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Abstract

Applications of zero-inflated count data models have proliferated in health economics. How-

ever, zero-inflated Poisson or zero-inflated negative binomial maximum likelihood estimators

are not robust to misspecification. This paper proposes Poisson quasi-likelihood estimators as

an alternative. These estimators are consistent in the presence of excess zeros without having

to specify the full distribution. The advantages of the Poisson quasi-likelihood approach are

illustrated in a series of Monte Carlo simulations and in an application to the demand for

health services.
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1 Introduction

The so-called problem of “excess zeros” plagues a majority of count data applications in health

economics and other social sciences: The proportion of observations with zero counts in the

sample is often much larger than that predicted by standard count models. By far the most

popular explanation for the high proportion of zeros is that in addition to the standard count

data process a second process produces extra zeros. For instance, consider the demand for health

services as measured by the number of physician visits. A person might have had zero physician

visits in a given time period because (i) she is healthy and does not require visiting physicians,

or because (ii) despite requiring physician services regularly, no visit was observed in the time

period. The zeros product of (i) –sometimes called ‘structural’ or ‘strategic’ zeros– stem from

a binary process, in this case suffering from a health condition. The zeros product of (ii) –

sometimes called ‘incidental zeros’– correspond to realizations of a count process to which only

the ‘population at risk’ is subjected; in this example, individuals afflicted by a health condition.

These models allowing for two separate types of zeros are known as zero-inflated count models

(Mullahy, 1986, Lambert, 1992), the most prominently represented being the zero-inflated Poisson

and zero-inflated negative binomial models.

The use of zero-inflated models to study the number of physician visits is widespread in health

economics (Pizer and Prentice, 2011; Sari, 2009; Sarma and Simpson, 2006; Yen, Tang and Su,

2001). Zero-inflated models are also used to model the number of pharmacy visits (Chang and

Trivedi, 2003), the number of prescriptions (Street, Jones and Furuta, 1999) and the number

of cigarettes smoked (Bauer, Göhlmann and Sinning, 2007; Sheu et al., 2004), among other

applications1.

There are two ways to estimate the parameters of zero-inflated count data models. The

standard way, pursued by all of the cited literature, is based on full maximum likelihood (ML)

estimation. The alternative is to focus on the first moment, embed it in a linear exponential
1The use of zero-inflation models is equally common in labor economics, with applications spanning job interviews

(List, 2001), job changes (Heitmueller, 2004), absenteeism (Campolieti, 2002) and lateness (Clark, Peters and

Tomlinson, 2005). Examples from other economic fields include patents (Aghion et al., 2009; Stephan et al., 2007),

firm FDI (Keller and Levinson, 2002; Ho, Wang and Alba, 2009), and deaths from natural disasters (Kahn, 2005).
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family distribution and estimate the parameters by quasi-maximum likelihood. The purpose of

this paper is to discuss the implementation of this alternative approach in detail, including its

strenghts and weaknesses. Specifically, we propose a Poisson Quasi-Likelihood (PQL) estimator

that is robust to misspecification, as it estimates the regression parameters consistently regardless

of the true distribution for the counts. A series of Monte Carlo experiments and an application

show that PQL estimation is a promising alternative to ML estimation in moderate and large

samples, avoiding sizeable biases which can potentially affect ML estimators.

The next section reviews models for zero-inflated count data. ML and quasi-likelihood estima-

tion of zero-inflated models is discussed in Section 3. Section 4 presents Monte Carlo simulation

results comparing the PQL estimator to the ML estimators. Section 5 illustrates the PQL esti-

mator with logit zero-inflation in an application modeling the frequency of doctor visits. Section

6 concludes.

2 Econometric models

2.1 Zero-inflated count data models

Zero-inflated count data models have probability function

f(y) =


π + (1− π)g(0) for y = 0

(1− π)g(y) for y = 1, 2, 3, ...
(1)

where y is a count-valued random variable, π ∈ [0, 1] is a zero-inflation parameter (the probability

of a strategic zero), and g(·) is the probability function of the parent count model. The mean of

the zero-inflated count data model is

E(y) =
∞∑
k=1

(1− π)g(k) = (1− π)Eg(y) (2)

where Eg(y) denotes the mean of the parent distribution. A fully parametric zero-inflated count

data model is obtained once the probability function of the parent count model is specified. For

example, the zero-inflated Poisson model is obtained for

g(y;λ) =
exp(−λ)λy

y!
, λ > 0 (3)
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with mean Eg(y) = λ and E(y) = (1 − π)λ. The main alternative to the zero-inflated Poisson

(ZIP) model is the zero-inflated negative binomial model, which has the same mean as the ZIP

but overdispersion in the count part of the model.

Both λ and π can be parameterized in terms of exogenous explanatory variables. The standard

assumptions are that

λ = Eg(y|x) = exp(x′β) (4)

and

π =
exp(z′δ)

1 + exp(z′δ)
(5)

where z can be identical to x, overlap with x, or be completely distinct from x.

The conditional expectation function (CEF) of the corresponding zero-inflated count data

model is given by

E(y|x, z) = (1− π)λ =
exp(x′β)

1 + exp(z′δ)
(6)

Importantly, this is the CEF of any zero-inflated count data model, not only the zero-inflated

Poisson model, as long as (4) and (5) hold.

2.2 Parameters of interest

The semi-elasticity of the CEF with respect to a variable w which is an element of both vectors

x and z, is

∂E(y|x, z)/E(y|x, z)
∂w

= βw − πδw

where βw and δw are the elements in the vectors β and δ corresponding to w. In economic

applications such as the ones cited in the introduction the key objects of interest are β, δ, and

predictions of the CEF. The parameters β and δ provide the semi-elasticities of the parent model

and the changes in the log-odds of strategic zeros, respectively:

∂Eg(y|x)/Eg(y|x)
∂w

= βw
∂ log[π/(1− π)]

∂w
= δw

We will show that estimation of these parameters of interest in general does not require the

specification of a full parametric distribution model since they are identified from the first moment

of the model alone.
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3 Estimation

3.1 Maximum likelihood estimation

The parameters of a fully specified zero-inflated count data model can be estimated by maximum

likelihood. The log-likelihood function for the ZIP model for a sample of n independent observation

tuples (yi, xi, zi) is

ln lZIP =
n∑
i=1

11(yi = 0) ln[exp(z′iδ) + exp(− exp(x′iβ))]

+ 11(yi > 0)[− exp(x′iβ) + yixiβ]− ln(1 + exp(z′iδ)) (7)

Since these models have a finite mixture structure, maximization of the log-likelihood function

can employ the EM algorithm, although direct maximization using Newton-Raphson is possible

as well. Alternative estimation algorithms are discussed by Hall and Cheng (2010). If the model

is correctly specified, ML theory ensures that these estimators are consistent and asymptotically

efficient, provided they exist (Cameron and Trivedi, 1998; Winkelmann, 2008). A case in which

the maximum likelihood estimator fails to exist arises when one of the regressors zk is a partially

discrete variable such that

zk


≥ 0 for y > 0

= 0 for y = 0

Then, the first-order condition of the ZIP for the associated parameter δk is

∑
yi>0

− exp(z′iδ)
1 + exp(z′iδ)

zik = 0

which has no solution so that the ML estimator does not exist. This is a “perfect prediction”

problem common to non-linear binary choice models (e.g., Albert and Anderson, 1984).

3.2 Moment-based estimation

The parameters β and δ can also be estimated directly from the conditional moment restriction

(6). Such an approach is in principle preferable, because it makes fewer assumptions regarding

the data generating process than maximum likelihood estimation. These additional assump-

tions, if violated, will invalidate maximum likelihood inference but not moment-based inference.
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Moment-based estimators are thus more robust. Another potential advantage is that moment-

based methods can work even in cases where the ML estimator does not exist due to perfect

prediction.

There are a two remarks regarding identification based on (6). First, if z has a constant only,

we obtain a model with constant zero-inflation. In this case, the conditional expectation function

of the zero inflated model is given by

E(y|x) = (1− π)λ = exp(ln(1− π) + x′β)

In this model, it is not possible to separately identify π and the constant in the parent model.

Hence, it is not possible to determine the share of strategic zeros. However, most applied work

anyway focusses on semi-elasticities (overall and in the parent model) and CEF predictions, and

all of those are identified.

Second, assume x = z, i.e. all variables enter the zero-inflation part as well as the parent

process. Then, there are two parameter vectors leading to the same CEF (see Papadopoulos and

Santos Silva, 2008):

E(y|x, z) =
exp(x′β1)

1 + exp(x′δ1)
=

exp(x′β2)
1 + exp(x′δ2)

for β2 = β1 + δ1 and δ2 = −δ1. Thus, the estimation problem has two solutions. In practice

this identification problem can be overcome if the sign of at least one element in δ is known.

Alternatively, an exclusion restriction on either x or z is also sufficient for identification.

In order to implement moment-based estimators in such a just-identified case, a number of

approaches are possible. We suggest to embed the CEF into a standard Poisson model, an

application of quasi-likelihood estimation, which leads to consistent estimates and, as we will

show in Monte Carlo simulations, has also good finite sample properties.

3.3 Quasi-maximum likelihood

Quasi-maximum likelihood estimation is based on distributions within the linear exponential

family (LEF), whose probability function can be written as (Gourieroux, Monfort and Trognon,

1984a)

fLEF(y|µx) = exp{a(µx) + b(y) + c(µx)y}, where µx = µ(x;β) = E(y|x),

5



LEFs have the property that the score function can be written as

∂ log f(y|x)
∂β

= (y − µx)h(x) (8)

where h(x) = [dc(µx)/dµx][∂µx/∂x]. Suppose the true model is g0(y|x) 6= f(y|x) but E0(y|x) = µx

for some value β0. Thus, the CEF is correctly specified. In this case, the expectation of (8) at

the true density is zero, even though the model is misspecified, since the CEF residual y−E(y|x)

is independent of x, and thus has zero covariance with any function h(x). As the empirical score

converges to the expected score by the law of large numbers, the solution to the ML first order

conditions converges in probability to the true CEF parameters (see also White, 1982; Gourieroux,

Monfort and Trognon, 1984b).

The Poisson distribution is a LEF member with a(µx) = −µx, b(y) = − ln(y!) and c(µx) =

ln(µx). Therefore, even though the data are zero-inflated, a Poisson regression gives valid esti-

mates of the objects of interest as long as the CEF is correctly specified. Valid standard errors

require the usual White-adjustment to the covariance matrix. The PQL estimator for the model

with non-constant zero-inflation is obtained by maximizing

ql(β, δ) =
n∑
i=1

yi ln λ̃i − λ̃i (9)

where λ̃i = exp(x′iβ)/(1 + exp(z′iδ)). Maximizing of (9) using the Newton-Raphson or related

algorithms is relatively straightforward (Stata code is provided in the appendix). The first-order

conditions are

∂ql(β, δ)
∂β

=
n∑
i=1

(
yi −

exp(x′iβ)
1 + exp(z′iδ)

)
xi = 0

and

∂ql(β, δ)
∂δ

=
n∑
i=1

(
exp(x′iβ + z′iδ)
(1 + exp(z′iδ))2

− exp(z′iδ)
1 + exp(z′iδ)

yi

)
zi = 0

This estimator for zero-inflated count data is consistent even if the true data generating

process is not Poisson distributed - as is by definition the case with excess zeros. There are other

estimators that can be used to estimate the parameters of interest consistently, including nonlinear

least squares (NLS). Among those, PQL has the appeal of simplicity, as its first order conditions

are plain orthogonality conditions between residuals and regressors. Other estimators introduce
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weighting schemes the choice of which can affect efficiency, but exploiting these potential efficiency

gains requires making additional assumptions which are typically hard to justify.

The gain of PQL estimation relative to ML estimation of fully parametric zero-inflated count

models is robustness to misspecification. The main cost of PQL estimation relative to ML es-

timation of a correctly specified model is a loss of precision. We explore both aspects, relative

bias and efficiency loss of PQL relative to ML, for varying sample sizes, in the next section using

Monte Carlo simulations.

4 Monte Carlo evidence

4.1 Simulation design

To compare the performance of the PQL estimator to its main competitors, the ZIP and ZINB ML

estimators, we create three setups. All of them are obtained from the following basic experimental

design. The count dependent variable y is specified as

y =


0 with probability π

y∗ with probability 1− π

where y∗ ∼ Poisson(λ), and λ and π are given by

λ = exp(β0 + βx+ v), π =
exp(δ0 + δz)

1 + exp(δ0 + δz)

with scalar regressors x ∼ N(0, 0.25) and z ∼ N(0, 1). The focus is on estimation of β and

δ, which are both set to 1. The parameter β0 is set to -1/8, which ensures a low mean of the

parent count process with a substantial fraction of incidental zeros. The degree of zero-inflation

is controlled by δ0. All simulation experiments are run for two levels of zero-inflation, 10% and

50% respectively. These values are chosen to reflect the range of modest to substantial zero-

inflation typically encountered in applications. Count data models are unlikely to be of use if the

proportion of excess zeros is higher. To obtain 10% zero-inflation, δ0 is set equal to -2.564; a value

of δ0 = 0 results in 50% zero-inflation.

The CEF of the Poisson part of the model, λ, contains a random component v, which is

distributed independently of x as Normal(−0.5σ2, σ2). The true data generating process, uncon-

ditional on v, is therefore a zero-inflated Poisson-log-normal model. The random term v can be
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best thought of as an omitted variable that affects the mean of the count but is unobserved to the

econometrician. Such unobserved heterogeneity, if unaccounted for or wrongly specified, leads to

bias in ML estimators.

In the first setup, there is no unobserved heterogeneity (σ2 = 0), and the data generating

process is indeed ZIP with λ = exp(−1/8 + x) and zero-inflation of 10% or 50%. This first

setup will allow us to compare the efficiency of PQL relative to the correctly specified and, thus,

asymptotically efficient ZIP ML estimator.

The scenario of no unobserved heterogeneity is quite unlikely in practice. Unobserved het-

erogeneity (σ2 > 0) introduces overdispersion in the Poisson part of the model, since with a

log-normal multiplicative error exp(v)

Var(y∗|x) = Ev[Var(y∗|x, v)] + Varv[E(y∗|x, v)] = E(y∗|x) + E(y∗|x)2(eσ
2 − 1) (10)

In our second setup, we assume a constant σ2. It follows from (10) that the variance of y∗ is a

quadratic function of the mean and the CEF of the parent model then is E(y∗|x) = exp(β0 +βx).

We set σ2 = 1 for this second data generating process, and we expect the ZINB to behave quite

satisfactorily as the misspecification is limited to higher order moments, not mean and variance.

The ZIP model by contrast assumes equality between mean and variance and is thus unlikely to

produce good results. The PQL estimator is robust to this kind of misspecification and should

work well.

A sparse way of obtaining different variance functions for y∗ is by parametrizing σ2 as follows:

σ2 = ln{1 + c exp [(k − 1)(β0 + βx)]}

The parameter k controls the nonlinearity of the variance function, while c is a free overdispersion

parameter. In our third set-up, c = 2 and k = −1, implying a variance function with additive

constant2

Var(y∗|x) = E(y∗|x) + 2
2In the first setup (no overdispersion), c=0 and k=0; in the second setup (quadratic overdispersion), c = exp(1)−1

and k=1.
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The corresponding variance-to-mean ratio is now hyperbolic. In this case, all three estimators –

ZIP, ZINB and PQL – only specify the first moment correctly. This should not matter for PQL

but lead to bias for ZIP as well as ZINB.

For all setups two sample sizes with 500 and 5,000 observations, respectively, were considered.

The number of replications was 10,000 for every data generating process. The Monte Carlo study

was programmed in STATA/MP 11.1; program code and full output are available on request.

4.2 Results

The results of the three simulation setups are displayed in Table 1. The table is divided into

three panels, each presenting the results for one of the three setups. Following the focus in the

literature, we concentrate on the main parameters of interest, the semi-elasticity of the parent

process β and the change in the log-odds of strategic zeros δ whose true values are 1. The main

entries in the tables are the mean of the QL and ML estimates β̂ and δ̂ over the 10,000 replications.

The numbers in parentheses give the standard deviations.

— Table 1 about here —

The left-hand panel titled “No overdispersion” shows the results for the first setup in which

the data generating process is a ZIP model. The first row of results is for the ZIP ML estimator on

samples of 500 observations. The ZIP estimates of β̂ are very close to the true value on average,

regardless of whether the degree of zero-inflation is 10% or 50%. Higher degrees of zero-inflation

imply less information from which to estimate β, and so the standard deviation is higher with

50% zero-inflation. The opposite is the case with δ. Low degrees of zero-inflation imply having

to identify the effect of z on strategic zeros with little information. The Monte Carlo results

suggest that 10% zero-inflation may be too little to estimate δ reliably with 500 observations: Not

only is the standard deviation of ZIP large (3.304), but also the finite sample bias considerable

(36.9%). With 50% zero-inflation, the bias is down to 3.8% and the standard deviation to 0.208.

PQL estimates β well, too. In the process with 10% zero-inflation, the efficiency loss of PQL

is negligible. With 50% zero-inflation it is around 10%. However, the sample size is too small

for PQL to estimate δ acceptably. With 5,000 observations, the performance of PQL improves
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substiantially. While for β the picture is the same as with the smaller sample, PQL now also

obtains satisfactory estimates of δ. However, some finite sample bias is still visible and the

efficiency loss relative to ZIP is quite large.

The middle panel (“Quadratic overdispersion”) contains results obtained under the second

setup where unobserved heterogeneity is causing the parent model to exhibit quadratic overdis-

persion. As ZINB correctly specifies the CEF and the variance function, the panel additionally

includes results from this estimator. The pattern for the ZINB ML estimates on 500-observations

samples echoes the one for ZIP ML before: While β is estimated quite precisely and free of bias,

there is not enough information to get tolerable estimates of δ. Increasing the sample size to 5,000

improves ZINB’s performance. With 10% and 50% zero-inflation, the remaining biases in δ are

13.5% and 3.8%, respectively. PQL’s performance is quite remarkable here, as its estimates dis-

play visibly smaller biases (5.5% and 1.6%). However, its standard deviations are about twice as

large as ZINB’s. Regarding the estimation of β, there are no noteworthy differences between ZINB

and PQL. Inconsistency of ZIP is reflected in substantial biases in all reported mean estimates.

In the right-hand panel, the data are drawn from a process with additive overdispersion of y∗,

so that both ZIP and ZINB only specify the CEF correctly. ZIP estimation again yields estimators

that are not consistent for the true value of β in any of the entries of the table. While the biases

are not very large, their persistency in the larger sample size unmasks them as asymptotic biases.

The biases in the estimated δ, on the other hand, are not only persistent but also very large.

The ZINB estimator does not work well either. With 10% zero-inflation and 5,000 observations

its performance is similar to before displaying a substiantial bias for δ (13.2%), although now in

addition a smaller bias of around -1% is detectable for β. In the data with 50% zero-inflation the

bias in δ is smaller, but the mean β misses the true value by -3.1%.3 By contrast, the performance

of PQL is much better throughout. Indeed, a look at PQL’s results across the three panels shows

that the presence and form of overdispersion bears no effect on its performance.

3In these simulations the margin of error at 99% confidence for ZINB’s mean β̂ is at most 0.15%.
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4.3 Further results without exclusion restrictions

In the simulations of Table 1, the regressors x and z provide independent variation to the parent

process and the zero-inflation process, an ideal setting. In applications, regressors are usually

correlated. Moreover, exclusion restrictions may often not be justifiable. To address these issues,

we repeated the simulations drawing x and z from a bivariate normal distribution with 50%

correlation. It is reassuring that results were very similar to those in Table 1. In a next step, we

increased the correlation to 100%. This is equivalent to a specification with one regressor which

enters both parts of the model. The estimation of such a model demands considerably more of

the data, and sample sizes of 500 observations proved too small to get satisfactory results even for

the estimation of β. Therefore, Table 2 presents simulation results for the specification without

exclusion restrictions with samples of 5,000 and 50,000 observations.

Even with 5,000 observations estimation can be challenging. Correctly specified ZIP ML

estimation of the ZIP model is adequate (left-hand panel “No overdispersion”). Likewise, ZINB

ML estimation of the quadratic overdispersion process (middle panel) is tolerable, although -

reminiscent of the results in Table 1 - estimation of δ with 10% zero-inflation is coupled with

substantial finite sample bias. The PQL estimator does not perform well here, suffering from

even larger biases. The standard deviation of PQL estimates is about one order of magnitude

larger than those of the ML estimates. As we will illustrate with the application in the next

section, however, PQL estimation with such sample sizes may not be problematic if additional

regressors are available: Variation from more regressors can help estimating the parameters more

precisely.

When passing to the results corresponding to 50,000 observations the improvement in PQL’s

performance is noteworthy. In all three setups the finite sample bias is only between 0.9%-1.7%

for β and 2.3%-4.5% for δ. While ZIP ML estimation is more precise and less biased in the ZIP

setup, it displays large biases of up to -15.4% for β and -82.9% for δ in the additive overdispersion

setup. In the quadratic overdispersion process, the biases of PQL are often smaller than those of

the correctly specified ZINB. Moreover, in the additive overdispersion setup, where ZINB has a

similar inconsistency problem as ZIP, it exhibits biases up to -11.6% in β and 31.2% in δ.
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To summarize, the results from the Monte Carlo experiments in this section demonstrate the

robustness of the PQL estimator in zero-inflated, finite samples, and the biases that can arise

when using its two most common ML competitors.

5 Illustration: demand for physician services

We illustrate PQL estimation of a count model with logit zero-inflation in a well-known health

economics application. In particular, the goal is to estimate how health insurance and other

socio-demographic characteristics affect the frequency of doctor visits. The dataset is identical to

the one used in Cameron and Trivedi (1986). The sample of 5,190 individuals is extracted from

the Australian Health Survey 1977-78. The dependent variable is the number of consultations

with a doctor or specialist in the two-week period prior to the interview. The mean is 0.302, the

variance 0.637. Further details, and a motivation of the selection of explanatory variables, are

given in Cameron and Trivedi (1986) and the references quoted therein.

Regressors include demographics (sex, age, age squared), income, various measures of health

status (number of reduced activity days (actdays); general health questionnaire score (hscore);

recent illness; two types of chronic conditions (chcond1, chcond2)), and three types of health in-

surance coverage (levyplus, freepoor, freerepat - the former representing a higher level of coverage

and the latter two a basic level supplied free of charge).

Table 3 contains the regression results for the PQL estimator (in the first two columns) as well

as for the fully parametric ZIP (in columns 3 and 4) and ZINB (in columns 5 and 6) models. In

each case, the same regressors enter the logit model for zero-inflation and the log-linear CEF of the

parent model. As discussed earlier, this means that the PQL estimator has two solutions. Since

all three estimates of the ZI parameter vector δ largely coincide in the signs of their elements, it

is unlikely that we are erroneously reporting PQL estimates of −δ for the ZI part (and of β + δ

for the parent process). Moreover, there is no significant difference in the magnitude of standard

errors across models - ZIP’s standard errors are smaller than ZINB’s and PQL’s, the latter two

being roughly similar. Thus, the precision of PQL estimation should be fine even though there

are no exclusion restrictions.
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A likelihood ratio test between ZIP and ZINB clearly favors the latter. While this is an

indication of the presence of unobserved heterogeneity and overdispersion, it does not mean,

however, that the ZINB is the “right” model. If the overdispersion is misspecified, the ZINB

estimator is inconsistent, regardless of fitting the data better than ZIP.

— Table 3 about here —

It is reassuring, therefore, that the parameter estimates are quite insensitive to the choice of

specification in many instances, but there are exceptions. For instance, the ZINB model detects

no statistically significant effect of having a chronic health condition in either part of the model.

Under PQL, the second indicator has large negative and statistically significant effect on the

probability of an extra zero and thus increases the expected number of visits. Inferences from

PQL and ZINB also differ regarding insurance status. “Freepoor” and “Levyplus” are statistically

significant in the ZINB but not so in the PQL model, suggesting some caution in interpreting

these effects.

6 Concluding remarks

The main quantities of interest in most count data applications are the conditional expectation

function, changes in the probability of strategic zeros, and semi-elasticities of the parent count

model with respect to some regressors. For instance, all applications cited in the introduction

without exception limited the discussion of their estimation results to the CEF and such effects.

This paper proposed a new approach based on Poisson Quasi-Likelihood estimation as a way to

estimate these quantities without having to specify more than the CEF, as opposed to the full

distribution as is necessary with the traditional ZIP and ZINB ML estimators.

The key advantage of using PQL over ZIP and ZINB is its robustness to misspecification.

Given the pervasive uncertainty about the data generating processes in practice, using estimators

for ZI models seems unwise if concerns about bias from higher order misspecification exist. The

relatively mild misspecifications of the DGP presented in the Monte Carlo experiments frequently

resulted in noticeable biases, suggesting that PQL may be the better choice for estimating ZI

13



models compared to ZI ML estimators in the absence of strong a priori information about the

DGP. This conclusion will be the more compelling the larger the data set at hand.

References

Aghion, Philippe, Richard Blundell, Rachel Griffith, Peter Howitt and Susanne Prantl (2009),

The Effects of Entry on Incumbent Innovation and Productivity, Review of Economics and

Statistics, 91, 20-32.

Albert A. and J.A. Anderson (1984), On the Existence of Maximum Likelihood Estimates in

Logistic Regression Models, Biometrika, 71, 1-10.
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Appendix: Stata code for PQL estimation of zero-inflated count

models

The Stata code below first loads the program for PQL estimation of zero-inflated count models,
pqlzi, and then exemplifies its use with a dataset from the Stata website, fish.dta. The only
purpose of the example is to illustrate pqlzi’s use; the particular model estimated on this data
is nonsensical.

Program pqlzi uses mean function πλ instead of (1−π)λ. We often found this to have better
convergence properties. It means that all the estimates from the binary part (eq2-output) have
the “wrong” sign. E.g. “-1.81” should be read as “1.81”. If preferred, this can be changed by
deleting the two “+ ‘theta2’” bits in the program.

clear all

** Load pqlzi program

capture program drop pqlzi
program define pqlzi
args lnf theta1 theta2
quietly replace ‘lnf’ = ///

- exp(‘theta1’ + ‘theta2’)/(1+exp(‘theta2’)) ///
+ $ML_y1*ln(exp(‘theta1’ + ‘theta2’)/(1+exp(‘theta2’))) ///
- lnfactorial($ML_y1)

end

** Use Stata’s example dataset

webuse fish

** Get initial values for pqlzi

poisson count persons livebait /* get initial values for count part */
mat po = e(b)
logit count child camper /* get initial values for binary part */
mat lo = e(b)

** Estimate pqlzi model

ml model lf pqlzi (eq1: count = persons livebait) (eq2: child camper), vce(robust)
ml init po lo, copy skip /* load initial values */
ml maximize /* estimate pqlzi model */

** Compare to other ZI models

zinb count persons livebait, inflate(child camper) /* compare to zinb */
zip count persons livebait, inflate(child camper) /* compare to zip */
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Table 3: Zero-Inflation models for number of doctor consultations (n=5,190)

PQL ZIP ZINB

Variable ZI Parent ZI Parent ZI Parent

Sex -0.275 0.003 -0.488*** -0.027 -0.592*** 0.010
(0.228) (0.135) (0.171) (0.072) (0.228) (0.084)

Age ×10−2 8.864** 3.784* 10.496*** 3.128** 10.677** 2.103
(3.986) (2.212) (3.271) (1.297) (4.386) (1.541)

Age squared ×10−4 -10.611* -3.882* -13.337*** -3.409** -13.821*** -2.187
(4.379) (2.341) (3.690) (1.374) (5.002) (1.639)

Income -0.269 -0.288 -0.437* -0.295*** -0.365 -0.214
(0.349) (0.203) (0.264) (0.113) (0.346) (0.133)

Levyplus -0.381 -0.032 -0.433** -0.034 -0.640** -0.095
(0.253) (0.158) (0.197) (0.096) (0.264) (0.114)

Freepoor 0.278 -0.385 0.308 -0.377 0.111 -0.481*
(0.830) (0.512) (0.508) (0.239) (0.659) (0.283)

Freerepat -0.974** -0.254 -1.149*** -0.215* -1.375*** -0.189
(0.339) (0.202) (0.305) (0.117) (0.447) (0.140)

Illness -0.345** 0.002 -0.416*** 0.049** -0.672*** 0.052*
(0.092) (0.045) (0.081) (0.025) (0.156) (0.029)

Actdays -1.114** 0.047*** -1.256*** 0.083*** -1.787*** 0.104***
(0.198) (0.014) (0.238) (0.006) (0.653) (0.008)

Hscore -0.080* 0.016 -0.097** 0.018 -0.105* 0.023*
(0.043) (0.020) (0.039) (0.011) (0.056) (0.014)

Chcond1 -0.242 -0.078 -0.127 -0.013 -0.119 -0.000
(0.262) (0.164) (0.199) (0.092) (0.279) (0.108)

Chcond2 -0.754** -0.144 -0.604** -0.034 -0.489 0.055
(0.352) (0.180) (0.306) (0.103) (0.414) (0.121)

Const. 1.452** -0.618 0.786 -1.050*** 0.622 -1.233***
(0.739) (0.472) (0.572) (0.255) (0.753) (0.296)

α 0.578
(.086)

Log-likelihood -3,174.2 -3,107.6

Notes: Standard errors in parentheses (robust standard errors for PQL). ***, **, * denote statistical significance
at the 1%, 5%, 10% significance levels, respectively. α indicates the overdispersion parameter of the negative
binomial type II distribution.
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