t), Z(t)| = max(q, z).

9The function v(q) satisfies the following conditions: v(0) = 0; v′ ≥ 0 for q ≤ qmax and
v′ < 0 otherwise; v′′ < 0.
10We assume that the household is price taker, and therefore, the electricity price is ex-

ogenously given. We also assume that the household’s total electricity production (kWh) is
proportional to its peak-production (kW). However, we ignore the possibility that the house-
hold may optimize its peak-production by switching DG facilities on and off. Therefore we do
not model the actual electricity production decisions of households.
11The function p(z) satisfies: p(0) = 0; p′ ≥ 0 for z ≤ zmax and p′ < 0 otherwise; p′′ < 0.
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on peak-consumption and peak-production, and a fixed fee:12 ,13

(tqL, 0, tL) in the low-production state, (1)

(tqH , tz, tH) in the high-production state.

While linear tariffs are assumed to be non-negative, we allow the fixed fee to
take both positive and negative values. A negative fixed charge is in fact a lump-
sum transfer that the network owner makes to households. Such transfers are
feasible in reality and can be imposed by the regulator.14 We can now express
the household’s surplus in each state as follows:

H : S(tqH , tz, tH) = v(qH) + p(z)− tqHqH − tzz − tH ,
L : S(tqL, 0, tL) = v(qL)− tqLqL − tL.

We can determine the household’s demand for q and z by maximizing these sur-
plus functions. Maximization yields the following first order conditions (FOCs):
v′i = v′(qi) = tqi for i = L,H and p′ = p′(z) = tz. By inversion, we obtain the
respective demand functions: qi = q(tqi) for i = L,H and z = z(tz). Further-
more, the linear tariffs need to satisfy the conditions tqi < v′(0) and tz < p′(0)
so that the household has a positive net-utility from buying these products. In
addition, for q and z always satisfies that q ≤ qmax and z ≤ zmax. We as-
sume that the household rejects the contract that the DNO offers and buys no
network capacity if its surplus is negative (S(tqH , tz, tH) < 0, S(tqL, 0, tL) < 0).

2.2 DNO

The monopoly DNO invests in a new local network and delivers network services
to households. Even though households are homogenous with respect to their
preferences, they may have different consumption and production patterns that
affect the aggregated demand for network services, called the network load. We
first derive the maximum load, and then determine the DNO’s optimization
problem.
Without loss of generality, we assume that the households are also homoge-

nous with respect to their electricity consumption profile. Therefore, the aggre-
gated peak-consumption on the network projected to a representative consumer
is also q. With respect to DG, we assume that the households’DG peaks do
not necessarily coincide, which is why the total production peak per household
may be less than z. We express that by ρz, where ρ (0 < ρ ≤ 1) is a parameter

12By setting separate prices on q and z, we assume that the DNO is able to measure
consumption and production peaks separately. In practice, this is the case with smart meters.
13We set the linear tariffs for peak-production in the low state as zero because the maximum

peak-production in that state is zero, which will not be affected by any other value of the DG
tariff.
14Also, in unregulated businesses, companies sometimes make such transfers to consumers:

think of free phones provided by telecom operators or presents to new subscribers.
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reflecting the degree of simultaneity in DG production.15 ,16 This implies that
the maximum load on the entire network is equal to max(q, ρz).We assume that
providing q and z on the network has no cost.

We denote the total network capacity installed by the DNO by k. We assume
that the investment costs are C(k) = Ck, where C is the marginal cost of
building network capacity. For simplicity, we do not include fixed investment
costs. If this cost is positive, it is simply covered by the fixed fee. We additionally
introduce the technical assumption that C < v′(0) to guarantee that the problem
has a non-trivial solution.
The DG state becomes known to the DNO before it sets prices to the house-

hold. However, the decision on k is taken under uncertainty. Therefore, the
DNO maximizes profits in both production states with respect to three-part
tariffs (1):

H : πH ≡ π(tqH , tz, tH , k) = tqHqH + tzz + tH − Ck,
L : πL ≡ π(tqL, 0, tL, k) = tqLqL + tL − Ck.

To determine network capacity, the DNO maximizes its expected profit:

Eπ(.) = βπ(tqH , tz, tH , k) + (1− β)π(tqL, 0, tL, k).

where β is the probability of high DG production.
We assume that outages and non-price rationing of demand for capacity are

not allowed in any state of the world. Therefore, the network capacity should
be suffi cient for peak-consumption and peak-production in both states:

k − qH ≥ 0, (2)

k − qL ≥ 0,

k − ρz ≥ 0.

2.3 Regulator

The regulator maximizes the weighted sum of the households’expected surplus
and the DNO’s expected profit:

EW (RC) = β (SH(RC) + απH(RC)) + (1− β) (SL(RC) + απL(RC)), (3)

where β is the probability of high DG production, RC stands for the regulatory
contract offered to the firm, and α denotes the weight on profit, 0 ≤ α ≤ 1. If
15Here the simultaneity coeffi cients are constant and do not depend on the number of

network users. This is a reasonable assumption, since in practice, the ratio of per household
network capacity and the respective individual peaks converges to a constant value as the
number of households increases.
16For example, if individual DG peaks of households are fully correlated (ρ = 1), such as

the case for solar PV, each household has its peak at the same time. Then the effective
contribution of each household to the peak-load on the network coincides with the individual
production peak: ρz = z. In contrast, when individual peaks are spread over time (ρ < 1),
e.g., in the case of micro-CHP or heat pumps, then the household’s effective contribution to
the peak-load becomes smaller: ρz < z.
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α = 0, the regulator only cares about households and is indifferent about how
much profit the DNO obtains. If α = 1, the regulator equally weighs household
surplus and the DNO’s profit, as if households fully owned the firm.
We consider two cases: first, we find the social optimum as if the regula-

tor operated the DNO and could choose the network capacity and set prices
conditional on the DG cost; and second, we determine the optimal regulatory
contract. In each case, the regulator has to consider several constraints to
guarantee the physical and financial feasibility of the DNO’s operation in every
production state.
To determine the social optimum, the regulator needs to meet capacity con-

straints (2).
Besides, we assume that the DNO has limited liability, implying that profits

should be non-negative in any state of the world. The reason for using this
assumption is as follows. Even though the firm signs the contract with the
regulator before knowing which production state will occur, it sets prices after
learning the realized production state, such as the case in Armstrong and Vickers
(2000) and Laffont and Martimort (2002). This means that the regulatory
contract should satisfy the following participation constraints:

π(tqL, 0, tL, k) ≥ 0, (4)

π(tqH , tz, tL, k) ≥ 0. (5)

When determining the optimal contract, the regulator also needs to take
the above mentioned constraints into consideration. In addition, the regulator
wants to make use of the DNO’s private information. Therefore, the regulatory
contract has to provide suffi cient incentives for the DNO to set tariffs according
to the realize state of the world. An option menu fulfills this goal (see, Joskow
2008). In the offered option menu, each three-part tariff is designated for one
production state. Hence, it has to be designed in a way that the DNO has
no incentive to choose the other tariff. Let

(
TLq , T

L
z , T

L
)
denote the three-part

tariff that is intended to be set in the low-production state and
(
THq , T

H
z , T

H
)

denote the tariffs intended for the high-production state. Therefore, tariffs must
satisfy the following incentive compatibility constraints of the DNO:17

H : THq q
H + THz z

H + TH > TLq q
L + TLz z

L + TL (6)

L : TLq q
L + TL > THq q

H + TH .

3 First-best optimum

In this section, we calculate the social optimum as if the DNO had no informa-
tion advantage and the regulator could choose the amount of capacity and set
prices. First, we determine the equilibrium and then we analyze its character-
istics.
17Network costs also affect the profits of the DNO, however they are the same in every state

(Ck) and therefore fall out of the inequalities.
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3.1 Equilibrium

Similarly to tariffs (1), we denote the regulated prices as (TqH , Tz, TH) and
(TqL, 0, TL) in the high- and low-production states, respectively. The regulator’s
objective function is:

EW (TqH , TqL, Tz, TL, TH , k) =

= β (S(TqH , Tz, TH) + απ(TqH , Tz, TH , k))

+ (1− β) (S(TqL, 0, TL) + απ(TqL, 0, TL, k))

The regulator maximizes social welfare subject to capacity constraints (2) and
participation constraints (4) and (5). The DNO’s non-negative profit conditions
always bind, thus we obtain that the optimal fixed charges exactly compensate
for the part of network costs that are not covered by the linear prices: TL =
Ck−TqLqL, TH = Ck−TqHqH−Tzz. The optimization problem then simplifies
to:

max
qL,qH ,z,k

{β (v(qH) + p(z)− Ck) + (1− β) (v(qL)− Ck) (7)

+λqH (k − qH) + λqL (k − qL) + λz (k − ρz)}.

The first observation from this expression is that the equilibrium value of the
expected welfare does not depend on α, that is, how the regulator weighs profits.
This occurs because the DNO makes zero profit in every state.
From (7), the first order conditions (FOCs) are:

∂

∂qL
: (1− β)v′(qL) = λqL (8)

∂

∂qH
: βv′(qH) = λqH (9)

∂

∂z
: βp′(z) = λzρ (10)

∂

∂k
: λqH + λqL + λz = C (11)

By using equations (8) and (9), we can show that qL = qH . We prove this by
showing that qL 6= qH is impossible. Suppose qL < qH . Then the capacity
restriction on qL cannot be binding: k−qL > 0, and therefore, the shadow price
of this capacity restriction must be zero, λqL = 0. Substituting this in the first
FOC, we obtain that v′(qL) = 0. Therefore, qL = qmax, which contradicts to
our presumption that qL < qH . Similarly, qL > qH is also impossible. Therefore,
they must be equal: qL = qH = q. As a consequence, the social planner sets
the same linear charge on peak-consumption in both states: TqL = TqH =
Tq. This result arises since the prices are set after the network has been laid
down. Consequently, from a social perspective, it is better to increase network
utilization as much as possible, rather than ration the network load by setting
a higher price in some state.
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By combining and simplifying (8)-(11), we obtain the following set of equa-
tions determining the equilibrium quantities of both products, q∗, z∗ and the
required network capacity, k∗:

v′(q∗) +
β

ρ
p′(z∗) = C (12)

k∗ = max(q∗, ρz∗)

q∗ ≤ qmax
z∗ ≤ zmax

Based on (12), we formulate the following proposition.

Proposition 1 Let k∗ denote the solution of (12). There may be three types
of optimal networks in equilibrium, which are characterized by the following
necessary and suffi cient conditions: (i) DG-driven network: q∗ = qmax < k∗ =
ρz∗ if βρ p

′( qmaxρ ) > C; (ii) consumption-driven network: ρz∗ = ρzmax < k∗ = q∗

if v′(ρzmax) > C; (iii) network-cost-driven network: q∗ = ρz∗ = k∗ for all other
specifications.

As capacity increases, both term in the left-hand side (LHS) of expression
(12) decreases. It is, therefore, optimal to increase network capacity as long as
the total marginal benefits from an additional capacity unit are still above the
marginal cost, up to the point when they become equal to each other. At some
level of network capacity, the net utility from one product may reach satiation
(i.e., one term in the LHS of expression (12) turns to zero), while the marginal
utility of the other product (i.e., the other term in the LHS of expression (12))
still exceeds the marginal network cost C. In such a case, any further increase
in network capacity is purely driven by the second product.
A similar result is known in the literature on peak-load pricing (see Crew

et al. 1995). In this literature, the same physical facility is used to produce at
two periods: ‘peak’and ‘off-peak’, which are treated as two different products.
It is namely the ‘peak’period that determines the capacity in equilibrium and
bears the infrastructure costs. Our result resembles the same principle. In a
DG-driven network, z drives network capacity and hence needs to bear network
costs. In a consumption-driven network, q corresponds to the ’peak’period. A
network-cost-driven network represents a special case, in which both products
drive network capacity.
As a consequence of Proposition 1, in DG-driven networks, the optimal net-

work size exceeds the peak-load in the low-production state. This excess capac-
ity (ρz∗ − qmax) is necessary because of the uncertain DG production. On the
contrary, in consumption- and network-cost-driven networks no excess capacity
is necessary in any state of the world because peak-consumption, which is (also)
the determinant of network size, is certain.
Given that v′(q) = Tq, p

′(z) = Tz and TL = Ck−TqLqL, TH = Ck−TqHqH−
Tzz, the optimal tariffs in the case of different network types write:
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Network type State Tariffs
(Tq, Tz, T )

Consumption-
driven

L,H (C, 0, 0)

DG-driven L (0, 0, Cρz∗)

H (0, 1βCρ,−
1−β
β Cρz∗)

Network-cost- L (v′(q∗), 0, (C − v′(q∗))q∗)
driven H (v′(q∗), p′(z∗), (C − v′(q∗))q∗ − p′(z∗)z∗)

(13)

In the case of a consumption-driven network, optimal tariffs reduce to a single
linear tariff on q, because the network size and the load is determined by peak-
consumption, which is common knowledge and so uncertainty plays no role in
the optimal decision. Consequently, Tq exactly covers the marginal cost and
Tz = 0. In addition, the transfer is also zero because of certainty: the DNO
makes no profit or loss that has to be compensated for. This case can be also
seen as a benchmark under certainty about demand.
In the case of a DG-driven network in the high state, the linear fee on DG

contains a mark-up, which is due to uncertainty. The more likely it is that DG
becomes cheap, the smaller the mark-up will be. As a consequence of a mark-
up, in the high state the fixed-fee is negative: it distributes the excess profit due
to this mark-up back to the household. In the low state, the household simply
pays a positive transfer that covers network costs. Tariffs on peak-consumption
can be set at zero because this capacity never exceeds peak-production and thus
the network size.
In a network-cost-driven network, tariffs satisfy Tq + βTz

ρ = C. This expres-
sion shows that Tq < C, implying that TL > 0. Yet, TH ≷ 0 depending on the
magnitude of the marginal network cost C.

Our results correspond to the first-best social optimum. The maximum
expected social welfare is:

EW ∗ = v(q∗) + βp(z∗)− Ck∗. (14)

3.2 Comparative statics

Let us now analyze how the values of certain parameters affect the optimal
network size k∗ and the occurrence of different network types. We are partic-
ularly interested in the effects of DG-cost parameter c, its probability β, the
marginal network cost C, and the DG technology dependent simultaneity of
peak-production ρ.
Taking derivatives of the first implicit function in (12) with respect to these

parameters allows us to evaluate these effects, which are summarized in the
following proposition (for the proof see Appendix 8.1):
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Proposition 2 The optimal network capacity k∗ is non-decreasing in β and
non-increasing in C and c. The effect of a marginal change in parameter ρ on
k is generally not monotonous and depends on the relative coeffi cients of risk
aversion of function p in equilibrium. In particular, k∗ is non-decreasing in ρ
as long as the relative coeffi cient of risk aversion of function p is smaller than
1.

To interpret the proposition, let us focus our attention on a DG-driven net-
work, which is the most relevant case in our analysis. There, in the social
optimum k∗ = ρz∗. It implies that the network capacity and peak-production
are proportional to each other. First, we analyze the effects of β and C. We can
easily see that the optimal tariff households pay for peak-production, Tz = ρC

β
is ceteris paribus decreasing in the probability of low DG cost and increasing in
the network cost. The smaller the β, the larger the expected marginal network
cost is. It implies a higher mark-up and a lower optimal peak-production and
network size. Similarly, a larger marginal network cost has to be covered by a
larger linear tariff that reduces z and k.

Second, DG-cost parameter c only indirectly influences peak-production. We
know that the marginal net utility p′ is monotonously decreasing in c, that is,
the larger the c, the less marginal net utility a household obtains for a given
peak-production. As a consequence, for a given tariff, a larger DG cost implies
a smaller optimal peak-production and network size.
Finally, effect of the simultaneity factor ρ is not monotonous. On the one

hand, the more production peaks coincide, the larger the effective marginal
network cost (ρC) is, lowering peak-production in equilibrium. On the other
hand, for peak-production that largely correlate, for instance as in the case of
solar PV, a larger network capacity is required. Therefore, whether network
capacity increases or decreases depends on the relative magnitude of these two
opposite effects. For peak-production substantially lower than at satiation, the
network capacity is non-decreasing in ρ. In practice, it indicates a larger network
in the case of solar PV, where peaks coincide (high ρ), than a network mainly
with micro-CHP, where peaks distribute more evenly during the day (lower ρ).
For peak-production close to satiation, the opposite result holds.

4 Optimal regulation: an option menu

It is a well-known result in the literature that in the case of homogenous con-
sumers and the firm having complete information about the demand, an unreg-
ulated monopoly sets total network capacity and linear tariffs at the effi cient
level if it is allowed to charge a fixed fee (see e.g., Lewis and Sappington 1988
and also Appendix 8.3 for our model). Then the firm appropriates household
surplus by this fixed fee and achieves a positive profit. If the regulator values
consumer surplus just somewhat more than the firm’s profit (α < 1 in expression
(3)), a positive profit creates an expected welfare loss compared to our social
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optimum (14):

∆EWUR = (1− α) (v(q∗) + βp(z∗)− Ck∗) > 0, (15)

where UR stands for the unregulated monopoly case. This welfare loss necessi-
tates regulation.
However, as we discussed in Section 2.3, the regulator has an information

disadvantage compared to the DNO. The regulator can reduce the information
rent to the minimum by offering an option menu because it allows the monopoly
some level of price discretion (see also Lewis and Sappington 1988 and Arm-
strong and Vickers 2000).
The menu specifies two three-part tariffs, from which the DNO can choose:(

TLq , T
L
z , T

L
)
denotes the three-part tariff that is intended to be chosen in the

low-production state and
(
THq , T

H
z , T

H
)
denotes the tariffs intended for the

high-production state. For this contract, several constraints need to satisfy:
capacity constraints (2), participation constraints (4) and (5), and incentive
compatibility constraints (6).
In the proposition, we show that given these constraints the regulator can

design an option menu for the DNO in such a way that in achieves the first-best
optimum. In other words, the firm will accept this offer, install the optimal
amount of capacity k∗, and, depending on the production state realized, picks
the three-part tariff within the menu that leads to maximum welfare (see the
proof in Appendix 8.2).

Proposition 3 The following menu implements the social optimum:(
TLq , T

L
z , T

L
)

= (Tq, 0, T )(
THq , T

H
z , T

H
)

= (Tq, Tz, T − Tzz∗),

where Tq = v′(q∗), Tz = p′(z∗), and T = Ck∗ − Tqq∗ are the socially optimal
tariffs based on quantities computed from (12).

As a consequence, tariffs in the option menu correspond to the tariffs in the
social planner’s case (13).
This means that the regulation will be able to achieve the first-best optimum:

the socially optimal level of capacity and its utilization despite its information
disadvantage about the demand. Compared to the standard literature on incen-
tive regulation, which most commonly receives second-best optimum, we obtain
the first-best outcome for two reasons. First, the DNO is allowed to set a fixed
fee that enables effi cient (marginal cost) pricing for both products and achieves
optimal utilization and investment incentives. Second, the investment costs are
known by the regulator (the information asymmetry is present on the demand
side), therefore the regulator does not need to face effi ciency losses. Since two
states are possible, the DNO has some level of price discretion and can choose
a contract according to the realized demand state. Consequently, the DNO’s
information rent reduces to zero. Note also that the tariffs in the menu depend
only on model parameters, not on other values (e.g., not on the DNO’s realized
revenue, which may be observable by the regulator).
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5 Evaluating common regulatory schemes

In this section, we consider two commonly used ex ante regulatory schemes:
three-part-price-cap and revenue-cap regulation. By analyzing these regulatory
schemes, we can explain why ’no’or ’full’price discretion is suboptimal in the
presence of uncertainty about DG.

5.1 Three-part price cap

From Section 3.1, we know that in the case of a consumption-driven network,
the presence of uncertainty does not influence the equilibrium outcome and
therefore, a single three-part tariff can implement the social optimum without
any welfare loss: ∆EWPC

cons = 0, where PC stands for price cap and cons refers
to a consumption-driven network.
For the other two network types, a single three-part-tariff cap cannot achieve

the social optimum. In order to obtain optimal network capacity and its effi -
cient utilization in the high state, the regulator can set the linear tariffs on q
and z equal to the effi cient linear tariffs: Tq = v′(q∗) and Tz = p′(z∗), where
v′(q∗) + β

ρ p
′(z∗) = C. Households will then demand the optimal amounts of

both products (q∗, z∗), which forces the firm to install the optimal amount of
network capacity k∗. However, the firm will only accept such a contract if the
single lump-sum transfer provides non-negative profits in both states. This fixed
fee needs to be positive in order to guarantee that, the firm breaks even in the
low-production state. With this fee the DNO earns a positive profit in the high
state. This positive profit is due to the information advantage of the DNO.
Consequently, the expected welfare loss corresponds to the information rent of
the DNO and thus depends on α:

∆EWPC
DG/cost = (1− α)βTzz

∗ > 0 (16)

where DG/cost refers to a DG- or a network-cost-driven network.
Let us now consider how Tz = 0, as commonly used in the EU, affects

network capacity and social welfare. If the regulator sets Tz = 0, then the
demand for product z in the high-production state is equal to zmax. This exceeds
the optimal quantity in both DG-driven and network-cost-driven networks. To
meet this demand, the DNO would need to install k = zmax, which implies an
overinvestment. The firm will only be willing to accept a regulatory contract
(i.e., to break even and deliver reliable service) if the transfer covers the cost
Czmax. In the high state, it again implies a positive information rent. To sum
up, zero linear tariff on peak-production leads to overinvestment and welfare
loss due to extra rents to the firm. Consequently, the welfare loss is even higher
than (16).

5.2 Revenue-cap regulation

Suppose that the DNO is free to set its tariffs, but the regulator caps the
revenue it makes. Let R denote this revenue cap. If the revenue cap is not
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binding, the DNO acts as in the unregulated case, that is, it sets effi cient linear
prices that induce the socially optimal peak-consumption and -production, and
appropriates total consumer surplus by the fixed fee (see Appendix 8.3). If
household and the DNO’s surpluses are valued equally (α = 1), this solution
is socially optimal. However, if household surplus has a higher weight in total
welfare (α < 1), the welfare loss equals (15):

∆EWRC = ∆EWUR.

If the revenue cap is binding, the DNO’s profit can be expressed as R−Ck.
The DNO will still extract maximum surplus but now it will also minimize its
investment costs. Because it cannot make as large profit as in the unregulated
case, it will invest less. Furthermore, the fixed fee will leave the household
without any surplus. Consequently, the regulator is better off by not imposing
a more stringent revenue cap on the firm.18

5.3 Summary

In this section, we analyzed the effects of two different ex ante regulatory regimes
on the network size and social welfare. We have shown that each of these
regimes is suboptimal in comparison to the option menu proposed in Section
4. A single three-part tariff cap can implement the social optimum only in the
case of a consumption-driven network because there the information problem
is not present. Otherwise allowing no price discretion leads to a welfare loss
due to the information rent of the DNO: the optimal network size can only be
achieved by allowing the firm to earn a positive profit in the high-production
state. Revenue-cap regulation achieves the socially optimal network size only if
the revenue cap is not binding, but this case is equivalent to the unregulated
monopoly case; and therefore, as long as the regulator attaches some value to
consumer surplus, there is a welfare loss. Under a stricter revenue cap that is
set below the monopoly revenue, the DNO will underinvest and still abstract
the remaining surplus away from households. As a consequence, a high level of
price discretion leaves the DNO with its monopoly profit.

6 Policy implications and further discussion

In our analysis, we showed that the regulator, when setting regulatory con-
straints, needs to take into account the expected developments in the electricity
sector. The major policy implications from our result are the following. First,

18The regulator may also restrict tariffs to linear only, that is, the fixed fee Ti = 0, i = H,L.
It can be easily shown that again a non-binding revenue constraint, i.e., the unregulated case
leads to the highest network capacity. This monopoly k is, however, smaller than in the
presence of fixed charges. Even though this solution implies underinvestment compared to
the social optimum, if α is (very close to) zero, an unregulated monopoly without fixed fees
is socially more desirable than one with fixed fees. With fixed fees the monopoly extracts
total household surplus, while with linear tariffs only the household is left with some positive
surplus.
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with the expected shift from consumption-driven towards DG-driven networks,
DNOs’costs can no longer be purely born by electricity users, but the burden
needs to be shared with DG producers. Secondly, since the network costs depend
on network load, rather than on the amount of electricity that flows through the
network, the tariffs should be also set on loads (kW), rather than on electricity
consumption or production flows (kWh). Finally, the DNO has more detailed
information on the distribution of production and consumption peaks over the
network. Therefore, it has an information advantage over the regulator about
the households’demand for network services, as uncertainty resolves. Regula-
tion by an option menu provides the DNO with incentive to use this information
optimally, and works more effi ciently than ‘traditional’regulation regimes, such
as pure price-cap regulation, which does not give the possibility to rebalance the
tariffs, or revenue-cap regulation, which gives too much freedom to reallocate
costs towards one or another tariff.
Note that the current regulatory practices are not fully in line with these

implications. Nieuwenhout et al. (2010) describe currently applied regulatory
strategies in several EU-member states and stress that revising regulation is
necessary to address this issue. Many countries do not impose network charges
on distributed generators (see also De Joode et al. 2010 and Niesten 2010) and
base their regulation on electricity flow (kWh). This distortion affects incen-
tives with respect to investment and network utilization for both DG producers
and DNOs, and may potentially cause problems in these countries. However,
some countries have already made adjustments towards including DG in their
regulatory practices. For instance, in the Netherlands, where sliding-scale reg-
ulation is applied, medium-scale DG (such as greenhouses) has already been
included in the benchmarking that determines an upper limit for the allowed
revenues. Furthermore, the tariff structure was adjusted to include prices on
load (per kW) rather than traditional consumption charges (per kWh). Yet,
prices on DG are still set at zero by law. The UK was ahead of other European
countries with introducing new types of regulation. Since 2005, the traditional
price-cap regulation has been extended with new elements, including network
charges (both fixed charges and user charges) on generators. Although the idea
of using option menus for resolving information asymmetry is not new (Laffont
and Tirole 1993), very few examples in regulatory practice apply this approach.
For instance, in early 1990s in the US, the Federal Communication Commission
tried to introduce a menu for regulating the Bell companies, but this practice
was abandoned after a few years (Vogelsang 2006).
We close this section with a brief discussion of potential further applications

of our results. First, because we model households’ utility on the consump-
tion and production side symmetrically, we predict similar results in the case of
uncertainty relating to increasing consumption, e.g., due to the future expan-
sion of electric cars. In this case, the focus would shift to consumption-driven
networks.19

19Note, however, that assuming uncertainty about peak-production and peak-consumption
will make the problem much more complicated and may change results. See Armstrong and
Vickers (2000).
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Second, although we assumed homogeneous households in our model, our
conclusions are also valid if DG producers may differ in scale, such as house-
holds and greenhouses. Furthermore, the model can be extended to incorporate
different DG technologies. In that case, the tariffs should be differentiated by
technology type, so that users of a technology type with a higher load on the
network pay a higher linear charge. Higher linear charges provide an alter-
native to other forms of non-price rationing, such as disconnecting households
that cause high network costs. Another example is solar PVs, which have large
and simultaneous production during sunny summer days, loading the network
heavily in this period. Instead of limiting the number of solar PVs in a region,
the DNO can also reduce DG production by setting a higher linear charge on
peak-production from solar PVs.
Finally, even though our model is a one-shot regulation game, we expect our

results to provide guidance also in a dynamic setting, when the DNO invests in
the first period and uncertainty resolves gradually, during which the DNO can
constantly adjust tariffs. However, if the DNO may invest at any moment in
time, it may delay investments until it knows demand with more certainty (see
e.g., Dobbs 2004).

7 Conclusions

In this paper, we analyzed optimal investment in DG and network capacity and
optimal regulation under uncertainty about peak DG production. We focused on
the following questions: What is the socially optimal level of investment? Can
it be implemented by ex ante regulation? And, what are the effects of other
commonly used regulatory regimes on the network size, network utilization, and
social welfare?
First, we find that if the diffusion of DG technologies is very likely, for

instance, because they become cheap or highly profitable, peak-production,
rather than peak-consumption, will determine the optimal network size. In
other words, the optimal network capacity is larger than needed for consump-
tion only. However, due to uncertainty, this network capacity is not fully used
in the low DG state. Second, since the DNO has better information about the
future DG production than the regulator, optimal regulation needs to leave the
DNO with some level of price discretion. Consequently, the regulator can reduce
the information rent of the DNO by offering an option menu. In the optimal
menu, linear charges on peak-consumption and peak-production provide opti-
mal investment incentives and secure effi cient network usage in each potential
DG state, and the fixed fees compensate for the social costs of uncertainty by
redistributing welfare between the firm and households. We stress that allowing
a positive linear charge on DG production is crucial for creating right investment
and utilization incentives. Finally, the most commonly used ex ante regulatory
regimes, such as a simple price cap or revenue cap, are suboptimal compared
to the optimal option menu because they allow the DNO to earn high profits,
which may be detrimental to welfare.
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8 Appendix

8.1 Social optimum

Proof. (Proposition 2) For a DG-driven network : Recall that the function
p(z) = rz − cz(1+z)

2 is increasing at a decreasing rate up to the point zmax =
(r− c/2)/c, and that ρC < p′(0) = r− c

2 > 0, implying that the problem always
results in k > 0.
The FOC of the original problem w.r.t. z writes βp′(k/ρ)

ρ − C = 0. We
denote the left-hand side of this FOC by F . Using the rules of implicit function
differentiation, we obtain dk

dx = −∂Fz/∂x∂Fz/∂k
for any parameter of interest x ∈

{C, c, β, ρ}. From our assumptions, it follows that ∂Fz
∂k = βp′′(k/ρ)

ρ2 = −βcρ2 < 0.

Therefore, for any x, the sign of the derivative dkdx coincides with the sign of
∂Fz
∂x :

∂F

∂C
= −1 < 0,

∂F

∂c
= −β

ρ

(
1

2
+
k

ρ

)
< 0,

dF

dβ
=

p′(k/ρ)

ρ
> 0, since k < ρzmax

∂F

∂ρ
= β

(−k/ρ)p′′(k/ρ)− p′(k/ρ)

ρ2
=
p′(k/ρ)

ρ2
(σp(k/ρ)− 1) ≷ 0,

where σp(z) = −zp′′(z)
p′(z) = zc

r−c/2−cz = zc
czmax−cz = z

zmax−z ≷ 1 is the coeffi cient of
relative risk aversion of the net utility function p. While the effects of C, c and
β are monotonous, the effects of ρ depend on σp(z). If σp(z) < 1, then ∂F

∂ρ > 0.
The proposition for the other network types can be proved similarly.

8.2 Optimal regulation

Proof. (Proposition 3) The prices in this contract mimic the prices that
the social planner would choose in the low- and high-production states respec-
tively, and we have shown that those prices correspond to the optimal quantities
(q∗, z∗). Therefore, the DNO must invest in the network capacity that satis-
fies k∗ ≥ max(q∗, ρz∗). Because the DNO does not gain anything by installing
more or less capacity than needed, it will install exactly the optimal amount:
k∗ = max(q∗, ρz∗).
What remains to be shown is that the incentive compatibility conditions (6)

and the capacity constraints (2) hold. In the case of z∗ = 0, which corresponds
to the consumption-driven network type, both options in the menu become
identical.
Therefore, we only need to check the incentive compatibility constraints for

z∗ > 0. Because TLq = THq = Tq, in the low-production state, the ICC simplifies
to TL > TH . In the equilibrium it writes as T > T − Tzz

∗ and therefore
0 > −Tzz∗. As a consequence, the DNO chooses the tariffs intended for the low
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state. Peak-consumption given these tariffs, that is q∗, will never exceed the
network capacity: k∗ = ρz∗ ≥ q∗. Therefore the capacity constraints satisfy.
In the high-production state, if the DNO chooses the contract intended for

the low state with Tz = 0, then the demand for z would increase to zmax. This
network load would exceed the network capacity: k∗ = ρz∗ < ρzmax. Since
non-price rationing is ruled out (by assumption), the firm has to choose tariffs
for the high state:

(
THq , T

H
z , T

H
)
.

8.3 Unregulated DNO

Because an unregulated DNO can extract consumer surplus by a fixed fee, it will
charge the effi cient linear tariffs. As a consequence, it will invest in the optimal
network size. However, the profits are higher than in the social optimum due to
the fixed fees. The proof is as follows. The DNO solves the following problem:

max
tqL,tqH ,tz,tL,tH ,k

{β(tqHqH + tzz + tH) + (1− β) (tqLqL + tL)− Ck

+λqH (k − qH) + λqL (k − qL) + λz (k − ρz)
+ηH (v(qH) + p(z)− tqHqH − tzz − tH) + ηL (v(qL)− tqLqL − tL)}

The two constraints included in the last row require that consumer surplus
should be positive in every state, since the profit maximizing DNO must ensure
that households are willing to accept the contracts. Because the DNO can set
the fixed fee such that it fully extracts consumer surplus, we can simplify the
optimization:

max
qL,qH ,z,k

{β(v(qH) + p(z)) + (1− β) v(qL)− Ck

+λqH (k − qH) + λqL (k − qL) + λz (k − ρz)}.

This optimization problem is then exactly the same as for the social optimum.
For similar reasons as for the social optimum, qH = qL : it is not reasonable for
the DNO to ration demand for q as long as it has already installed this capacity
and is able to receive positive marginal profits from selling these capacities to
households. With these simplifications, we get exactly the same expressions as
(12). As a result, the firm is willing to invest in the socially optimal network size
as long as the sum of its expected marginal revenues from both products (which
is also equal to the sum of households’marginal benefits in this case) exceeds
marginal costs. Similarly to the social optimum, three types of networks may
emerge according to the conditions described in Proposition 1. The unregulated
DNO charges marginal cost prices and extracts total consumer surplus by fixed
fees. In a general form, the tariffs and the expected social welfare write:

(tqL, 0, tL) = (v′(q∗), 0, v(q∗)− v′(q∗)q∗)
(tqH , tzH , tH) = (v′(q∗), p′(z∗), v(q∗) + p(z∗)− v′(q∗)q∗ − p′(z∗)z∗)

EWUR = α (v(q∗) + βp(z∗)− Ck∗) ,

where v′(q∗) + β
ρ p
′(z∗) = C and k∗ = max(q∗, ρz∗).
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