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1 Introduction

Research in small-area estimation has in the recent years received a strong impetus from

several communities involved in the analysis of large-scale national surveys. Inferences

that were in the past made only at the national and regional levels are now sought also for

smaller administrative units, such as counties or districts (small areas). Much of small-

area estimation uses a model-based approach in which a suitable model is fitted to the

survey data and district-level estimates are derived from the model fit. Empirical Bayes

(EB) models are particularly well suited for this purpose because the estimates they yield

borrow strength across the districts (exploit their similarity) and adjust for differences in

the background variables recorded by the survey. In this paper, we consider an outcome

variable with normal conditional distribution, given the values of covariates and district-

level deviations. The outcome and covariates are related by the EB model

yid = xidβ + δd + εid , (1)

where εid , i = 1, . . . , nd , and δd , d = 1, . . . ,D, are mutually independent random samples

from centered normal distributions with respective variances σ2
W

and σ2
B

.

The model fit comprises estimates β̂, σ̂2
W

and σ̂2
B

and estimated conditional expec-

tations δ̂d = E
(

δd |β = β̂, σ2
W

= σ̂2
W

, σ2
B

= σ̂2
B

)

, which can be regarded as district-level

residuals. The district-level population mean of Y , denoted by Ȳd , is estimated by

x̄d β̂ + δ̂d , where x̄d is the vector of sample means of the covariates. When the population

mean of a covariate is available, it is substituted in x̄d for the corresponding sample mean.

We refer to the combination of a model (set of covariates) and the available district-level

population information (sets of population means) as a setting.

A typical modelling strategy sets out with a search for a well fitting model, presuming

that models that can be regarded as valid are associated with efficient inference. We show

by example that this strategy is not always appropriate, and contrast it with composite

estimation which bypasses fitting models such as (1). The example uses an artificial

population, the construction of which is loosely based on the labour force of Slovakia;

details of this population are given in Section 1.1. Three variables are considered, a

continuous outcome variable Y (recent monthly log-wage), a similar covariate X (log-

wage a year ago), and a dichotomous variable Z with the within-district probabilities in

the range 0.50 – 0.60, based on gender. All three variables are defined for members of the

labour force, the elementary units in the survey. The survey has a stratified sampling

design with sample size n = 4000. The 79 districts of Slovakia (okresy) are the strata and
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simple random sampling with sample size fixed and proportional to the population size

is applied, independently, in each district. The sizes of the districts vary a great deal, so

that their sample sizes are in the range 9 – 122.

Seven estimators are considered, corresponding to models with covariates X and Z,

or only X, and availability of the values of the district-level population means X̄d and Z̄d

of X and Z, respectively, from an external source. For the model with X and Z as the

covariates, we consider settings with neither sets of these means available, available Z̄d but

not X̄d , and both X̄d and Z̄d available. For the model with X, the values of X̄d may all be

either available or not. We denote these settings by indicating the covariates in the model

and the available population information. Thus (X,Z | X̄d) stands for the model with X

and Z, with X̄d available, but Z̄d not. The district-level population means X̄d and Z̄d may

also be used as covariates. The vertical bar is omitted when no district-level population

information is available beyond what is included in the model. For instance, (X,Z) stands

for the model with X and Z as the covariates, but neither X̄d nor Z̄d available. In the

setting (X̄d), Z̄d is not available, but X̄d is, and is used as the only covariate.

Counterparts of these model-based estimators can be defined in composite estimation.

For example, the composite estimator that corresponds to (X,Z | Z̄d) seeks the multivari-

ate convex combination of the district-level sample means of X, Y and Z and of Z̄d with

the vector of the corresponding national means: the sample means of X, Y and Z and the

(national) population mean of Z. Details are given in the Appendix.

The properties of these two sets of estimators, composite and EB, are established

empirically, by replications of the sampling and estimation processes. We find that even

though Z is an important predictor of Y , using it for estimation of the district-level

means Ȳd is counterproductive when Z̄d are not available. That is, the EB estimators

of the district-level means Ȳd based on (X,Z) are inferior to those based on (X). The

contradiction is absent in composite estimators which, on average, are more efficient than

their model based counterparts, when the values of X̄d are not available. When X is

included in the model and the district-level population means X̄d are available, the EB

estimators based on the settings (X,Z |Xd , Zd) and (X |Xd) are on average more efficient

than their composition counterparts. The results are discussed in more detail in Section

2.

1.1 The simulated population

Slovakia is one of the two countries formed when Czechoslovakia split in 1993. At the

census in 2001, its population was 5.379 million, 2.666 million (50%) of them economically

active, and of these 48% were women. Administratively, Slovakia is divided into eight

counties (kraje), and these are further divided into between 7 to 13 districts. There are 79

districts in total, nine of them are parts of the two largest cities, Bratislava and Košice.
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The population sizes of the districts are in the range 13 000 – 150 000; their mean is 68 100

and median 61 900. For X̄d we use the logarithm of the mean monthly wage in 2005. This

is available from the official website of the Slovak Statistical Office

(http://www.statistics.sk/webdata/ks/ksbrat/mesacmzda.htm)

only for the counties, so we generate a single set of values of X̄d by adding to them

deviations drawn at random from N (0, 0.052). This corresponds to about ±5% on the

linear scale, our guess of the variation of the district-level means within the counties. The

county that contains the capital Bratislava had by far the highest mean income, Sk23 200

(Slovenská koruna) in 2005, 34% higher than the national average of Sk17 200. (In 2005,

£1 was equivalent to about Sk55.) The means for all the other counties, in the range

Sk13 200 – 16 800, are below the national average. On the log-scale, Sk23 200 corresponds

to 10.052 and Sk13 200 to 9.488. The within-district standard deviations of log-wage were

generated as 0.35 + N
(

0, 0.0152
)

+ 1

6
Sd · 10−6, where Sd is the population size of the

district. The standard deviations are in the range 0.33 – 0.39 and their correlation with

the population size is 0.40 — more populous districts tend to have more heterogeneous

log-wages. The mean log-wage is correlated with the population size more weakly; their

correlation is 0.08. The percentage of men in the labour force (Zd) was generated as

7U1.25 − 0.51.25 + 56.0 − Sd/30 000, where U denotes the uniform distribution on (0, 1).

The percentages are in the range 51.7 – 61.1% and their correlation with the district-level

population sizes is 0.50. The model deviations δd were generated as a random sample

from N (0, 0.0025), so that the districts differ from the prediction x̄d β based on (1) by

about 5% on average. The values of X̄d and Z̄d as well as the district-level deviations δd

in (1) are fixed in the simulations — each replication is based on the same country with

the same division into districts and with members of the labour force in the same district

and with the same income. The sampling process is the only source of variation among

the replicate samples. The values of the outcome variable are generated according to the

model in (1) with intercept 2.0, slope on X equal to 0.8, and difference between men and

women set to 0.25. For orientation, the values of X̄d , Z̄d and δd and other information

are plotted in Figure 1 and the exact values are listed in Table 1. The districts are not

identified because the population means generated for them may differ substantially from

their genuine population counterparts. The subject-level (residual) variance in (1) is set

to 0.0625.

In a replication, independent random samples with set sample sizes are drawn from

the joint distribution of X and Z in each district. As the sampling fraction is smaller

than 0.001, the sampling can for all purposes be regarded as from an infinite population.

The outcomes Y are generated according to the model in (1), but with fixed values of δd .

The seven sets of estimates (79 × 7 matrices) are then evaluated for the EB method and

composition. To streamline the calculations, we evaluate their deviations from the targets
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Figure 1: Pairwise plots of the district-level variables: population size of the district, in
thousands; population mean of X (past log-wage); within-district standard deviation of
X; population mean of Y (recent log-wage); the model deviation δd in (1); percentage of
men (Z = 1) in the labour force.
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Table 1: District-level information used in the simulations. See caption of Figure 1 for the
variable labels.

No. Population X̄d

√

var (Xid | d) Ȳd δd 100Z̄d (%) County

1 44 798 10.107 0.350 10.310 0.073 60.599 A
2 108 139 10.090 0.369 10.212 -0.005 58.169 A
3 61 418 10.025 0.355 10.148 -0.007 53.898 A
4 93 058 10.061 0.336 10.254 0.070 53.894 A
5 121 259 9.943 0.373 10.158 0.068 54.225 A
6 64 354 10.067 0.369 10.160 -0.030 54.893 A
7 54 164 10.011 0.378 10.162 0.014 56.002 A
8 51 825 10.108 0.374 10.268 0.033 59.289 A
9 112 384 9.602 0.367 9.842 0.025 53.821 B
10 94 533 9.719 0.371 9.855 -0.062 56.718 B
11 45 351 9.622 0.343 9.911 0.076 54.791 B
12 63 928 9.698 0.350 9.921 0.028 53.544 B
13 60 891 9.720 0.360 9.918 -0.002 57.437 B
14 46 791 9.730 0.387 9.927 0.004 55.635 B
15 127 125 9.670 0.360 9.810 -0.067 56.130 B
16 38 640 9.699 0.338 9.887 -0.025 60.924 C
17 62 042 9.671 0.342 9.898 0.013 59.190 C
18 29 243 9.660 0.383 9.880 0.014 55.017 C
19 63 530 9.517 0.373 9.719 -0.039 57.742 C
20 48 005 9.643 0.350 9.865 0.000 60.095 C
21 65 150 9.565 0.352 9.797 -0.004 59.595 C
22 140 444 9.592 0.385 9.862 0.057 52.864 C
23 45 761 9.591 0.345 9.826 0.017 54.508 C
24 112 767 9.673 0.383 9.880 0.003 55.080 C
25 108 556 9.636 0.358 9.872 0.019 57.893 D
26 120 021 9.528 0.354 9.703 -0.050 52.354 D
27 163 540 9.661 0.380 9.861 0.003 51.721 D
28 149 594 9.546 0.378 9.839 0.059 57.247 D
29 54 000 9.506 0.359 9.725 -0.025 57.916 D
30 74 089 9.658 0.338 9.875 0.008 56.246 D
31 43 622 9.578 0.332 9.804 0.000 56.422 E
32 30 788 9.597 0.367 9.814 -0.015 60.396 E
33 92 843 9.567 0.367 9.845 0.046 58.416 E
34 39 364 9.682 0.348 9.889 0.003 55.922 E
35 33 778 9.686 0.359 9.853 -0.049 61.110 E
36 73 984 9.715 0.354 9.916 0.000 57.813 E
37 97 813 9.687 0.389 9.930 0.035 58.293 E
38 56 053 9.576 0.337 9.794 -0.012 57.791 E
39 59 420 9.586 0.362 9.783 -0.036 60.096 E
40 16 866 9.727 0.359 9.982 0.053 59.142 E
41 35 062 9.652 0.355 9.859 -0.005 56.759 E
42 156 361 9.669 0.393 9.875 0.009 52.523 E
43 111 984 9.595 0.364 9.783 -0.030 54.952 F
44 17 151 9.571 0.366 9.731 -0.072 58.574 F
45 65 909 9.631 0.333 9.866 0.027 53.647 F
46 33 514 9.499 0.363 9.712 -0.027 56.014 F
47 22 885 9.565 0.335 9.757 -0.043 59.294 F
48 72 837 9.615 0.372 9.829 0.004 53.328 F
49 23 666 9.629 0.357 9.787 -0.061 57.669 F
50 40 918 9.615 0.347 9.784 -0.057 59.527 F
51 83 124 9.681 0.358 9.961 0.070 58.690 F
52 46 741 9.560 0.370 9.751 -0.046 59.579 F
53 67 633 9.607 0.352 9.889 0.064 55.351 F
54 27 634 9.604 0.362 9.882 0.060 55.639 F
55 48 125 9.682 0.373 9.816 -0.080 60.406 F
56 75 793 9.533 0.367 9.792 0.019 58.806 G
57 64 845 9.524 0.380 9.750 -0.019 60.113 G
58 63 231 9.464 0.367 9.699 -0.011 55.770 G
59 31 880 9.500 0.355 9.771 0.022 59.141 G
60 12 668 9.500 0.361 9.710 -0.034 57.436 G
61 104 348 9.469 0.361 9.754 0.044 53.970 G
62 161 782 9.508 0.352 9.711 -0.036 56.193 G
63 54 067 9.411 0.348 9.632 -0.032 54.150 G
64 39 633 9.502 0.352 9.753 0.014 54.941 G
65 50 684 9.485 0.353 9.668 -0.067 58.907 G
66 21 027 9.516 0.362 9.770 0.010 58.934 G
67 33 506 9.453 0.333 9.759 0.052 58.089 G
68 76 504 9.470 0.344 9.721 -0.001 58.323 G
69 30 841 9.737 0.339 9.896 -0.040 58.863 H
70 68 262 9.710 0.350 9.868 -0.035 54.008 H
71 79 850 9.679 0.344 10.011 0.122 58.255 H
72 30 745 9.677 0.349 9.847 -0.041 58.663 H
73 57 236 9.769 0.353 9.900 -0.064 59.399 H
74 106 999 9.778 0.356 9.892 -0.061 52.071 H
75 109 121 9.654 0.389 9.832 -0.038 58.719 H
76 61 887 9.698 0.353 9.813 -0.083 54.910 H
77 23 776 9.683 0.351 9.861 -0.036 60.028 H
78 93 516 9.729 0.377 9.828 -0.088 53.115 H
79 103 779 9.750 0.376 9.947 0.013 53.424 H
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Ȳd and accumulate their totals and totals of squares, to summarise the corresponding

estimators by their empirical bias and root mean squared error (the square root of the

mean squared error, rMSE).

2 Results

A simulation comprises 1000 replications, and its results are summarised by two 2×7×79

arrays, one of biases and one of rMSEs, for the two methods (EB and composition), seven

settings and 79 districts. We use the symbols A, B, C, D, a, c and d for the distinct settings

and their estimators. In settings A, B and C, X and Z are the covariates and the district-

level population means available are neither, only Z̄d , and for (X̄d , Z̄d), respectively. The

settings a and c are formed from A and C, respectively, by omitting Z and Z̄d . The settings

D and d use only district-level covariates X̄d and Z̄d .

Figure 2 displays the rMSEs, in separate panels for composite and EB estimation. The

districts are presented in the ascending order of their sample sizes which are indicated in

the right-hand margin of each panel. In the left-hand margins, the estimators with the

smallest and largest rMSEs are indicated for each district (heading W/L, which stands for

the ‘winner’ and ‘loser’). The ragged solid line is drawn in both panels at σ2
W

/nd . Its sole

purpose is to aid comparisons across the two panels of the diagram.

For the EB estimators, (X,Z | X̄d , Z̄d) is the winner in 54 districts, (X) in 14 districts

and (X̄d) in the remaining 11 districts. The estimator (X,Z) is the loser in 71 districts. It

is less efficient on average than estimator (X), so including Z in the model is detrimental

when Z̄d is not available. The model with covariates X and Z is valid (used for data

generation), but the estimators of Ȳd based on it are the losers for most districts when X̄d

and Z̄d are not available. For the composite estimators, the picture is much less clear-cut;

(X | X̄d) is the winner in 34 districts and (X, Z̄d | X̄d), (X̄d) and (X,Z | X̄d , Z̄d) in 13, 15

and 17 districts, respectively. The most frequent loser is the estimator (X,Z | Z̄d), for 42

districts, but all the other estimators, except for (X | X̄d), are losers, in 2 – 14 districts.

The array of results can be further summarised by the 2 × 7 table of average rMSEs,

given in Table 2. The corresponding table of biases is of no importance because its entry

vanishes for every estimator. The table confirms that using Z or Z̄d is detrimental (on

average) for EB estimators, whereas in composite estimation they make little difference;

compare columns A, or B, with a and D with d. In fact, the rMSEs of the pairs of composite

estimators B and a are very similar for all the districts; their differences are in the range

−0.0010 − 0.0013. The differences of the pairs of composite estimators D and d are in the

range −0.0041 − 0.0018. (There is much more overprinting in Figure 2 in the panel for

composite estimators than for EB estimators.)

The bottom line of the table counts for each setting the number of districts for which

the composite estimator is superior to its EB counterpart. It shows that the composite
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Table 2: The average rMSEs of the composite and empirical Bayes estimators and the
numbers of districts for which composite estimator has smaller rMSE.

Setting

A B C D a c d

(X, Z) (X, Z | Z̄d) (X, Z | X̄d , Z̄d) (X̄d , Z̄d) (X) (X | X̄d) (X̄d)

Composite 0.0513 0.0523 0.0323 0.0346 0.0521 0.0316 0.0340

Emp. Bayes 0.0570 0.0536 0.0280 0.0394 0.0544 0.0292 0.0337

Comp. pref. 71 56 2 73 64 5 22

estimator is superior in a majority of districts for settings A, B, D and a, when the values

of either X or X̄d are not available. EB estimator is superior in a majority of districts in

settings C and c, when both X and X̄d are used. In setting d, the differences in rMSE are

very small for all the districts. Figure 3 compares the pairs of estimators directly.

The MSE comprises two components: squared bias and variance. For each estimator,

we can summarise these components by the ratio of squared bias and MSE, expressed as

a percentage. In general, EB estimators have smaller biases, but their contributions to

MSE are substantial for both sets of estimators. For example, for setting A, the average

percentage contribution is 37.5% for EB and 59.8% for composite estimators. In contrast,

for settings D (75%) and c (42%), they differ only slightly. For settings C, c and D, the

contribution of the bias to MSE is greater for the composite estimators for the majority

of districts (55, 69, and 68, respectively).

The comparisons of the estimators can be made more relevant when related to the

available information. For example, when no district-level population information is avail-

able, only settings A, (X,Z), and a, (X), are relevant. The composite estimators are then

preferred because they are more efficient for most of the districts for both settings A and

a. When the values of Z̄d are available setting B is relevant, although we may use A and a

also, making no use of Z̄d . On average, setting A is most efficient for composite estimation,

and setting B is most efficient for EB; the former is more efficient on average.

For composition, A is only slightly more efficient on average than a, even though it

is more efficient for 69 districts (87%). Composition makes some use of the covariate Z.

In contrast, for EB, A is less efficient than a for 71 districts; using the covariate Z is

counterproductive. No model comparison would suggest this; the relevant likelihood ratio

test statistics exceed 100.0 for all replicate datasets in the simulations (null distribution

χ2 with one degree of freedom). This shows that model selection followed by small-area

estimation is problematic. On reflection, the source of this problem is obvious. Although

the differences between men and women are substantial, their proportions within the

districts vary relatively little, so that z̄d β̂z contributes to the estimator of Ȳd with a
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lot of noise because the proportion Z̄d is estimated by the sample proportion z̄d with

little precision. The problem is resolved when the values of Z̄d are available, but the

improvement is only slight. In fact, with composition, the average root-MSE for setting

B is slightly higher than for a. For composition, Z̄d is redundant. With composition, we

may use the setting (X, Z̄d), combining the sample means of X and Y and the district-

level population proportions of Z. This setting is more efficient than A, but only slightly

(average rMSE equal to 0.0502), but it does not have a natural EB counterpart.

When X̄d is available the district-level means of Y are estimated with much greater

precision by both EB and composition. EB is more efficient in the most elaborate setting

C (by about 15% on average) and in setting c in which Z or Zd are not used. For setting

d, the two sets of estimators differ only slightly, and for setting D, composition is more

efficient for most districts. We conclude that EB estimators are superior when the model

in (1) includes the dominant predictor X and the district-level population means X̄d are

available. Without either of them, composite estimators are more efficient on average.

2.1 Strengths and weaknesses of the methods

Empirical Bayes estimators assume that the model in (1) is valid, that is, it includes the

appropriate covariates, the random terms are homoscedastic and normally distributed,

and the covariance structure is correctly specified. In (1), the covariance structure is

compound symmetry, given by var(yd) = σ2
W

I + σ2
B
J, where yd is the vector of outcomes

for district d and I and J are the identity matrix and the matrix of ones of dimensions

implied by the context (nd). We constructed the population so that these assumptions are

satisfied. Additionally, regression assumes that the values of the covariates are fixed. This

assumption, often ignored, is not satisfied because each replication yields a different set

of values of X and Z. Longford (2006a and b) shows that this assumption is innocuous

for estimation for the means Ȳd , but not for estimation of the sampling variances or

MSEs of the estimators by EB method or composition. According to EB theory, rMSEs

are decreasing functions of the sample size, but Figure 2 clearly contradicts this for all

settings.

In composite estimation, we assume that the vector
(

X̄d , Ȳd , Z̄d

)

has a trivariate

(district-level) distribution with a finite variance matrix. For a finite set of districts d,

this assumption is vacuous because the distribution is not specified (e.g., by type and

parameter space), so we can regard it as satisfied. The univariate distributions of X and

Z, displayed in Figure 4, may raise some concern, because they are distinctly asymmetric;

the mean log-income in one of the counties, which includes the capital, is much higher

than in the rest of the country. Composite estimation has no distributional assumptions,

although a variance matrix is in general regarded as an appropriate description of the

dispersion for symmetric (and unimodal) distributions.
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Figure 4: Stem-and-leaf plots of the district-level population means of the covariate X and
the outcome Y . The leaves representing the districts in the outlying county are underlined.
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To assess the impact of asymmetry, we repeated the simulations with the eight districts

of the outlying county removed. The results changed very little. In particular, the overall

comparisons of efficiency have the same features as Figure 3 and Table 2: when the

population means X̄d are available (and are used), EB estimators are on average more

efficient than their composition counterparts; without X̄d , composition is more efficient

on average, and for 80 – 90% of the districts, for settings A, B, D and a.

The EB method loses some efficiency over the ideal because the between-district vari-

ance σ2
B

has to be estimated, and the estimation of its MSE is problematic because a

random-effects model is used for a problem with fixed effects. Composition loses some

efficiency over the ideal because the between-district variance matrix has to be estimated.

With EB, appropriateness of the model is an additional concern in practice (though not

in this simulation study), and model selection is not compatible with efficiency. We see

no way of comparing these drawbacks analytically.

3 Conclusion

Empirical Bayes methods and composition are two general approaches to small-area esti-

mation. Properties of the estimators they yield are difficult to assess analytically because

of the complexity of the estimation algorithms and because a set of (D) estimators has

to be evaluated. Further, the properties depend on the setting — the covariates used in

model fitting, and the (external) population information (district-level means) that are

available, as well as on the sampling design.

We have set up and conducted a simulation study for an empirical comparison of

the alternative estimators. It was based on an artificial population from which replicate

samples are drawn and the sets of alternative estimators evaluated. One set of simulations,
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comprising 1000 replications, takes about 12 minutes of CPU time on a laptop computer.

Our experience suggests that the number of replicates could be reduced substantially (say

2 – 4 times), because the results for the alternative estimators are highly correlated. The

simulations can be extended to settings with X̄d and Z̄d estimated from an external source,

with their values not established with precision.

The simulations demonstrate that analysts can make choices about small-area estima-

tors that are tailored to the details of the study without having to resort to theoretical

derivations that have limited applicability. Of course, the simulations have to be repeated

for a range of settings to confirm that the choices are not sensitive to some of the details

and to our uncertainty about the features of the population. The simulations can be also

used for fine-tuning the software intended for the analysis.

The simulations can be conducted on past data, to establish which method and setting

is best suited for the ‘current’ inference. For example, the methods can be applied to 2001

as the ‘past’ and 2002 as the ‘present’, if the appropriate data are available. The best

suited method and model is then applied to the current problem (inference about wages

in 2006) with the data from 2005 used as the auxiliary information. This approach relies

on the realistic assumption that the relevant features and distributions in the population

of the country have not been altered substantially in the course of a few years.

All the software was written in R (R Development Core Team, 2004), and is available

from the author on request.

Appendix

We describe here the algorithm for fitting the model in (1) and how the EB estimates for

the districts are derived from the model fit. Details of the composite estimator are also

given.

The model in (1) is fitted by the Fisher scoring algorithm. It comprises iterations of

the following sets of equations:

β̂new =
(

X>Ŵ
−1

X
)−1

X>Ŵ
−1

y

σ̂2

new =
1

n
e>Ŵ

−1

e

ω̂new = ω̂old +

{

D
∑

d=1

(ĝd nd)
2

}−1 {

−
D

∑

d=1

ĝd nd +
1

σ̂2
old

D
∑

d=1

(

ĝd 1>ed

)2

}

,

where X is the regression matrix formed by stacking the rows xid , W = diagd (Wd)

is the block-diagonal scaled variance matrix of the outcomes y, composed of the blocks

Wd = σ−2var(yd) = I + ωJ, ω = σ2
B
/σ2

W
is the variance ratio, 1 is the column vector of

ones of appropriate length, ed = yd−Xd β̂old and ĝd = 1/(1+nd ω̂old); the subscripts ‘old’
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and ‘new’ indicate the estimate after the previous and the current iteration, respectively,

and hats indicate estimates.

The iterations converge very quickly; after ten iterations, the changes in the values of

all estimated parameters are smaller than 10−6, but often six to eight iterations suffice

for both the valid model, which was used for generating the data, and its submodels (see

Table 2). The iterations commence with the ordinary least squares solution and the value

ω̂0 = 0.25.

Upon convergence, Ȳd is estimated by X̂dβ̂ + δ̂d , where δ̂d = ĝd e>
d
1ω̂. The vector X̂d

is composed of the sample means of the regression variables. However, if the district-level

population mean of a covariate in X is known, it is substituted for the estimate. For

example, when Z̄d is known but X̄d is not, we estimate Ȳd by β̂0 + x̄d β̂x + Z̄d β̂z + δ̂d when

the regression in (1) is on X and Z, by β̂0 + Z̄d β̂z + δ̂d when the regression is only on Z,

and by β̂0 + δ̂d when the regression is empty and contains only the intercept. Note that

the estimates β̂0 , β̂z and δ̂d in these expressions differ because they depend on the model

that was fitted.

In composite estimation for a district d, we form a vector of district-level quantities

ud from the sample means ȳd , x̄d and z̄d or, in general, estimators of the district-level

population means Ȳd , X̄d and Z̄d , as well as these population means (or percentages) when

they are available. Let u be the national counterpart of the ud , formed by the estimates

or population quantities of the variables in ud . Let c be the vector that indicates the

estimator ȳd in ud , that is, ȳd = c>ud . For example, when ȳd is the first component

of ud , c = (1, . . . , 0)>. We seek the vector of coefficients bd such that the multivariate

convex combination

Ỹd = (c − bd)
>ud + b>

d u

has the smallest MSE. With simple random sampling within districts, the solution would

be

b∗

d =

(

1 −
nd

n

) {

Vd

(

1 − 2
nd

n

)

+ V + ΣB

}−1

V0c , (2)

if the sampling variance matrices Vd = var(ud | d) and var(u) = V and the district-level

variance matrix ΣB of the within-district expectations of ud were known; see Longford

(2005, Chapter 8). Estimation of the sampling variance matrices is a standard task in

sampling theory; for population quantities in ud , the corresponding variances in Vd and

V vanish.

The matrix ΣB is estimated by moment matching. First, the within-district variance

matrix ΣW is estimated by pooling the within-district sums of squares and crossproducts.

District-level population means do not contribute to ΣW ; they are regarded as constants

within districts. Then the statistic

S =
D

∑

d=1

nd (ud − u)(ud − u)>
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is evaluated and used in the estimator

Σ̂B =
1

n − 1

n

∑

D

d=1 n2

d

{

S− (n − 1)Σ̂W

}

.

The vector of coefficients bd is estimated naively, using estimators of Vd , V and ΣB .

With a general sampling design, the sample quantities in ud and u can be estimated

by statistics other than sample means (e.g., by the Horvitz-Thompson estimator), and

their sampling variance matrices estimated accordingly. The estimator Σ̂B also has to be

adjusted, but it can always be motivated as an estimator of the excess variation of the

estimates ud , beyond what is expected based on the sampling variance matrices Vd or

their estimates V̂d . See Longford (2005, Chapter 8) for details.
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