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Conventional wage analyses suffers from a debilitating ailment: since there are no 
observable market wages for individuals who do not work, findings are limited to the 
sample of the population that are employed. Due to the problem of sample selection 
bias, using this subsample of working individuals to draw conclusions for the entire 
population will lead to inconsistent estimates. Remedial procedures have been 
developed to address this issue. Unfortunately, these models strongly rely on the 
assumed parametric distribution of the unobservable residuals as well as the 
existence of an exclusion restriction, delivering biased estimates if either of these 
assumptions is violated. This has given rise to a recent interest in semi-parametric 
estimation methods that do not make any distributional assumptions and are thus 
less sensitive to deviations from normality. This paper will investigate a few proposed 
solutions to the sample selection problem in an attempt to identify the best model of 
earnings for South African data. 
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Following the seminal article by Gronau (1974) it is now widely agreed that conventional wage 

analyses suffer from a debilitating ailment: since there are no observable market wages for individuals 

who do not work, findings are limited to the sample of the population that are employed. Due to the 

problem of sample selection bias, using this subsample of working individuals to draw conclusions 

for the entire population will lead to inconsistent estimates. Some remedial procedures that correct 

for this bias have been developed by Heckman (1974, 1979). Unfortunately, these models strongly 

rely on the assumed parametric distribution of the unobservable residuals as well as the existence of 

an exclusion restriction, delivering biased estimates if either of these assumptions is violated. This has 

given rise to a recent interest in semi-parametric estimation methods that do not make any 

distributional assumptions and are thus less sensitive to deviations from normality. This paper will 

investigate a few of these proposed solutions to the sample selection problem in an attempt to 

identify the best model of earnings for South African data. 

 

The next section introduces the sample selection problem. Section 2 builds on this discussion by 

providing a formal model that fits the intuitive problem and discussing and assessing the two most 

popular sample selection models. Following this, an alternative, but less popular, sample selection 

model that is less dependent on the parametric assumptions of the residual, is proposed. Section 3 

adds to this discussion, by testing the empirical validity of the competing models, using Monte Carlo 

simulations. In section 4 the models are applied to South African LFS dataset and compared. Section 

5 concludes. 

 

1. SAMPLE SELECTION BIAS  

The issue of sample selection bias commonly arises not just within econometric subject matters, but 

also within other social sciences. In this paper, however, the focus is restricted to the effect of sample 

selection on the wage function, the same framework within which the problem was originally 

identified by Gronau (1974). Gronau’s model showed that the use of an OLS regression that is 

confined to a certain portion of society to draw inference over the entire population would be flawed 

if the first group is not a random selection from the population.  

 

While one can control for the effect of the observable characteristics by including these variables in 

the wage function, this is not the case for unobservable characteristics, like ambition and motivation.  

Unfortunately, these variables are likely to play an important role both in determining whether one 

would acquire a job and the wage one ultimately receive. If this is the case, conventional wage 

functions fail to incorporate the role that unobservable attributes could have on the outcome 

equation. These models would be susceptible to inconsistent estimators and misleading t-statistics, 

which in turn may lead to improper results and conclusions.  

 



  
2. MODEL AND METHODOLOGY 

a) The Sample Selection Model 

We assume that each individual has a set of characteristics that is specific to him or her. Empirically, 

it is important to distinguish between features that are observable and those that are not. In terms of 

the observable attributes, it is assumed that some of these characteristics determine an individual’s 

productivity, x2i, while others may influence that individual’s likelihood of attaining work, x1i. The 

two sets of variables, x1i and x2i, are allowed to overlap (Wooldridge, 2002: 561). The error terms are 

often conceptualised as representing, or at least including,  the unobserved productive characteristic, 

like drive and intelligence, which are important in determining both employment and wages. Failure 

of the model to control for these unobservable variables will cause the errors to be correlated and 

lead to sample selection bias. 

 

Algebraically, the model can be presented as follows: 

 

stage 1:         di* = αx1i + e   (selection equation) 

         di  = 1    if di* ≥ 0  

          di   = 0    if di* < 0       

 

stage 2:          yi* = βx2i + u   (outcome equation) 

                        yi  = yi*               if di = 1 

               yi  is missing    if di = 0 

  

where  di and yi are the observed realisations, e.g. of employment and wages 

di* and yi* are their latent counterparts, 

x1 and x2 are vectors of exogenous variables, 

α and β are unknown parameter vectors and 

e and u are the corresponding error terms 

 

In the above model, the outcome variable, y, which denotes log of wages, is only observable when 

some criteria defined in terms of d are met. In our case, d will signify the employment outcome, 

attaining a value of one if the individual is employed and zero if the individual is not employed. The 

selection equation is modelled in the first stage. In the second stage, the wage function is estimated 

by regressing y on a set explanatory variables, x2

The correlation coefficient between the errors, ρ, can be interpreted as an indication of the 

relationship between the unobservable characteristics within the first and second step. The problem 

of sample selection arises when the errors of the selection equation and the errors of the wage 

function are correlated, i.e. if ρ≠0. If this is the case, simply regressing y on x over the subsample of 

, conditional on d = 1. 

 



  
employed individuals, using standard ordinary least squared estimates will deliver biased estimates of 

β, since it fails to incorporate the relationship between e and u. The sample selection literature has 

emerged due to the need to correct for this bias. The two most popular proposed fixes for the 

problem are the Heckman maximum likelihood estimator method (ML) and the Heckman two-step 

estimation procedure. 

 

b) Heckman’s maximum likelihood estimator 

The maximum likelihood estimator (Heckman, 1974) diverges from the method of least squares, by 

using a likelihood function rather than a probability function to estimate parameters and by assuming 

that the residuals are bivariate normally distributed2. While this model has been shown to produce 

consistent estimates under a few plausible conditions and normal and efficient estimates if sample 

sizes are large enough, the distributional assumptions required to justify the use of the maximum 

likelihood estimator are no less stringent than is required of OLS: With OLS estimation the non-

normality assumption is only required to ensure the efficiency of the OLS estimates, but is not 

required to ensure their consistency, whereas with the ML estimators the β’s are generally neither 

consistent nor efficient under an incorrect distributional assumption.  

 

c) Heckman’s two-step estimator 

One major drawback of Heckman’s maximum likelihood estimator is its procedural complexity and 

the added computation needed to solve these ML estimates. In response to this critique, Heckman 

(1979) developed the two-step estimator, a simpler version of his own ML method that could be 

solved using the more familiar probit function and a conventional OLS regression. This two-step 

model makes use of a correction term, called the inverse Mills ratio, to correct for any sample 

selection bias that may have crept into the OLS model.  

 

Using some clever arithmetic, Heckman showed that the unbiased expected value of y conditional on 

d = 1 consists of two components: the first contains the conventional regressors, which one would 

have used in simple subsample OLS regression, while the second contains a term that can be used to 

correct for the bias. The inverse Mills ratio forms part of this correction term. 

 

   E(yi) =    E(yi* | di=1)  

 =    E(βx2i + u | di=1) 

  =    βx2i + E(u | di=1) 

 =    βx2i + E(u | di

                                                 
2 Formally, this would imply that both error terms u and e are normally distributed, with mean zero, constant 

variances σu
2, σ e

2 and correlation ρ.   

 

* > 0) 



  
 =    βx2i + E(u | αx1i + e > 0) 

 =    βx2i + E(u | e > - αx1i
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If one goes further and assumes that e and u are jointly normally distributed 

(i.e. ) then it follows that u = 2
11

12

σ
σ

e + v, where the first term, 2
11

12

σ
σ

e, is 

correlated with e and the second term, v, is not.  

 

Adding this to the prior model one attains: 

          E(yi) =    βx2i 2
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 + E(  e + v | e > - αx1) 

=    βx2i 2
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where denotes the standard normal density function  

and Φ  denotes the cumulative distribution function.  

 

From the above derivation it is clear that a OLS wage function that neglects to include the second 

term will deliver biased estimates of β whenever 
11

12

σ
σ  

φ

is not equal to zero. As a result, Heckman 

(1979) defined the sample selection problem as being a special case of the more general omitted 

variable problem, with λ(.) = (αx1 Φ)/1- (αx1) being the omitted variable.  

 

He showed that the problem can be overcome by adding the inverse Mills ratio attained in the 

selection equation as an additional regressor in the outcome equation. This inverse Mills ratio is 

usually derived by probit model, which estimates the likelihood of employment given a host of 

observable characters and a normally distributed error. The linear prediction of the fitted probit 

model, αx1

11

12

σ
σ

, should then be added to the wage function as an additional regressor. When the function 

is then solved using conventional OLS analysis, the inverse Mills ratio coefficient can be regarded as 

an estimate of . (Johnston & DiNardo: 449)  



  
 

Despite the ingenuity and simplicity of the two-step model, Davidson & MacKinnon (1984: 252) 

warn that it is still inferior to the ML counterpart, since it provides inefficient results. Unlike the two-

step method that solves the selection equation and outcome equation in turn, the ML method solves 

the selection and outcome equations simultaneously. The authors recommend that the two-step 

Heckman only be used to test for the degree of selection bias, where after the ML method should be 

applied if the selection bias is significant and a conventional OLS should be applied if the selection 

bias is not significant.  

 

d) Concerns regarding sample selection models 

The popularity of the sample selection models introduced in the previous section has grown 

immensely since the 1970s. So much so, that sample selection procedures nowadays come standard 

with many software programmes, helping to lower technical capabilities required for applying these 

techniques. While the wider use of these models has its benefits, they should not be applied 

indiscriminately. According to Johnston and DiNardo (2004: 450) sample selection methods are 

often sensitive to a range of factors, like the presence of heteroscedasticity, the degree of 

identification and the validity of the distributional assumptions. With this in mind, even Heckman 

(1990: 317), recognises that simpler estimation methods may be just as good in answering economic 

questions under certain circumstances.  

 

The problem of identification arises since the set of explanatory variables in the wage function, x1, 

and the set of explanatory variables in the selection equation, x2

 

, tend to overlap and in many cases 

are even identical. According to Puhani (2000: 57), failure to include exclusion restrictions - 

regressors that are unique to the selection function - may lead to colinearity problems. Since, in the 

absence of exclusion restriction, the outcome equation is identified through the nonlinearity of the 

inverse Mills ratio alone, a function which has been shown to be quasi-linear for a large section of its 

argument. As a result, these models run the risk of obtaining unreliable β’s and inflated standard 

errors. According to Berk and Ray (1982: 386), the identification problem is worsened when the 

variation of the selection outcome is not properly explained by its regressors, since in this case, the 

inverse Mills ratio will have little variance and the effect on the outcome equation will be minimal.  

 

Given these difficulties, it should greatly aid identification if the selection equation contains a variable 

which does not also appear in the wage function. This would induce variation in the inverse Mills 

ratio, not already contained in the wage regressors, and in doing so allow the inclusion of this variable 

to absorb the sample selection bias. Unfortunately, this is easier said than done. In practice, due to 

the problem of omitted variable bias and the complexity of human behaviour, it is often difficult to 

identify variables that are correlated with the selection without also being correlated with wages.  



  
Questions have also peen posed regarding the validity of the distributional assumptions required of 

the ML and two-step models. Although the normality assumption allows us to solve these models, it 

has the unfavourable effect of making estimates overly dependent on the distribution of the 

residuals. As a result, both models will produce inconsistent parameter estimates if normality fails.  

 

e) Semi-parametric estimator 

The problem of non-normality can be addressed in two manners. One method, which was proposed 

by Lee (1982, 1983), is to transform the random elements in the model so that they can be 

represented by the bivariate normal distribution. This method however requires knowledge of the 

marginal distribution of the selection equation’s residuals. Alternatively, the reliance on distributional 

assumption can be avoided by making use of the general estimation strategy proposed by Gallant and 

Nychka (1987). This semi-parametric method approximates the unknown density of the residuals in 

the selection equation using a Hermite form.  

 

Stewart (2004) followed an extension of this semi-parametric (SP) method to develop a semi-

parametric approximation of the ordered probit function.3
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 According to this method, the density 

distribution of the errors can be attained by multiplying a squared polynomial with a normal density 

distribution, as is done below.  

 

 

 

where  e is an error term 

 K specifies the order of the Hermite polynomial, 

 φ (.) is the standard normal density distribution, 

 and k1α is the estimated parameters of the polynomial function 

 

The second difficulty is to derive the function g(.), which makes use of the index restriction, αx1, to  

use in the conditional expectation of the outcome equation.  

 

E(y | d=1) = βx2 + g(αx1

                                                 
3 The Stata ado file which was written by M. B. Stewart can be attained from the Stata Journal website at the 
following address:  http://www.stata-journal.com/software/sj4-1/st0056.pkg 

) 

 



  
The conventional two-step inverse Mills ratio cannot be used here, since the function makes use of 

the parametric assumption, i.e. normality. Several semi-parametric alternatives have been developed 

to approximate g(αx1). Heckman and Robb (1985) made use of a Fourier expansion around the 

probability that a person is employed, Costlett (1983) used intervals and indicator variables to 

approximate g(.) and Newey (1988) estimated the selection correction, g(αx1), using an initial estimate 

of αx1 and an approximation series which was allowed to grow as the sample size increased.  

 

In this paper the author will employ an iterative technique suggested by Ichimura and Lee (1991) to 

estimate g(.). The semi-parametric procedure is derived from the following two identities, that define 

the relationship between β, αx1 and g(.): 

E(y | d=1, αx1) =     βx2i + g(αx1) 

E(y – βx2 | αx1)  =    g(αx1) 
 

An estimation of g(αx1) can be obtained by inserting the estimate of αx we obtained from the semi-

parametric probit and a preliminary estimate of β into the second equation. The estimate of g(αx1) is 

then inserted into the first equation to derive a new approximation of β. This new estimate of β can 

now be used to derive another estimate of g(αx1

• the value of ρ (denoting the correlation between the two error terms, e and u); 

), which in turn can be used to derive a new β. The 

iterative process is repeated until the estimated values of β converge.  Ichimura and Lee showed that 

the estimated parameters that one obtains through this method are consistent and asymptotically 

normal. In essence, the semi-parametric method is an augmentation of the standard two-step 

Heckman model, the main difference being that the augmented model uses a semi-parametric binary 

function in place of the conventional parametric probit function and an iterative approximation 

process rather than a conventional OLS regression.  

 

3. Monte Carlo Simulations 

The importance of including an identification variable, a variable that is unique to the selection 

equation, has been hotly debated among statisticians and economists. While some downplay its 

importance, others claim that two-step methods that do not contain adequate exclusion restrictions 

are inherently flawed. The discussion has benefited from insights gained through the use of Monte 

Carlo simulations. Two studies that are widely cited in this regard are those of Nelson (1984) and 

Stolzenberg and Relles (1990), who showed that the bias and precision of the sample selection 

models are heavily dependent on the following three factors: 
 

• the correlation between the explanatory variables in the selection equation, x1, and the 

outcome equation, x2

• the degree of censoring (i.e. the proportion of the working age population that is not 

employed, in the case of a wage equation), denoting the degree of identification. 

, denoted by θ; and  



  
a) The Model 

Using a similar model as that of Stolzenberg and Relles (1990) we replicated their Monte Carlo 

simulations for a specific range of parameters that correspond to the South African labour force data.  

 

The following equations were used to model the wage process.  

 

Selection equation:  d = αx + θz + e 

Outcome equation: y = βx + u,  if d > δ   

 

where  d is the selection variable, y is the outcome variable, x is a regressor in both 

equations and z is a regressor that is unique to the first equation. e and u are bivariate 

normally distributed errors with correlation coefficient ρ.  

 

The values for the parameter ρ, the parameter θ and the ratio of the population for whom d > δ were 

allowed to vary, permitting us to compare the results obtained under different sets of specifications. 

In our model the correlation between the two error term, denoted by ρ, and the degree of 

identification, denoted by θ, where both allowed to vary between 0, ¼, ½, ¾ and 1. α, β and σe were 

both set to one, since it has been shown that the efficiency and precision of subsample OLS and 

sample selectivity estimators are unaffected by the choice of α and β  and behave similarly when the 

variance of e is either increased or decreased (Nelson, 1984: 190) 

 

We allowed for two different selection rates, namely 33% and 66%. The first value was chosen to 

roughly correspond with the estimated South African employment rate of 40.3% (calculated over the 

whole working age population). The proportion of the sample judged to be employed drops to 

35.4% when we omit those individuals for whom we also have no observable market wage. This 

value is significantly lower than that of most developed countries and consequently also lower than 

the default values used in previous Monte Carlo simulations. With this in mind, an alternative 

censoring value was chosen, one that corresponds to a 66% employment rate, allowing us to test 

whether the severity of the censoring has a significant impact on the results. 

 

For each simulation, we generated a sample of 10 000 observations using the true parameters and an 

error term. These “true” parameters were then approximated using the four different techniques: the 

conventional OLS subsample method, the ML method, the Heckman two-step and the Ichimura-Lee 

semi-parametric method. This process was repeated 1000 times. The average of these beta-

approximations and the average of the mean squared error were then calculated over the 1000 trials.  

 



  
b) Results under normality  

Assuming the two error components, e and u were bivariate normally distributed, the following beta 

estimates and mean squared error estimates (in parenthesis) were obtained: 

 
Table 1: Average beta’s and standard errors obtained from Monte Carlo simulations with normally 
distributed errors and 66% censoring  

    θ = 0   θ = 0.25   θ = 0.5   θ = 0.75   θ = 1 

Subsample OLS Estimate             

ρ =1  1.000 (0.000)  0.854 (0.021)  0.708 (0.086)  0.562 (0.192)  0.415 (0.343) 

ρ =0.75  1.000 (0.000)  0.861 (0.019)  0.723 (0.077)  0.584 (0.173)  0.445 (0.308) 

ρ =0.5  1.000 (0.000)  0.879 (0.015)  0.758 (0.058)  0.638 (0.131)  0.517 (0.233) 

ρ =0.25  1.000 (0.000)  0.901 (0.010)  0.802 (0.039)  0.702 (0.089)  0.603 (0.158) 

ρ =0  1.000 (0.000)  0.921 (0.006)  0.842 (0.025)  0.763 (0.056)  0.684 (0.100) 

Maximum Likelihood Estimate 

ρ =1  1.000 (0.000)  0.997 (0.001)  0.999 (0.001)  0.999 (0.001)  0.998 (0.000) 

ρ =0.75  1.000 (0.000)  0.999 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) 

ρ =0.5  1.000 (0.000)  1.000 (0.000)  0.999 (0.000)  1.001 (0.000)  1.000 (0.000) 

ρ =0.25  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) 

ρ =0  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) 

Two-Step Estimate 

ρ =1  1.000 (0.000)  0.999 (0.002)  1.000 (0.002)  0.998 (0.002)  0.996 (0.003) 

ρ =0.75  1.000 (0.000)  0.999 (0.001)  1.001 (0.001)  1.000 (0.001)  0.999 (0.001) 

ρ =0.5  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.001 (0.000)  1.000 (0.000) 

ρ =0.25  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) 

ρ =0  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) 

Semi-Parametric Estimate 

ρ =1  1.001 (0.000)  0.960 (0.004)  0.922 (0.009)  0.881 (0.017)  0.839 (0.030) 

ρ =0.75  1.001 (0.000)  0.989 (0.001)  0.981 (0.001)  0.969 (0.002)  0.958 (0.003) 

ρ =0.5  1.000 (0.000)  0.996 (0.000)  0.993 (0.000)  0.991 (0.000)  0.987 (0.001) 

ρ =0.25  1.000 (0.000)  0.998 (0.000)  0.997 (0.000)  0.995 (0.000)  0.994 (0.000) 

ρ =0   1.000 (0.000)   0.999 (0.000)   0.998 (0.000)   0.997 (0.000)   0.996 (0.000) 

Overall                

Subsample OLS Estimate            0.7664 (0.0856) 

Maximum Likelihood Estimate           1.026 0.9998 

Two-Step Estimate            0.9997 (0.0007) 

Semi-Parametric Estimate                       0.9775 (0.0028) 

Note: For each of the estimation methods, the degree of correlation between the errors, ρ, decreases as one reads the table from the top downwards and the degrees of 

correlation between the exogenous variables in the two equations, θ, increases from left to right.  

 

Since sample selection bias works through the correlation between the unobservable characteristics, e 

and u, it is unsurprising that subsample OLS estimates grow more biased as the value of θ increases 

and that there exists no sample selection biased when θ = 0. The role of identification is also 

apparent; the subsample OLS estimates become more bias as the correlation between the regressors 

in the selection equation and those in the outcome equation increases. The degree of censoring also 

played an important role. Although we do not include the results here, we found that the OLS 

estimates become less biased as the size of the subsample relative to the full sample increases. Mean 

squared errors dropped by about 50% on average as censoring decreased from 33% to 66%.  

 



  
Although both the ML and two-step models succeed in correcting for the sample selection bias, the 

ML estimates generally appear to be more precise, judging by the lower overall mean squared error 

values of 0.0004 rather than 0.0007. The mean squared error of the ML estimator was lower than that 

of the two-step model, regardless of which set of parameters were used. This difference in precision 

(mean squared error) between the ML and two-step models was greatest where θ was lowest, 

corresponding to the case of weak identification. This serves as further proof of the two-step model’s 

inferiority in dealing with sample selection problems when exclusion restrictions are lacking.  

 

This point is made more vivid below, where we graphed the four competing models under the 

assumption that θ = 1 and ρ = 0. From the graph it clear that although both the two-step and ML 

models are unbiased, the ML is more efficient, since its estimates are more narrowly distributed 

around the true value. 

 
Figure 1: Kernel density curve of beta’s obtained by different models using Monte Carlo simulation 
with normally distributed errors, 66% censoring, θ = 1 and ρ = 0. 

 
The above figure also illustrates that the semi-parametric estimator succeeded in correcting for some 

of the effects of sample selection bias, obtaining an average estimate somewhere between the OLS 

estimates and the true value of 1. The semi-parametric estimates were however far worse than both 

the ML and two-step models, both of which recorded smaller biases and lower mean squared errors.  

 

While both the two-step and ML method appeared to be sufficiently accurate under most 

circumstances, both experienced a substantial increase in their mean squared errors when the degree 

of censoring increased, rendering them less precise. This was not the case for OLS estimators. As 

was predicted in section 2(b), the estimators remained consistent even when the errors were 

distributed non-normally. This means that the consistency of the two-step model was only dependent 

on the distribution of the error term e in the selection equation and not on that of u, since the 

outcome equation made use of the OLS method, which is less sensitive to deviations from normality.  

 

c) Results under t-distribution and under χ2

It is vital to also consider the implications of deviations from the normality assumptions. Zuehlke 

and Zeman (1991) conducted Monte Carlo simulations to test the sensitivity of sample selection 

models to the normality assumption. They compared the results under the conventional bivariate 

-distribtution 
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normality distribution to that of a bivariate t-distribution with five degrees of freedom and a bivariate 

χ2-distribution with five degrees of freedom. Their results were inconclusive, for although the 

Heckman two-step reduced the bias, its parameter estimates had higher standard errors than that of 

the subsample OLS models. 

 

In this study, a similar approach was followed. The Monte Carlo test was conducted under the 

normality assumption as well as for a bivariate t and bivariate χ2 distribution. Results for the normal 

distribution have already been reported above in table 1. The results for simulations generating error 

values with a bivariate t-distribution and bivariate χ2

  

-distribution, both with five degrees of freedom, 

are summarised below in tables 2 and 3. 

 
Table 2: Average beta’s and standard errors obtained from Monte Carlo simulations with t-
distributed errors and 66% censoring  

  θ = 0   θ = 0.25   θ = 0.5   θ = 0.75   θ = 1 

Subsample OLS Estimate             
ρ =1  1.001 (0.001)  0.822 (0.033)  0.643 (0.129)  0.465 (0.288)  0.290 (0.506) 
ρ =0.75  0.999 (0.001)  0.828 (0.031)  0.657 (0.119)  0.487 (0.265)  0.314 (0.472) 
ρ =0.5  1.001 (0.001)  0.848 (0.024)  0.695 (0.094)  0.541 (0.212)  0.386 (0.379) 
ρ =0.25  1.001 (0.001)  0.869 (0.018)  0.741 (0.068)  0.609 (0.154)  0.480 (0.272) 
ρ =0  1.002 (0.001)  0.892 (0.012)  0.786 (0.047)  0.679 (0.104)  0.571 (0.185) 
Maximum Likelihood Estimate 
ρ =1  1.010 (0.078)  1.048 (0.059)  1.057 (0.032)  1.059 (0.023)  1.085 (0.023) 
ρ =0.75  0.995 (0.028)  1.048 (0.021)  1.040 (0.017)  1.047 (0.014)  1.073 (0.017) 
ρ =0.5  0.999 (0.004)  1.015 (0.005)  1.022 (0.006)  1.028 (0.007)  1.043 (0.008) 
ρ =0.25  1.001 (0.002)  1.005 (0.002)  1.012 (0.003)  1.011 (0.003)  1.019 (0.004) 
ρ =0  1.002 (0.001)  1.004 (0.002)  1.005 (0.002)  1.008 (0.002)  1.012 (0.003) 
Two-Step Estimate 
ρ =1  1.017 (0.037)  1.055 (0.040)  1.119 (0.055)  1.187 (0.083)  1.243 (0.120) 
ρ =0.75  0.996 (0.010)  1.022 (0.011)  1.034 (0.014)  1.060 (0.018)  1.071 (0.024) 
ρ =0.5  1.000 (0.004)  1.007 (0.004)  1.015 (0.005)  1.023 (0.006)  1.028 (0.007) 
ρ =0.25  1.001 (0.002)  1.003 (0.002)  1.012 (0.003)  1.012 (0.003)  1.016 (0.004) 
ρ =0  1.002 (0.001)  1.003 (0.001)  1.007 (0.002)  1.012 (0.002)  1.014 (0.003) 
Semi-Parametric Estimate 
ρ =1  1.018 (0.042)  0.898 (0.056)  0.813 (0.083)  0.730 (0.140)  0.649 (0.203) 
ρ =0.75  0.996 (0.011)  0.985 (0.011)  0.962 (0.014)  0.944 (0.017)  0.923 (0.024) 
ρ =0.5  0.999 (0.004)  0.994 (0.004)  0.990 (0.005)  0.985 (0.005)  0.978 (0.007) 
ρ =0.25  1.001 (0.002)  0.997 (0.002)  0.999 (0.002)  0.993 (0.003)  0.992 (0.003) 
ρ =0   1.002 (0.001)   0.999 (0.001)   1.000 (0.002)   1.000 (0.002)   0.998 (0.003) 
Overall                

Subsample OLS Estimate            0.704 (0.137) 

Maximum Likelihood Estimate           1.026 (0.015) 

Two-Step Estimate            1.038 (0.018) 

Semi-Parametric Estimate                       0.954 (0.026) 

Note: For each of the estimation methods, the degree of correlation between the errors, ρ, decreases as one reads the table from the top downwards and the degrees of 

correlation between the exogenous variables in the two equations, θ, increases from left to right.  

 
 

The t-distribution was introduced to the Monte Carlo simulations in an attempt to establish how 

sensitive the parametric sample selection models are to deviation from normality. Both the ML and 

two-step models’ estimates performed worse. On average, the ML method performed better when 



  
identification was low, while the two-step and semi-parametric methods were superior when the 

identification was higher. 

 

The semi-parametric model was less sensitive to the slight deviations from normality. Surprisingly, its 

estimates actually fared better under the t-distribution than it did under the normality-distribution.  

The semi-parametric method however appeared to be even more dependent on the existence of 

proper exclusion restrictions than both the ML and two-step methods. While it outperformed both 

when the identification was high, it came apart when there were no exclusion restrictions (when ρ = 

0).  

 
The χ2-distribution was also simulated to investigate how the rival sample selection approaches fare 

when skewness is also introduced into the model. The Monte Carlo results are presented in the table 

3, below. 

 
Table 3: Average beta’s and standard errors obtained from Monte Carlo simulations with X2

  

-
distributed errors and 66% censoring  

  θ = 0   θ = 0.25   θ = 0.5   θ = 0.75   θ = 1 

Subsample OLS Estimate             
ρ =1  1.000 (0.002)  0.826 (0.033)  0.647 (0.127)  0.468 (0.286)  0.290 (0.508) 
ρ =0.75  1.000 (0.002)  0.825 (0.033)  0.650 (0.125)  0.474 (0.280)  0.299 (0.495) 
ρ =0.5  1.000 (0.002)  0.828 (0.032)  0.655 (0.122)  0.486 (0.268)  0.315 (0.473) 
ρ =0.25  0.999 (0.002)  0.838 (0.029)  0.668 (0.113)  0.504 (0.250)  0.337 (0.444) 
ρ =0  0.998 (0.002)  0.842 (0.027)  0.686 (0.102)  0.528 (0.226)  0.375 (0.395) 
Maximum Likelihood Estimate            
ρ =1  1.481 (0.534)  1.522 (0.545)  1.505 (0.487)  1.476 (0.447)  1.461 (0.439) 
ρ =0.75  1.495 (0.552)  1.706 (0.661)  1.719 (0.560)  1.666 (0.459)  1.632 (0.41) 
ρ =0.5  1.465 (0.507)  1.808 (0.702)  1.725 (0.531)  1.651 (0.429)  1.613 (0.382) 
ρ =0.25  1.298 (0.316)  1.810 (0.669)  1.682 (0.469)  1.607 (0.373)  1.571 (0.332) 
ρ =0  1.143 (0.147)  1.756 (0.578)  1.629 (0.400)  1.552 (0.310)  1.523 (0.279) 
Two-Step Estimate              
ρ =1  0.972 (0.088)  0.961 (0.100)  0.891 (0.117)  0.835 (0.169)  0.758 (0.229) 
ρ =0.75  1.000 (0.027)  0.992 (0.029)  0.978 (0.036)  0.952 (0.043)  0.955 (0.061) 
ρ =0.5  1.004 (0.011)  0.995 (0.011)  0.988 (0.013)  0.987 (0.017)  0.985 (0.019) 
ρ =0.25  0.997 (0.006)  1.003 (0.006)  0.992 (0.008)  0.993 (0.009)  0.988 (0.012) 
ρ =0  0.996 (0.004)  0.999 (0.004)  0.996 (0.005)  0.994 (0.006)  0.995 (0.009) 
Semi-Parametric Estimate             
ρ =1  0.975 (0.061)  0.940 (0.070)  0.852 (0.096)  0.777 (0.148)  0.684 (0.219) 
ρ =0.75  1.001 (0.024)  0.978 (0.026)  0.952 (0.033)  0.913 (0.043)  0.901 (0.060) 
ρ =0.5  1.004 (0.010)  0.989 (0.010)  0.976 (0.013)  0.969 (0.017)  0.962 (0.019) 
ρ =0.25  0.997 (0.006)  1.000 (0.006)  0.984 (0.008)  0.982 (0.009)  0.973 (0.012) 
ρ =0   0.996 (0.004)   0.996 (0.004)   0.990 (0.005)   0.985 (0.007)   0.984 (0.009) 
Overall                

Subsample OLS Estimate            0.662 (0.175) 

Maximum Likelihood Estimate           1.580 (0.461) 

Two-Step Estimate            0.968 (0.042) 

Semi-Parametric Estimate                       0.950 (0.037) 

Note: For each of the estimation methods, the degree of correlation between the errors, ρ, decreases as one reads the table from the top downwards and the degrees of 

correlation between the exogenous variables in the two equations, θ, increases from left to right.  

 
The ML-method, which had performed well up to this point, fared considerably worse when the 

error term was not symmetrically distributed along the y-axis. Notably, it now became the worst 

estimator regardless of the values that ρ and θ took on. This was in line with Olsen’s (1982: 236) 



  
finding that “maximum likelihood methods have the little appreciated attribute that they are 

extremely sensitive to the assumption made about the population distribution of the regression 

residuals”. 

 

There was no real difference in the performance of the two-step and semi-parametric methods. 

Taken over all the values, the two-step method provided a better β estimate (0.968) than the semi-

parametric method (0.950). The mean squared error value for the later method was, however, lower 

than for the two-step method.  

 

Figure 2: Kernel density curve of beta’s obtained by different models using Monte Carlo simulation 
with X2

 
4. Applying Methods to SA Dataset 

a) Finding Exclusion Restrictions 

To adequately and accurately correct for the impact of sample selection, some measure is required to 

adjust for the colinearity between the regressors in the outcome equation and the correction term, 

called g(x

-distributed errors, 66% censoring, θ = 0.5 and ρ = 0.5. 

1) in section 3.e. The most effective way of doing this is to add at least one variable to the 

selection equation that is not contained in the outcome equation. This variable needs to influence the 

individual’s likelihood of being employed, but should have little or no impact on his or her wage. 

According to Puhani (2000: 58), household variables are most appropriate for use as exclusion 

restrictions, since they are most likely to fit this criterion - affecting participation decisions (and 

likelihood of being employed) without also affecting the wage an individual would attain. This is not 

the case for most other variables, especially those that denote personal characteristics, since these are 

usually also correlated with the wage function. 

 

As statisticians often warn, it is vital to note that the partial correlation alone of a variable with the 

employment variable is not enough, since it gives no information about the direction of the causality, 

which could be in either or even both directions. It is for instance, quite likely that an individual’s 

employment status could affect her or his decision to marry, but it is also conceivable that an 

individual’s marital status can affect his or her decision to look for work. If this is the case, it would 

be incorrect to include the marital status dummy in the selection equation, because of the variable’s 

endogeneity. 
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Using the 2005 September Labour Force Survey of South African dataset, the preliminary tests were 

performed on a host of household variables in an effort to find a variable that was significant in the 

selection equation but insignificant in the wage function. The tests were administrated independently, 

by adding each household variable to the selection equation to test its significance on the 

employment decision, after which it was added to the outcome equation to determine whether it has 

an effect on the wage determination process. The test showed that most of the household variables 

had a significant effect on the likelihood of being employed, at a 5% level of significance. In the case 

of the wage function, however, only three of the household variables were found to be insignificant.  

 

These three variables, which were the number of children, the number of employed persons as well 

as the total number of people in each household, were tested further to ensure that preliminary 

results did not themselves suffer from the lack of a proper exclusion restriction. This was done by 

adding all three of these variables to the selection equation and adding each variable in turn to the 

outcome equation. This method allows the two variables that are not included in the outcome 

equation to act as temporary exclusion restrictions, while testing the validity of the third exclusion 

restriction. This procedure was followed for all three sample selection models. The t-statistics 

attained under these test, as well as those attained under the conventional OLS method, are tabulated 

below. 

 

Table 4:  t-statistics of household variables 
  OLS 2-step ML SP 
# employed individuals in household* 1.87 1.97 1.57 0.06 
# children in household -1.97 0.27 -0.24 -0.26 
household size -2.59 4.30 0.10 1.07 

Source: September 2005 LFS 
 
Ignoring the OLS results, one finds that all for all four these samples all the variables in the outcome 

equation were found to be insignificant at a 5% level, apart from the household size variable which 

was found to be significant under the two-step model. These three variables thus appear to be 

adequate for use as exclusion restrictions. They were shown to be partially correlated with the 

selection equation, without being partially correlated with the outcome equation.. Despite this 

empirical validation we decided to drop the variable containing the amount of employed individuals 

(apart from the individual itself) in the household as an exclusion restriction on theoretical grounds. 

We feared that these variables may bias the results if it captures the common immeasurable attributes 

that employed individuals within a households share rather than the effect of having an additional 

breadwinner.  

 



  
b) Testing Normality  

In section 4, we established that both the two-step and ML methods yield biased estimates of the β’s 

if the errors are not normally distributed. Several normality tests exist, but most of these test the 

normality assumption against some alternative distributional assumption. Chesher & Irish (1987), 

however, developed a normality test that can be performed without having to compare it to any 

other specific distribution. This is done by comparing the residual moments with what they would 

have been if the errors were normally distributed.  

 

Using the standardised residuals of the probit function, the first four moments, which denote the 

mean, variance, skewness and kurtosis, were calculated for all n observations using the selection 

variable d, the k explanatory variables, labeled x, and the estimated parameter of α. Chesher & Irish 

(1987: 41) proposed that the four moments be derived using the following formulas: 

    ê(1)  = -(1-d)λ(αx)+ dλ(-ax) 

    ê(2)  = - αxê(1) 

        ê(3)  = (2+(αx))ê(1) 

       ê(4)  = -(3αx+(αx)3)ê

φ

(1) 

 

where  d = 1 if the individual is employed and d = 0 if the individual is not employed, 

αx is the linear prediction of the fitted model, and 

  λ(.) is the standard normal hazard function, (z)/(1-Φ (z)) 

 

Once the moments are calculated, we multiply the first moment with each of the regressors 

contained in the selection equation to derive a matrix ê(1)x1. One can then proceed in two manners: 

either constructing a larger matrix L, consisting of ê(1)x1, ê(3) and ê(4) and obtaining the Lagrange 

Multiplier (LM) statistic by solving t’L[L’L]-1L’t, where t is a vector of ones, or equivalently, regress a 

vector of ones on the k+2 columns contained in the matrix L. In the latter case, the LM statistic 

would be equal to the explained sum of squares. In both cases the LM-statistic follows a chi-squared 

distribution, which is used to calculate the critical value for the test (whether or not the null 

hypothesis of normality can be rejected). 
 



  

 
Table 5: Normality Testing: Entire Working Age Population under different 
exclusion restrictions 
Control 
Variables none   Children   

Children & 
HHSize 

ê 0.295 1 (4.93)  0.261 (5.08)  0.153 (3.36) 
ê1 0.014 •Experience (2.79)  0.029 (6.90)  0.024 (7.37) 
ê1 0.000 •Experience2 (-1.85)  0.000 (-5.75)  0.000 (-6.37) 
ê1 0.016 •Education (4.82)  0.024 (8.86)  0.019 (7.56) 
ê1 -0.045 •Female (-2.06)  -0.152 (-7.35)  -0.122 (-6.44) 
ê1 0.154 •Rural (9.97)  0.119 (8.70)  0.119 (8.84) 
ê1 0.268 •White (12.94)  0.248 (11.76)  0.239 (11.32) 
ê1 0.000 •Coloured (0.00)  0.040 (1.89)  0.020 (0.96) 
ê1 0.219 •Indian (6.00)  0.176 (4.79)  0.185 (5.08) 
ê1 -0.047 •Province2 (-3.87)  -0.058 (-4.93)  -0.050 (-4.27) 
ê1 -0.075 •Province3 (-9.18)  -0.078 (-9.46)  -0.072 (-8.71) 
ê1 -0.068 •Province4 (-10.21)  -0.065 (-9.63)  -0.066 (-9.76) 
ê1 -0.042 •Province5 (-9.31)  -0.037 (-8.16)  -0.035 (-7.66) 
ê1 -0.050 •Province6 (-11.2)  -0.049 (-10.95)  -0.046 (-10.24) 
ê1 -0.018 •Province7 (-5.05)  -0.015 (-4.36)  -0.015 (-4.18) 
ê1 -0.023 •Province8 (-6.55)  -0.019 (-5.60)  -0.019 (-5.44) 
ê1 -0.030 •Province9 (-9.66)  -0.031 (-9.94)  -0.029 (-9.29) 
ê1  •m1   -0.015 (-1.43)  0.000 (0.02) 
ê1  •m2   -0.021 (-2.09)  -0.011 (-1.19) 
ê1  •m3   -0.021 (-1.87)  -0.009 (-0.90) 
ê1  •f1   -0.008 (-0.81)  0.000 (-0.05) 
ê1  •f2   -0.005 (-0.58)  -0.002 (-0.22) 
ê1  •f3   -0.001 (-0.12)  0.000 (-0.04) 
ê1  •hhsize      -0.016 (-2.84) 
ê -0.192 3  (-7.71)  -0.264 (-11.82)  -0.147 (-7.4) 
ê 0.052 4 (3.95)  0.095 (8.84)  0.061 (6.87) 
         
MSE 1453.19  1459.40  1376.94 
df 19  25  26 
R 0.021 2  0.021  0.020 
observations 68735   68735   68735 

Note: t-statistics in parenthesis  

 

The LM statistics obtained from Table 5 ranged between 1377 and 1459 (depending on the exclusion 

restrictions used). The assumption of normality was rejected in all three cases, since all three the 

statistics were significantly higher than their corresponding critical values, which varied between 35 

and 48.  
 
 Table 6: Normality Testing: Subsamples of Working Age Population 
variable Nochildren   children   children&hhsize 
White Males 642.8 (15)  661.1 (18)  664.8 (19) 
White Females 238.8 (15)  229.9 (18)  224.6 (19) 
Black Males 444.5 (15)  404.7 (18)  350.9 (19) 
Black Females 421.1 (15)  342.4 (18)  337.6 (19) 
Coloured Males 66.6 (15)  66.6 (18)  60.0 (19) 
Coloured Females 60.9 (15)  67.0 (18)  68.0 (19) 
Indian Males 98.8 (14)  103.7 (17)  108.7 (18) 
Indian Females 21.9 (12)   30.6 (15)   36.4 (16) 

Note: The degrees of freedom for the last two groups are lower than for the rest. This is due to the shortage of Indian Males in the Free State and 
Indian Females in the Eastern Cape, North West Province and Free State. 
 
These tests were repeated for certain subsections of the population. Table 6 reports these findings 

and shows that non-normality is consistently worse among men than among women. The LM-



  
statistic also differs significantly between races; the value of whites being the highest, followed by 

blacks, coloureds and then Indians. For all six these groups their LM statistics exceeded their critical 

values at a 5% level of significance. The last group, which consisted of Indian females, came closest 

to being normally distributed. It had a LM-statistic of 21.9 and a critical value of 21.03 when no 

exclusion restrictions were used. 

 

c) Comparing Results 

All four the models (the subsample OLS model, the Heckman ML model, the Heckman two-step 

model and the semi-parametric model) were applied to a September 2005 Labour Force Survey 

dataset. The variables number of children and household size were used as exclusion restrictions. The 

results are tabulated below.  

 
Table 7: Model Testing, Children & Household Size as exclusion restrictions 
 wage equation employment equation 
Variable OLS  ML 2 Step SP   ML 2 Step SP   
Experience 0.026 0.021 0.021 0.036  0.111 0.111 0.111  
 (14.55) (5.26) (4.63) (20.72)  (67.61) (57.36) (28.86)  
Experience2 -0.107 -0.035 -0.021 -0.314  -1.773 -1.773 -1.701  
 (-3.18) (-0.49) (-0.28) (-9.55)  (-52.37) (-44.46) (-28)  
Education 0.133 0.131 0.131 0.126  0.062 0.062 0.068  
 (64.76) (38.11) (37.27) (63.43)  (28.17) (22.61) (20.03)  
Female -0.273 -0.256 -0.253 -0.297  -0.403 -0.405 -0.435  
 (-23.35) (-12.33) (-11.66) (-25.58)  (-21.19) (-17.18) (-16.81)  
Rural -0.222 -0.215 -0.213 -0.198  -0.144 -0.144 -0.139  
 (-14.13) (-10.18) (-10) (-14.22)  (-9.1) (-7.59) (-7.02)  
White 1.001 1.003 1.003 0.999  -0.098 -0.098 0.051  
 (54.65) (29.71) (29.73) (48.31)  (-3.48) (-2.9) (0.91)  
Coloured 0.269 0.264 0.263 0.234  0.247 0.247 0.284  
 (12.1) (7.7) (7.67) (11.56)  (9.59) (7.29) (7.4)  
Indian 0.763 0.766 0.767 0.727  -0.056 -0.057 -0.011  
 (22.61) (15.54) (15.47) (19.24)  (-1.24) (-1.03) (-0.17)  
Union 0.656 0.656 0.656 0.731      
 (48.06) (36) (35.97) (52.62)      
m1      0.073 0.072 0.051  
      (6.08) (4.88) (3.26)  
m2      -0.091 -0.091 -0.100  
      (-8.41) (-7.11) (-7.81)  
m3      -0.135 -0.135 -0.133  
      (-11.68) (-9.86) (-9.79)  
f1      -0.062 -0.061 -0.065  
      (-4.81) (-4.16) (-3.56)  
f2      -0.057 -0.057 -0.053  
      (-5.4) (-4.62) (-3.91)  
f3      -0.052 -0.052 -0.048  
      (-4.78) (-4.01) (-3.39)  
Household Size     -0.144 -0.144 -0.136  
      (-27.41) (-23.89) (-18.66)  
λ   -0.068 -0.059      
   (-1.53) (-1.18)      
ρ  -0.066        
  (-1.70)        
constant 0.184 0.293 0.313 0.279  -1.261 -1.263 1.263  
 (5.08) (3.35) (3.23) (2.97)  (-30.56) (-24.69) (fixed)  
(pseudo) R 0.478 2  0.478 0.471   0.198   
observations 22960 22960 22960 22960   68735 68735 68735   

 



  
 

The ML estimator and two-step estimators delivered similar estimates of α in the selection equation. 

This is somewhat surprising since these models used different techniques to derive these estimates. 

The two-step estimator used a standard probit function that ignores the outcome equation, while the 

ML derives its estimate of α by solving the selection and outcome equation simultaneously. The 

similarity of the α estimates provides evidence that the effect of the outcome equation on the 

selection equation within the ML model is minimal. 

 

The non-parametric estimates of α differs from those attained using the parametric ML and two-step 

methods. Judging by the coefficients attained, it appears as though the effect of education, 

experience, gender, race and type of area one resides in all play a larger role in the semi-parametric 

employment equation than in its parametric counterpart. It is not just the magnitudes of the 

coefficients that differ between parametric and semi-parametric method, the effect of being white 

and Indian rather than being black turned from negative to positive.  

 

The semi-parametric β estimates obtained in Table 7 fails to agree with those obtained by the 

parametric sample selection models and the conventional subsample OLS procedure. The returns to 

education appear to be lower. The impact on experience is deceptive, although both coefficients are 

larger; the overall effect of experience (within the feasible range of 0 to 50 years) is much smaller 

than it was for the three parametric models. The effect of gender is greater, while the effect of race 

and the type area one resides in is smaller. The effect of union membership is also larger under the 

non-parametric assumption.  

 

There are two ways to test whether the problem of sample selection merits intervention. If the 

normality assumption is valid, either the ML or 2-step models allow testing of the validity of ρ = 0 

(i.e. no sample selection bias). If the normality assumption, however, fails, as appears to be the case 

with the South Africa data, then the best we can do is to compare the results obtained from the OLS 

and sample selection techniques to see if they differ in an economically significant manner. In this 

study they do and as a result, intervention is required.  

 

5. Conclusion 

This paper tried to establish whether sample selection is indeed a problem in South African labour 

market analysis and if it is, how it can be addressed optimally. Our findings suggest that the questions 

should be addressed in reverse order, since one’s choice of selection correction method ultimately 

determines whether or not the problem is significant.  

 

The results obtained from sample selection methods did not differ from those that did not use 

sample selection methods under parametric testing. When differences did occur it was due to the lack 



  
of proper exclusion restrictions rather than the effect of selection bias. This provides further 

evidence that the sample selection models can be misleading, when they are not handled with the 

necessary caution. This is not the case for semi-parametric methods. The semi-parametric estimates 

differed greatly from those obtained from conventional OLS analysis. 

 

Despite the advantage that semi-parametric estimates offer over there parametric counterparts, they 

are rarely used in applied work. According to Vella (1998, 144), the wide-scale implementation of 

these methods has been hindered by the degree of technicality associated with these techniques and 

the perception that parametric models perform adequately as long as the conditional mean is 

correctly specified. This is regrettable since labour market analysis can benefit a great deal from the 

use of these methods. 
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