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Abstract 

 

The mathematical representation of Brunswik’s lens model has been used 

extensively to study human judgment and provides a unique opportunity to conduct a 

meta-analysis of studies that covers roughly five decades. Specifically, we analyze 

statistics of the “lens model equation” (Tucker, 1964) associated with 259 different task 

environments obtained from 78 papers.  In short, we find – on average – fairly high levels 

of judgmental achievement and note that people can achieve similar levels of cognitive 

performance in both noisy and predictable environments. Although overall performance 

varies little between laboratory and field studies, both differ in terms of components of 

performance and types of environments (numbers of cues and redundancy). An analysis 

of learning studies reveals that the most effective form of feedback is information about 

the task. We also analyze empirically when bootstrapping is more likely to occur. We 

conclude by indicating shortcomings of the kinds of studies conducted to date, limitations 

in the lens model methodology, and possibilities for future research.   
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Since the 1960s, many psychologists have used the framework of Brunswik’s 

(1952) lens model to study processes where humans make predictions of specific criteria 

(see, e.g., Brehmer & Joyce, 1988; Cooksey, 1996; Hastie & Kameda, 2005).  For 

example, a person might make a judgment (i.e., prediction) about another person’s 

intelligence, about the likelihood of rain, whether a job candidate will be successful, and 

so on.  In all these cases, the simple beauty of Brunswik’s model lies in recognizing that 

both the person’s judgment and the actual criterion predicted can be thought of as two 

separate functions of cues that are available in the environment.  Thus, the accuracy of 

human judgment depends on the extent to which the function that describes it matches its 

environmental counterpart. 

 But how good or accurate are people at making judgments and on what does this 

depend?  These are important questions that have generated considerable controversy in 

the psychological literature (Cohen, 1981; Gigerenzer, 1996; Kahneman & Tversky, 

1996).  Whereas it is unlikely that these questions can be answered satisfactorily by any 

particular approach, an advantage of research conducted within the Brunswikian tradition 

is the use of a common methodology for formalizing the lens model.  Thus, not only can 

researchers within this tradition communicate results within a common framework, it is 

possible to aggregate results quantitatively across many studies and make statements that 

reflect the accumulation of results.  This is the purpose of the current paper in which we 

present a meta-analysis of studies conducted using the lens model over a period of five 

decades.  

 The paper is organized as follows. We first describe the mathematical formulation 

of the lens model. Second, we specify how we identified and included particular studies 
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in our analysis. Third, by summarizing the results of these studies we illuminate the issue 

of how accurate human judgment is and the factors that affect it. Since psychologists 

typically study judgment within laboratories but people use judgment outside 

laboratories, we pay particular attention to differences between laboratory and field 

studies. Fourth, since the topic of learning has been central to studies within the lens 

model tradition, we make a separate analysis of learning studies. Key topics center on 

how much learning occurs, what affects this and the impact of different types of 

feedback.  Fifth, we contribute to the discussion of the relative advantages of clinical 

judgments and their paramorphic representations (Hoffman, 1960) or bootstrapping 

models (e.g., Goldberg, 1970; Dawes, 1971; Camerer, 1981) by analyzing the conditions 

under which people are more likely to be outperformed by models of their judgments. 

Finally we conclude by summarizing the main substantive conclusions of the analysis, 

indicating shortcomings of the kinds of studies conducted to date, and suggesting avenues 

for future research.   

 

The mathematical formulation of Brunswik’s lens model 

 The use of Brunswik’s lens model received an important impetus in 1964 when a 

series of papers showed how statistical methods could be used to capture judgmental 

processes (Hammond, Hursch, & Todd, 1964; Hursch, Hammond, & Hursch, 1964; 

Tucker, 1964. See also Castellan, 1973).  In this, human judgment, denoted Ys, is 

modeled as a linear function of a set of k cues, Xj, j = 1,…k.  Thus,  

   s

k

j
jjss XY εβ += ∑

=1
,       (1) 
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where the βs,j’s represent the weights that the person (or judge) gives to the different cues 

and εs is the error term of the regression of Ys on the Xj’s.  

Similarly, the environmental criterion, Ye, can be modeled as a function of the 

same cues, Xj, j = 1,…k.  That is,  

e

k

j
jjee XY εβ += ∑

=1
,       (2) 

where the βe,j’s represent the weights that the environment gives to the different cues and 

εe is the error term of the regression of Ye on the Xj’s – see Figure 1. 

------------------------------------------------------- 
Insert Figure 1 about here 

------------------------------------------------------- 

The logic of the lens model is that the person’s decisions will match the 

environmental criterion to the extent that the weights the judge gives to the cues match 

those used by the model of the environment, i.e., the matches between βs,j and βe,j for all j 

= 1,…k. Moreover, the correlation between criterion and judgment,  
seYYρ – the so-called 

“achievement” index or ra – can be expressed by the “lens model equation”     

   
( )( )22 11 sesea RRCRGRr −−+=        (3) 

where G = 
seYY ˆˆρ  (the “matching” index) is the correlation between the predictions of both 

models, i.e., between ∑
=

k

j
jje X

1
,β and ∑

=

k

j
jjs X

1
,β ; Re and Rs are, respectively, the multiple 

correlations of the models of the environment and the judge, and capture, on the one 

hand, environmental predictability (Re), and on the other hand, the consistency with 

which the judge executes the decision rule (Rs); and C =
seεερ  is the correlation between 
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the error terms of the two models. If these are independent, i.e., 0=
seεερ , then judgmental 

accuracy or achievement (ra) is simply a multiplicative function of three terms: matching 

(G), environmental predictability (Re), and response consistency (Rs), and neatly captures 

the effects of both cognitive and task variables on observed performance.  In practice, C 

may actually differ from 0 if, say, a variable has been omitted from the analysis and/or 

cues are used in a nonlinear manner.  

 In addition to the basic lens model statistics indicated above, we are interested in 

the products of two of these statistics. First, it is illuminating to analyze the human 

component of achievement independently of the predictability of the environment. For 

situations where C = 0, this can be represented by the product of matching, G, and 

response consistency, Rs. This product, GRs, named “performance” by Lindell (1976) and 

“linear cognitive ability” by Hogarth and Karelaia (2006), neatly captures the extent to 

which judges both match task requirements and are consistent in the execution of their 

strategies. 

Second, the product of matching, G, and environmental predictability, Re, is an 

estimate of the validity of the bootstrapping model of the judge (Goldberg, 1970; Dawes, 

1971; Camerer, 1981). This product, GRe, is interesting in that it captures the validity of 

the judge’s strategy assuming that the strategy is applied in a perfectly consistent manner 

(i.e., when Rs = 1). In other words, it captures what would happen if a judge was replaced 

by his or her model.   
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Database for the meta-analysis 

 By searching several databases, key articles, and consulting leading contributors 

to the literature, we identified some 200 published and unpublished works that suggested 

that they might contain lens model data, specifically the components of Equation 3. 1  We 

excluded from consideration works that failed to model the environmental side of the lens 

(i.e., for which criterion data were missing), studies that used aggregate as opposed to 

individual judgments (see, e.g., Gifford, 1994) as well as research within the conflict 

resolution paradigm in which the criterion for one person is the judgments of others (see, 

e.g., Hammond, Wilkins, & Todd, 1966).  From these 200 works we identified 78 that 

contained full (or almost full) lens model statistics.  These works were published between 

1954 and 2006, one half being published before 1984, and the other half afterwards.2 

Most of these studies examined judgments in more than one environment or experimental 

setting. Thus, we ended up with a total of 259 different environments in which judgments 

were made. The mean number of participants in the 259 environments was 19 (inter-

quartile range, 10 to 24), each making, on average, 88 judgments (inter-quartile range,  25 

to 91).  The total number of individual judgments on which our results are based is thus 

large – almost 320,000.3 

We characterized each of the 259 data points by the averages of the lens model 

statistics of the participants in each of these environments.  These averages were either 

                                                 
1 It is important to note that, on completing our analysis, we became aware of another recent meta-analysis 
of lens model studies conducted by Kaufmann and Athanasou (2007). The scope of their work, however, is 
more limited than ours and their criteria for including studies in the analysis are different. Their work 
should thus be considered complementary to what is presented here.  
 
2 We note, incidentally, that when splitting the 1954 - 2006 period into five-year periods, the 1972-1976 
period contains the largest number of published papers, 21. Interest in the topic then declined, as judged by 
the number of papers we identified, but increased again at the end of the 1990s.  
 
3 In fact, the total is somewhat larger because this figure excludes all but the last block of learning trials. 
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taken directly from the papers, inferred (e.g., from graphs), or calculated by making use 

of the properties of the lens model equation (Equation 3).  In many experimental papers, 

no value was given for C (the correlation between the residuals of the models of the judge 

and environment), and this was assumed to be 0 (a reasonable assumption given the way 

in which experimental data were generated).  We emphasize that our unit of analysis is 

the average of statistics of individuals within each environment as opposed to the actual 

individual statistics. Unfortunately, only a few papers provided individual level data and 

so we are unable to comment on variation within the different environments.   

In addition to the lens model statistics for all 259 observations, we encoded 

variables that characterized both the specific tasks and participants (these are described 

below and in Table 2). When studies explicitly considered learning over several blocks of 

trials, we limited our attention to statistics for the first and last blocks.  The latter were 

used to capture general performance and aggregated with the non-learning data.  The 

former were used as a baseline to capture the effects of learning relative to levels 

exhibited in the last blocks of trials (see below).  

  

How accurate is human judgment overall?  

The upper part of Table 1 reports mean values of the lens model statistics for the 

data we examined.  Note that, with the exception of environmental predictability, Re, our 

data points are themselves means, and that there is considerable variability in that almost 

all indices vary between their theoretically possible minima and maxima. Across all 259 

observations, mean achievement, ra, is 0.55, mean matching, G, is 0.81 (the median of G 

is notably higher, 0.91), and mean response consistency, Rs, reaches 0.80. On the 
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environmental side, predictability, Re, is 0.79 on average, and mean non-linear 

component, C, equals 0.05.  

It is interesting to note that mean Re and mean Rs are close in value as this 

suggests a kind of overall (or mean) probability matching phenomenon. As just noted, 

mean Re is a “true mean” whereas mean Rs is a “mean of means.” Thus, whereas the 

reported standard deviation of Rs is smaller than that of Re, this hides the fact that in any 

given study values of  Rs at the individual level can vary quite a lot for fixed levels of Re. 

----------------------------------------------- 
Insert Table 1 about here 

-----------------------------------------------  

As for the two composite statistics, mean linear cognitive ability, GRs, is 0.66, 

with its median slightly higher at 0.73.  The mean validity of bootstrapping models, GRe, 

is 0.64 and surpasses mean achievement of clinical judgment, 0.55. 

To explore relations between the various indices, the lower part of Table 1 

presents pair-wise correlations. Several significant correlations (p < 0.01) come as no 

surprise.4 In particular, consistent with Equation 3, there are high positive correlations 

between achievement, ra, and (a) matching, G, 0.77; (b) response consistency, Rs, 0.52; 

and (c) environmental predictability, Re, 0.40. Less obvious a priori is the significant 

correlation between the two statistics that characterize performance independent of 

environmental predictability, namely matching, G, and response consistency, Rs. This 

correlation is positive, 0.42, and suggests that decision makers who match the 

environment better are also more consistent in executing their judgment.  

                                                 
4 For statistical purposes, we conduct our analysis by treating each of our 259 observations as though these 
are random drawings from an underlying population of environments.  This is patently a false assumption. 
We therefore use statistical tests in the spirit of heuristic guides as opposed to “hypothesis tests.” 
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Another striking result is that neither consistency, Rs, nor matching, G, correlates 

with environmental predictability, Re (correlations of 0.08 and -0.01, respectively). That 

is, decision makers can reach similar levels of performance/linear cognitive ability in 

both noisy and predictable environments.  

Finally, the fact that ra and C, the non-linear component, are moderately 

correlated (0.28) suggests significant non-linear usage of cues and/or omitted variables 

(i.e., judges were using information of which investigators were unaware).  

 

What factors affect the accuracy of human judgment?  

For all 259 environments, we encoded (when available) seven variables that could 

potentially affect the level of human judgment. Six involve characteristics of 

environments or tasks and one of decision makers.  These variables are also listed on the 

left hand side of Table 2. 

----------------------------------------------- 
Insert Table 2 about here 

----------------------------------------------- 

Environments vary, first, in the number of cues. This can be taken as a surrogate 

measure of task complexity (i.e., given limited information processing capacity). We 

code the data into three groups: two, three, or more than three cues. 

Second, we distinguish between environments where cues are “given” as opposed 

to “achieved.”  For the former, decision makers are provided with the explicit values of 

the cues by the experimenter. For the latter, the values of the cues need to be inferred – 

and often even identified – by decision makers.    
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Third, we classify environments by the level of inter-cue redundancy as either 

“none” (no redundancy), “some” (if average cue inter-correlation is less than 0.4, or 

redundancy is described as being: “low,”  “moderate,”  “some”), or “high” (otherwise).  

Fourth, we classify the distributions of the environmental weights βe,j’s  given to 

cues in three groups. In particular, we define weighting functions as non-compensatory if, 

when cue weights are ordered in magnitude, the weight of each cue exceeds the sum of 

those smaller than it (Martignon & Hoffrage, 1999; 2002). All other functions are 

classified as compensatory except for the special case of equal-weighting.  

Fifth, we consider differences between laboratory experiments and field studies.   

Sixth, we distinguish between environments in which participants were explicitly 

given the possibility to learn over several blocks of trials and environments without this 

possibility. We label the latter “stable” environments. For “learning” environments, we 

also record the number of learning trials and type of feedback given to participants. We 

classify feedback into five categories: none, outcome feedback, cognitive feedback, task 

information feedback, and other types of feedback.  Outcome feedback is simply 

knowledge of the outcome of a judgment. Cognitive (or process) feedback refers to data 

involving the judge's decision policies (e.g., βs,j’s,  the weights given to the different 

cues). Task information feedback is information about true relations in the environment 

(e.g., βe,j’s) rather than relations perceived by the judge (i.e., cognitive feedback). 

Seventh, it is reasonable to assume that initial level of expertise may be important 

for achievement. We therefore classify participants in three groups: “novices,”  “experts” 

(two extreme categories), and “some training” (an intermediate category).  
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In what follows, we analyze the role that each of these variables plays in 

determining levels of human achievement and performance. The data described below are 

presented in Table 2. In particular, Table 2 classifies the data according to the   variables 

enumerated above and specifies the numbers of environments falling into each category, 

average numbers of judges in the environments, average numbers of judgments made by 

each judge, and means of lens model indices. In what follows, we use the 0.05 

significance level in statistical tests, unless indicated otherwise.  

Number of cues. Given well-established limitations on human information 

processing, it is often argued that the linear model does not provide a good description of 

judgment when the number of cues is large (cf., Payne, Bettman, & Johnson, 1993).  At 

the same time, when decision makers have many cues available, redundancies might 

increase achievement. What do the data say about these issues?    

There are two significant effects of the number of cues in the task. First, in these 

data, the non-linear component, C, is smaller in the environments with three cues (0.00 

vs. 0.07 and 0.08 for the two-cue and more-than-three-cues environments, respectively). 

Second, mean matching, G, is much smaller in environments with more cues. That is, 

with more than three cues, an average judge has a matching index of 0.71, while for the 

environments with fewer cues the analogous index is 0.88. Given that response 

consistency, Rs, does not correlate with the number of cues, the final impact of this task 

variable on the decision maker’s performance, GRs, is similar to the effect described 

above on  G.  In particular, in environments with more than three cues, participants had, 

on average, a lower level of GRs, 0.58 (vs. an average of 0.72 for all other environments). 
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As for human achievement, ra, it also reaches its lowest level in the environments 

with more than three cues, 0.51, which is significantly different from the 0.63 

corresponding to the environments with two cues. Importantly, the two-cue and more-

than-three-cue environments have similar levels of all lens model indices except for 

matching, G, and, therefore, the difference in human achievement, ra, can be attributed to 

the difference in the levels of G. This picture changes, however, if the environments with 

three cues are used as a reference point in interpreting the figures in the environments 

with more than three cues. In this comparison, the effect of G (0.88 vs. 0.71) on 

achievement, ra, is masked by the differences observed in the levels of the non-linear 

component, C (0.00 vs. 0.08). As a result, the difference between achievement levels in 

the environments with three cues (0.55) and more than three cues (0.51) is not significant.  

Overall, we find that judges match the environment worse when there are more 

than three cues and that human achievement is negatively affected by a large number of 

cues (see also Einhorn, 1971). Below, we shall address further the issue of the relation 

between the number of cues and inter-cue redundancy.    

Given/achieved cues. In addition to weighting and combining information, an 

important dimension of many judgmental tasks involves identifying and assessing levels 

of relevant information (Einhorn, 1972).  In these data, we find that whether cues were 

directly given to participants or had to be achieved affects neither matching, G (0.82 vs. 

0.79, respectively; the difference is not significant) nor response consistency, Rs (0.81 vs. 

0.79, respectively; the difference is not significant). As a consequence, the difference 

between the levels of human achievement, ra, in the studies where cues are achieved by 

judges (0.60) and in the studies where the cues are provided directly by experimenters 
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(0.55) is not statistically significant, even though the non-linear component, C, is much 

larger in the environments with achieved as opposed to given cues (0.13 vs. 0.03, 

respectively). The difference in C suggests that when cues had to be “achieved,” judges 

were relying on information that investigators did not include in the corresponding 

models of environments.  

For further insight, we analyzed the effect of this variable separately in 

environments with different numbers of cues (see previous section). While we do not 

have a sufficient number of environments with achieved cues within the groups of two- 

and three-cue environments, we observed a significant effect of this task variable within 

the environments with more than three cues. In particular, achievement, ra, is greater 

when cues are achieved (0.62, n = 27) than when these are given (0.46, n = 67). 

Interestingly, within the environments with more than three cues, we find additionally 

significant effects of this variable on both matching, G, and consistency, Rs. In particular, 

judges match the environment better when cues are achieved (0.80, n = 27 vs. 0.67 in 67 

environments with given cues), but show greater judgmental consistency when cues are 

given (0.83, n = 67 vs. 0.75 in 27 environments with achieved cues).   

Overall, we find no evidence in the data that either matching or response 

consistency is affected by the way judges obtain the cue values.  However, in a subset of 

data – environments with more than three cues – we find that judges match 

environmental weights better but are less consistent in applying their models when they 

need to infer cue values as opposed to when these are directly provided by experimenters.     

Inter-cue redundancy. Inter-cue redundancy is a functional element of decision 

environments in that it facilitates what Brunswik (1943; 1952) referred to as “vicarious 
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functioning” or the interchangeability of cues.  It thereby contributes to improving the 

reliability of overall judgments and can help to limit information search without 

significant reductions in judgmental accuracy (Connolly & Miklausich, 1978; Einhorn, 

Kleinmuntz, & Kleinmuntz, 1979).  

 In these data, however, we do not observe any beneficial effect of inter-cue 

redundancy on human achievement, ra. Indeed, we find an inverse relation: mean 

achievement, ra, is significantly higher when there is no redundancy (0.61) than when 

there is “some” (0.53) or it is “high” (0.54). A similar tendency is observed with respect 

to the average level of matching, G (0.89 vs. 0.78 and 0.76, respectively). Interestingly, 

the non-linear component, C, is higher in environments with high redundancy (0.10 vs. 

0.03 in all other environments).  

Although surprising at first, the effect of redundancy may be due (at least partially) 

to a positive correlation of this task variable with the number of cues, 0.33 (n = 208,              

p < 0.001). In particular, only 15% of environments with more than three cues contain no 

inter-cue redundancy which is well below the 56% of environments with two cues, and 

80% of environments with three cues. (In addition, among the environments with three 

cues, none is classified as containing high redundancy.)  

To distinguish the effects of inter-cue redundancy and the number of cues on 

human judgment, we regressed (separately) achievement, ra, matching, G, and response 

consistency, Rs, on the number of cues and the level of cue redundancy. To control for the 

linear predictability of environments, we included two more predictors: the non-linear 

component, C, and environmental predictability, Re. We used a robust weighted least 

squares (WLS) regression procedure. The results of these regressions showed no 
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significant effect of cue redundancy on ether achievement, ra, or response consistency, Rs. 

However, when explaining the variance of matching G, the regression coefficient for 

redundancy is negative and significant (robust t = -2.65, p = 0.009).5  That is, in these 

data, subjects matched environmental weights better when cue redundancy was smaller, 

controlling for the number of cues and linear environmental predictability.  

We conclude therefore that the data do not show any positive effect of cue 

redundancy on human judgment and even suggests that matching, G, suffers from higher 

redundancy. 

Weighting function form.  An important topic of lens model research has focused 

on how well experimental participants handle different types of functional relations 

between cues and the criterion (see, e.g., Brehmer, 1980). The data reveal a significant 

effect of how cues are weighted by the environment.  In particular, of the three types of 

functions we consider, the lowest level of mean human achievement, ra, (0.51) 

corresponds to environments where this is non-compensatory. Mean achievement is 

highest (0.66) in equal-weighting environments whereas the mean for compensatory 

environments lies between these extremes (0.57).  

  We note that two variables seem to explain this effect. First, in non-compensatory 

environments, participants did the worst job in matching the environmental weights 

(mean G is 0.80 vs. 0.84 in compensatory environments and 0.91 in environments with 

equal weights). Second, mean response consistency, Rs, is also   lowest in the non-

compensatory environments: 0.74 vs. 0.82 in all other environments.  

                                                 
5 A robust OLS procedure with While-adjusted standard errors gives similar results, except that the value of 
t-statistics of the coefficient for redundancy decreases to -1.81 (p=0.072).  
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The joint effect of these two variables magnifies the difference in 

performance/linear cognitive ability, GRs, between the different types of environments. 

According to the data, the most “difficult” environments involve non-compensatory 

weighting schemes (mean GRs = 0.62), followed by compensatory environments (mean 

GRs = 0.70). The equal-weighting environments are best suited to applying a linear model 

(mean GRs = 0.75).  

Laboratory and field studies.  An important dimension of the Brunswikian 

research philosophy centers on the concept of representative design (Brunswik, 1956). 

While field studies are naturally representative, laboratory studies may or may not reflect 

formal properties of naturalistic environments. Thus, it is of interest to compare 

laboratory and field studies on two dimensions.  First, do the conditions of laboratory 

studies mirror those of field studies? Second, do participants have differential 

achievement and performance in the two kinds of environments?  

In field studies (n = 48), mean matching, G, was lower than in laboratory studies 

(n = 208), 0.74 vs. 0.83 (the difference is significant).  There are no other differences 

between field and laboratory studies in the data. The overall effect of this task variable on 

performance/linear cognitive ability, GRs, and achievement, ra, is negligible.  

 For further insight, we analyze the effect of this task variable controlling for the 

number of cues in the environments. In fact, all field studies contained more than three 

cues, while only 50 of the 208 laboratory studies (24%) did. We therefore limit further 

analysis to the environments with more than three cues. In doing so, we find that the 

difference in consistency, Rs, becomes significant (“field” being more consistent, on 
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average, than “laboratory”, 0.84 vs. 0.78), but the difference in matching, G, becomes 

insignificant. The overall effect on achievement, ra, remains negligible.  

 Since the number of cues affects inter-cue redundancy, we split the data along two 

dimensions: laboratory/field and the level of redundancy (Table 3). We find that the field 

studies better reflect naturalistic decision environments in that they contain, on average, 

more redundancy than laboratory studies. In particular, none of the field studies lacked 

redundancy, about half contained some, and the other half a lot. The majority of 

laboratory studies (62%) had no redundancy. In the environments with high redundancy, 

the difference in mean human achievement, ra, between laboratory and field studies is 

striking: 0.36 vs. 0.61 (the difference is significant, though the validity of this finding is 

weakened by the low number of observations, 7, in one group).  

----------------------------------------------- 
Insert Table 3 about here 

-----------------------------------------------  

  Does environmental predictability, Re, have the same importance for human 

achievement in laboratory and field studies? We analyze the correlation between Re and 

other components of human achievement in laboratory and field studies separately and 

find that, in laboratory studies, environmental predictability, Re, correlates with neither 

matching, G, nor response consistency, Rs.  In the more naturalistic field studies, 

however, we find that when environments are more predictable, participants are more 

consistent (corr(Re; Rs) = 0.52, n = 45, p < 0.001). Matching, G, however, is unaffected 

by environmental predictability, Re (within field studies, corr(Re; G) = 0.22, n = 45, ns.). 

As a result, in field studies, greater environmental predictability implies greater linear 
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cognitive ability or performance, that is, the correlation between Re and GRs is 0.35             

(n = 45, p = 0.020).   

Parenthetically, we note that some thirty years ago, Brehmer (1976) showed – in a 

small sample – that Re   and Rs were positively correlated in field studies and claimed that 

this relation was also observed in laboratory studies.  Our larger sample of evidence does 

not support the latter claim. 

Expertise. It is possible to point to individual studies of judgmental achievement 

involving acknowledged experts that indicate both abysmal (Einhorn, 1972) and 

incredibly accurate performance (Stewart, Roebber, & Bosart, 1997). However, what are 

the general trends?  

In these data, the initial level of expertise (as opposed to expertise acquired through 

learning in the experimental studies) does not affect the level of achievement, ra (all 

relevant differences in Table 2 are not significant). However, for matching, G, and 

consistency, Rs, we find some unexpected trends. In particular, participants classified as 

“experts” have the lowest level of matching, G (0.68, significantly different from 0.83, 

the mean G among “novices”), and are not more consistent than their less experienced 

colleagues (the mean Rs’s for experts and novices, 0.83 and 0.79, are not significantly 

different).  

Note, however, that environments that involved experts had, on average, a greater 

non-linear component, C (0.17 vs. 0.03 in environments that involved novices), and a 

lower level of linear environmental predictability, Re (0.74 vs. 0.81 in environments that 

involved novices). To separate the effects of the task characteristics from the effect of 

expertise, we regressed (separately) achievement, ra, matching, G, and response 
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consistency, Rs, on the non-linear component, C, environmental predictability, Re, and the 

variable characterizing the level of expertise. We used a robust WLS regression 

procedure. The results of these regressions showed no significant effect of expertise on 

ether achievement, ra, or matching, G. However, when explaining the variance of 

response consistency, Rs, the regression coefficient for expertise is positive and 

significant (robust t = 2.59, p = 0.010). That is, controlling for linear environmental 

predictability and the non-linear component of environments, we find that the experts 

were more consistent than novices in applying their decision policies                          

(cf., quasi-rationality hypothesis in Brehmer, 1994).  

We conclude that the initial level of expertise does not affect how well individuals 

match environmental structures but is important for consistency in applying individual 

policies. The effect of the initial level of expertise on judgmental consistency is, however, 

insufficient in these data to impact the overall level of human achievement. We next 

examine the effect of expertise acquired through learning during the experimental trials.  

 

 How effective is learning? The role of feedback   

We first compare the results of environments that involved learning trials and those 

in which participants did not have the possibility to learn the task (i.e., “stable” 

environments).  We next focus only on environments involving learning to uncover 

additional factors (such as different types of feedback) that contribute to acquiring 

expertise.  

In these data, learning as opposed to stable environments are more predictable 

(mean Re of 0.82 vs. 0.72, Table 2) and involve, on average, less of the non-linear 
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component,  C (0.03 vs. 0.09). As for human performance, both mean matching, G, and 

mean response consistency, Rs,, are larger in learning environments (0.85 vs. 0.70, and 

0.82 vs. 0.77, respectively), in line with the values of the environmental parameters Re 

and C. As a result, in learning as compared to stable environments, average cognitive 

linear ability, GRs, is also larger (0.71 vs. 0.54), as well as average achievement, ra (0.60 

vs. 0.44).  

To understand whether it is environmental predictability, Re, or the possibility to 

learn the task that accounts for better matching and consistency in learning environments, 

we regressed (separately) matching, G, consistency, Rs, cognitive linear ability, GRs, and 

achievement, ra, on environmental predictability, Re, non-linear component, C, and the 

two-level dummy variable, learning/stable. We used a robust WLS regression procedure. 

All four regressions show a significant positive effect of the possibility to acquire 

expertise. That is, when controlling for C and Re, learning improves matching, G            

(t(238) = 3.55, p < 0.001), consistency, Rs (t(239) = 2.11, p = 0.036), cognitive linear 

ability, GRs (t(233) = 5.12, p < 0.001), and achievement, ra (t(241) = 5.45, p < 0.001). 

Interestingly, the three predictor variables (Re, C, and the dummy learning/stable) jointly 

explain about 48% (adjusted R2) of the variance of human achievement.  

----------------------------------------------- 
Insert Table 4 about here 

-----------------------------------------------  

Since the presence of redundancy is important for human performance (Brunswik, 

1952), we next examine the effect of learning in environments with different levels of 

redundancy (Table 4). In the group of environments with high inter-cue redundancy, 

learning has a large effect on linear cognitive ability, GRs. In particular, mean GRs is only 
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0.46 in stable environments while it reaches 0.83 in learning environments (the difference 

is significant). The effect of learning is less pronounced, but still notable, when cue 

redundancy is lower. Here mean GRs is 0.58 in stable environments and 0.69 in learning 

environments (the difference is also significant). When all cues are independent, 

however, there is no effect of learning. This finding emphasizes the importance of 

redundancy not only for human performance but also for better learning and the 

acquisition of expertise.    

In these data, field studies contained, on average, more redundancy than laboratory 

studies. Therefore, we next analyze whether the effect of learning is more pronounced in 

field than laboratory studies. First, within stable environments there is no difference in 

mean GRs between laboratory and field studies (0.55 vs. 0.52, the difference is not 

significant). Within learning environments, however, mean GRs is larger for field than 

laboratory studies (0.81 vs. 0.70, t = - 2.18, p < 0.05). That is, positive effects of learning 

are present in both laboratory and field studies, but more so in field studies. This finding 

suggests that field studies provide better conditions for learning than laboratory studies, 

possibly due to larger levels of inter-cue redundancy in the field environments. 

  We next limit our analysis to environments that involved learning to understand 

better what factors increase the magnitude of learning effects. We analyze the changes in 

linear cognitive ability, GRs, and achievement, ra, that occurred due to learning (i.e., 

changes between the first and last blocks of trials).  From 186 learning environments, 163 

contain both pre-learning (i.e., the first block) and post-learning (i.e., the last block) lens 

model statistics. On average, there were 103 learning trials in the environments. The 

mean improvement of linear cognitive ability, GRs, through these trials was 0.20 (39% 
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more than the pre-learning level), and the mean improvement of achievement, ra, was 

0.18 (44% more than the pre-learning level) – see Table 5.  

----------------------------------------------- 
Insert Tables 5 and 6 about here 

-----------------------------------------------  

To identify task and individual characteristics that affect the magnitude of learning 

we regressed the changes in linear cognitive ability, GRs, and achievement, ra, 

(separately) on the following variables: number of cues, type of cues (achieved or given), 

cue redundancy, weighting function form, type of study (laboratory or field), expertise,  

number of learning trials, and four dummies representing the presence of outcome 

feedback, cognitive feedback, task information, and other types of feedback. In addition, 

we controlled for the pre-learning levels of human performance since these can limit the 

space for learning. That is, when explaining the changes in GRs, an additional 

explanatory variable was the initial level of GRs; in the regression of the changes in ra, 

this was the initial level of ra.  

We are especially interested in the effect of different kinds of feedback on learning. 

Previous literature has shown that outcome feedback is helpful in simple (e.g., two cue) 

tasks (Doherty, Tweney, O'Connor, & Walker, 1988), but not in complex, uncertain tasks 

(Brehmer, 1980; Hoffman, Earle & Slovic, 1981). Outcome feedback may even deter 

learning under uncertainty (Hammond, Summers, & Deane, 1973). Regarding other types 

of feedback, people learn more from task information feedback than from cognitive 

feedback (Balzer, Doherty, & O'Connor, 1989). Moreover, when combined with 

cognitive or outcome feedback, task information feedback is more effective (Reilly & 

Doherty, 1992; Balzer, Sulsky, Hammer, & Sumner, 1992). However, sometimes 
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providing task information only may be sufficient (Reilly & Doherty, 1992; Remus, 

O’Connor, & Griggs, 1996). 

The results of the regressions are presented in Table 6. We used both an OLS 

procedure with White-adjusted standard errors (with and without intercept, Models 1A 

and 1B) and a robust WLS procedure (Model 2). All regressions show that GRs increases 

due to learning more when (1) the initial level of GRs is lower, and (2) task information is 

available to judges. The effects of initial expertise (negative), number of cues (positive), 

and type of cues (more learning when cues are achieved) are less robust but significant.  

Indeed, when task information was given, GRs increased by, on average, 0.35, while 

mean improvement was 0.28 when no feedback was available (Table 5). When cues were 

achieved, mean GRs improvement was 0.47, much larger than the analogous learning 

effect in the environments with given cues (0.17).  The magnitude of the difference 

between conditions should, however, be interpreted with caution given the differences in 

the initial values (see the last two columns of Table 5). When task information was given, 

GRs increased by, on average, 0.35, while mean improvement was 0.28 when no 

feedback was available.  

As for the improvement in achievement, ra, all three regressions indicate that it is 

larger when the initial level of ra is lower. Positive effects of the number of learning 

trials, number of cues, achieved (vs. given) cues, and greater cue redundancy are also 

significant, although not robust, similar to a negative effect of initial expertise.   

We do not find any evidence that the availability of outcome or cognitive feedback 

improves human performance. Given the regression results described above, the 

differences in the levels of performance improvement that occurred in the presence of 
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outcome or cognitive feedback and without any feedback (Table 5) can be totally 

attributed to the differences in pre-learning levels of performance and other task 

characteristics.  

Interestingly, within learning environments, we found a high positive correlation 

between pre-learning and post-learning levels of consistency (Rs) of 0.74 (n = 130,                  

p < 0.001). That is, participants with better initial performance kept their advantage after 

the learning trials.  

To summarize, we find that, first, when the possibility to acquire expertise is 

available, individuals reach better levels of matching, G, response consistency, Rs ,  linear 

cognitive ability, GRs, and achievement, ra.  Second, the effect of learning is questionable 

in the environments with low cue redundancy. Third, positive effects of learning are 

especially notable in naturalistic environments, such as field studies, as opposed to 

laboratory experiments. Fourth, the availability of task information magnifies the effect 

of learning. Neither outcome nor cognitive feedback helps to learn. Fifth, individuals 

learn more when they have to infer cue values from the context rather than when cue 

values are explicitly provided. And finally, in these data, there is some evidence that 

more learning trials imply greater improvements in performance.  

  

What factors affect the accuracy of bootstrapping models?  

The validity of bootstrapping models can only really be tested on out-of-sample 

cross-validation. However, it can be instructive to analyze the potential sizes of effects 

due to different variables based on past samples of data. We therefore next analyze the 
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data to isolate the conditions under which the application of bootstrapping would seem   

differentially advantageous.  

We define the advantage of bootstrapping models as the difference between linear 

achievement with perfect consistency (i.e., GRe) and human achievement (i.e., ra). We 

report this measure in the last column of Table 2. As might be expected, the effect of 

eliminating judgmental inconsistency more than outweighs any advantages of the non-

linear component, C, and bootstrapping is always more effective (cf., Goldberg, 1970; 

Camerer, 1981).   (All entries in the last column of Table 2 are positive.) What is more 

interesting, however, is to identify the task and judge characteristics that potentially favor 

bootstrapping models.  

To do this, we regress the bootstrapping advantage, ( )ae rGR − , on various task and 

judge characteristics, using a robust WLS procedure to account for outliers. We report 

significant regression coefficients in Table 7. Two regression models were examined: the 

first contained Re and Rs among the predictor variables; the second included instead the 

difference between these terms, i.e., ( )se RR − . We find that the advantage of 

bootstrapping is larger when: (1) cues are given (vs. achieved); (2) redundancy is lower 

(vs. higher); (3) judges initially have less expertise; and (4) judges do not have the 

possibility of acquiring additional expertise through learning. In addition, there is some 

evidence that the advantage of bootstrapping over clinical judgment is larger in 

laboratory as opposed to field studies.  

A possible explanation of the effect for the type of cues is that inferring (i.e.,  

achieving) cue values may itself be the key to high performance levels regardless of the 

accuracy of the subsequent processes of matching and executing (consistently or not) a 
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particular decision strategy. The role that cue redundancy “vicariously” (Brunswik, 1952) 

plays in human judgment (e.g., interchangeability of the cues) could explain why 

bootstrapping models lose their advantage when redundancy increases. In what concerns 

experience, bootstrapping may be less advantageous than clinical judgment when judges 

possess more expertise (either initial or acquired) precisely because expertise may allow 

judges to integrate in their judgments non-linear elements that cannot be captured 

otherwise by a model of the judge. Finally, the advantage of bootstrapping over clinical 

judgment in laboratory as opposed to field studies is probably a consequence of the fact 

that, in the former, the non-linear component, C, was often constrained to 0.  

----------------------------------------------- 
Insert Table 7 about here 

-----------------------------------------------  

Regarding the parameters of the lens model, the advantage of bootstrapping 

models is larger when environments are more predictable (positive coefficient of Re), 

judges are less consistent (negative coefficient of Rs), and when environments are more 

predictable than judges (negative coefficient of ( )se RR − ). These findings correspond to 

what was found in earlier studies of the effectiveness of bootstrapping (e.g., Camerer, 

1981). Finally, we find that the advantage of bootstrapping models is larger when the 

non-linear component, C, is smaller (negative coefficient of C). This, however, comes as 

no surprise since bootstrapping models are linear models of judges.  

 

Discussion           

Summary. We consider that the environments we examined have essentially 

demonstrated three important findings but that these are subject to a number of 
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limitations (of generalization).  In short, the findings are these: (1) People are capable of 

achieving high levels of judgmental performance. Moreover, we identified several task 

and judge characteristics that determine how good this performance can be. (2) People 

learn best from feedback that instructs them about the characteristics of the tasks they 

face. (3) People are inconsistent in the application of their judgmental rules such that 

models of their judgments are typically more accurate than they are themselves (i.e., 

getting rid of inconsistency is generally better than getting rid of idiosyncratic knowledge 

that is not captured by linear models). Once again, several task and judge parameters 

delimit the conditions under which bootstrapping is most effective.  

We next summarize the factors that, according to our results, affect the accuracy of 

human judgment. First, when the number of cues is large, judges match environmental 

models worse and, consequently, the levels of judgmental performance are lower (cf., 

Payne, Bettman, & Johnson, 1993).  

Second, inter-cue redundancy adds more difficulty to matching environmental 

models. (But, see below our arguments of why the lens model methodology may not be 

the best way to capture the effects of redundancy on final judgments). We find, however, 

that the presence of redundancy is crucial for successful learning. The effect of learning is 

questionable in the environments with low cue redundancy.  

Third, controlling for task complexity (as measured by the number of cues), the 

levels of human achievement are higher when judges infer cue values as opposed to using 

the values directly provided by experimenters. This occurs because judges match 

environmental weights better while inferring cue values, even though in these conditions 

individuals are less consistent in applying their models.  
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Fourth, human achievement is higher in environments that weigh different cues in a 

more equal manner. In environments with differentially weighted cues, both the matching 

and consistency that judges demonstrate are smaller.   

Fifth, in field studies, judges are more consistent in applying their decision 

strategies when environments are more predictable. This is not true for laboratory 

experiments (cf., Brehmer, 1976).  

And finally, controlling for linear predictability and non-linear components of 

environments, we find that experts are more consistent (and therefore more predictable) 

in applying their decision strategies than novices. We do not find, however, any 

difference in how well experts and novices match environmental models.  

Among other things, these results suggest that individuals may have preconceived, 

simplified expectations of decision environments and try to apply decision strategies 

coherent with these expectations (see also, Brehmer, 1980; 1994). In our data, 

redundancy-free and equal-weighting environments are most favorable to the strategies 

that judges use and, in fact, equal-weighting strategies generally provide a good default 

(Dawes & Corrigan, 1974). The presence of redundancy and differential cue weights 

creates a misbalance between individual expectations and environmental structure, and 

therefore hurts individual performance.  In the presence of such imbalance, a good 

amount of learning is needed to improve human performance. This implies that correct 

application of decision strategies that rely heavily on a single cue or few cues (e.g., 

representativeness heuristic, Kahneman & Tversky, 1972; availability heuristic, Tversky 

& Kahneman, 1973; “take-the-best” heuristic, Gigerenzer & Goldstein, 1996) requires a 
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certain level of expertise.6 Performance levels that can be achieved by novices when 

applying such strategies are rather limited, especially in the environments when cue 

redundancy, and therefore cue interchangeability, is low.  

Regarding the effects of learning, we find that, in addition to redundancy, it is 

information feedback that improves learning, while neither outcome nor cognitive 

feedback helps to learn. The effectiveness of task feedback has indeed been emphasized 

in the literature (e.g., Balzer, Doherty, & O'Connor, 1989), while the effectiveness of 

outcome feedback has been questioned (e.g., Brehmer, 1980; Hammond, Summers, & 

Deane, 1973; Hoffman, Earle & Slovic, 1981). In terms of “surprising” results, we were 

puzzled to find that there were larger effects for learning in field as opposed to laboratory 

environments. Our surprise was because we thought it would be easier for judges to 

appreciate relations in a laboratory than in the field. However, the reason may be that 

greater redundancy in the latter facilitated performance.  

 We identified several relevant task and judge characteristics concerning the 

conditions under which the application of bootstrapping models is differentially 

advantageous. In particular, bootstrapping outperforms clinical judgment more when:         

(1) environments are more predictable, and in particular, when these are more predictable 

than judges (cf., Camerer, 1981); (2) the non-linear component of environments is 

smaller; (3) cue values are given rather than inferred by judges; (4) cue redundancy is 

low; (5) judges are less experienced; and (6) there are no opportunities for learning.            

In terms of more detailed findings, it is useful to consider what the data tell us 

about the effects of the different lens model statistics represented in Equation 3. Although 

                                                 
6 Interestingly, various studies indeed have reported that experts use surprisingly little information (e.g., 
Goldberg, 1970). 
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(as shown in Table 1), there was variation in ranges across all the statistics, it is of 

interest to recall that environmental predictability, Re, hardly varied between the factors 

identified in Table 2 and was always close to mean Rs, response consistency (the 

correlation between the means of the two measures being close to zero).  In addition, the 

pattern of correlations between the various indices revealed that achievement, ra, was 

more strongly correlated with Rs than with Re (0.52 vs. 0.40) and that whereas Rs was 

correlated with G (matching), Re was not.  Thus, although environmental predictability, 

Re, undoubtedly limits achievement, in these data it explains little variance in differential 

achievement. Instead, this variance is more adequately captured by G and Rs, i.e., by the 

particular strategy the judge uses and how consistently this is executed.  

Limitations and further research.   The limitations in our conclusions result from 

the fact, that taken as a whole, the 259 environments that we studied could hardly be 

described as being generated by principles of representative design (Brunswik, 1956, see 

also Dhami, Hertwig, & Hoffrage, 2004).  For example, most of the laboratory studies 

had little or no inter-cue redundancy, an important component of realistic task 

environments, whereas this feature was present in field studies. In particular, very few 

laboratory learning studies (8%) contained much redundancy, and yet, we found that 

greater levels of redundancy lead to better learning.   

Interestingly, the presence of redundancy is an important ingredient of Brunswik’s 

psychological framework and suggests that people use different combinations of cues 

across different trials (so-called vicarious functioning).  Unfortunately, by estimating 

unique sets of weights for individuals across trials, the linear lens model methodology 

does not capture this aspect of how people may be processing information.  This, 
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therefore, points to the need to develop methodology that can capture this dimension of 

behavior within a lens model framework and thereby also allow a better understanding of 

the effects of redundancy.  In other words, the methodology assumes that participants are 

processing the information in a linear manner which, for many tasks, may not be the case. 

Recently, there have been some promising and illuminating examples of how lens 

model research can be conducted in more representative and naturally occurring 

environments. Specifically, Gosling and his colleagues have investigated overall 

achievement and matching (of “cue validities” with “utilization coefficients”) in 

judgments of personality made on the basis of the target person’s office or bedroom 

(Gosling, Ko, Mannarelli, & Morris, 2002), websites (Vazire & Gosling, 2004), musical 

preferences (Rentfrow & Gosling, 2006), and sounds experienced over two days (Mehl, 

Gosling, & Pennebaker, 2006). We see this work as being very much in the right 

direction as it neatly captures what people actually do in their natural ecologies. 

One advantage of the mathematical formulation of the lens model (i.e., Equation 3) 

is the neat expression of results in terms of correlational statistics. However, underlying 

this feature is the implicit assumption that errors in judgment should, in effect, be 

penalized by a (symmetric) squared error loss function. It may be that in some situations 

– and particularly in field studies – that this assumption is not appropriate. Work in 

extending the mathematical framework would thus be most important. It is possible that 

some of the results we have obtained should be modified. 

An important limitation of our investigation was that few studies reported 

individual level data and thus we were forced to make our analyses on the basis of 

averages.  This limited our ability to comment on individual variability but reflects 
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reporting practices in science as opposed to specific limitations of lens model studies per 

se. Improvements in information processing and storage in recent years could be 

harnessed to alleviate this problem in the future. It would be useful, for example, to make 

use of multi-level hierarchical techniques (see, e.g., Raudenbush & Bryk, 2002) to 

understand simultaneous group and individual level behavior in lens model studies. 

Castellan (1973; 1992) has provided an illuminating critique of the meaning of the 

matching index, G, in lens model studies pointing out some limitations in its 

interpretation due to mathematical constraints.  In our summary data, however, we find 

little evidence for Castellan’s critiques. One reason could be the artificial nature of many 

of our studies (with orthogonal cues) that allow less ambiguous inferences. Second, most 

studies involved only two or three cues although it is true that G was lower with more 

than three cues and, particularly, in field studies. 

Our results regarding the factors that affect the accuracy of human judgment and 

the effectiveness of learning also suggest promising directions for further research. First, 

interactions between task variables can be studied to identify the most optimal conditions 

for using clinical judgment. For example, in the data we examined, learning is only 

possible when environments contain cue redundancy. Another important mediator of 

learning is task information feedback. It would be interesting to investigate the joint 

effect of the two factors. The data in our sample are insufficient to perform a complete 

analysis, but our preliminary investigation shows that the positive effect of task 

information feedback is more likely to occur when cue redundancy is present.  

Second, it would be illuminating to study the interactions of task variables and 

judge characteristics. For example, we found that judges match environmental models 
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better in redundancy-free environments. Does this finding apply to both novices and 

experts? Do these two groups of judges react similarly when facing redundancy? One of 

our other findings suggests that the presence of redundancy may only be beneficial if 

judges possess sufficient expertise to face it. The interaction of cue redundancy and 

expertise should be addressed explicitly in further research. 

 Parenthetically, we note that advances in technology can greatly help collecting 

data within the paradigm of Brunswik’s (1956) paradigm of representative design and 

linking this with lens model analysis.   Hogarth (2006) and Hogarth, Portell, and Cuxart 

(2007), for example, have exploited the SMS capacity of cell telephones to conduct 

Experiential Sampling Method (ESM) studies of decision making and the perception of 

risk. And Mehl et al. (2006) have pioneered the use of the Electronically Activated 

Recorder (EAR) to sample snippets of ambient sounds in people’s environments which 

can subsequently be used as cues for judgments made by others (see also Mehl, 2006).  

Moving forward, it is hard not to be optimistic about harnessing these and related 

technological developments provided researchers are willing to avail themselves of these 

opportunities.    

 Concluding remarks.   Experimental sciences – like psychology – advance in 

incremental fashion. New studies appear each year often as a response to immediately 

preceding papers and what might be called “local” issues (i.e., those that mark certain 

points in time).  One can understand, therefore, why – at the level of individual studies – 

researchers often adopted simple research designs involving only a few orthogonal cues. 

It is interesting to ask, therefore, how studies might have been planned some fifty years 

ago had a future meta-analysis been considered a goal of the research program. How 
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would the studies have differed?  What else would be known today had we been able to 

plan studies in 259 environments in advance? 

 This question cannot, of course, be answered unless one first decides on the 

appropriate research questions. In broad terms, therefore, and using hindsight, the main 

questions that dominated the research program center not so much on “how good” people 

are at making judgments per se, but on defining the individual and tasks conditions that 

lead to differential levels of judgment and this includes, of course, learning.  This being 

the case, it can be regretted now that more attempts were not made to widen the kinds of 

environmental tasks that participants faced.  At the same time, the pioneers of lens model 

studies probably did not envisage the possibilities of meta-analysis which is a fairly 

recent methodological innovation. However, current researchers are aware of this 

methodology and, since the lens model paradigm lends itself so well to the methodology, 

we hope that future research can take our analysis as a starting point.  Indeed, the spread-

sheet on which our analysis is based is available at www.xxxxxxxx.7  

Going forward, we note several challenges to research within the lens model 

paradigm.  One – just noted – is to develop methodology that is more flexible in 

modeling how judges use information. The second – also noted above – is the systematic 

use of representative design.  From many lens model studies, it is not at all obvious to 

which populations results should or could be generalized.  For example, some of our 

learning environments involved situations where cues had to be “achieved” by 

participants, and, in these environments, learning effects on human achievement were 

greater than in those where cues were “given.”  More generally, this point also speaks to 

                                                 
7  It is our intention to make this spreadsheet both available and user-friendly in the near future. 



Determinants of linear judgment 

 36 

the issue of studying substantive experts and finding the means to replicate expertise 

within laboratory settings. 

Finally, whereas we have been critical of the limitations of the current linear 

technology of lens model analysis, we are impressed by the richness of the findings we 

have uncovered.  With more flexible technology, and clearer ideas of how knowledge can 

be accumulated, we believe that Brunswik’s lens model still holds many insights that 

await discovery. 
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Stan.
Mean Median Min Max dev n

r a 0.55 0.57 -0.06 1.00 0.24 259

G 0.81 0.91 -0.01 1.00 0.23 249
R e 0.79 0.81 0.00 1.00 0.19 256

R s 0.80 0.83 0.29 1.00 0.14 250

C 0.05 0.00 -0.11 1.00 0.16 246
GR e 0.64 0.68 -0.01 1.00 0.24 242

GR s 0.66 0.73 -0.01 1.00 0.24 243

r a G R e R s C GR e

r a x

G 0.77 x
R e 0.40 0.02 x

R s 0.52 0.42 0.08 x

C 0.28 0.10 -0.11 -0.01 x
GR e 0.90 0.79 0.61 0.38 0.06 x

GR s 0.81 0.91 0.06 0.72 0.05 0.76

Bold: p < 0.01

Correlations 

Table 1: Descriptive statistics of lens model indices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Determinants of linear judgment 

 52 

Number of
tasks Judges Judgments r a G R e R s C GR s GR e GR e -r a

Numbers of cues
2 69 26 48 0.63 0.88 0.79 0.79 0.07 0.71 0.71 0.08
3 90 19 93 0.55 0.88 0.80 0.81 0.00 0.72 0.69 0.13
more than 3 97 16 111 0.51 0.71 0.79 0.81 0.08 0.58 0.55 0.07

Type of cues
Given 211 18 55 0.55 0.82 0.79 0.81 0.03 0.67 0.64 0.10
Achieved 40 23 263 0.60 0.79 0.81 0.79 0.13 0.63 0.63 0.05

Redundancy
None 106 20 50 0.61 0.89 0.82 0.81 0.03 0.73 0.72 0.11
Some 78 19 97 0.53 0.78 0.79 0.83 0.03 0.66 0.62 0.09
High 25 26 101 0.54 0.76 0.76 0.80 0.10 0.64 0.58 0.04

Function form
Equal weighting 42 29 65 0.66 0.91 0.82 0.81 0.02 0.75 0.75 0.10
Compensatory 88 16 99 0.57 0.84 0.79 0.83 0.04 0.70 0.66 0.10
Non-compensatory 54 22 40 0.51 0.80 0.84 0.74 0.04 0.62 0.65 0.14

Type of study
Lab 208 20 87 0.56 0.83 0.80 0.80 0.04 0.67 0.66 0.10
Field 48 16 89 0.52 0.74 0.76 0.84 0.09 0.63 0.57 0.06

Expertise
Novice 200 20 67 0.56 0.83 0.81 0.79 0.03 0.67 0.67 0.11
Some training 29 16 208 0.59 0.84 0.72 0.85 0.09 0.73 0.61 0.05
Expert 27 13 110 0.49 0.68 0.74 0.83 0.17 0.57 0.51 0.01

Learning
Stable 67 22 155 0.44 0.70 0.72 0.77 0.09 0.54 0.49 0.07
Learning 186 19 64 0.60 0.85 0.82 0.82 0.03 0.71 0.70 0.10

Note:  Bold letters denote significant differences for a measure (p < .05)

Average number of:

Table 2:  Mean lens model indices by different variables. 
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Type of study
Difference? 

Redundancy

None 0.61 (106) -- (0) --
Some 0.53 (58) 0.52 (20) ns. 
High 0.36 (7) 0.61 (18) t(23)=-2.53, p=0.019.  

Note: Number of observations is given in parentheses. 

Lab Field

Type of study

Difference? 

Redundancy
None 0.72 (12) 0.73 (86) ns. 
Some 0.58 (20) 0.69 (57) t(75)=-2.03, p=0.046. 
High 0.46 (13) 0.83 (12) t(23)=-4.01, p=0.001. 

Note: Number of observations is given in parentheses. 

Stable Learning 

Table 3:  Mean achievement, ra, in lab and field studies, 

by different levels of redundancy.  

 

 

 

 

 

 

 

 

 

 

Table 4:  Mean linear cognitive ability, GRs, in learning and stable studies,  

by different levels of redundancy. 
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Improvement of: Number of Pre-learning level of:

learning trials GR s r a

Overall 0.20 (131) 0.18 (138) 103 0.51 0.41

By type of cues: 
Given 0.17 (118) 0.16 (125) 95 0.56 0.43
Achieved 0.47 (13) 0.38 (13) 188 0.08 0.22

By type of feedback: 

No feedback 0.28 (10) 0.26 (10) 77 0.49 0.33
Outcome feedback 0.17 (92) 0.15 (99) 115 0.53 0.44
Cognitive feedback 0.25 (25) 0.21 (25) 74 0.48 0.34
Task information 0.35 (19) 0.29 (33) 105 0.35 0.23
Other types 0.09 (4) 0.07 (4) 86 0.54 0.37

Note: Number of observations is given in parentheses. 

GR s r a

Table 5: Improvement of performance due to learning, by type of cues and feedback (means). 
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Dependent variable: 

Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
Predictor: 

Intercept -- -- 0.48 4.31 -- -- 0.37* 2.82

Initial GRs (ra) -0.42* -4.12 -0.29* -3.20 -0.57* -10.70 -0.37* -3.26 -0.30* -2.89 -0.25* -3.75

Number of learning trials 0.0006 1.98

Number of cues 0.07* 2.40 0.05 2.11

Achieved/given 0.24 3.58 0.41 5.30

Cue redundancy 0.09* 2.22

Weighting function

Lab/field study

Feedback
Outcome 
Cognitive 
Task Information 0.10 2.31 0.12* 2.70 0.08 2.07
Other

Expertise -0.16 -2.19 -0.13 -2.43 -0.17* -2.38

R2 (adjusted)
n

Notes:   
(1)  We only report coefficients that are statistically significant (p < .05)
(2)  *  p < .01
(3)  Models 1A and 1B are obtained using an OLS procedure with White-adjusted standard errors; Model 2 is a robust WLS procedure. 

0.82 0.46

Change in GRs Change in ra

Model 1A Model 1B Model 2 Model 1A Model 1B Model 2

0.63 0.53
91 91 91 98 98 98

0.54 0.68

Table 6: Regression models of differences due to learning.  
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Coefficient t-statistic Coefficient t-statistic

Predictor:

Intercept 0.51 11.46 0.18 4.93

R e 0.12 5.05 - -

R s -0.56 -16.10 - -

R s -R e - - -0.23 -8.80

C -0.48 -11.36 -0.35 -6.36

Number of cues 

Achieved/given -0.04* -2.35 -0.04* -2.15

Cue redundancy -0.02 -3.13

Weighting function

Lab/field study 0.05 2.78

Learning/stable study -0.06 -3.86

Expertise -0.02* -2.49 -0.03 -2.71

R2 (adjusted)

n

Notes: 

1. A robust WLS procedure has been  used. 

2. * p < 0.05; all other p < 0.01. Only significant coefficients are reported. 

150 150

Model 1 Model 2

0.77 0.53

Table 7: Task and judge characteristics explaining the advantage of bootstrapping: 

regression results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Determinants of linear judgment 
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criterion value = 

eY  
subject response  = 

sY  

predicted subject response  = 

sŶ  
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eŶ  

environmental 
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linearity 
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Figure 1: Diagram of lens model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


