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ABSTRACT 

 
 

 

Among the various methods used to identify the business cycle from aggregate data, the 

Hodrick-Prescott filter has become an industry standard – it ‘identifies’ the business cycle by 

removing low-frequency information, thereby smoothing the data.  Since the filter’s 

inception in 1980, the value of the smoothing constant for quarterly data has been set at a 

‘default’ of 1600, following the suggestion of Hodrick and Prescott (1980).  This paper 

argues that this ‘default value’ is inappropriate due to its ad hoc nature and problematic 

underlying assumptions.  Instead this paper uses the method of optimal filtering, developed 

by Pedersen (1998, 2001, and 2002), to determine the optimal value of the smoothing 

constant for South Africa.  The optimal smoothing constant is that value which least distorts 

the frequency information of the time series.  The result depends on both the censoring rule 

for the duration of the business cycles and the structure of the economy.  The paper raises 

a number of important issues concerning the practical use of the HP filter, and provides an 

easily replicable method in the form of MATLAB code. 
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Optimal HP filtering for South Africa 

LEON DU TOIT

 

1.  INTRODUCTION 

 

This paper uses the method of optimal filtering to determine a new set of values for the 

smoothing constant in the Hodrick-Prescott filter.  The proposed values for quarterly data are 

1338 or 352, while the choice between which one to use is driven primarily by the duration of 

business cycles.  This also accounts for the surprisingly large difference in magnitude between 

the proposed values.  This method has the merit of being transparent and replicable, and since the 

HP filter is widely used in business cycle and macroeconometric modelling in general, it 

contributes to a more careful study of business cycles.   

 

Although there is no definitive way of identifying the business cycle, the various methods can be 

grouped into three broad approaches.  Firstly, the classical cycles methodology identifies the 

relative expansion and contraction of aggregate economic activity and is mainly concerned with 

determining turning points, developed in extraordinary detail by Burns and Mitchell (1946).  

Secondly, the method of deviation cycles, which includes the class of statistical filters such as 

the HP filter (Hodrick and Prescott, 1997), generates a new stochastic variable, which is the 

stationary cyclical component in the original trended series.  Lastly, model-based approaches, for 

example, SVAR analysis (Du Plessis, Smit and Sturzenegger, 2007) or Markov-switching 

models (Moolman, 2004), are used to identify the business cycle based on theoretical priors.   

 

The HP filter is widely used in descriptive research and in econometric modelling, and since its 

inception in 1980, most applications have been guided, implicitly or explicitly, by Hodrick and 

Prescott’s original calibration.  This paper argues that their method yields suboptimal HP 

filtering for two reasons: firstly, their specific method for selecting the value of the smoothing 

parameter is ad hoc and not transparent or replicable, and secondly, the probability model 

underlying their ad hoc choice is problematic.  Section 2 will develop these claims and guide the 

argument into its main thesis: that the theory of optimal filtering stated and implemented by 

Pedersen (2002) is the most appropriate alternative to the method used by Hodrick and Prescott 



(1997).  The paper is organised to explain exactly how the theory of optimal filtering is used to 

determine the optimal value of the smoothing parameter of the HP filter for South Africa.  

Section 3 contextualises the use of the HP filter and provides the reader with the necessary 

concepts to understand how the method is developed and applied.  It shows the relationship 

between time- and frequency-domain representations of time series, and the general 

characteristics of filters.  Section 3 discusses the different approaches to selecting the smoothing 

parameter and motivates the decision to use the theory of optimal filtering.   

 

Section 4 shows that the optimal value of the smoothing constant is that value which minimises 

the distortionary effect of the HP filter.  The optimal HP filter depends on both the specified 

duration of the business cycle and the cyclical information of the input series – the structure of 

the economy.  The results suggest optimal values of lambda well below the ‘default’ of 1600, 

and motivate the use of a censoring rule which specifies business cycles as frequencies that occur 

at six years or less, following the results of Pedersen (1998), Rand and Tarp (2001), Du Plessis 

(2006) and the South African Reserve Bank (2007).  This optimal value is 352.  Section 5 

summarises the main results on optimal HP filtering, and suggestions to its implementation, and 

Section 6 applies the results to the South African business cycle.     

 

 

2.  BUSINESS CYCLES AND FILTERING IN FREQUENCY DOMAIN 

 

2.1 THE HP FILTER IN THE BUSINESS CYCLE LITERATURE 

Although the two approaches of classical and deviation cycles have different specific 

conceptualisations of the business cycle, they agree on a set of general characteristics (Du 

Plessis, 2006: 1 – 8).  The business cycle is a pathology with four main aspects, all mentioned by 

Burns and Mitchell (1946: 3); it is a succession of relatively prosperous and depressed periods 

with two phases (peak-to-peak or trough-to-trough); it is recurrent but not periodic; it varies in 

duration from 1 to 12 years; and the cycle refers to total economic activity (Agenor, 2004).     

 

The classical cycles methodology originally developed by Burns and Mitchell (1946) was later to 

be automated in a very simplified form by Bry and Boschan (1971), and was recently used by 



Pedersen (1998) and Harding and Pagan (2001).  The so-called BBQ algorithm preserves the 

classical cycles methodology’s focus on duration and turning points.  The essence of this method 

is to identify turning points and separate periods of relative expansion and contraction in 

aggregate economic activity.  The analysis crucially depends on the implementation of censoring 

rules (usually about the duration of cycles), which are applied to yield a consistent set of turning 

points. 

 

In contrast to classical cycles, the currently dominant approach is the study of deviation cycles 

(Du Plessis, 2006: 4); this approach conceptualises the business cycle as “serially correlated 

deviations of output from its trend”.  By applying a statistical filter (for example, Band-Pass, 

Beveridge-Nelson or HP filter) to the data, a new stochastic variable is created, identified as the 

cyclical component of GDP.  These methods may differ in their conceptualisation of the business 

cycle, but an important conclusion drawn in this paper is that their results depend on a censoring 

rule that captures the researcher’s view of the duration of cycles.   

 

Secondly, the HP filter should be seen in the light of recent applications in business cycle studies 

and in econometric modelling.  In recent South African academic literature it is used in well over 

30 published journal articles, confirming the popularity of the method.  Examples in international 

literature are Du Rand (2006), Rand and Tarp (2001), Razzak & Dennis (1999), and Agenor, 

McDermott and Prasad (1999), while some recent examples in the South African literature are 

Liu and Gupta (2007), Burger and Marinkov (2006), and Fedderke and Schaling (2005).  But 

there is little discussion of the issues surrounding its application.  This paper will contribute to 

existing research practices by providing a systematic analysis of optimal HP filtering for South 

Africa, following the method developed by Pedersen (1998, 2001, and 2002).   

 

2.2 SPECTRAL ANALYSIS AND THE EFFECTS OF FILTERING 

A simple example will clarify the relation between time-domain and frequency-domain 

representations of time series.  We know that the business cycle is a phenomenon which occurs 

alongside the long-term growth of GDP, and we wish to isolate the medium- and short-term 

fluctuations in the observed series of total economic activity, to identify it.  But we cannot 



observe the business cycle directly, and must use an analytical framework to identify the cycle 

from the aggregate data. 

 

Now suppose one is interested in listening to the sopranos in a choir, but can only observe the 

whole choir, with all of the differently pitched voices singing simultaneously.  In time domain, 

one would observe the music as sang by the choir.  In frequency domain, one would decompose 

the music (the unfiltered time series) into voices which correspond to different frequencies and 

rank them on a scale from low to high.  Combining the information about the different 

frequencies into a new measure will present all the frequency information of the choir, just as a 

frequency domain representation presents the cyclical information of time series.   

 

Once we obtain these different frequencies, a filter can be applied to separate the higher from the 

lower, thereby enabling us to listen more clearly to the sopranos.  This is exactly the process 

employed when applying a filter to a time series in frequency domain, and optimal filtering 

theory just aims to minimise the noise captured when filtering all of the frequency information.  

This section develops these concepts formally. 

 

2.2.1 THE SPECTRUM OF TIME SERIES 

The aim of this section is to derive the theoretical spectrum and the spectral density function for 

a stochastic process, since it represents the information about the cyclical pattern of the series.  

We are interested in thinking about time series in this way, since the deviations cycles method 

conceptualises the business cycle as serially correlated deviations of output from its trend.   

 

A stochastic process  with realisations {  and moments, 

 

         (1) 

 

      (2) 

 

is covariance (weakly) stationary if  and are independent .  The dynamic 

behaviour or cyclical pattern of an economic time series is summarised by the autocovariance – 



or autocorrelation function, which contains all the information about the time dependence of 

individual observations in the series (Pedersen, 2002: 14).  A generating function is a way of 

recording the information of some sequence.  If  is the sequence of autocovariances of 

, and  then the autocovariance generating function is 

 

 ,       (3)  

 

where the argument z for the autocovariance generating function is any value that lies on the 

complex unit circle.  Now (3) is the Fourier transform of the covariances (the cyclical behaviour) 

of the stochastic process.  From (3) we get the spectrum (5) of , using De Moivre’s Theorem 

(4), 

 

  ,      (4) 

  

 ,      (5) 

 

where , ω is the frequency (or radian angle of z with the real axis), and where dividing 

(5) by 2π normalises it to sum to 1.  So (5) explicitly represents the cyclical information of the 

process .  Importantly, the spectrum contains all of the information about the cyclical 

behaviour of the time series.  Spectral representation makes it easier to grasp how the series is 

composed of different fluctuations.  The spectrum has some important properties.  

Since , 

 

       (6) 

 

,      (7) 

 

using Euler’s formula, , the spectrum, which is always real-valued, is a sum of 

infinite cosines, and all the relevant information is concentrated in the interval [0, π].   



 

Sometimes, however, the autocovariance-generating function is replaced by the autocorrelation-

generating function.  This is equivalent to dividing the spectrum (5) by so that we get the 

spectral density function of the time series:  

 

        (8) 

 

where   The spectral density is the function that will be used to capture the information 

about the cyclical behaviour of real GDP when developing an optimal HP filter for South Africa.  

Spectral representation is, therefore, nothing more than a useful way of representing time-series 

data that makes the cyclical composition of the series explicit (the different voices in the choir). 

Figure 1 below shows the spectrum of the log of real GDP for South Africa (quarterly, 

seasonally adjusted, 1960q1 to 2007q2), estimated using the Yule-Walker autoregressive 

technique (Berk, 1974).  

  

Figure 1: Spectrum of log real GDP 
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The spectral density exhibits the typical shape for macroeconomic data noted by Granger (1966), 

with most of the information being bunched in the lower frequencies, referring to the long-term 

fluctuations in the series.  As is seen on the x-axis, the spectral density lies within [0, π].  The 



next section develops the ideas of ideal and optimal filtering, and presents the HP filter, its 

characteristics, and distortionary effects in frequency domain. 

 

2.2.2 BENCHMARK FILTERING: LINEAR TIME-INVARIANT FILTERS 

Given a process , a linear time-invariant filter (that is, a covariance-stationary) is an operator 

from the space of sequences into itself the generates a new process  of the form  

 

          (9) 

where, 

        (10) 

 

where  are Fourier coefficients and  is the lag operator, and the operation of the filter on the 

input series is summarised by the frequency-response function,  (Fernandez-Villaverde, 

2007: 19 – 22).   

 

Then the spectrum of the filtered series  is given by 

 

        (11) 

  

where  is the Fourier transform of the coefficients of the lag operator or the frequency 

response function.  To gauge the precise nature of the effects of filtering, we look at the polar 

decomposition of the frequency response function, 

 

  ,        (12) 

 

where  is the gain (the relative importance of various cyclical components), and 

 is the phase (the displacement of frequencies).  The operation of a linear filter on the 

input process is completely described by the gain and phase of a filter.  But when we look at how 

the spectrum is changed in (11), we see that the operation of the filter is captured by the power 

transfer function, defined as 



 

 .        (13) 

 

The power transfer function indicates how much the spectrum of the series is changed at each 

particular frequency when filtered.  This summarises the effect of the filter on the input series.  

Now, by adding ideal and optimal filters, and the distortionary effects of filters to the analysis in 

the next section, the spectral density and the power transfer functions will completely describe 

the method determining the optimal λ. 

 

 

 

2.2.3 IDEAL AND OPTIMAL FILTERS 

An ideal filter, such as a linear time-invariant filter described in the previous section, is an 

operator , such that the new process Y has a positive spectrum only in some specified part 

of the domain.   

 

The power transfer function of an ideal high-pass filter (used because the HP filter is a high-pass 

filter) is such that 

 

       (14) 

 

where  is specified to match the maximum average duration of the business cycle.  

Panel 1 (Pedersen, 2002: 83) shows the power transfer function of an ideal filter (A) and the 

filtered spectrum after such an ideal filter has been applied to the data (B). 

 

          Panel 1: Ideal filters and the power transfer function  

   A      B  



           

   

The distinction between ideal and optimal filters is that an optimal filter is an approximation of 

an ideal filter.  This is necessary because with finite data it is not possible to build an ideal filter.  

The HP filter is, therefore, an example of such a finite sample approximation. The power transfer 

function of the HP filter (Pedersen, 2002) is  

 

  .       (15)  

 

Panel 2 (Pedersen, 2002: 85) shows the different shapes of the power transfer function of an 

ideal high-pass filter, , and the HP filter, .   

 

 Panel 2: Ideal and optimal power transfer functions 

  A      B     

 

 

As the smoothing constant increases, so the power transfer function moves left, cutting off less 

of the low frequency information.  Correspondingly, as lambda increases, so the difference 

between the trend and the cycle becomes smaller – by including more low-frequency information 

as lambda increases, so more of the trend information is included in the cycle itself.  Apart from 



the role of lambda, the power transfer function of the HP filter highlights important features of 

the HP filter itself (Pedersen, 2001: 1088).  The cyclical filter has zero gain at zero frequency, 

and near unit gain at ω = π, since   It is a symmetric filter which induces no phase 

shift, and lastly, there is no cycle in the power transfer function itself.  This makes the HP filter a 

close approximation to the ideal high-pass filter.  Baxter and King (1999) highlight important 

finite sample consequences related to the power transfer function, which will be discussed in 

section 5.  

 

By analysing the HP filter in frequency domain, we have derived the building blocks for 

measuring the distortionary effect of the HP filter, whereby the optimal value of the smoothing 

parameter is determined.  These building blocks are the spectral density of the log of GDP, and 

the power transfer function of the ideal and the optimal HP filters.   

 

3. THE HP FILTER 

 

3.1 HP FILTER DESIGN AND ISSUES 

Hodrick and Prescott (1997: 2) propose the use of an “easily replicable technique that 

incorporates our prior knowledge about the economy” as an input to understanding the “features 

of the economy that an equilibrium theory should incorporate.”  The maintained hypothesis for 

their study is “that the growth component of aggregate economic time series varies smoothly 

over time”.  The study also explicitly states that “no one approach dominates all the others and 

that it is best to examine the data from a number of different perspectives”.  So, given the 

maintained hypothesis, the conceptual framework is that a given, seasonally adjusted, time series 

yt is the sum of a growth component gt and a cyclical component ct,  

   

     for t = 1,…,T.    (16) 

 

Since ct  are deviations from gt, the problem is summarised in the following formula for 

determining growth components: 

 

. (17) 



 

The unconstrained minimisation problem presented in (17), given the structure of the time series 

in (16), yields a stationary series that is identified as the cyclical component of GDP, where 

 = .  Here λ is the smoothing parameter which penalises variability in the growth 

component of the series.  If λ = 0, then = , and the solution is trivial – there is no cycle, only 

trend growth.  And if λ = ∞, then there is a linear trend.  The latter possibility is ruled out on the 

basis that the growth rate of output is not constant over the sample period, while the first case 

yields no business cycle, making it useless.  Practical studies implement values between these 

extreme cases.  The typical output is presented in figure 2 below, using the value of 1600 

proposed by Hodrick and Prescott (1997: 4) for quarterly data, where the cyclical component is 

the stationary series of the log of the seasonally adjusted real GDP for quarterly South African 

data from 1960q1 to 2007q2. 

  Figure 2: Log real GDP and the cyclical component 
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The value of the smoothing parameter plays a pivotal role in the results generated by the HP 

filter.  It will be argued below that choosing the appropriate value of λ is equivalent to using the 

HP filter optimally.  Before explaining this idea, the next section considers Hodrick and 

Prescott’s approach to finding the smoothing parameter. 

 

 



3.2 THE SMOOTHING PARAMETER 

Hodrick and Prescott (1997: 4) proceed as follows: “the following probability model is useful for 

bringing to bear prior knowledge in the selection of the smoothing parameter λ.  If the cyclical 

component and the second differences of the growth components in (17) were independently and 

identically distributed, normal variables with means zero and variances  and  (which they 

are not), the conditional expectation of the gt, given the observations, would be the solution to 

the formula presented in (17) when λ = / .”   

 

Hodrick and Prescott (1997: 4) mention that this model has a state space representation and can 

be solved with efficient Kalman filtering, but do not present this formally.  Pedersen (2002: 85 – 

86) summarises the analysis of Harvey and Jaeger (1993), who show that the procedure used by 

Hodrick and Prescott yields an optimal filter for a very specific class of unobserved component 

models.  King and Rebelo (1993) argue that the relevant unobserved component model is an 

uninteresting class of economic models, raising critique against the procedure and the HP 

filtering method itself.  The Hodrick and Prescott probability model is stated explicitly as follows 

(Pedersen, 2002: 85 – 86): 

 

 ,      NID (0, ),    (18) 

 

where  is the business cycle component and is given by 

 

 ,        (19) 

    NID (0, ).    (20) 

 

Here (19) and (20) are the state equations, while (18) is the measurement equation.  The 

innovations to trend growth are assumed to be orthogonal to the business cycle components, 

(E  ] = 0).  As Pedersen notes (2002: 85), this is a crucial assumption, “since fluctuations in 

both the business cycle and growth components are the effect of stochastic growth of technology 

in real business cycle theory”.  The orthogonality assumption is likely to be violated, making the 

underlying probability model problematic. 

 



Furthermore, the stochastic growth component  has a random walk growth rate, which implies 

that the second difference of the trend is white noise, 

 

  = .  (21) 

 

So in this probability model, if one assumes that  and or equivalently and  are i.i.d., it 

is equivalent to assuming that the business cycle is white noise.  And this runs contrary to the 

earlier conception of the business cycle.  If it were the case, then the formula in (17) could be 

solved with the assumption that λ = / .   

 

The procedure described above is the method employed by Hodrick and Prescott (1997: 4).  “Our 

prior view is that a 5 percent cyclical component is moderately large, as is a one eighth of 1 

percent change in the growth rate in a quarter.  This led us to select λ = 1600.”  The original 

method of selecting the smoothing constant is, however, problematic in a number of ways.  As 

was argued, the assumptions necessary for the underlying probability model to hold are likely to 

be violated, leaving the method for determining the smoothing constant suboptimal.  Given this, 

the ad hoc procedure used by Hodrick and Prescott (1997: 4) to arrive at the value of 1600 does 

not use the information of the structure of the economy or the process of filtering transparently.  

 

This is important because of the critical role played by the smoothing constant in generating the 

serially correlated deviations of output from its trend, which is then identified as the business 

cycle.  The subsequent output is also used when studying the co-movements of various series 

with the business cycle.  The next section will investigate alternative ways of selecting the 

smoothing parameter in a data-based and transparent way, leading the paper into a detailed 

discussion of the method of optimal filtering. 

 

 

4. APPROACHES TO SELECTING THE SMOOTHING PARAMETER 
 

Two lines of thought are reflected in the literature which analyses the HP filter.  One strand uses 

a time-domain approach, while the other analyses the HP filter in frequency domain.  Schlicht 



(2004), for example, follows a time-domain approach, developing both a maximum-likelihood 

and method-of-moments estimator for the ratio of the variances so that λ = / .  This 

approach, however, has the same drawback as the method proposed by Hodrick and Prescott 

(1997).  Marcet and Ravn (2003) develop a method for choosing lambda in cross-country 

comparisons, but do not investigate the initial choice itself.  Treating λ = /  relies on the 

same questionable probability model. 

 

The HP filter was first analysed in frequency domain by Singleton (1988), and due to subsequent 

research (Ravn and Uhlig (2002), Harvey and Jaeger (1993), King and Rebelo (1993), Cogley 

and Nason (1995), and Guay and St-Amant (1997)), ideas surrounding optimal filtering have 

been developed within frequency domain analysis of time series, discussed in the seminal work 

by Koopmans (1974), Warner (1998) and Fernandez-Villaverde (2007).  Various ideas 

formalised in the spectral analysis of time series, and consequently in the HP filter, are captured 

in the method for choosing the optimal value of λ developed by Pedersen (1998, 2001, 2002) and 

used recently by Rand and Tarp (2001) in their study of developing countries’ business cycles.  

This method determines the optimal value of λ as that which minimises a measure of the 

distortionary effect of the HP filter. 

 

Before discussing the metric of the distortionary effect of the HP filter (which is minimised to 

find the optimal λ), a few concepts will be clarified in the next section; general spectral 

representation and the analysis of time series; linear time-invariant filters, ideal and optimal 

filters in frequency domain; and the properties of the HP filter and its distortionary effects.  

These concepts are the building blocks of the method used to determine the optimal value of the 

smoothing parameter. 

 

 

5. OPTIMAL HP FILTERING 

 

5.1 THE DISTORTIONARY EFFECTS OF THE HP FILTER 

Firstly, the application of the HP filter alters the computed second moments of the input series 

(Pedersen, 2002: 81).  Among these are the standard deviation, the autocorrelation of individual 



series, and the correlations between different series and various lags and leads.  Despite the claim 

by King and Rebelo (1993) and Guay and St-Amant (1998) that this is evidence of a failure of 

the HP filter, Pedersen (2002: 82) argues that this is a general characteristic of filters, since even 

an ideal filter changes the computed second moments.   

 

Secondly, as noted by Granger (1996: 152 – 154) and restated in Harvey and Jaeger (1993), 

Cogley and Nason (1995) and Guay and St-Amant (1997), when filtering economic time series 

with the ‘typical spectral shape’ (Figure 1), the output series’ spectral shape has a rounded hump 

at business cycle frequencies which is not present in the original series.  These authors interpret 

this as a spurious cycle.  Panel 3 (Pedersen, 2002: 83) shows the different shapes in the filtered 

spectra when using an ideal (A) or a distortionary filter (B). 

 

 Panel 3: Effects of different filters 

   A      B 

                    

            

Pedersen (2002: 83), however, argues that the rounded shape is the result of leakage and 

compression – the difference between the power transfer function of an ideal filter (14) and that 

of a distortionary filter, such as the HP filter (15).  The conclusion is that the humped shape is 

not evidence of a ‘spurious cycle’, since the power transfer function of the HP filter does not 

have a cyclical component, seen in (15).   

 

Pedersen (2002: 61) states that the “goal of the theory of optimal filter design” is to “construct 

filters which minimise distortionary effects.”  This is necessary because when computing 

business cycle stylised facts and when using HP filtered data in a model, the representation of the 

business cycle cannot be said to be exactly ‘true’.  But the application of optimal filter design can 



improve confidence in these business cycle computations.  “In general, a filter is distorting by 

passing frequencies which it was supposed to attenuate (leakage) and by compressing 

frequencies which should pass the filter (compression)” (Pedersen 2002: 61).  This is illustrated 

in Figure 3, and is the consequence of the difference between the power transfer function of the 

ideal filter and the HP filter.    

 

        Figure 3: Leakage and Compression 

 

 

Importantly, the combination of leakage and compression is not, in itself, a measure of the 

distortionary effect of a filter.  It depends on the power transfer function of the filter and the 

spectrum of the input series.  That is, the leakage and compression, at each frequency ω is 

weighted by the relative power of the input series at the same frequency (Pedersen, 2002: 61).  

And because the power transfer function of the HP filter is dependent of the value of the 

smoothing parameter, as seen in (15), one can find the value of λ, which minimises the 

distortionary effect of the HP filter. This is the same as using the HP filter optimally.  The 

method is transparent and uses the data to compute the optimal value of λ, while circumventing 

the problems associated with the original ad hoc method and similar methods relying on the 

same problematic probability model, as discussed in section 2.  The next section shows the 

derivation of the optimal HP filter.   

 



5.2 MEASURING DISTORTIONARY EFFECTS 

This section discusses the method of optimal filtering developed by Pedersen (2001: 1091 – 

1092) and uses the concepts developed in the previous sections of this paper to derive a metric to 

determine the optimal value of the smoothing parameter.  Let the ideal high-pass filter have a 

power transfer function , where ω  with  and 

, (25).  Also, let the power transfer function of the distortionary filter (in this case the HP 

filter) be , as stated in (21).  The spectral representation of the true cyclical component 

for ω  is given in (22) and the cyclical component of the distortionary cyclical component is 

given by (23), 

 

 ,        (22)  

 .        (23) 

 

The distortionary effect is based on the leakage and compression, for the given input series, that 

arise due to the difference between the transfer function of the ideal and distortionary filters 

(figure 7).  The distortionary effect of the filter (Q) is the sum of the absolute value of the 

difference between the cyclical component of the ideal and the distortionary filter, weighted by 

spectrum of the input process and the size of the grid ∆ω = .   

 

 ,    (24) 

 

A new set of weights  is constructed so that they are normalised to sum to 1, where the 

weights are defined as the ratio of the spectrum of the input process to the variance of the series.  

Applying the new weights to (24) and minimising with respect to λ, in  yields the metric 

for determining the optimal value of the smoothing constant in the HP filter, 

 

 ,    (25) 

where, 

 

 .       (26) 



 

The formula in (25) is fully described by the power transfer functions of the ideal and the 

distortionary filters and the spectrum of the input series.  Firstly, the ideal filter needs to be 

specified with a cut-off frequency corresponding to the maximum length of the business cycle.  

This is analogous to the censoring rules applied in the identification of classical cycles (Burns & 

Mitchell, 1946), where the researcher must make an explicit choice based on the information 

provided by the data, and possibly a theoretical prior.  Secondly, (25) depends on the value of the 

smoothing constant via the power transfer function of the HP filter.  Minimising Q with respect 

to λ means minimising leakage and compression, yielding a more reliable business cycle 

component.  It is in this sense that using the HP filter as explained here is optimal.   

 

Lastly, Q is weighted by the spectrum of the input process (log GDP), which contains all the 

relevant information about the cyclical behaviour of the series.  In this way, the data adds 

directly to the determination of the optimal smoothing parameter.  These points, along with the 

program itself, are also systematically described in the appendices (PlotQ.m and HP.m), 

explaining practical implementation with MATLAB files.   

 
5.3 RESULTS 

This section presents the results of taking the method to the data.  It implements the programs 

presented in the appendices.  The data is the log of seasonally adjusted quarterly real GDP for 

South Africa for the period 1960q1 to 2007q2.  When working with real, finite data, the 

spectrum of the series must be estimated – we use autoregressive spectral estimation (Parzen, 

1961 and Shibata, 1981).  Berk (1974) shows that this is an unbiased, consistent and 

asymptotically normal estimator.  Estimation proceeds by approximating the true data generating 

process by an AR(p) process, and using the coefficients to estimate the power spectral density 

(8). 

 

The second step in generating the results involves choosing an appropriate cut-off frequency for 

the ideal and the distortionary filter.  Pedersen (1998) uses the method developed by Bry and 

Boschan (1971) to determine the average length of business cycles for a group of 11 OECD 

countries, and finds that for most countries, it is shorter than six years, on average.  Rand and 

Tarp (2001) use the results of Pedersen (1998) to study business cycles for the developing world, 



and the results for emerging market economies generated by Du Plessis (2006), also using the 

BBQ algorithm, suggest that the duration of business cycles is less than six years.  This is also 

supported by the turning points published by the South African Reserve Bank (SARB, 2007: S-

135), using the method described by Venter (2005).  According to the SARB’s method, the 

average duration is 4.79 years.   

 

The notable exception, however, is the current South African expansion, dating from August 

1999 to the present.  This exception, along with the finite sample issues of the HP filter (Baxter 

and King, 1999) warrants an investigation into the current expansion.  This is done in the next 

section.  Table 1, below, reports the optimal values of the smoothing parameter for South 

Africa’s quarterly data, for various frequencies, based on minimising Q. 

 

   

 

 

 

 

 

 

For a business cycle duration of six years, the optimal value of lambda differs markedly from the 

1600 proposed by Hodrick and Prescott (1997).  It seems, however, that if one specifies the 

business cycle as being eight years and less, the optimal lambda differs only slightly from 1600.  

Both these values are optimal but correspond to a different censoring rule.  It is worth wile 

investigating how these values compare in practice – this will be done in section 6.  These results 

are generated by applying the theory of optimal filters, providing a consistent way of evaluating 

different options.   

 

 

 

Table 1: Optimal Values of Lambda 

Frequency Duration Lambda 

π/10 5 years 177 

π/12 6 years 352 

π/14 7 years 524 

π/16 8 years 1338 



The panel of figures below shows the Q-statistics for durations of six and eight years.   

 

   Figure 4: Q for Six Years 
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   Figure 5: Q for Eight Years 
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 he results confirm the influence of the censoring rule in the analysis of business cycles and 

stress that it plays just as big a role in deviation cycle analysis as in classic cycle analysis.  It also 

shows that the results for a duration of six years suggest a value for lambda that is quantitatively 

different from the ‘default’ of 1600.  For a duration of eight years, however, the difference is 

smaller.  Now that the values for optimal HP filtering for South Africa have been determined, the 

next section applies these values to gauge how the results generated by applying optimal HP 

filtering compare to those generated by other methodologies.   

 

 

6. APPLICATION TO THE SOUTH AFRICAN BUSINESS CYCLE 

 

To gauge how the set of optimal values of the smoothing constant, derived in the previous 

section, translate into optimal filtering in practice, a few time-domain applications are presented.  

It was shown above that the different optimal values of lambda arise due to different censoring 



rules regarding the duration of business cycles, and for durations less than eight years the optimal 

values of lambda are well below 1600.  Figure 6 shows the cyclical series generated by the 

optimal and the default HP filter when the duration is eight years, compared to 1600. 

 

   Figure 6: Cyclical series for different lambdas 
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The two series are almost indistinguishable, with standard deviations of 0.015471 and 0.015099 

respectively.  This is not to say, however, that the value 1338 is not optimal.  It was derived 

based on the theory of optimal filtering, whilst the ‘default’ value of 1600 was specified in an ad 

hoc manner.  Figure 7 shows that there is, however, an important difference in the amplitude of 

the cyclical series generated by an optimal lambda for business cycle durations of six years and 

less, when compared to cyclical series generated by the eight-year optimal value.  The difference 

is important regarding the current expansion. 

 



  Figure 7: Cyclical series for optimal lambdas 
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Table 2 shows a comparison of the business cycle turning points determined by various methods.  

Comparing the accuracy of various optimal HP filters in relation to the SARB and BBQ turning 

points (SARB, 2007: S-135 and Du Plessis, 2006: 29), all fare more or less equally well. 

 

Table 2: South African Business Cycle Turning Points      

SARB   HP (352)   HP (1338)   

HP 

(1600)   BBQ   

Trough Peak Trough Peak Trough Peak Trough Peak Trough Peak 

  1960q2  1960q4*  1960q4*  1960q4*     

1961q3 1965q2 1961q3* 1965q2 1961q3* 1965q2 1961q3* 1965q2     

1966q1 1967q1 1967q1 1967q4 1967q1 1967q4 1967q1 1967q4   1971q1* 

1968q1 1971q1 1969q3 1971q2 1969q3 1971q2 1969q3 1971q2 1972q1 1974q3* 

1972q3 1974q3 1973q3 1974q4 1973q3 1974q4 1973q3 1974q4 1975q1 1976q3 

1978q1 1981q3 1977q4 1981q4 1978q1*" 1981q4 1978q1*" 1981q4 1977q3 1981q4 

1983q2 1984q3 1983q2* 1984q3* 1983q2* 1984q3* 1983q2* 1984q3* 1983q1 1984q2 

1988q2 1989q1 1987q4 1989q3 1986q2" 1989q3 1986q2" 1989q3 1988q1 1989q3 

1993q2 1996q4 1993q1 1997q4 1993q1 1997q1" 1993q1 1997q1" 1992q4 1996q4* 

1999q3   1991q1   1991q1   1991q1   1998q3   

* = coincidence with turning point identified by SARB      

" = different than 352        

 



The cyclical series generated by the censoring rule for six years is different from the eight-year 

and the default cyclical series in amplitude and in the autocorrelations at various lags shown in 

figure 8 below. 

 

 Figure 8: Autocorrelations of cyclical series 

  

 

Table 3 compares the standard deviation of the trend components of log GDP for the various 

optimal HP filters to the standard deviation of the original unfiltered log GDP series.  The value 

of lambda = 352 yields the standard deviation that is closest to the original, which is 

understandable since an increased value of lambda implies a smoother output series.  The value 

of 352 most closely matches the long-run features of the data. 

 

  

 

 

 

Regardless of the value of lambda, the HP filter has another important shortcoming arising from 

small sample applications.  Recall that the operation of a filter is described by its power transfer 

function, or the square of its gain (how much the spectrum of the input series is changed at each 

frequency when filtered), and that phase (the displacement of the series with respect to time) is a 

subcomponent of gain itself.  Fernandez-Villaverde (2007) notes that the corner sections of the 

sample are difficult to deal with due to the limited one-sided application of the lag-operator in 

Table 3: Standard Deviation: input and filtered series 

log(gdp) λ = 352 λ = 1338 λ = 1600  

0.372464 0.372098 0.371964 0.371945  



the filter.  Related to this general filtering problem, Baxter and King (1999: 589) note that the 

gain function of the HP filter differs markedly from the gain function of the ideal filter at the 

end-points of the sample.  This is largest for the first and last 12 observations – that is, for three 

years of observations at the ends of the sample, the estimate of the cyclical component of GDP 

will be less reliable than the middle of the sample.  The bias will be in the opposite direction of 

the current cyclical movement because the information will be bunched to the trend.  Since the 

current expansion is of great importance to econometric modelling, it is well worth investigating 

the problem.   

 

Panel 4 shows that from 1999 to 2007 the data shows trend growth (A) to be the dominant effect 

– it is increasing at an increasing rate.  Due to the end-point sample problem, the cyclical 

component will be biased downward, as is clear for both values of lambda (B).  This may 

account for some of the lack of upward movement in the cyclical series during the current 

expansion, but it is also possible that the GDP data is simply too smooth (or has been smoothed) 

to identify the cyclical fluctuations during this period – too much information is bunched in the 

trend
2
.  This issue warrants separate investigation. 

 

         Panel 4: Trend growth and the cyclical component 
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Interestingly, the value of 1338 seems to be better at capturing the expected upward cyclical 

movement in the current expansion than the value of 352.  But this is expected, because, as stated 

                                                 
2
 This was pointed out by Stan du Plessis and Kevin Kotzé. 

 



before, the larger the value of lambda, the more of the low-frequency information will be 

included in the cyclical series.   

 

Concerning the duration of cycles – the censoring rule – the SARB turning points (SARB, 2007) 

suggest an average duration of 4.79 years since 1960, if the current expansion is included.  The 

average suggested by the BBQ algorithm (Du Plessis, 2006), adjusting for the current expansion, 

is 4.54 years.  Considering this evidence and the turning points identified by the HP filter in table 

2, this paper suggests that optimal HP filtering for South Africa is best implemented with a value 

of 352 for lambda.  This is consistent with Pedersen (1998, 2002) and Rand and Tarp (2001) who 

apply optimal HP filtering to developing countries with similar business cycle durations.  So the 

choice between the two values is up to the researcher.  But these issues might be driven by 

peculiarities in the data. 

 

Applying the optimal HP filter, therefore, requires that we think carefully about the process of 

filtering itself.  This involves thinking about the role of filtering in the conceptual field of 

business cycles, and about the empirical properties of the specific economy in question.  The 

possibility exists that results are driven to a large extent by finite-sample problems, and data 

quirks, but regardless of those possibilities, the application of the theory of optimal filtering 

minimises the distortion of the frequency space of the particular time series.  Now that a 

transparent method has been used to determine the theoretically optimal values of the smoothing 

constant for the HP filter for South Africa, further research can focus on the finite-sample and 

data issues.  

 

 

CONCLUSION 

 

The paper started by considering the HP filter’s place in business cycle research and econometric 

modelling in general, establishing that it is an important method for identifying the business 

cycle or de-trending data.  The investigation into optimal HP filtering for South Africa is 

motivated by the inadequacy of the default value of the smoothing parameter, and the method 

used to choose it, as presented in Hodrick and Prescott (1997).  There is, therefore, a need to 



revise the value of the smoothing parameter, and to shed some light on the practical applications 

and consequences of the filter.   

 

This paper implemented the method developed by Pedersen (2002) to determine the optimal 

value of lambda for South Africa.  This is by no means a strictly deterministic process, since the 

value is not only conditional on the data, but also on a censoring rule which specifies the 

duration of business cycles.  This finding is interesting since it is consistent with the claim by 

Burns and Mitchell (1946) that the crucial step in business cycle identification is duration.  This 

paper, therefore, establishes an important methodological link between the deviation cycle and 

classical cycles methods.  The author argues that the most appropriate censoring rule specifies 

business cycle frequencies as those which occur at frequencies of less than six years.  This 

choice was based on evidence presented on the duration of business cycles by Pedersen (1998), 

Rand and Tarp (2001), Du Plessis (2006) and SARB (2007).  The proposed optimal value of 

lambda is 352.   

 

Apart from issues related to the smoothing parameter and the input data, the study of the HP 

filter reveals that estimates of the cyclical component of GDP are less reliable at the end-points 

of the sample.  Since the current business cycle expansion is the crucial part of the data that the 

filter needs to take to any model, special caution, and transparency about assumptions is 

necessary regarding this sample period.  The overall message of the paper is that optimal HP 

filtering requires thinking explicitly about the structure of the economy, and the 

conceptualisation of the business cycle. 
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APPENDICES: MATLAB CODE 

 

a) PlotQ.m 

function PlotQ(x, lamdaMax); 

  
l = 1:lamdaMax; 
for m = 1:length(l) 
    Q(m) = HP(x, l(m)); 
end 

  
min = Q(1); 
lamdamin = 1; 

  
for n = 1:length(Q) 
    if (min > Q(n)) 
        min = Q(n); 
        lamdamin = n; 
    end 
end 

  
lamdamin %the function reports the lamda which minimises Q 

  
plot (l, Q, 'DisplayName', 'Q vs lamda', 'XDataSource', 'lamda', 

'YDataSource', 'Q'); 

  
%this function PlotQ(...,...) implements the procedure described in 
%Pedersen (2001: 1090 - 1092). The variable Q is defined in HP.m and allows 
%for the use of different cut-off frequencies (business cycle duration) and 
%can use quarterly, annual or monthly data. 

  
%to implement, save both HP.m and PlotQ.m in the work file in MATLAB, load 
%the gdp data, specify the cut-off frequency and run the PlotQ.m in the 
%command window by typing the function PlotQ(...,...). 

  
%The output shows the Q-stat for various values of lamda and calculates the 
%value that minimises Q. This is the optimal lamda in the sense described 
%by Du Toit (2007) and Pedersen (2001). 

  
%Du Toit, L. C. 2007. 'Optimal Hodrick-Prescott Filtering for South 
%Africa'. Unpublished manuscript. Stellenbosch: University of Stellenbosch, 
%Department of Economics. <14038919@sun.ac.za>. 

  
%Pedersen, T. M. 2001. ‘The Hodrick-Prescott filter, the Slutzky effect,  
%and the distortionary effect of filters’,  
%Journal of Economic Dynamics and Control. 25. 1081-1101.  

 



b) HP.m 
 
function Q = HP(y, lamda); 

  
% lamda = smoothing constant; 
% y = log real gdp; 
% Q is the weighted absolute value of the difference between the ideal and 
% the distortionary filter 
% Hhp is the power transfer function of the HP filter 
% H is the power transfer function of the ideal filter 

  
w1 = pi / 10; %cutoff frequency for ideal filter, specified according to the 

view of the duration of business cycles 

  
[S, w] = pyulear(y, 2); %this estimates the spectral density 

  
deltaw = w(2) - w(1); 
NormSum = 0; 
Q = 0; 

  
for n = 1:length(w) 
    Hhp(n) = abs((4 * lamda * (1 - cos(w(n)))^2) / (4 * lamda * (1 - 

cos(w(n)))^2 + 1))^2; 
    if (abs(w(n)) < w1) 
        H(n) = 0; 
    else 
        H(n) = 1; 
    end 
    NormSum = NormSum + 2 * S(n) * deltaw; 
end 

  
for n = 1:length(w) 
    v(n) = 2 * S(n) * deltaw / NormSum; 
end 

  
for n = 1:length(w) 
    Q = Q + abs(H(n) - Hhp(n)) * v(n); 
end 

  
%figure; 
%plot (w, Hhp, 'DisplayName', 'S vs w', 'XDataSource', 'w', 'YDataSource', 

'S'); 
%hold on; 
%figure; 
%plot (w, S, 'DisplayName', 'S vs w', 'XDataSource', 'w', 'YDataSource', 

'S'); 

  

  
%figure(gcf); 

 

 


