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Abstract

It is shown that preferences can be constructed from observed choice be-

havior in a way that is robust to indifferent selection (i.e., the agent is indiffer-

ent between two alternatives but, nevertheless, is only observed selecting one

of them). More precisely, a suggestion by Savage (1954) to reveal indifferent

selection by considering small monetary perturbations of alternatives is for-

malized and generalized to a purely topological framework: preferences over

an arbitrary topological space can be uniquely derived from observed behav-

ior under the assumptions that they are continuous and nonsatiated and that

a strictly preferred alternative is always chosen, and indifferent selection is

then characterized by discontinuity in choice behavior. Two particular cases

are then analyzed: monotonic preferences over a partially ordered set, and

preferences representable by a continuous pseudo-utility function.
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Introduction

How does an agent choose between two indifferent alternatives a and a′? On the

one hand, indifference means that she views this choice as (ex ante) immaterial for

her well-being, so she might as well select a, or a′, or randomize between them,

or delegate her choice. On the other hand, for an outside observer who only has

data about the agent’s choice behavior, say the agent chooses a over a′, it is of

importance to know whether the agent actually strictly prefers a to a′ or she is

indifferent between a and a′. In the latter case, we say that the agent makes an

indifferent selection.

To illustrate the importance of indifferent selection, consider a social planner

who has to select between two social alternatives a and a′. The alternatives involve

two agents and the social planner has data about their respective choice behavior,

from which he seeks to infer their respective preferences. The first agent strictly

prefers a to a′ and, accordingly, chooses a over a′; the second agent is indifferent

between a and a′ but nevertheless selects a′ over a. Then a Pareto-dominates a′, but

if the social planner assumes that his observations about the agent’s behavior fully

reflect their preferences, he will think that the second agent strictly prefers a′ to a

and, hence, that a and a′ are Pareto-noncomparable. Thus, neglecting indifferent

selection can block Pareto-improvements (e.g., if g is the status quo).

How, then, can one disentangle between strict preference and indifference based

on behavioral data? The usual revealed preference approach merely rules out in-

different selection by assuming that if the agent is indifferent between a and a′,

then she will be observed randomizing between a and a′. However, this assumption

is, however, hard to justify: why could not an indifferent agent decide to select a,

say, instead of resorting to a randomization device, or to randomize subjectively

rather that observably? In his pioneering work on decision making under uncer-

tainty, Savage (1954, p17) noted the problem of indifferent selection and informally

suggested a more satisfactory solution: he argued that indifference could be revealed

by considering small monetary perturbations of alternatives. Namely, if the agent is

indifferent between a and a′, then adjoining any (however small) monetary bonus to

a should make it chosen over a′ and, similarly, adjoining any bonus to a′ should make

it chosen over a. On the other hand, if she strictly prefers a to a′, then adjoining a

small enough bonus to a′ should not make it chosen over a.
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This paper formalizes Savage (1954)’s argument in a general topological frame-

work. More precisely, it is shown that if preferences over an arbitrary topological

space are assumed to be continuous and nonsatiated, and that a strictly preferred

alternative is always chosen, then preferences can be uniquely derived from observed

behavior, and indifferent selection is characterized by discontinuity in behavior. To

make the model fully behavioral, necessary and sufficient conditions on behavior are

then provided under which there indeed exists a preference relation satisfying these

assumptions.

Two applications of this general model are provided. First, if the set of al-

ternatives is naturally endowed with a partial order representing some notion of

objective betterness (Cubitt and Sugden, 2001), e.g., more money is better, then

the nonsatiation condition is naturally strengthened to monotonicity with respect

to this partial order. In this particular setup, Savage (1954)’s informal argument

is explicitly recovered. Second (and going back to the general topological setup),

in the case where the derived preferences can be represented by a continuous util-

ity function, this function turns out to be a pseudo-utility representation (Moulin,

1988; Subiza and Peris, 1998) of observed behavior. Thus, choice behavior can yield

a continuous pseudo-utility function even though it might not be continuous nor

even representable by any utility function in the usual sense. This gives rise to

generalizations of classical representation results for continuous preferences over a

topological space (Eilenberg, 1941; Debreu, 1954; Rader, 1963).

The paper is organized as follows. Section 1 introduces the setup. Section 2

presents an example illustrating all subsequent results. Section 3 contains the general

results for preferences over an arbitrary topological space. Section 4 analyzes the

particular case of monotonic preferences over a partially ordered set. Section 5

analyzes the particular case of preferences representable by a pseudo-utility function.

1 Setup

Let R and Q denote the set of real and rational numbers, respectively. Consider an

agent facing an arbitrary set A of choice alternatives. The agent’s preferences over

A are modeled by means of a binary relation < on A (i.e., < ⊆ A × A ), with

a < a′ indicating that she weakly prefers a to a′. As usual, we say that < is:
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– reflexive if, for all a ∈ A , a < a,

– complete if, for all a, a′ ∈ A , [a < a′ or a′ < a],

– antisymmetric if, for all a, a′ ∈ A , [a < a′ and a′ < a] ⇒ a = a′,

– transitive if, for all a, a′, a′′ ∈ A , [a < a′ and a′ < a′′] ⇒ a < a′′.

From < are derived the binary relations ≻ and ∼ on A defined by, for all a, a′ ∈ A ,

a ≻ a′ ⇔ [a < a′ and not a′
< a] (strict preference),

a ∼ a′ ⇔ [a < a′ and a′
< a] (indifference).

We distinguish between preferences modeling the agent’s choice behavior and

preferences modeling her tastes. Formally, the agent is endowed with two distinct

preference relations on A :

– a behavioral preference relation, denoted by <B, with a <B a′ indicating that she

would select a if she had to choose between a and a′,

– a cognitive preference relation, denoted by <C , with a <C a′ indicating that she

likes a at least as much as a′.

We assume that the agent’s choice behavior does not contradict her tastes in the

sense of choosing a strictly less liked alternative:

Definition. A binary relation <B on a set A is compatible with a binary relation

<C on A if, for all a, a′ ∈ A , a ≻C a′ ⇒ a ≻B a′.

Although situations in which a ≻C a′ and a′ ≻B a can be conceived (e.g., addic-

tion), compatibility of behavior with tastes seems natural in most economic settings.

Note that no constraint is imposed on choice behavior in situations of cognitive indif-

ference, which allows for indifferent selection, i.e., a ∼C a′ and [a ≻B a′ or a′ ≻B a].

This is unlike many economic models that implicitly assume <B = <C (Mandler,

2005) and, hence, ∼B = ∼C , thereby ruling out indifferent selection (e.g., when de-

termining equilibrium and analyzing welfare by means of a single preference relation

per agent). Whereas the conceptual distinction between these two preference con-

cepts is well-understood in the literature (Mas-Colell, Whinston, and Green, 1995,

p5), behavioral preferences falling in the revealed preference tradition (Samuelson,

1938) and cognitive preferences in the ordinalist tradition (Pareto, 1906), their for-

mal distinction is a key feature of the present analysis.
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Note that assuming <B = <C first requires that one allows for behavioral indif-

ference between distinct alternatives (otherwise cognitive indifference is ruled out).

Thus, the revealed preference literature often finds it convenient to interpret behav-

ioral preference as indicating that an alternative is “choosable” rather than actually

chosen, and to operationalize this interpretation by enabling the agent to resort

to some observable randomization (or delegation) device rather than selecting one

single alternative by herself. However, even if randomization is allowed and iden-

tified with behavioral indifference, it is hard to justify why the agent could not

decide to select a single alternative by herself rather than randomize when she is

cognitively indifferent (in fact, cognitive indifference precisely means that she views

such a selection as harmless), or to randomize subjectively rather than observably.

The starting point of the present analysis is the formal separation between the two

preference concepts and the degree of freedom between them that is allowed by the

compatibility assumption. Although it becomes possible, in this framework, to rule

out a ∼B a′ per se, in line with a fully behavioral interpretation of preference, this

turns out to be technically unnecessary and, consequently, <B is not assumed to be

antisymmetric.

Both <B and <C are assumed to be complete. Completeness of behavioral

preferences means that choice between any two alternatives in A is conceivable

and is generally considered an innocuous assumption. Completeness of cognitive

preferences, although also a standard assumption, is often judged restrictive: it

means that the agent is able to come up with a judgment about which of any two

alternatives in A she likes better. The role of this assumption here is to single out

indifferent selection as the only possible source of discrepancy between behavioral

and cognitive preferences:

Lemma 1. Let <B and <C be two complete binary relations on a set A such that

<B is compatible with <C . Then <C = <B ∪ ∼C .

Proof. By compatibility, one has ≻C ⊆ <B and, hence, <C = ≻C ∪ ∼C ⊆ <B ∪ ∼C .

Conversely, completeness of <C and compatibility together imply <B ⊆ <C and,

hence, <B ∪ ∼C ⊆ <C ∪ ∼C = <C .

As appears from Lemma 1, under our completeness and compatibility assump-

tions, cognitive and behavioral preferences only differ for alternatives a and a′ such
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that a ∼C a′ and [a ≻B a′ or a′ ≻B a] (for a similar analysis allowing for incomplete

preferences, see Danan, 2003). Finally, it should be noted that neither cognitive nor

behavioral preferences are assumed to be transitive.

The present analysis assumes that <B is observable but not <C , and addresses

the question whether <C can be recovered from <B. This is in line with a revealed

preference approach: the agent’s tastes, which are unobservable mental states, are

revealed by her observable choice behavior (if choice behavior is modeled, more

generally, by a choice function, then the existence of a complete behavioral preference

relation is characterized by Sen (1971)’s Axioms α and γ). In the present setup, the

problem boils down to that of behaviorally identifying indifferent selection.

2 An example

As an illustration, suppose alternatives are commodity bundles made of two goods,

and the agent is observed choosing lexicographically by, first, maximizing the total

quantity of goods and, second, maximizing the quantity of good 1. Formally, A =

R2 and, for all (x1, x2), (x
′

1
, x′

2
) ∈ R2,

(x1, x2) <B (x′

1
, x′

2
) ⇔ [x1 + x2 > x′

1
+ x′

2
or [x1 + x2 = x′

1
+ x′

2
and x1 ≥ x′

1
]].

Note that <B is antisymmetric and, therefore, can receive a fully behavioral in-

terpretation. What can we say about the agent’s cognitive preferences? First, it

is possible that her tastes fully coincide with her observed behavior and that she

never makes an indifferent selection, i.e., <C = <B. But it might also be the case

that her tastes do not select between any alternatives and that her behavioral pref-

erences fully result from indifferent selection, i.e., <C = A × A . Between these

two extremes, it is conceivable, e.g., that only the total quantity of goods matters

according to her tastes whereas maximizing the quantity of good 1 is only used to

achieve indifferent selection, i.e., for all (x1, x2), (x
′

1
, x′

2
) ∈ R2,

(x1, x2) <C (x′

1
, x′

2
) ⇔ x1 + x2 ≥ x′

1
+ x′

2
.

Thus, additional assumptions must be imposed in order to pin down the agent’s

cognitive preferences.
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Now, note that, among the three possible cognitive preference relations defined

above, the first is discontinuous and the second is locally satiated (i.e., it has a

local maximum). As it turns out, the latter is the unique continuous and locally

nonsatiated cognitive preference relation with which <B is compatible. Furthermore,

the difference between <B (which is locally nonsatiated and discontinuous) and this

third cognitive preference relation resides in the continuity of the latter: indifferent

selection is characterized by discontinuity of the behavioral preference relation. As

shown in Section 3, this argument can be generalized to preferences over an arbitrary

topological space A .

In this example, nonsatiation of <C (the third one) takes a particular form: not

only is any bundle strictly dispreferred to some other bundle in each of its neigh-

borhoods, but there are some specific directions along which these other bundles

are found. Namely, (x′

1
, x′

2
) ≻C (x1, x2) whenever (x′

1
, x′

2
) > (x1, x2), i.e., <C is

monotonic with respect to the vector order ≥ on R2. If we assume that one of

the goods is money, then we explicitly recover Savage (1954)’s informal argument

that indifferent selection can be revealed by adjoining small monetary bonuses to

alternatives: it is characterized by a strict behavioral preference that is reversed by

adjoining an arbitrarily small bonus by the unchosen alternative. Section 4 general-

izes this argument to preferences over any partially ordered set A satisfying some

unboundedness and denseness properties.

Finally, note that <C can be represented by the continuous utility function

u : A → R defined by, for all (x1, x2) ∈ R2, u(x1, x2) = x1 + x2, and that u is

unique up to a strictly increasing and continuous transformation. This function,

then, also represent <B, but in a weaker sense (namely, (x1, x2) ≻B (x′

1
, x′

2
) when-

ever u(x1, x2) > (x′

1
, x′

2
), but information on indifferent selection is lost). Note that

this continuous utility function can be derived even though <B is neither continuous

nor even representable by any utility function in the usual sense. Section 5 proceeds

in this fashion to generalize classical representation results for continuous prefer-

ences over a topological space A satisfying some countability and connectedness

properties.
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3 Main results

Now turning to the general case, we assume A is a topological space (Munkres, 2000)

and denote by cl(.) and int(.) the closure and interior operators on A , respectively.

Given an alternative a ∈ A and a binary relation B on A (B = <,≻,∼), we define

the following subsets of A :

A(B, a) = {a′ ∈ A : a′ B a},

A(a,B) = {a′ ∈ A : a B a′}.

We say that a binary relation < on A is:

– upper semi-continuous if, for all a ∈ A , A(<, a) is closed,

– weakly upper nonsatiated if, for all a ∈ A , a ∈ cl(A(≻, a)),

– strongly upper nonsatiated if, for all a, a′ ∈ A , a < a′ ⇒ a ∈ cl(A(≻, a′)).

Upper semi-continuity is defined as usual (if < is complete, then it is equivalent to

require that A(a,≻) be open). Weak upper nonsatiation also corresponds to the

standard notion of local nonsatiation of preferences: no alternative in A is a local

maximum for <. If < is transitive, then this local property has the following global

implication: if a < a′, then any neighborhood of a contains an alternative a′′ such

that a′′ ≻ a and, hence, a′′ ≻ a′, so a ∈ cl(A(≻, a′)). This latter property is inde-

pendently stated as strong upper nonsatiation because transitivity is not assumed

here (it indeed implies weak upper nonsatiation provided that < is reflexive). Note

that if < is strongly upper nonsatiated, then it has “thin indifference curves” in the

sense that, for all a ∈ A , A(∼, a) is nowhere dense.

Upper semi-continuity and strong upper nonsatiation turn out to be sufficient

for pinning down the agent’s cognitive preference relation:

Theorem 1. Let <B and <C be two complete binary relations on a topological

space A such that <B is compatible with <C . If <C is upper semi-continuous and

strongly upper nonsatiated, then, for all a, a′ ∈ A ,

a <C a′ ⇔ a ∈ cl(A(<B, a′)). (1)

Proof. Let a, a′ ∈ A . If a <C a′, then a ∈ cl(A(≻C , a′)) because <C is strongly

upper nonsatiated and, hence, a ∈ cl(A(≻B, a′)) because <B is compatible with



E. Danan – Revealed preference and indifferent selection 8

<C , so a ∈ cl(A(<B, a′)). Conversely, if a ∈ cl(A(<B, a′)), then a ∈ cl(A(<C , a′))

because <C is complete and <B is compatible with <C and, hence, a ∈ A(<C , a′)

because <C is upper semi-continuous, i.e., a <C a′.

To understand how indifferent selection is behaviorally identified, consider two

alternatives a and a′ such that a ≻B a′ and say that (a, a′) is an upper semi-

discontinuity point for <B if a′ ∈ cl(A(<B, a)). It then follows from Equation 1 that

the agent makes an indifferent selection between a and a′ (i.e., a ∼C a′) if and only

if (a, a′) is an upper semi-discontinuity point for <B. More precisely, if (a, a′) is an

upper semi-discontinuity point for <B, then one must have a ∼C a′ by upper semi-

continuity of <C (this rules out, e.g., <C = <B in Section 2’s example). Conversely,

if (a, a′) is not an upper semi-discontinuity point for <B, then one cannot have

a ∼C a′ by strong upper nonsatiation of <C (this rules out, e.g., <C = A × A in

Section 2’s example).

Now, in order to obtain a fully behavioral result, we need to characterize those

behavioral preference relations <B for which the cognitive preference relation <C

defined by Equation 1 is indeed upper semi-continuous and strongly upper nonsa-

tiated. Because <C only differs from <B by the fact that it has more indifferences

(see Lemma 1), satiation of <B would imply satiation of <C , so it is necessary

that <B be strongly upper nonsatiated. On the other hand, upper semi-continuity

of <B is not necessary, as shown by Section 2’s example. However, strong upper

nonsatiation of <B alone is not sufficient. For example, let A = R, define the

function f : R → R by, for all x ∈ R, f(x) = x if x ∈ Q and f(x) = −x other-

wise, and assume the agent’s behavioral preference relation <B is given by, for all

x, x′ ∈ R, x <B x′ ⇔ f(x) ≥ f(x′). Then <B is strongly upper nonsatiated but

Equation 1 implies x ∼C 0 for all x ∈ R, so <C is not strongly upper nonsatiated.

The problem is that <B is too discontinuous. More precisely, (x, 0) is an upper

semidiscontinuity point for all x ∈ Q and Q is dense in R. On the contrary, for any

alternative a′ ∈ A , we need (a, a′) to be an upper semi-discontinuity point for only

a nowhere dense set of alternatives a for A(∼C , a′) to be nowhere dense.

To capture this latter property, say that a binary relation < on a topological

space A is upper archimedean if, for all a, a′ ∈ A such that a ≻ a′ and for all

neighborhood V of a, there exist â ∈ V and a neighborhood V ′ of a′ such that, for

all â′ ∈ V ′, â ≻ â′. Intuitively, small variations in alternatives have a small effect on
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preferences: if a ≻ a′ and one moves from a to some close (and strictly preferred, by

nonsatiation) â, then â ≻ â′ for all â′ sufficiently close to a′. It follows that (â, a′)

cannot be an upper semi-discontinuity point for any â sufficiently close to a, ruling

out the preceding example. Any upper semi-continuous binary relation is upper

archinedean, but the converse does not hold, as shown by Section 2’s example. We

can now state:

Theorem 2. Let <B be a complete binary relation on a topological space A . Then

<B is upper archimedean and strongly upper nonsatiated if and only if there exists

a complete, upper semi-continuous and strongly upper nonsatiated binary relation

<C on A such that <B is compatible with <C . Moreover, <C is unique.

Proof. Uniqueness follows from Theorem 1. Assume that <B is upper archimedean

and strongly upper nonsatiated. The binary relation <C on A defined by Equation 1

is complete by completeness of <B and upper semi-continuous by definition. More-

over, for all a, a′ ∈ A , a <B a′ ⇒ a <C a′ and, hence, <B is compatible with <C .

Now, let a, a′ ∈ A such that a <C a′, and let V be a neighborhood of a. Then there

exists ā ∈ V such that ā <B a′. Hence, by strong upper nonsatiation of <B, there

exists ã ∈ V such that ã ≻B a′. Hence, by upper archimedeanness of <B, there exist

â ∈ V and a neighborhood V ′ of a′ such that â ≻B â′ for all â′ ∈ V ′. It follows that

â ≻C a′ by Equation 1, so <C is strongly upper nonsatiated.

Conversely, assume that there exists a complete, upper semi-continuous and

strongly upper nonsatiated binary relation <C on A such that <B is compatible

with <C . Let a, a′ ∈ A such that a <B a′. Then a <C a′ by completeness of <C

and compatibility and, hence, a ∈ cl(A(≻C , a′)) by strong upper nonsatiation of

<C . Hence a ∈ cl(A(≻B, a′)) by compatibility, so <B is strongly upper nonsatiated.

Now, let a, a′ ∈ A such that a ≻B a′, and let V be a neighborhood of a. By the

preceding argument, there exists â ∈ V such â ≻C a′. Hence, by completeness of

<B, there exists a neighborhood V ′ of a′ such that â ≻B â′ for all â′ ∈ V ′, so <B is

upper archimedean.

Finally, let us note that Theorem 1 and Theorem 2 also hold if upper semi-

continuity, strong upper nonsatiation, and upper archimedeanness are replaced by

their lower analogs. More precisely, say that a binary relation < on a topological

space A is:
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– lower semi-continuous if, for all a ∈ A , A(a,<) is closed,

– weakly lower nonsatiated if, for all a ∈ A , a ∈ cl(A(a,≻)),

– strongly lower nonsatiated if, for all a, a′ ∈ A , a < a′ ⇒ a′ ∈ cl(A(a,≻)),

– lower archimedean if, for all a, a′ ∈ A such a ≻ a′ and for all neighborhood V ′ of

a′, there exist â′ ∈ V ′ and a neighborhood V of a such that, for all â ∈ V , â ≻ â′.

Equation 1 then becomes:

a <C a′ ⇔ a′ ∈ cl(A(a,<B)).

Moreover, the upper and lower versions of the results can straightforwardly be com-

bined: say that a binary relation < on a topological space A is continuous if it is

both upper semi-continuous and lower semi-continuous, weakly (resp., strongly) non-

satiated if it is both weakly (resp., strongly) upper nonsatiated and weakly (resp.,

strongly) lower nonsatiated, and archimedean if it is both upper archimedean and

lower archimedean.

4 Monotonic preferences

In his pioneering work on decision making under uncertainty, Savage (1954) men-

tioned the problem of indifferent selection, and informally suggested to solve it by

adjoining small monetary bonuses to alternatives. As he argued, cognitive weak

preference for a over a′ could then be behaviorally identified with the observation

that any (however small) bonus adjoined to a makes it chosen over a′. This ar-

gument can be formally recovered as a special case of Section 3’s analysis. More

precisely, the essential point about money here is that any strictly positive monetary

bonus can be considered as an objective improvement, i.e., it can be assumed that

the agents always prefers more money.

In order to capture this notion of objective betterness (Cubitt and Sugden, 2001),

we assume that A is a partially ordered set (poset), and denote by ≥∗ its partial

order relation (i.e., ≥∗ is a reflexive, antisymmetric, and transitive binary relation

on A ). If a >∗ a′, we say that a dominates a′, i.e., a is objectively strictly better

than a′. We also assume that the poset A is unbounded (i.e., for all a ∈ A , there

exist a′, a′′ ∈ A such that a′ >∗ a >∗ a′′) and dense (i.e., for all a, a′ ∈ A such that

a >∗ a′, there exists a′′ ∈ A such that a >∗ a′′ >∗ a′).
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The monetary incentives setup corresponds to the following special case: assume

A = B × R, where B is an arbitrary set of basic alternatives (on which one wants

to elicit the agent’s preferences), and R stands for the set of monetary payoffs. Thus

the alternative (b, ε) ∈ A corresponds to the basic alternative b with an adjoined

monetary bonus ε (note that R can be reduced to any open interval). Define the

partial order ≥∗ on A by, for all (b, ε), (b′, ε′) ∈ B × R,

(b, ε) ≥∗ (b′, ε′) ⇔ [b = b′ and ε ≥ ε′].

Then ≥∗ is unbounded (meaning that a positive or negative monetary bonus can be

adjoined to any alternative in A ) and dense (reflecting perfect divisibility of money).

Note that, more generally, R could be replaced by any set naturally endowed with an

unbounded and dense order (i.e., complete partial order), e.g., representing quality

of some good (higher quality is better), or time (earlier is better). Besides these

special cases in which incentives correspond to a separate dimension of alternatives,

the general setup applies if A is, e.g., a commodity space (≥∗ being the natural

vector order on Rn) or a space of lotteries or acts whose outcomes are commodity

bundles (≥∗ being the first-order stochastic dominance relation).

Given a binary relation < on a poset A , define the binary relation <∗ on A by,

for all a, a′ ∈ A ,

a <
∗ a′ ⇔ A(>∗, a) ⊆ A(≻, a′),

i.e., a <∗ a′ if and only if any alternative dominating a is strictly preferred to a′,

and say that < is:

– weakly upper monotonic if, for all a ∈ A , a <∗ a,

– strongly upper monotonic if, for all a, a′ ∈ A , a < a′ ⇒ a <∗ a′.

As for nonsatiation, weak upper monotonicity is the usual requirement that dom-

inating alternatives are strictly preferred, and strong upper monotonicity (which

implies the weak version provided that < is reflexive) follows from it if < is tran-

sitive but must be independently stated otherwise. It is intuitively straightforward

that monotonicity implies nonsatiation: by unboundedness of A , any alternative

a ∈ A is dominated by some a′ and by denseness of A this a′ can be taken arbitrar-

ily close to a, so no a cannot be a local maximum if < is monotonic. To establish
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this statement (and others) formally, we endow A with the partial order topology

(i.e., the topology generated by the subbasis
⋃

a∈A
{A(>∗, a), A(a,>∗)}, which is

well-defined by unboundedness of A ). We then obtain:

Lemma 2. Let < be a complete and strongly upper monotonic binary relation on

an unbounded and dense poset A . Then:

a. < is strongly upper nonsatiated,

b. < is upper semi-continuous if and only if, for all a, a′ ∈ A , a <∗ a′ ⇒ a < a′,

c. < is upper archimedean if and only if, for all a, a′, â ∈ A such that [â >∗ a and

a ≻ a′], there exists â′ ∈ A such that [â ≻ â′ and â′ >∗ a′].

Proof. a. Let a, a′ ∈ A such that a < a′ and let V be a neighborhood of a. By

unboundedness of A , there exists ã ∈ A dominating a such that V contains all

â ∈ A such that [ã >∗ â and â >∗ a]. By denseness of A , there exists such a â. By

strong upper monotonicity of <, â ≻ a′ and, hence, a ∈ cl(A(≻, a′)).

b. Assume that < is upper semi-continuous, let a, a′ ∈ A such that a <∗ a′, and

let V be a neighborhood of a. By the preceding argument, there exists â ∈ V such

that â >∗ a and, hence, â ≻ a′, so a < a′. Conversely, assume that, for all a, a′ ∈ A ,

a <∗ a′ ⇒ a < a′, and let a, a′ ∈ A such that a ∈ cl(A(<, a′)). For all â ∈ A such

that â >∗ a, A(â, >∗) is a neighborhood of a and, hence, there exists ã ∈ A(â, >∗)

such that ã < a′. By strong upper monotonicity of <, this implies â ≻ a′. Hence

a <∗ a′ and, hence a < a′.

c. Assume that < is upper archimedean, and let a, a′, â ∈ A such that [â >∗ a

and a ≻ a′]. Then A(â, >∗) is a neighborhood of a and, hence, there exist ã ∈

A(â, >∗) and a neighborhood V ′ of a′ such that ã ≻ ã′ for all ã′ ∈ V ′. Hence â ≻ ã′

for all ã′ ∈ V ′ by strong upper monotonicity of < and, in particular, â ≻ â′ for

some â′ ∈ V ′ such that â′ >∗ a′. Conversely, assume that, for all a, a′, â ∈ A such

that [â >∗ a and a ≻ a′], there exists â′ ∈ A such that [â ≻ â′ and â′ >∗ a′]. Let

a, a′ ∈ A such that a ≻ a′ and let V be a neighborhood of a. Then there exists

â ∈ V such that â >∗ a and, hence, there exists â′ ∈ A such that [â ≻ â′ and

â′ >∗ a′]. It follows that A(â′, >∗) is a neighborhood of a′. Now, suppose there

exists ã′ ∈ A(â′, >∗) such that not â ≻ ã′. Then ã′ < â by completeness of < and,

hence, â′ ≻ â by strong upper monotonicity of <, a contradiction.

Note that the weak version of part a also holds: if < is weakly upper monotonic,

then it is weakly upper nonsatiated. Parts b and c give restatements of the preceding
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section’s topological properties given the order structure assumed in the present

section. In particular, archimedeanness now more transparently reflects the property

that small changes in alternatives have a small effect on preference: if a ≻ a′ and

some (however small) bonus is adjoined to a (yielding the alternative â), then it

must be possible to adjoin some (small enough) bonus to a′ (yielding the alternative

â′) so as to preserve the relation â ≻ â′. We obtain analogs of Theorem 1 and

Theorem 2 in this setup:

Theorem 3. Let <B and <C be two complete binary relations on an unbounded and

dense poset A such that <B is compatible with <C . If <C is upper semi-continuous

and strongly upper monotonic, then <C = <∗

B
.

Proof. Let a, a′ ∈ A . If a <C a′, then a <∗

C
a′ by strong upper monotonicity of

<C and, hence, a <∗

B
a′ by compatibility. Conversely, if a <∗

B
a′, then â <C a′ for

all â ∈ A such that â >∗ a by completeness of <C and compatibility. Now, for all

â ∈ A such that â >∗ a, there exists ã ∈ A such that â >∗ ã >∗ a by denseness of

A and, hence, â ≻C a′ by strong upper monotonicity of <C . Hence a <∗

C
a′ and,

hence, a <C a′ by upper semi-continuity of <C .

Theorem 4. Let <B be a complete binary relation on an unbounded and dense

poset A . Then <B is upper archimedean and strongly upper monotonic if and only

if there exists a complete, upper semi-continuous and strongly upper monotonic

binary relation <C on A such that <B is compatible with <C . Moreover, <C is

unique.

Proof. Assume that <B is upper archimedean and strongly upper monotonic. By

Theorem 2, it is sufficient to show that the binary relation <C on A defined by

Equation 1 is strongly upper monotonic. Let a, a′, â ∈ A such that a <C a′ and

â >∗ a. Then A(â, >∗) is a neighborhood of a and, hence, there exists ā ∈ A(â, >∗

) such that ā <B a′. By denseness of A , there exists ã ∈ A(â, >∗) such that

ã >∗ ā and, hence ã ≻B a′ by strong upper monotonicity of <B. Hence, by upper

archimedeanness of <B, there exist ǎ ∈ A(â, >∗) and a neighborhood V ′ of a′ such

that ǎ ≻B â′ for all â′ ∈ V ′. By strong upper monotonicity of <B, it follows that

â ≻B â′ for all â′ ∈ V ′. Hence not a′ <C a, i.e., a ≻C a′ by completeness of <C .

Conversely, assume that there exists a complete, upper semi-continuous and

strongly upper monotonic binary relation <C on A such that <B is compatible with
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<C . By Theorem 2, it is sufficient to show that <B is strongly upper monotonic.

Let a, a′ ∈ A such that a <B a′. Then a <C a′ by completeness of <C and

compatibility and, hence a <∗

C
a′ by strong upper monotonicity of <C . Hence

a <∗

B
a′ by compatibility.

As in the general case, lower versions of weak and strong monotonicity can

be defined and the corresponding results follow. Moreover, the upper and lower

results can be combined, but note that strong upper monotonicity and strong lower

monotonicity are equivalent for a complete binary relation (and similarly for weak

monotonicity).

5 Pseudo-utility

It is well-known (Cantor, 1895) that a complete binary relation < on a set A is

representable by a utility function (i.e., there exists a function u : A → R such that,

for all a, a′ ∈ A , u(a) ≥ u(a′) ⇔ a < a′) if and only if it is transitive and separable

(i.e., there exists a countable subset A of A such that, for all a, a′ ∈ A such that

a ≻ a′, there exists â ∈ A such that a < â < a′). Now, in the present setup, starting

from a complete binary relation <B on a topological space A , we derive a complete

binary relation <C and, if <C is transitive and separable, it can be represented

by a utility function u, even though <B might be neither transitive nor separable.

Furthermore, because <C is continuous, we know that u can be taken continuous

provided that A satisfies certain topological properties (Eilenberg, 1941; Debreu,

1954; Rader, 1963), even though <B might be discontinuous. Thus, the present

analysis can yield generalizations of classical results on representation of presences

by continuous utility functions.

Because <B is compatible with <C but might not be equal to <C , a utility

function u representing <C does not in general represent <B in the classical sense,

but in the following, weaker sense (Moulin, 1988; Subiza and Peris, 1998):

Definition. A function u : A → R is a pseudo-utility representation of a binary

relation <B on a set A if, for all a, a′ ∈ A , u(a) > u(a′) ⇒ a ≻B a′.

A pseudo-utility representation u is not a full utility representation because it

looses information on the preference relation between alternatives a, a′ ∈ A such
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that u(a) = u(a′) (i.e., in the present framework, on indifferent selection). For this

reason, a constant u is a pseudo-utility representation of any binary relation and,

therefore, additional restrictions must be imposed for the representation to be of

interest. Subiza and Peris (1998) assume that A is a topological space (endowed

with some finite measure) and require u to be continuous and nontrivial (i.e., if

[a ≻B â and â ≻B a′] for all â in some open subset of A , then u(a) > u(a′)). In the

present setup, by nonsatiation of <C , a stronger requirement than nontriviality can

be imposed: say that u is locally unbounded above if, for all open subset V of A ,

arg maxa∈V u(a) = ∅.

Lemma 3. Let <B be a binary relation on a topological space A and u be a pseudo-

utility representation of <B. If u is locally unbounded above, then it is nontrivial.

Proof. Assume that u is locally unbounded above, and let a, a′ ∈ A such that

[a ≻B â and â ≻B a′] for all â in some open subset V of A . Then u(a) ≥ u(â) and

u(â) ≥ u(a′) because u is a pseudo-utility representation of <B. Moreover, by local

unboundedness of u, it is not possible that u(a) = u(â) for all â ∈ V . Hence there

must exist â ∈ V such that u(a) > u(â) and, hence, u(a) > u(a′), so a ≻B a′.

In order to establish pseudo-utility representation results, we need to characterize

those behavioral preference relations <B on A for which the cognitive preference

relation <C on A defined by Equation 1 is transitive. Say that a binary relation

< on a topological space A is upper closure-transitive if, for all a, a′, a′′ ∈ A ,

[a ∈ cl(A(<, a′)) and a′ ∈ cl(A(<, a′′))] ⇒ a ∈ cl(A(<, a′′)). In the present setup,

upper closure-transitivity is weaker than transitivity, but still yields equivalence

between weak and strong nonsatiation:

Lemma 4. Let < be a complete, upper archimedean, and weakly upper nonsatiated

binary relation on a topological space A . Then:

a. if < is transitive, then it is upper closure-transitive,

b. if < is upper closure-transitive, then it is strongly upper nonsatiated.

Proof. a. Assume that < is transitive, let a, a′, a′′ ∈ A such that [a ∈ cl(A(<, a′))

and a′ ∈ cl(A(<, a′′))], and let V be a neighborhood of a. Then there exists â ∈ V

such that â < a′. By weak upper nonsatiation of <, there exists ã ∈ V such that

ã ≻ â and, hence, ã ≻ a′ by transitivity of <. Hence, by upper archimedeanness of
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<, there exist ā ∈ V and a neighborhood V ′ of a′ such that ā ≻ â′ for all â′ ∈ V ′.

Moreover, there exists ã′ ∈ V ′ such that ã′ < a′′ and, hence, ā ≻ â′′ by transitivity

of <, so a ∈ cl(A(<, a′′)).

b. Assume that < is upper closure-transitive, let a, a′ ∈ A such that a < a′, and

let V be a neighborhood of a. Then, by weak upper nonsatiation of <, there exists

â ∈ V such that â ≻ a. Hence, by upper archimedeanness of <, there exist ã ∈ V

and a neighborhood V̄ of a such that ã ≻ ā for all ā ∈ V̄ . Now, suppose there does

not exist ǎ ∈ V such that ǎ ≻ a′. Then a′ < ǎ for all ǎ ∈ V by completeness of

< and, hence, a ∈ cl(A(<, ǎ)) for all ǎ ∈ V by upper closure-transitivity of <, a

contradiction. Hence there exists ǎ ∈ V such ǎ ≻ a′, so a ∈ cl(A(≻, a′)).

Note that the converse of part a does not hold: upper closure-transitivity is

strictly weaker than transitivity. For example, consider the commodity space A =

R2 of Section 2 and the behavioral preference relation <B on A defined therein,

and amend <B by assuming (2, 0) ≻B (1, 1) ≻B (0, 2) ≻B (2, 0). Then <B is

not transitive, but it is upper closure-transitive (upper closure-transitivity of <B is

equivalent to transitivity of the third cognitive relation <C defined in the example,

independently of the latter amendment of <B).

We obtain a generalization of Rader (1963)’s representation result on a second-

countable topological space:

Theorem 5. Let <B be a complete binary relation on a second-countable topolog-

ical space A . Then <B is upper archimedean, weakly upper nonsatiated and upper

closure-transitive if and only if there exists an upper semi-continuous and locally

unbounded above pseudo-utility representation u of <B. Moreover, u is unique up

to a strictly increasing transformation f : u(A ) → R such that f ◦ u is upper

semi-continuous.

Proof. Assume that <B is upper archimedean, weakly upper nonsatiated and upper

closure-transitive. Then, by Theorem 2 and Lemma 4, there exists a complete, upper

semi-continuous and weakly upper nonsatiated binary relation <C on A such that

<B is compatible with <C . Moreover, <C is transitive by Theorem 1 and Lemma 4.

Because A is second-countable, it follows from Rader (1963)’s result that there

exists an upper semi-continuous utility representation u of <C . Moreover, u is locally

unbounded above by weak upper nonsatiation of <C . Finally, u is a pseudo-utility

representation of <B because <B is compatible with <C .
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Conversely, assume that there exists an upper semi-continuous and locally un-

bounded above pseudo-utility representation u of <B. Define the binary relation

<C on A by, for all a, a′ ∈ A , a <C a′ ⇔ u(a) ≥ u(a′). Then u is a utility repre-

sentation of <C and, hence, <C is complete, transitive, and upper semi-continuous.

Moreover, <C is weakly upper nonsatiated because u is locally unbounded above,

and <B is compatible with <C because u is a pseudo-utility representation of <B.

Hence <B is upper archimedean and weakly upper nonsatiated by Theorem 2 and

Lemma 4. Moreover, <B is upper closure-transitive by Theorem 1 and Lemma 4.

For the uniqueness part, let u be an upper semi-continuous and locally un-

bounded above pseudo-utility representation of <B and let f : u(A ) → R. Clearly,

if f is strictly increasing then f ◦ u is also a locally unbounded above pseudo-utility

representation of <B. Conversely, if f ◦u is a locally unbounded above pseudo-utility

representation of <B then, for all a, a′ ∈ A , u(a) > u(a′) ⇒ a ≻ a′ ⇒ f ◦ u(a) ≥

f ◦ u(a′). Moreover, suppose there exist a, a′ ∈ A such that [u(a) > u(a′) and

f ◦ u(a) = f ◦ u(a′)]. Then V = {â ∈ A : u(a) > u(â)} is an open subset of A

by upper semi-continuity of u and a′ ∈ arg maxâ∈V f ◦u(â), a contradiction because

f ◦ u is locally unbounded above. Hence f is strictly increasing.

In order to get a lower version of this result, say that a binary relation < on a

topological space A is lower closure-transitive if, for all a, a′, a′′ ∈ A , [a′ ∈ cl(A(a,<

)) and a′′ ∈ cl(A(a′,<))] ⇒ a′′ ∈ cl(A(a,<)), and say that a function u : A → R

is locally unbounded below if, for all open subset V of A , arg mina∈V u(a) = ∅. The

analog of Theorem 5 then holds. Moreover, the two results can be combined, yielding

a generalization of Debreu (1954)’s representation result. Say that < is closure-

transitive if it is both upper closure transitive and lower closure-transitive, and that

u is locally unbounded if it is locally unbounded above and locally unbounded below.

Theorem 6. Let <B be a complete binary relation on a second-countable topolog-

ical space A . Then <B is archimedean, weakly nonsatiated and closure-transitive

if and only if there exists a continuous and locally unbounded pseudo-utility repre-

sentation u of <B. Moreover, u is unique up to a strictly increasing transformation

f : u(A ) → R such that f ◦ u is continuous.

We conclude with a generalization of Eilenberg (1941)’s representation result on

a first-countable and connected topological space:
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Theorem 7. Let <B be a complete binary relation on a first-countable and con-

nected topological space A . Then <B is archimedean, weakly nonsatiated and

closure-transitive if and only if there exists a continuous and locally unbounded

pseudo-utility representation u of <B. Moreover, u is unique up to a strictly in-

creasing and continuous transformation.

The proofs of Theorem 6 and Theorem 7 are similar to that of Theorem 5 and,

therefore, omitted. Note that in Theorem 7, connectedness of A yields a stronger

uniqueness result (Wakker, 1991).

Conclusion

This paper shows that preferences can be derived from choice behavior in a way

that is robust to indifferent selection. More precisely, a suggestion by Savage (1954)

to reveal indifferent selection by considering small monetary perturbations of alter-

natives is formalized in a general topological setup, and is found to essentially rely

on an assumption of continuity of preferences.

Although Savage (1954)’s argument is well known, it is seldom used to elicit in-

difference in practice. Rather, the experimental literature generally resorts to such

devices as randomization or delegation. A possible defense of this standard practice

is that the monetary perturbation method, although more satisfactory in theory, is

impossible to implement because there is no such thing as an infinitely small mon-

etary bonus in practice. Nevertheless, using some small bonus as an approximation

could still represent an improvement over the usual elicitation methods. For ex-

ample, if an experimental study provides evidence of some strict preference pattern

violating a standard axiom, then such evidence could be strengthened by checking

for robustness of the pattern to the adjunction of this small bonus.
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