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jleon@ctrl.cinvestav.mx

Monique Pontier‡
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Abstract
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1 Introduction and statement of the model

Stochastic volatility models are a well-known cornerstone in order to replicate some important features of the
implied volatility, like its dependence with respect to the strike price. Unfortunately, in the continuous case, these
models are insufficient to capture other crucial properties observed in financial markets, like the dependence of
the implied volatility on time to maturity as it is shown in Lewis (2000). More precisely, empirical observations
show that the at-the-money implied volatility skew slope explodes as time to maturity tends to zero, but this
slope tends to a constant when we consider a stochastic volatility diffusion model (see for example Medvedev
and Scaillet (2004)). This problem has motivated to consider jumps in the asset price dynamic models, between
which we can mention the well-known model of Bates (see Bates (1996)), among others. This models allow
flexible modelling and generate skews and smiles similar to those observed in market data.

In Alòs, León and Vives (2007b) a generalized Bates model, in the sense that the stochastic volatility does
not follows a concrete equation, is studied. They prove, in particular, that for a volatility process independent
of price jumps (as in the Bates case) the at-the-money skew slope behaviour at the expiry date is closely related
to the derivative of the volatility process with respect to the Brownian motion driving the stock prices. They
also show that the Malliavin calculus is a powerful tool to deal with volatility models.

The purpose of this paper is to extend the results of Alòs, León and Vives (2007b) to the case that the
volatility can be correlated not only with the Brownian motion driving the stock prices, but also with the
price jump process. Namely, we consider a log-price process, under the market chosen risk-neutral probability
measure, given by

Xt = x+ (r − λk)t− 1
2

∫ t

0

σ2
sds+

∫ t

0

σs(ρdWs +
√

1− ρ2dBs) + Zt, (1)

where, t ∈ [0, T ], x is the current log-price, r is the instantaneous interest rate, W and B are independent
standard Brownian motions, ρ ∈ [−1, 1], and Z is a compound Poisson process, independent of W and B, with
intensity λ, Lévy measure ν, and with k := 1

λ

∫
R(ey − 1)ν(dy).

In Alòs, León and Vives (2007b), the volatility process σ is assumed to be a square-integrable stochastic
process with right-continuous trajectories, bounded below by a positive constant and adapted to the filtration
generated by W. Here we will assume the same hypothesis, but less restrictively, only that σ is adapted to the
bigger filtration generated by W and Z. So, in this paper, we allow the volatility to have non-predictable jump
times as advocated by Bakshi, Cao and Chen (1997) and Duffie, Pan and Singleton (2000), among others.

A useful tool to work with this model is the stochastic variation calculus for Lévy processes, also named
Malliavin-Skorohod calculus. In this paper we link two different approaches of this calculus, one that comes
from Solé, Utzet and Vives (2007) and another that comes from Løkka (2004) and Petrou (2006).

More concretely, following the ideas given by Alòs, León and Vives (2007b) we will obtain a generalized Hull
and White formula for model (1). In comparison with the formula obtained in Alòs, León and Vives (2007b),
our formula has an extra term because the volatility depends now on the jump price. This representation will
allow us to show that the existence of correlation between the volatility process and the price jumps does not
have any influence on the at the money skew of the implied volatility as time runs to expiry.

In the following, we denote by FW ,FB and FZ the filtrations generated by the independent processes W,B
and Z respectively. Moreover we define F := FW ∨ FB ∨ FZ .

It is well-known that if we price an European call with strike price K by the formula

Vt = e−r(T−t)E[(eXT −K)+|Ft], (2)

where E is the expectation with respect to a risk neutral measure, there is no arbitrage opportunity. Thus Vt

is a possible price for this derivative.

In the sequel we will use the following notation:
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• The process vt :=
(

Yt

T−t

) 1
2
, with Yt :=

∫ T

t
σ2

sds, will denote the future average volatility.

• With BS(t, x, σ) we will denote the classical Black-Scholes function with constant volatility σ, current log
stock price x, time to maturity T − t, strike price K and interest rate r. Remember that this function can
be written as

B(t, x, σ) = exΦ
(

x− x∗t
σ
√
T − t

+
σ

2

√
T − t

)
− ex∗t Φ

(
x− x∗t
σ
√
T − t

− σ

2

√
T − t

)
where x∗t = logK − r(T − t) is the future log-price at t and Φ is the cumulative probability function of
the standard normal law.

• With N we will denote the Poisson random measure on [0, T ] × R such that Zt =
∫
[0,t]×R xN(ds, dx).

Remember also that Ñ(ds, dx) := N(ds, dx)− dsν(dx) is the compensated Poisson random measure.

• We will consider the operator LBS(σ) := ∂t+ 1
2σ

2∂2
xx+(r− 1

2σ
2)∂x−r which satisfies LBS(σ)BS(·, ·, σ) = 0.

The paper is organized as follows. In Section 2 we introduce the Malliavin calculus framework needed in the
remaining of the paper. In section 3 we obtain the Hull and White formula. In Section 4, we apply it to the
problem of describing the at the money short time skew of the implied volatility. Section 5 is devoted to the
conclusions.

2 Required tools of Malliavin calculus for Lévy processes

2.1 Introduction

In this section we introduce the tools of Malliavin calculus for Lévy processes that we need in the rest of the
paper.

Consider a complete probability space (Ω,F , P ) and let L = {Lt, t ∈ [0, T ]} be a càdlàg Lévy process with
triplet (γ, σ, ν). See for example the book of Sato (1999) for a general theory of Lévy processes.

It is well-known that L can be represented as

Lt = γt+ σWt +
∫∫

(0,t]×{|x|>1}
xN(ds, dx) + lim

ε↓0

∫∫
(0,t]×{ε<|x|≤1}

xÑ(ds, dx),

where W is a Brownian motion and N is the Poisson random measure associated to ν. It is also known that
FL = FW ∨ FN . See for example, Solé, Utzet and Vives (2007).

In general, the construction of a Malliavin calculus for a certain process follows three main steps. First of all,
to prove a chaotic representation property, secondly, to define formally the gradient and divergence operators
and finally, to give their probabilistic interpretations. In this paper we use the approach given by Løkka (2004)
and Petrou (2006) combined with the approach developed by Solé, Utzet and Vives (2007). As we will see, the
point of view of Løkka (2004) and Petrou (2006) is more suitable for the purpose of our paper, because the form
of the gradient operator in this approach simplifies our computations in a remarkable way.

2.2 The chaotic representation property

There are two ways to establish the chaotic representation property for a Lévy process. The first one was
obtained by Itô (1956) and it holds for general Lévy processes. A Malliavin calculus based on this approach
was developed in Solé, Utzet and Vives (2007). The second one, developed only for square integrable Lévy
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processes, was established by Løkka (2004) and Petrou (2006). In our case, we suppose E[
∫ T

0
σ2

sds] < ∞ and∫
R x

2ν(dx) < ∞ thus we have a square-integrable Lévy process. Moreover, in our case the Lévy measure ν is
finite.

From Itô (1956), on the measurable space ([0, T ]×R, B([0, T ]×R)), we can consider the centered independent
random measure given by

M (E) := σ

∫
E(0)

dWt +
∫∫

E′
xÑ(dt, dx), E ∈ B([0, T ]× R)

where E(0) := {t ∈ [0, T ] : (t, 0) ∈ E} and E′ := E − E(0). Its variance is given by

µ (E) = σ2

∫
E(0)

dt+
∫∫

E′
x2dtν (dx) .

Remark that W can be seen as a centered independent Gaussian random measure on [0, T ] and J(ds, dx) :=
xÑ(ds, dx) can be seen as a centered random measure on [0, T ]× R0 where R0 = R− {0}. Thus we can write

M(ds, dx) = σ(W ⊗ δ0)(ds, dx) + J(ds, dx).

where δ0 is the Dirac’s delta, that is, a unitary mass on the point {0}.

Also from Itô (1956) we can define stochastic multiple integrals In with respect to M with kernels in the
Hilbert spaces

L2
n := L2(([0, T ]× R)n

,B ([0, T ]× R)n
, µ⊗n),

in the usual way, and to prove that if {FX
t , t ∈ [0, T ]} is the completed natural filtration of X, for any random

variable F ∈ L2(Ω,FX
T , P ) we have the chaotic representation

F =
∞∑

n=1

In (fn) , (3)

where the kernels are unique if we take them symmetric.

In the approach of Løkka (2004) and Petrou (2006) it is defined the centered independent random measure
given by

M̄ (E) := σ

∫
E(0)

dWt +
∫∫

E′
dÑ(t, x).

with variance

µ̄ (E) = σ2

∫
E(0)

dt+
∫∫

E′
dtν (dx) .

So, it can also be written by M̄(ds, dx) = σ(W ⊗ δ0)(ds, dx) + Ñ(ds, dx).

In this setting we can consider the multiple stochastic integrals Īn with respect to M̄ with kernels in

L̄2
n := L2(([0, T ]× R)n

,B ([0, T ]× R)n
, µ̄⊗n). (4)

Notice that, for every gn ∈ L̄2
n, the function

fn (t1, x1; t2,x2; ....; tn, xn) :=
1

h(x1) · · ·h(xn)
gn (t1, x1; t2,x2; ....; tn, xn)
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belongs to L2
n, where h(x) := x11{x6=0} + 11{x=0}. Moreover, we have the relation

In(fn) = Īn(gn). (5)

This facts can be proved as usual. That is, first of all we see that it is true for step functions that are zero
on the diagonals, and then we use limit arguments.

Consequently, for F ∈ L2(Ω,FX
T , P ) we have two chaotic representations

F =
∞∑

n=1

Īn (gn) =
∞∑

n=1

In (fn) (6)

where gn are symmetric functions of L̄2
n and fn are symmetric functions of L2

n.

Notice that, if ν = 0, µ(E) = µ̄(E) = σ2
∫

E(0)
dt and M = M̄ = σ(W ⊗ δ0).

2.3 The Malliavin-type derivative

Let Dom D and Dom D̄ be the sets of random variables in L2(Ω) such that

∞∑
n=1

nn! ‖fn‖2L2
n
<∞

and
∞∑

n=1

nn! ‖gn‖2L̄2
n
<∞,

respectively.

By equality (5), it is easy to show that Dom D = Dom D̄. In the following we will denote this subspace of
L2(Ω) by D1,2, that is, D1,2 := Dom D = Dom D̄.

The Malliavin derivative DMF of a random variable F ∈ D1,2 is the process
{
DM

t,xF, (t, x) ∈ [0, T ]× R
}

defined by DM
t,xF :=

∑∞
n=1 nIn−1(fn((t, x), ·)).

In a similar way, the Malliavin derivative DM̄F of a random variable F ∈ D1,2 is defined as the process{
DM̄

t,xF, (t, x) ∈ [0, T ]× R× Ω
}

given by DM̄
t,xF :=

∑∞
n=1 nĪn−1 (gn (t, x) , ·) .

We have

DM̄
t,xF =

∞∑
n=1

nĪn−1 (gn((t, x) , ·)) =
∞∑

n=1

nIn−1 (h(x)fn((t, x) , ·))

= h(x)
∞∑

n=1

nIn−1 (fn((t, x) , ·)) = h(x)DM
t,xF. (7)

Similarly, notice that µ(dt, dx) = h2(x)µ̄(dt, dx).

Henceforth, in order to give the probabilistic interpretation of above operators, we assume that the underlying
probability space is the canonical Lévy space (ΩW × ΩN ,FW ⊗FN ,PW ⊗ PN ). That is, (ΩW ,FW ,PW ) is the
canonical Wiener space and (ΩN ,FN ,PN ) is the canonical Lévy space of the compound Poisson process with
Lévy measure ν. Also, in the remaining we assume that W and Z are the canonical processes. For details we
recommend Solé, Utzet and Vives (2007).
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The elements of this space will be written as ω = (ωW , ωN ). In particular ωW will be a continuous trajectory
null a the origin and ωN is a sequence of pairs of jump instants and jump amplitudes

ωN := ((t1, x1), (t2, x2), (t3, x3), . . . ).

From Solé, Utzet and Vives (2007) and Petrou (2006) we have

DM
t,0 = DM̄

t,0 =
1
σ
DW

t 11{σ>0} (8)

where DW
t denotes the classical Malliavin derivative with respect to the Brownian motion W (see for example

Nualart (1995)).

In order to obtain the probabilistic interpretations of operators DM
t,x and DM̄

t,x for x 6= 0 we consider the
following transformation.

Given (t, x) ∈ [0, T ]× R0, we can add to any ωN a jump of size x at instant t, call the new element

ωN
t,x := ((t1, x1), (t2, x2), (t3, x3), (t, x) . . . )

and write ωt,x := (ωW , ωN
t,x). So ∀ (t, x) ∈ [0, T ] × R0, we can define the operator Tt,xF := F (ωt,x). As it is

shown in Solé, Utzet, Vives (2007) (Proposition 4.8.) this is a well defined operator.

In the same reference is defined the operator Ψt,xF := Tt,xF−F
x , x 6= 0. Combining results from Solé, Utzet

and Vives (2007) and Alòs, León and Vives (2007a) it is easy to show that for F ∈ L2(Ω),

ΨF ∈ L2([0, T ]× R0, µ) and F ∈ Dom DW ⇔ F ∈ D1,2,

and in this case DM
t,xF = Ψt,xF, x 6= 0.

Moreover, for all F ∈ D1,2,

DM̄
t,xF = Tt,xF − F, x 6= 0. (9)

In the remaining of this paper, we will denote DN
t,x = Tt,x − Id, of course only defined on [0, T ]× R0. Observe

that we have proved

DM̄
t,x = 11{σ>0}11{0}(x)

1
σ
DW

t + 11R0(x)D
N
t,x, (10)

which follows from (7), (8) and (9).

Observe also that it is immediate from (9), to see that

DN
t,xF = FDN

t,xG+GDN
t,xF +DN

t,xFD
N
t,xG. (11)

Finally remember from Section 2 in Solé, Utzet and Vives (2007), that if DW and DN are the domains of
DW and DN respectively, we have D1,2 = DW ∩ DN .

2.4 Skorohod-type integrals

Let δM and δM̄ be the duals of the operators DM and DM̄ , respectively. It means,

E(FδM (u)) = E

∫ T

0

∫
R
u(t, x)DM

t,xFµ(dt, dx)
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and

E(FδM̄ (v)) = E

∫ T

0

∫
R
v(t, x)DM̄

t,xFµ̄(dt, dx), (12)

for F ∈ D1,2, u ∈ Dom δM and v ∈ δM̄ . Sometimes we will write δt(u) instead of δ(u11[0,t]).

Due to equality (7) we have that this two Skorohod type integrals satisfy

δM (u) = δM̄ (hu), (13)

and this property, together with (7), allows us to translate the properties of δM to δM̄ . See Section 6 of [16] for
a presentation of the main properties of δM .

The following lemma will be useful for our purposes. A version of this lemma in the pure jump case is given
in Di Nunno et al (2004), Theorem 3.13.

Lemma 1 Let F ∈ D1,2 and u ∈ Dom δM̄ such that u · (F +DM̄F · 11R0) ∈ L2(Ω× [0, T ]× R,P⊗ µ̄). Then

u · (F +DM̄F · 11R0) ∈ DomδM̄ ⇔ FδM̄ (u)−
∫

[0,T ]×R
u(t, x)DM̄

t,xFµ̄(dt, dx) ∈ L2(Ω)

and in this case

δM̄ (u · F ) = FδM̄ (u)− δM̄ (u ·DM̄F · 11R0)−
∫

[0,T ]×R
u(t, x)DM̄

t,xFµ̄(dt, dx).

Proof: This result follows using relations (7), (10) and (13) and applying Lemma 2.4. and Proposition
2.5. in Alòs, León and Vives (2007a) to the random field u

h . Remark that, in our case, F doesn’t need to be
bounded. This is a consequence of the fact that if G is a bounded random variable of L2(ΩN ) and ν is finite,
we have that G ∈ DN and DNG is also bounded.

In order to give the relation between δM̄ and the pathwise integral with respect to N, we consider the
following two sets

Definition 2 We define L1,2 := L2([0, T ]× R; D1,2).

Remark that if u = {u(s, y) : (s, y) ∈ [0, T ]×R} is a random field of L1,2 we have, in particular, that u and
DM̄u are in L2(P⊗ µ̄) and L2(P⊗ µ̄⊗ µ̄) respectively.

Definition 3 We define L1,2
− as the subset of L1,2 of random fields u such that the following P⊗µ̄-a.s. left-limits

exists and belong to L2(P⊗ µ̄) :

u−(s, y) = lim
r↑s,x↑y

u(r, x),

D−u(s, y) = lim
r↑s,x↑y

DM̄
s,yu(r, x).

Proposition 4 Assume that u is a random field belonging to L1,2
− . Let be T−u := u− +D−u. Assume

∫ T

0

∫
R0

|u−(s, x)|N(ds, dx) ∈ L2(Ω), (14)
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where
∫ T

0

∫
R0
u(s, x)N(ds, dx) is the classical path-by-path integral defined by

∑
∆Zt 6=0 u(t,∆Zt).

Then, T−u = u− +D−u ∈ Dom δM̄ , and in this case,

δM̄ ((u− +D−u) · 11R0) =
∫ T

0

∫
R0

u−(s, x)Ñ(ds, dx)−
∫ T

0

∫
R0

D−u(s, x)ν(dx)ds,

or equivalently,

δM̄ (T−u · 11R0) =
∫ T

0

∫
R0

u−(s, x)N(ds, dx)−
∫ T

0

∫
R0

T−u(s, x)ν(dx)ds.

Proof:

Assume as a first step that u ∈ L1,2
− is bounded. Then DM̄u, u− and D−u are also bounded. In particular

(14) is true.

We begin considering the following partition of [0,∞)× R :

0 = s0 < s1 < · · · < sn <∞ = sn+1

−∞ = x0 < x1 < · · · < xm <∞ = xm+1.

Then we can define

un,m(s, x) =
n∑

i=0

m∑
j=0

u(si, xj)11(si,si+1](s)11(xj ,xj+1](x).

Using Lemma 1, we have that for all n and m,

δM̄ (un,m · 11R0) + δM̄ (Dun,m · 11R0) (15)

=
n∑

i=0

m∑
j=0

u(si, xj)δM̄ (11(si,si+1]11(xj ,xj+1]11R0)−
n∑

i=0

m∑
j=0

∫ T

0

∫
R0

11(si,si+1](s)11(xj ,xj+1](x)D
M̄
s,xu(si, xj)ν(dx)ds.

First of all observe that if r, s ∈]si, si+1] and x, y ∈]xj , xj+1], then (Ds,yu
n,m)(r, x) = u(si, xj , ωs,y) −

un,m(r, x) and (Ds,yu)(r, x) = u(r, x, ωs,y)− u(r, x) almost surely go to the same limit whatever n and m goes
to infinity or r ↑ s and x ↑ y. By the theorem hypothesis this limit is D−u.

Observe now that being u bounded, and having un,m the same bound, D−u and u− are also L2−limits. So,
using that δM̄ is a closed operator, the left hand side in (15) goes to δM̄ ((u− +D−u) · 11R0) in L2 if we prove
that the terms on the right hand side converge in L2 to the limits defined by the proposition.

For the first term in the right hand side, observe that δM̄ coincides with the path by path integral because
the integrand is deterministic. Then, using u is bounded and the dominated convergence theorem we obtain the
expected L2-limit. For the second term we have also a direct application of dominated convergence theorem.

In order to prove the non-bounded case observe that we can assume that u is positive, because the formula
that we want to prove is linear. Then, for the general case, we simply have to apply the result separately to the
positive and negative part.
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So, let u ≥ 0 and uK = u ∧ K. Of course, uK ≤ u and uK converges increasingly to u. We have, as a
consequence of the first step, that

δM̃ ((T−uK) · 11R0) =
∫ T

0

∫
R0

u−K(s, x)N(ds, dx)−
∫ T

0

∫
R0

T−uK(s, x)ν(dx)ds.

Being u− and T−u in L2, we have that u−K and T−uK go up to u− and T−u in L2, respectively. So,
hypothesis (14), the monotone convergence theorem and the closeness of the operator δM̃ yields the result.

Remark 5 Observe that T−u = u− when u is adapted to the filtration generated by N . Therefore in such a
case ∫ t

0

∫
R0

u−(s, y)Ñ(ds, dy) = δM̄ (u−(·, ·)11[0,t]×R0(·, ·)).

That is, in this case, the pathwise and Skorohod integrals with respect to Ñ are the same.

In the lasts two results does not appear the contribution of W in the integrals. This is because on R0 the
operator δM̄ agrees with the Skorohod-type integral with respect to Ñ , as the following result explains

Lemma 6 Let δW and δN the adjoint operators of DW and DN , respectively, and u ∈ Dom δM̄ . Then u also
belongs to Dom δW ∩Dom δN and

δM̄ (u) = σδW (u·,0) + δN (u11R0).

Proof: This result is implied by (12) and (10).

2.5 The anticipating Itô’s formula

The basic tool for our results is the following anticipative Itô formula. Remember that the process X is
introduced in (1) and Y is the future average volatility, which is an anticipative process, even σ is adapted.

Theorem 7 Let σ2 ∈ L1,2 and F : [0, T ]× R× [0,∞) → R, a function in C1,2,2([0, T ]× R× [0,∞)) such that
there exists a positive constant C satisfying that for all t ∈ [0, T ], F and its partial derivatives evaluated in
(t,Xt, Yt) are bounded by C. Then,

F (t,Xt, Yt) − F (0, X0, Y0)

=
∫ t

0

∂sF (s,Xs, Ys)ds+
∫ t

0

∂xF (s,Xs, Ys)(r −
σ2

s

2
− λk)ds

+δW,B
t (∂xF (., X., Y.)σ.)−

∫ t

0

∂yF (s,Xs, Ys)σ2
sds

+ρ
∫ t

0

∂2
xyF (s,Xs, Ys)Λsds+

1
2

∫ t

0

∂2
xxF (s,Xs, Ys)σ2

sds

+δN
t (T−u · 11R0) +

∫ t

0

∫
R0

T−u(s, x)ν(dx)ds

where δW,B is the Skorohod integral with respect the Brownian motion ρWs +
√

1− ρ2Bs, Λs := (
∫ T

s
DW

s σ2
rdr)σs

and u(s, x) := F (s,Xs− + x, Ys)− F (s,Xs−, Ys).
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Proof:

The proof is as in Alòs, León and Vives (2007b) combined by Proposition 4 to treat the sum of jump terms.

We apply it to the random field u(s, x) = F (s,Xs−+x, Ys)−F (s,Xs−, Ys). Here, the independence between
Z,B and W , the fact that Y is a continuous process and the fact that Z is a compound Poisson process with a
finite number of jumps on every compact time interval play a key role.

Indeed, let Ti these jump instants. Then

F (Ti+1, XTi+1 , YTi+1)− F (Ti, XTi , YTi) =
∫ T−

i+1

Ti

dF (s,Xs, Ys) + F (Ti+1, XTi+1 , YTi+1)− F (Ti+1, XT−
i+1
, YTi+1).

The first term yields a standard Itô formula concerning continuous process, so Alòs, León and Vives (2007b)
results apply and we get the six first terms in the right hand side of the Theorem 7 formula. On other hand,
the sum of second terms is the path by path integral∫ t

0

∫
R0

u(s, x)N(ds, dx).

Remark here that F, X−, Y are left continuous so u = u−. Then using Proposition 4 we get the last sum is
equal to:

δN
t (T−u) +

∫ t

0

∫
R0

T−u(s, x)ν(dx)ds.

3 The Hull and White formula

Now we have the following extension of the Hull and White formula

Theorem 8 Let σ and X be as in Theorem 7. Then

Vt = E(BS(t,Xt, vt)|Ft) +
ρ

2
E

(∫ T

t

e−r(s−t)∂xG(s,Xs, vs)Λsds|Ft

)

+ E

(∫ T

t

∫
R0

e−r(s−t)(T−BS(s,Xs− + y, vs)− T−BS(s,Xs−, vs)dsν(dy)|Ft

)

− λkE

(∫ T

t

e−r(s−t)∂xBS(s,Xs, vs)ds|Ft

)
.

where G = (∂2
xx − ∂x)BS.

Remark 9 Remember that in the case that σ only depends on the filtration generated by W, we have T− = Id.
Consequently, in this case, we obtain the Hull and White formula given in Alòs, León and Vives (2007b).

Proof: This proof is similar to the one of the Theorem 4.2. in Alòs, León and Vives (2007b). Notice that
BS(T,XT , vT ) = VT . Then, from (2) we have

10



e−rtVt = E(e−rTBS(T,XT , vT )|Ft).

Now, our idea is to apply the Itô formula (Theorem 7) to the process e−rtBS(t,Xt, vt). As the derivatives
of BS(t, x, σ) are not bounded we will make use of an approximating argument, changing vt by

vδ
t :=

√
1

T − t
(Yt + δ),

and BS(t, x, σ) by BSn(t, x, σ) := BS(t, x, σ)ψn (x) , where ψn (Xt) := φ
(

1
nx
)
, for some φ ∈ C2

b such that
φ (x) = 1 for all x < 1 and φ (x) = 0 for all x > 2. Now, applying Theorem 7 between t and T to function

F : (t, x, y) 7→ e−rtBSn

(
t, x,

√
y + δ

T − t

)

and grouping terms according with the type of derivative we obtain:

e−rTBSn(T,XT , v
δ
T )

= e−rtBSn(t,Xt, v
δ
t ) +

∫ T

t

e−rsLBS(σs)BSn(s,Xs, v
δ
s)ds

−1
2

∫ T

t

e−rs∂σBSn(s,Xs, v
δ
s)

(σ2
s − (vδ

s)2)
vδ

s(T − s)
ds

−λk
∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+
∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)σs(ρdWs +

√
1− ρ2dBs)

+
ρ

2

∫ T

t

e−rs∂2
σxBSn(s,Xs, v

δ
s)

1
vδ

s(T − s)
Λsds

+δN
t (e−rs(T−BSn(s,Xs− + y, vδ

s)− T−BSn(s,Xs−, v
δ
s)))

+
∫ T

t

∫
R0

e−rs(T−BSn(s,Xs− + y, vδ
s)− T−BSn(s,Xs−, v

δ
s))dsν(dy).

Notice that LBS(σs)BSn(s,Xs, v
δ
s) =

(
LBS(σs)BS(s,Xs, v

δ
s)
)
ψn(Xs) +An(s), where

An(s) =
1
2
σ2

s

[
2∂xBS(s,Xs, v

δ
s)ψ′n(Xs)

+BS(s,Xs, v
δ
s) (ψ′′n(Xs)− ψ′n(Xs))

]
+ rBS(s,Xs, v

δ
s)ψ′n(Xs).

Also note that the classical relation between the Gamma, the Vega and the Delta gives us that

∂σBS(s, x, σ)
1

σ(T − s)
= (∂2

xx − ∂x)BS(s, x, σ).
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Then we can write

e−rTBSn(T,XT , v
δ
T )

= e−rtBSn(t,Xt, v
δ
t ) +

∫ T

t

e−rs
[
(LBS(σs)BS)(s,Xs, v

δ
s)ψn(Xs) +An(s)

]
ds

−1
2

∫ T

t

e−rs(∂2
xx − ∂x)BS(s,Xs, v

δ
s)ψn(Xs)(σ2

s − (vδ
s)2)ds

−λk
∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+
∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)σs(ρdWs +

√
1− ρ2dBs)

+
ρ

2

∫ T

t

e−rs
[(
∂x(∂2

xx − ∂x)BS
)
(s,Xs, v

δ
s)ψn(Xs) + (∂2

xx − ∂x)BS(s,Xs, v
δ
s)ψ′n(Xs)

]
Λsds

+δN
t (e−rs(T−BSn(s,Xs− + y, vδ

s)− T−BSn(s,Xs−, v
δ
s)))

+
∫ T

t

∫
R0

e−rs(T−BSn(s,Xs− + y, vδ
s)− T−BSn(s,Xs−, v

δ
s))dsν(dy)

Hence, taking into account that LBS(σs) = LBS(vδ
s) + 1

2 (σ2
s − (vδ

s)2)
(
∂2

xx − ∂x

)
it follows that (using the fact

that LBS(vδ
s)BS(s,Xs, v

δ
s) = 0)

e−rTBSn(T,XT , v
δ
T ) = e−rtBSn(t,Xt, v

δ
t ) +

∫ T

t

e−rsAn(s)ds

−λk
∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+
∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)σs(ρdWs +

√
1− ρ2dBs)

+
ρ

2

∫ T

t

e−rs
[(
∂x(∂2

xx − ∂x)BS
)
(s,Xs, v

δ
s)ψn(Xs) + (∂2

xx − ∂x)BS(s,Xs, v
δ
s)ψ′n(Xs)

]
Λsds

+δN
t (e−rs(T−BSn(s,Xs− + y, vδ

s)− T−BSn(s,Xs−, v
δ
s)))

+
∫ T

t

∫
R0

e−rs(T−BSn(s,Xs− + y, vδ
s)− T−BSn(s,Xs−, v

δ
s))dsν(dy)

Now, taking conditional expectations we obtain that

E
(
e−rTBSn(T,XT , v

δ
T )
∣∣Ft

)
= E

{
e−rtBSn(t,Xt, v

δ
t ) +

∫ T

t

e−rsAn(s)ds

−λk
∫ T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+
ρ

2

∫ T

t

e−rs
[(
∂x(∂2

xx − ∂x)BS
)
(s,Xs, v

δ
s)ψn(Xs) + (∂2

xx − ∂x)BS(s,Xs, v
δ
s)ψ′n(Xs)

]
Λsds

+
∫ T

t

∫
R0

e−rs(T−BSn(s,Xs− + y, vδ
s)− T−BSn(s,Xs−, v

δ
s))dsν(dy)

∣∣∣∣∣Ft

}
.

Let us remark that continuity of BSn, v
δ and left continuity of X− imply that (T−BSn(s,Xs− + y, vδ

s) =
BSn(s,Xs− + y, T−vδ(s, y)).
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Finally we obtain the result proceeding as in the proof of Theorem 3 in Alòs, León and Vives (2007b). That
is, letting first n ↑ ∞, then δ ↓ 0 and using the dominated convergence theorem.

Remark 10 The additional term given by T−BS can be detailed as following. Suppose that σ2
r = f(Wu, Zu, u ≤

r). Then we can define

ṽ2
s = lim

t↑s,y↑x

1
T − t

∫ T

t

Ts,x(σ2
r)dr.

But for r > s, Ts,x(σ2
r) = f(Wu, Zu + x11{s≤u}, u ≤ r) and

ṽ2
s = lim

t↑s

1
T − t

∫ T

t

f(Wu, Zu + x11{s≤u}, u ≤ r)dr =
1

T − s

∫ T

s

σ̃2
rdr

where σ̃2
r = f(Wu, Zu + x11{s≤u}, u ≤ r).

For example, consider the following pure volatility jump case described in Álvarez (2007). See also Espinosa
and Vives (2006). Let T1, . . . , Tn, ... the jump instants and ∆TiZ the jump size of process Z, with T0 = 0.
Assume that the dynamic of σ is given by

σ2
t =

Nt∑
i=0

σ2
i 11[Ti,Ti+1[(t),

with σ2
i = σ2

i−1 + f(∆Ti
Z), for a certain function f. In this case, we have σ̃2

r = σ2
r + f(x)11{r≥s}(r) and so, the

explicit computation of ṽs gives ṽ2
s = v2

s + f(x).

4 Short time behaviour of the implied volatility

In this section we will show that the short time behaviour of the at-the-money implied volatility is the same
as in the case where the volatility σ is independent of the filtration of Z, even the Hull and White formula is
different in the last case (see Remark 9). This is a fact that must be taken in account for pricing and hedging.

Let It(Xt) denote the implied volatility process. By definition it satisfies Vt = BS(t,Xt, It(Xt)). Assume
that σ ∈ L1,2 is as in model (1). Proceeding as in Alòs, León and Vives (2007b), the derivative of the implied
volatility with respect the log-strike Z = logK is

∂It
∂Z

(x∗t ) = −
E(
∫ T

t
(∂xF (s,Xs, vs)− 1

2F (s,Xs, vs))ds|Ft)
∂σBS(t, x∗t , It(x∗t ))

∣∣∣∣∣
Xt=x∗t

, a.s.

where

F (s,Xs, vs) :=
ρ

2
e−r(s−t)∂xG(s,Xs, vs)Λs − λke−r(s−t)∂xBS(s,Xs, vs)

+
∫

R
e−r(s−t) (BS(s,Xs− + y, ṽs)−BS(s,Xs− + y, ṽs)) ν(dy).

Now, in order to study the limit of ∂It

∂Z (x∗t ) as T ↓ t we need to introduce the following hypotheses:

(H1) σ ∈ L2,4
W = L4([0, T ]× R; D2,4

W ).
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(H2) There exists a constant δ > − 1
2 such that, for all 0 < t < s < r < T,

E
((
DW

s σr

)2∣∣∣Ft

)
≤ C (r − s)2δ

, (16)

E
((
DW

θ DW
s σr

)2∣∣∣Ft

)
≤ C (r − s)2δ (r − θ)−2δ

. (17)

(H3) For every fixed t > 0, sups,r,θ∈[t,T ]E
((
σsσr − σ2

θ

)2∣∣∣Ft

)
→ 0 as T → t.

Theorem 11 Under the Hypotheses (H1)-(H3) we have:

1. Assume that δ in (H2) is nonnegative and that there exists a Ft-measurable random variable DW,+
t σt such

that, for every t > 0,
sups,r∈[t,T ]

∣∣∣E ((DW
s σr −DW,+

t σt

)∣∣∣Ft

)∣∣∣→ 0, (18)

a.s. as T → t. Then

lim
T→t

∂It
∂Z

(x∗t ) =
1
σt

(
λk + ρ

DW,+
t σt

2

)
. (19)

2. Assume that δ in (H2) is negative and that there exists a Ft-measurable random variable Lδ,+
t σt such that,

for every t > 0,
1

(T − t)2+δ

∫ T

t

∫ T

s

E
(
DW

s σr

∣∣Ft

)
drds− Lδ,+

t σt → 0, (20)

a.s. as T → t. Then
lim
T→t

(T − t)−δ ∂It
∂Z

(x∗t ) =
ρ

σt
Lδ,+

t σt. (21)

Proof: We can write

−∂σBS(t, x∗t , It(x
∗
t ))

∂It
∂Z

(x∗t )

=
ρ

2
E(
∫ T

t

e−r(s−t)(∂x −
1
2
)∂x(∂2

xx − ∂x)BS(s,Xs, vs)Λsds|Ft)|Xt=x∗t

+ E(
∫ T

t

∫
R
e−r(s−t)(∂x −

1
2
)[BS(s,Xs + y, ṽs)−BS(s,Xs, ṽs)]ν(dy)ds|Ft)|Xt=x∗t

−λkE(
∫ T

t

e−r(s−t)(∂x −
1
2
)∂xBS(s,Xs, vs)ds|Ft)|Xt=x∗t

= T1 + T2 + T3.

The term T2 is O(T − t) due to the fact that the following majoration is uniform on σ :

|BS(t, x, σ)|+ |∂xBS(t, x, σ)| ≤ 2ex +K

Now the result follows as in Alòs, León and Vives (2007b) (Proposition 6 and Theorem 7).
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5 Conclusion

As a conclusion, let us stress that the presence of jumps in a stochastic volatility model has a relevance. An
additional term appears in the Hull and White formula. Nevertheless the correlation between price jumps and
the stochastic volatility has no influence on the short time behaviour of the implied volatility.
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[1] E. Alòs, J. A. León and J. Vives (2007a): An anticipating Itô’s formula for Lévy processes. Preprint of the
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[14] E. Petrou (2006): ”Malliavin calculus in Lévy spaces and Applications in Finance”. Preprint.
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