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ABSTRACT 

This paper examines optimal price (i.e. ‘sliding scale’) regulation of a 
monopoly when productivity and managerial effort are not observed.  We 
show how to operationalise this model of incentive regulation and use 
actual data from electricity distribution in England and Wales to make 
welfare comparisons of sliding scale regulation with a stylised price cap 
regime and the First-Best (the full information case).  Our method enables 
us to quantify technical uncertainty as faced by the electricity regulator in 
the 1990s and shows that there are significant welfare gains from a 
sliding scale relative to the stylised price cap regime. 
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Optimal sliding scale regulation: An

application to regional electricity distribution

in England and Wales∗

David Hawdon† Lester C. Hunt† Paul Levine†

Neil Rickman‡

1 Introduction

The regulation debate has posed two polar price rules for an industry mo-

nopolist. Productive efficiency is achieved by price cap regulation, in which

the firm is the residual claimant of cost-savings made within a period, and

allocative efficiency is achieved by cost-plus regulation, which allows the firm

to receive a specified rate of return by enabling the price to shadow costs.

Both rules have been used at various times to set prices in regulated utilities,

in a variety of countries. The development, and widespread application, of

RPI-X price cap regulation in the UK is widely regarded as a significant in-

novation in regulatory practice (see Armstrong et al. (1994)). However, such

∗We are grateful for valuable comments received on earlier drafts at the 25th Annual
IAEE Conference in Aberdeen, Scotland June 2002) and at seminars hosted by the Uni-
versity of Barcelona (March 2003), the Centre for Energy Policy and Economics (cepe),
Zurich Institute of Technology, Switzerland (June 2002) and the Department of Economics
at the University of Portsmouth, England (October 2002). Remaining errors and omissions
are our own.

†Surrey Energy Economics Centre (SEEC), Department of Economics, University of
Surrey, Guildford GU2 7XH, UK.

‡Surrey Energy Economics Centre (SEEC), Department of Economics, University of
Surrey, Guildford GU2 7XH, UK and CEPR.



mechanisms have not gone unchallenged, by policy-makers or academics.

Government publications (see DTI (1999)) and regulatory price reviews in

energy and water have all asked whether modifications to RPI-X would be

appropriate (e.g. OFFER (1999a), OFFER (1999b)) in order to “incentivise

regulation”, as one commentator has suggested (see Utilities Journal (2000)).

The recent review of electricity distribution price regulation (see OFGEM

(2004b); Pollitt (2005) for a commentary) contains several mechanisms to

achieve this, within an overall RPI-X price cap framework.

Any incentive scheme must address the principal-agent problem faced

by the principal (the regulator). Optimal incentive schemes, designed to

take account of information asymmetries, involve a menu of contracts that

force the firm to surrender its private information (Laffont and Tirole (1993),

Weyman-Jones (1995), Burns et al. (1998)).1 These schemes can be regarded

as ‘sliding scale regulation’ because they allow higher cost firms to share more

of this cost with consumers through a higher regulated price: they provide

an intermediate point between the high-power incentives under price cap reg-

ulation and the low-power incentives of cost-plus regulation. Unfortunately,

there has only been limited research on such schemes, perhaps because they

may be complex to construct and necessarily hard to evaluate.2 The purpose

of this paper is to consider these two issues and, as a result, to compare opti-

mal and simple forms of regulating an industry monopolist when productivity

and managerial effort are not observed.

In order to address the regulator’s problem under asymmetric informa-

tion, we draw upon Laffont and Tirole (1993). We amend this for the case of

1See Jamasb et al. (2004) for interesting confirmation of the importance of asymmetric
information and strategic behaviour in the context of electricity regulation.

2Anticipating the current paper, Laffont and Tirole (1993), p. 155, observe that:
“. . . much work remains to be done, . . . , it would be worthwhile to further analyze the
properties of and to calibrate the optimal sliding scale . . . ”.

2



electricity distribution, then show how to operationalise their general model

in order to construct a sliding scale form of regulation for electricity distri-

bution where contracts are offered linking the regulated price to observed

costs.3 Having shown how to construct the sliding scale, we seek to compare

the welfare effects of such regulation with those of a stylised price cap (based

on Gasmi et al. (1994)). We perform simulations where the key parameter

values are estimated using demand and cost data from the distribution ac-

tivities of the electricity supply industry in England and Wales. Because

the industry was divided into twelve Regional Electricity Companies (RECs)

upon restructuring in 1990, it provides a convenient panel for performing

such analysis.4 As a result, we are able to compute for each REC, a mean-

ingful estimate of the welfare gain available from moving between a price cap

and optimal (static) price regulation in distribution.5 We find that, when the

regulator designs both mechanisms to cover almost all possible distribution

costs for a given REC, and when she faces a relatively severe asymmetric in-

formation problem, significant welfare gains may be available from the sliding

scale.

Other authors have compared the welfare effects of different incentive

schemes using simulation; see Gasmi et al. (2002). Schmalensee (1989) con-

3Burns et al. (1998) make a case for sliding scale regulation and compare this with
alternative regimes. In constructing the latter they consider the simpler case where trans-
fers take place between the regulator and the industry. By contrast, we consider price
regulation in the absence of any such transfer.

4Although our data pre-date recent changes to the regional structure of electricity
supply (see Green and McDaniel (1998)), our focus on regional monopolies in distribution

(by what are now termed Distribution Network Operators, rather than RECs) remains
highly relevant to current arrangements (see OFGEM (2000), OFGEM (2004b)). We
continue to refer to ‘RECs’ to be consistent with our data.

5It should be made clear that our intention is not to test predictions from the model, or
to supplement any of the body of empirical work seeking to evaluate the results of electric-
ity privatisation (e.g. Newbery and Pollitt (1997), Green and McDaniel (1998), Newbery
(1998), Wolfram (1998), Green (1999), Wolfram (1999), Domah and Pollitt (2001)).
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trasts different linear mechanisms (where the regulated firm receives a fixed

percentage cost-reimbursement). He uses sensitivity analysis with a selected

range of parameter values. This approach is also adopted by Gasmi et al.

(1994), where optimal regulation, price caps and a version of profit-sharing

are compared in a model where the regulator is able to make lump-sum

transfers to the firm. An important contribution of our work is to extend

this analysis to optimal (linear) price regulation in the absence of such trans-

fers. Of course, the practical merits of simulations are influenced by the

plausibility of the parameter values used. Accordingly, Gasmi et al. (1997)

calibrate a model of regulation in the US local exchange telecommunications

market in order to examine empirically the form of the optimal regulatory

mechanism. Using an engineering process model to estimate firms’ (translog)

cost functions, they look for evidence of natural monopoly and the degree

to which regulatory mechanisms must be adjusted for firms’ private infor-

mation. Their paper is closely related to ours in its attempt to generate

empirically meaningful values for the model’s key parameters. Our approach

and focus differ, however. Rather than use engineering data to construct a

detailed cost function, we use economic data on costs, outputs and prices for

RECs over time to estimate simplified cost and demand functions for each

REC. This has the benefit of enabling us to estimate standard errors which

proxy the regulator’s degree of uncertainty about firms’ cost functions, some-

thing that has not been done before. Then, having shown how to construct

optimal linear price regulation without transfers, we use our empirical results

to compare this with the welfare effects of a simple price cap.

In practice, OFGEM’s procedure for setting regulated prices differs from

our own model in two broad respects (see Pollitt (2005)). First, OFGEM

takes considerable effort to reduce the effects of asymmetric information

4



by auditing firms, collecting cost (and other) data from them and making

appropriate adjustments to the data. This is a resource-intensive process

for both regulator and firms yet asymmetries inevitably persist (see Jamasb

et al. (2004)). Second, firms’ cost/composite-output combinations are bench-

marked against each other in order to identify relative efficiencies. At this

point, price caps are set for the individual firms for the following period with

an initial adjustment in price (i.e. the “P0”s for each firm) followed by a

RPI-X cap for all firms in the remaining (four) years. The initial P0s are

intended to encourage greater efficiency.

In this paper, we focus on the information asymmetries that remain (as

Jamasb et al. suggest) following the above process. Our stylised price cap ab-

stracts from benchmarking issues: in effect, firms are assumed to be adopting

the most efficient technology and inputs. Thus, our comparison of the sliding

scale and the stylised price cap under asymmetric information addresses the

issue of how regulated prices should be set when information gathering is

imperfect.6

The rest of this paper is organised as follows. Section 2 sets out the

model we use and solves the First-Best case where the firm possesses no

private information. Section 3 derives the optimal sliding scale price regime

relating the regulated price to observed costs. We show how this scheme can

be computed from a set of differential equations with initial and terminal

boundary conditions. Section 4 derives the price cap regime, and notes its

incentive properties relative to the sliding scale. Section 5 then explains

how we estimate the parameters necessary for the welfare comparison of the

distribution price cap and sliding scale for the electricity industry in England

6In principle, the paper also provides an alternative method for addressing information
asymmetries. In turn, this raises the question of how much resource needs to be invested
in the existing regulatory review process. We return to this issue in the Conclusion.
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and Wales, before presenting the results of our simulations. The final section

(Section 6) concludes, briefly assesses other elements of the schemes we have

studied and highlights several aspects of the analysis that warrant future

research.

2 A model of price regulation in electricity

distribution

This paper seeks to examine the general question of how optimal price reg-

ulation compares with stylised price cap regulation in the presence of asym-

metric information. Given that the data used in Section 5 are drawn from

electricity distribution, it is important that our model reflects this setting.

Production of electricity typically consists of four functions: generation,

transmission, distribution and supply. The economic characteristics of these

functions mean that some can be opened up to competition more readily

than others. In England and Wales, generation and supply have gradually

become more competitive since restructuring and privatisation, while trans-

mission and distribution have remained subject to price regulation. Since we

examine optimal price regulation based on Laffont and Tirole (1993)’s model

of consumer price regulation, we must first consider whether any amendments

are necessary when regulating an upstream component of consumer price.

To this end, note that the electricity retail price (p) is primarily the sum

of the contributions of the four components described above, generation (g),

transmission (t), distribution (d) and supply (s): i.e. p = g+ t+ d+ s.7 The

issue for us is then whether a relationship between p and d can be expected

to exist and how it might be modelled. On the first point, it is clear from

7These four elements account for about 90% of p; see OFGEM (2004a), Figure 4.2.
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OFGEM (2004b) (e.g. see the Summary) that the regulator recognizes a

positive relationship between d and p and that we should therefore include

this. On the second point, it is again apparent from OFGEM (2004b) that,

with the exception of pass-through for certain upstream costs, much of the

regulator’s analysis takes the other sectors’ prices and costs as given when

setting distribution prices. We shall, thus, make a similar assumption: letting

z ≡ g + t + s, we assume that z is taken as exogenous in the setting of d.

As a result, if q is the final output and p = P (q) is the inverse retail demand

curve, we can write d(q) = P (q) − z.8

Consider the regulation of a regional natural monopolist in electricity

distribution, supplying q units of electricity for sale on the downstream retail

market. The retail price is a uniform (linear) price p = d + z, and the

demand curve is q = D(p) = D(d+ z); the inverse demand curve is as above

p = P (q) ⇔ d(q) = P (q) − z.9 Total distribution costs, consisting of fixed

and variable costs, are separately observed by the regulator and given by

C(e, q) = α+ c(e, q; β) (1)

where e is cost-reducing effort (Ce < 0), q is output, α are fixed costs and

β is a productivity parameter reflecting factors exogenous to the distributor

that affect costs (Cq > 0, Cβ > 0). In principle, β may be stochastic and

change over time. Importantly, however, we assume that the firm observes

the realisation of β before the regulator announces contracts. Once these

8Future research might interestingly consider the effects of relaxing this partial equi-
librium approach to take into account interactions between the four principal components
of price. For the present paper, however, our assumption provides a tractable starting
point for modelling distribution price regulation. As we have suggested, it also finds some
support in recent regulation.

9Non-linear prices are also common in the electricity retail market. See Wilson (1993)
for analysis of non-linear alternatives.
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contracts are announced, the firm chooses e. The regulator observes neither

effort nor the productivity parameter and, thus, faces both an adverse selec-

tion and moral hazard problem.10 The regulator does, however, observe final

costs (C) and knows that β is continuously distributed on the interval [β, β]

with density function f(β).

Single-period payoffs for the firm and regulator are

U(e, q) = R(q) − C(e, q) − ψ(e) (2)

W (e, q) = B(q) −R(q) + U (3)

In (2), ψ(e) is the disutility of effort to the firm (where we assume ψ′, ψ′′ > 0

for e > 0 and ψ(e) = 0 otherwise). In (3), B(q) is the gross consumer

surplus from consuming the REC’s electricity, R(q) = pq is the revenue and

B(q) −R(q) is the net consumer surplus.

2.1 The First-Best (complete information)

A useful comparator for later results is provided by assuming that the regula-

tor has complete information. This ‘First-Best’ can be reached when the reg-

ulator observes the productivity parameter β. Then she maximizes (3) with

respect to q and e, given the individual rationality (IR) constraint U ≥ 0.

10To give some specific examples, the electricity regulator may not be able to distin-
guish high costs caused by difficult (perhaps stochastic) distribution conditions (OFGEM
(2004b), para. 3.18, contrasts “known” and “unknown” items of cost) or by poor man-
agerial effort. Elsewhere, the rail regulator may not be able to tell if high costs genuinely
result from “leaves on the line” for a particular train operating company (TOC). The
firms, in contrast may well know what has influenced their costs. Of course, correlation
across distributors or TOCs may provide useful information here (and allow some element
of benchmarking) but we ignore this by assuming the βs to be independently distributed
across firms. We recognise that the modelling of interdependence remains important fu-
ture work. Laffont and Tirole (1993) examine interdependence in a model with lump-sum
transfers rather than price regulation, while Auriol and Laffont (1993) do so in a model
with no cost-reducing effort.

8



The well-known solution (see Appendix A) involves optimal effort when the

marginal disutility of effort equals its marginal benefit (ψ′(e) = −Ce), Ram-

sey distribution pricing and zero rent (i.e. IR binds).

3 Incomplete information and sliding scale

regulation

Now assume that neither the REC’s productivity parameter (β) nor effort

(e) can be observed by the regulator but price, demand, marginal and fixed

costs are observed.11 Let ρ = U + ψ(e) be the total transfer received by the

firm via the consumer. Then, combining (1) and (2), we can write

(d+ z − Cq)D(d+ z) − α = ρ = U + ψ(e) (4)

and let d(Cq, ρ, α) be the lowest distribution price satisfying this equation,

where Cq = ∂C/∂q is the marginal distribution cost. Write the net con-

sumer surplus as Bn(d(Cq, ρ, α) + z). The regulator now designs a menu

{d(β), Cq(β)} to maximize the expected welfare

∫ β

β

[Bn(p(Cq(β) + z, ρ(β), α) + U(β)]f(β) dβ (5)

11 Assuming that other parameters (e.g. γ, η from Section 3.1 below) are the firm’s
private information would add significantly to complexity without necessarily altering our
main qualitative results (see Laffont et al. (1987)).
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where ρ = U + ψ(e), subject to incentive compatibility constraints (IC) and

IR constraints for each firm12:

IC :
dU

dβ
= −ψ′(e(β)) ; Cqβ ≥ 0 (6)

IR : U(β) ≥ 0 (7)

The result of this optimization is obtained by standard optimal control

techniques (see Laffont and Tirole (1993), p. 152) and is given by

ψ′(e(β)) = q(β) −
∫ β

β
[∂d/∂Cq − 1]f(β̃) dβ̃

(∂d/∂Cq)f(β)
ψ′′(e(β)) (8)

and U(β) = 0. From the latter and the IC constraint (6) it follows that

U(β) =

∫ β

β

ψ′(e(β̃)) dβ̃ (9)

Then price and output follow from the firm’s budget constraint (4) and q =

D(d + z). Effort under asymmetric information is less than that under the

First-Best (compare (8) and (A.2) from Appendix A).

3.1 Implementation of the sliding scale

The relationship d = p − z, equations (4), (8), (9), ρ = U + ψ(e), Cq =

Cq(e, q; β) and q = D(p) give seven equations in p(β), e(β), U(β), ρ(β),

Cq(β) and q(β) given functional forms D(·), ψ(·) and f(·). In fact given

{d(β), Cq(β)} the rest of the solution is uniquely defined. It follows that a

12The IC constraint is the familiar one derived in Laffont and Tirole (1993) and describes
each type of firm’s first- and second-order conditions for truth-telling: effectively, rent must
be allowed to evolve at the same rate as a low-cost firm loses utility from foregoing its
chance to mimic high-cost counterparts. Since IC requires dU/dβ < 0, we can infer that
when β’s IR constraint is satisfied, so are all other firms’. This is captured in (7).
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contract consisting of a cost-contingent menu {d(β), Cq(β)} implements the

optimal solution. The IC constraint ensures that the firm with productivity

β chooses the correct contract designed for its type. Expressing the price as

a function of cost for each β gives the sliding scale d = d(Cq). An example of

this solution is given in Figures 1a and 1b (discussed further below). For a

very inefficient firm a reduction in cost is matched by an almost one-for-one

reduction in price. For a very efficient firm the scheme almost resembles a

price cap.13

Our system of equations as it stands contains two integral equations which

are not straightforward to solve, even numerically. However we can transform

the system into six first-order differential equations in e(β), U(β), p(β), k(β),

f(β) and W (β), where k(β) is defined in (11) below. These are amenable to

numerical solution techniques so we proceed to do this.

On the demand-side, we specify D(p) = Ap−η, where A represents the

‘scale’ (including income effects) of demand and η > 0 is the (absolute value

of) the price elasticity of demand. On the supply-side, we specify c(e, q; β) =

(β − e)q ≡ ĉq, ψ(e) = 1

2
γe2, and

f(β) =
1√
2πσ

exp−1

2

(
β − µ

σ

)2

(10)

i.e. a normal distribution with mean µ and standard deviation σ. Clearly,

our simulations in Section 5 depend on the empirical validity of these as-

sumptions. The constant elasticity demand function is standard in energy

demand estimation (e.g. Pesaran et al. (1998)).14 We check for the nor-

13If β is stochastic but observed by the firm before choosing its {p, Cq} combination (as
described above), then the sliding scale allows firms to react to the realisations of β they
actually observe.

14This specification is typically favoured for its simplicity, straightforward interpretation
and limited data requirements. Moreover, Pesaran et al. (1998) find that it generally
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mality of the β-distribution when we estimate the cost function in Section

5. The remaining assumptions are addressed first in Appendix B, where we

show how a more general disutility of effort function and a cost function that

is non-linear in effort generate a cost function that is non-linear in output.

Section 5 then tests this against our chosen cost function. Both here, and in

the case of f(β), our data are consistent with the above functional forms.

We begin by differentiating (4) to give

∂p

∂ĉ
=

D(p)

D(p) + (p− ĉ)D′(p)
≡ k(β) (11)

We can now rewrite (8) and (9) as

e =
D(p)

γ
−

∫ β

β
[k(β̃) − 1]f(β̃) dβ̃

k(β)
(12)

U(β) = γ

∫ β

β

e(β̃) dβ̃ (13)

and then differentiate (12) with respect to β to arrive at

de

dβ
=
D′(p)

γ

dp

dβ
+

[D(p)/γ − e]

k(β)f(β)

[
fk

df

dβ
+ f

dk

dβ

]
− (k(β) − 1)

k(β)
(14)

and
dU

dβ
= −γe (15)

which returns us to the original IC condition. Differentiating (4), (11) and

ĉ = β − e we have

(
dp

dβ
− dĉ

dβ

)
D(p) + (p− ĉ)D′(p)

dp

dβ
=
dU

dβ
+ γe

de

dβ
(16)

outperforms more complex specifications across a large variety of settings.
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Substituting D(p) = Ap−η, D′(p) = −ηD(p)/p, k(β) defined in (11) becomes

k =
p

p(1 − η) + ηĉ
(17)

Hence differentiating and putting dĉ
dβ

= 1 − de
dβ

we arrive at

dk

dβ
= − η

[(1 − η)p+ ηc]2

[
p

(
1 − de

dβ

)
− ĉ

dp

dβ

]
(18)

Then differentiating (10) we have:

df

dβ
= −(β − µ)f

σ2
(19)

Social welfare can be incorporated within the system of differential equa-

tions as follows. With a demand function given by D(p) = Ap−η the net

consumer surplus is given by

Bn(p) = B(q) −R(q) =

∫
∞

p

D(p′) dp′ =
A

1 − η

[
(pmax)1−η − p1−η

]
(20)

Note that if η < 1, which turns out to be the case for the majority of our

empirical results, the net consumer surplus is only defined if we impose a price

ceiling, p = pmax. However we can subtract the troublesome constant first

term in (20) from our definition of net consumer surplus without changing

the relative welfare performance of the regimes. In what follows we report

welfare with net consumer surplus defined as

Bn(p) = − A

1 − η
p1−η = − pq

1 − η
(21)
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To calculate the expected welfare define

W (β) =

∫ β

β

[Bn(p(β̃)) + U(β̃)]f(β̃) dβ̃ (22)

Then differentiating with respect to β we have

dW

dβ
= [Bn(p(β)) + U(β)]f(β) (23)

which, using (20), can be added to the system of differential equations. Note

the additional boundary condition W (β) = 0. Define the row vector vT =

[eU p k f W ]. Then (14), (15), (16), (18), (19) and (23) can be written as the

following system of non-linear first-order ordinary differential equations:

Z(v)
dv

dβ
= B(v) ; β ∈ [β, β] (24)

The relationship for the distribution price, d(β) = p(β) − z then completes

the set of equations for the sliding scale.

The boundary conditions are at both ends of the interval [β, β]. At β = β

we have from (12) that e = D(p)/γ (i.e. effort is at the socially optimal level

for the efficient firm). At β = β we have U(β) = 0. We solve this problem

numerically using MATLAB.15 Before presenting our results, however, we

first obtain an appropriate version of price cap regulation with which to

compare the sliding scale.

15See Appendix C; the full programs are available from the authors on request.
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4 Price cap regulation

We wish to compare the optimal scheme described above with a stylised

example of price cap regulation. While various forms of price capping ar-

rangement can be observed (for example, RPI-X regulation), their distin-

guishing feature is that the regulated price is not conditioned on realised

cost or managerial effort; our stylised price cap (which follows that in Gasmi

et al. (1994)) captures this feature.16

The stylised price cap regime is obtained as follows. A single price is

set that will satisfy the IR condition for all firms. This means setting the

price at p to ensure U = 0. Then, given the price, each firm will choose the

optimal level of effort. Given (2) and our assumptions about c(e, q; β) and

ψ(e), it is clear that when the price cap binds, the distribution and retail

prices, output, effort and cost are respectively given by

d = p− z

(p− ĉ)D(p) − α =
γe2

2

q = D(p)

e = D(p)/γ

ĉ = β − e

Note that, unlike the sliding scale, the price cap provides incentives for First-

Best effort. As efficiencyβ rises, the price arrives at the monopoly price for

16A scheme like RPI-X price capping has several additional features (in addition to the
broad differences discussed in the Introduction). These include the choice of X-factors
(Bernstein and Sappington (1999), Bernstein and Sappington (2000)), various cost pass-
through dispensations that regulators may allow, matters of tariff rebalancing that might
take place in a multi-product monopoly (Armstrong et al. (1995)) and intertemporal issues
(Dobbs (2004)).
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that level of productivity and then the firm acts as an unregulated monopoly

for higher values of the productivity parameter (see Laffont and Tirole (1993),

p. 154).

5 Estimation and simulation

Having characterised the optimal form of static price regulation and a simple

price cap, we now wish to compare the welfare effects of the two using sim-

ulations. Because results here depend on the choice of parameter values, we

attempt to estimate the parameters of interest from demand and cost data

taken from electricity distribution in England and Wales. This allows our

simulations to use suitable parameter values for the industry in question and

enables us to estimate the degree of technological uncertainty (β) faced by

the regulator. We first explain our approach to estimating the demand- and

supply-sides of the model.

5.1 Method

On the supply-side of the model, we observe variable and fixed costs (αi)

separately for each REC i. From Section 4, variable distribution costs are

given by

Vi = (βi − ei)qi (25)

Effort is not observed, so an assumption about its derivation is needed. We

therefore assume that the actual regime currently in place approximates to a

price cap, i.e. RPI-X regulation. Then effort chosen by rent-maximising REC

i is given by ei = qi/γ.
17 Substituting into (25), and allowing for variation

17As noted in Section 4, price caps are distinguished by the independence of price from
realised cost and effort. As such, given (1) and (2), any price cap regime would produce
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over time, the following cross-sectional equation for average variable costs in

REC i at time τ is obtained:

Viτ

qiτ
= βiτ − qiτ

γ
(26)

Now put

βiτ = bi + uiτ (27)

where the zero-mean disturbance in (27), uiτ , is a REC-specific shock to βi

at time τ (observed by the REC).

For the demand-side, the relationship q = D(d+z) is estimated. Suppose

that we have the estimated long-run demand relationship in log-linear form:

log(qi) = ai − ηi log(pi) where ai may contain other variables, but these are

exogenous from the viewpoint of the industry regulator. Putting Ai = eai ,

we can then write

qi = D(pi) = Aip
−ηi

i (28)

for the ith REC. Here, qi represents total electricity demand for REC i and

ηi is the absolute value of the long-run price elasticity of demand for this

REC. Notice that since Ai and ηi are different for each REC we construct a

different sliding scale for each REC.

5.2 Estimation results

5.2.1 Estimation of average variable costs

Equations (26) and (27) represent a static model of average variable costs

to be estimated for electricity distribution in England and Wales. Letting

the effort level given by this equation. It is, therefore, reasonable to use data from actual
practice to estimate our price cap model.
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yi = Vi/qi, ξ = −(1/γ), then (26) and (27) can be written as

yiτ = bi + ξqiτ + uiτ (29)

which can be estimated by least squares dummy variables.18,19 The data set

covers the period 1990/91 to 1999/2000 and thus, spans the period since

privatisation. Full details about the data are given in Appendix D.

Over the historic period many other factors are likely to have impacted

on average operating costs including the severity of the regulatory regime,

ownership changes amongst the RECs, changes in environmental legislation,

and so on. Failure to include these may produce biased estimates of the

desired coefficients. This problem is primarily dealt with by use of group

effects (i.e. dummy constants for each REC) plus an allowance for time

effects. Two approaches are considered: time dummy variables and a time

trend. In addition, in order to check the (derived) linearity of (29), both

approaches test for the presence of a squared term in output (q2). The

general model is therefore:

yiτ = bi + ξqiτ + κq2

iτ + REC effects + time effects + uiτ (30)

18We assume that E(qiτ , uiτ ) = 0, for unbiasedness when estimating (29). Since shocks
to qiτ must come from the demand-side of the model, and since we interpret uiτ as a
supply-side shock, unbiasedness would arise from demand and supply shocks being un-
correlated. In general, this seems reasonable. Another potential source of bias could be
output measurement error. To the extent that our output data are collected to satisfy
regulatory, as well as private, requirements (see Appendix D), we feel that scrutiny of
measured/reported figures will have helped to address this.

19Our procedure estimates a confidence interval for γ, while we have assumed the regula-
tor knows γ with certainty in the model (the same is true for η below). This suggests that
the procedure would be appropriate for a more complex setting where, say, γ is also private
information. However, to the extent that a more complex setting need not qualitatively
alter our results (see n. 11), we believe our estimating procedure remains valid.
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where ‘time effects’ are either time dummies or a time trend.

The results for the general model with time dummies are presented as

specification C1 in Table 1. The coefficient for q has the expected sign and is

significant at the 5% level. The coefficient for q2 also has the expected sign

but is insignificant at standard significance levels. In addition, the equation

fails the two diagnostic tests for functional form (RESET) and normality.

The results from removing the q2 variable are presented as specification C2

in Table 1. As expected the coefficient on q falls but remains significant at

the 1% level and the normality test is now passed at the 5% level. However,

the RESET test is still not passed at conventional levels of significance.

The results for the general model with the time trend are presented as

specification C3 in Table 1. Again the coefficient on q has the expected sign

and is significant at the 5% level. The coefficient for q2 also has the expected

sign and is significant at the 10% level. The time trend is not significant at

conventional levels. For this equation the functional form test is passed at

the 5% level, but there is evidence of non-normality. When the q2 term is

removed—specification C4 in Table 1—both the RESET and the normality

tests are passed at the 5% level. In addition the q coefficient remains very

significant with the expected sign, while the time trend, although negative

as expected, is very insignificant. Overall, this specification ensures that the

important diagnostic tests for our specification of (1), ψ(e) and f(β) are

passed. Accordingly, it is the one used in the simulations below.

Table 1 about here

The final step is to calculate the range of uncertainty faced by the reg-

ulator when seeking to assess each REC’s cost; this is something that our
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estimation approach allows us to consider. Equation (26) takes the value of

γ as fixed so we focus on the uncertainty surrounding the βis. These are

found from the standard error estimates of the REC effects in model C4

and are presented in columns (3)–(6) of Table 3 at the end of this section;

these present the range of uncertainty for 95% and 99% confidence intervals

(Ranges 1 and 2 respectively). These can be used to construct upper and

lower bounds for each βi. Thus, in the case of REC 1 for example, the regu-

lator can estimate β1 to be 2.58. However, with 95% confidence this will fall

between 2.00 (a shock that lowers the REC’s costs) and 3.17 (implying an

adverse shock to costs). Naturally, the 99% confidence intervals take account

of even greater potential shocks to costs.

5.2.2 Estimation of electricity demand

Estimation of (28) requires specification of the exogenous variables that are

likely to have affected regional electricity demand in England and Wales. One

approach would be to estimate a separate demand function for each company,

but this would require a lengthy time-series for each of the required variables.

Instead, we exploit a panel of data on regional electricity demand. The panel

covers all twelve RECs for the period 1982/83 to 1996/97. We estimate the

following long run panel model:

log qiτ = ai+(ω+δi) log piτ +σ log hiτ +ζ log qiτ−1+REC effects + time effects

where log qiτ is the logarithm of electricity demand for each REC, log piτ is

the logarithm of the real price of electricity, and log hiτ is the logarithm of

real GDP in region i at time τ .20 As with the cost function, two ways of

20A more general model allowing for a different income elasticity of demand for each
REC could have been employed. However, given the nature of the simulation exercise
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incorporating the time effects were initially considered: either time dummies

or a time trend. In addition, given the longer time series available for the

demand estimation a lagged dependent variable was included. The estimated

coefficients are given in Table 2 and the implied long run elasticities are

reported in Table 3 (column 8).

Table 2 about here

Specification D1 incorporates time dummies whereas specification D2 in-

corporates the time trend. The results for D2 are poor, failing the serial

correlation and the functional form (RESET) tests. Moreover, the price elas-

ticity estimates are poorly defined. Therefore the model with a time trend

is not considered further. However, for specification D1 the price elasticities

are generally well defined, other than that for REC 8 where the coefficient on

log p8 is positive but very insignificant. In addition, specification D1 passes

the serial correlation and RESET tests, but there are some problems with

non-normality. Therefore, a number of outliers were identified and dummy

variables included in the model, with the results presented as specification

D3 in Table 2. The inclusion of the dummies solves the non-normality prob-

lem with all other diagnostic tests passed. Again the price elasticities are

generally well defined other than that for REC 8. Thus, to ensure η > 0 in

this case, the long run price elasticity for REC 8 was constrained to -0.05

and the results presented as specification D4 in Table 2. This passes all di-

agnostic tests, with the test for the imposed price elasticity accepted by the

data. Moreover, all coefficients are significant at the 5% level other than the

and the limited number of observations a constant income elasticity across all RECs was
assumed.
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price coefficient for REC 10, which is significant at 14% only. In addition

specification D4 has sensible income and price elasticity estimates with the

long-run price elasticities ranging from -0.05 for REC 8 to -1.15 for REC 12.

Therefore the coefficients from specification D4 are used below. A summary

of all the parameter values needed for our simulations is given in Table 3.

Table 3 about here

5.3 Simulation results

We have performed simulations and welfare comparisons for each REC (Table

4). However, it is useful to begin by considering a given REC in more detail.

Thus, Figures 1 to 4 display results for a representative REC (REC 1). As

described above, we design a sliding scale for two possible ranges of β: a

‘narrow’ range, where β is assumed to lie within a 95% confidence interval of

the estimated value (i.e. Range 1), and a ‘wide’ range, where β is assumed

to lie within a 99% confidence interval of its estimated value (i.e. Range

2), thereby capturing 99 percent of the possible values of β. These ranges

represent the regulator’s uncertainty as to the true value of β. In the figures

we compare the sliding scale, stylised price cap and First-Best regimes for

REC 1 for the narrow range; similar figures, qualitative results and discussion

can be provided for the wide range and for all the RECs.

To begin, Figure 1 depicts the sliding scale computed for REC 1. As

explained earlier, this is increasing in the REC’s marginal cost and ranges

from a virtual price cap to almost complete cost-reimbursement as this cost

increases. As a result, depending on its observation of β, the REC can select

a price-cost combination from the menu offered. As is common in these

models, the convexity of the sliding scale means that it can be approximated
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by a menu of linear contracts linking final price to an agreed share of marginal

cost to be borne by the firm.

Despite the sliding scale rising as conditions render the REC less cost-

efficient, Figure 2 demonstrates that the overall transfer (ρ = U + ψ(e))

from consumers to the firm, still falls as β rises. This is further confirmed

in Figure 3 which depict, inter alia, rent and cost-reducing effort under the

sliding scale regime. Rent falls as β rises (as required by IC), with effort also

falling in order for the regulator to extract rent from the more efficient of the

potential RECs.21

Figure 3 also contains important information relevant to the welfare com-

parison between the sliding scale and the alternative regimes we consider: the

stylised price cap and First-Best (full-information) pricing. Thus, while rent

under the latter scheme is clearly zero, we can see that it is higher under

the price cap than either of the others. The reason for this is that the price

cap makes no adjustment to efforts in order to extract rent from RECs if the

REC experiences a low realisation of β: the REC is a residual claimant of

any cost savings. The figure also confirms (as we have already seen) that ef-

fort, which is the same under the First Best and the price cap, will be higher

in these regimes compared to the sliding scale; i.e. ceteris paribus firms will

work harder to push down costs than under the sliding scale. Under the price

cap, this again reflects the added incentive to cut costs.

Our final figure (Figure 4) compares distribution prices under the three

regimes. Naturally, the First-Best price is lowest (and increases with β),

reflecting the regulator’s ability to force down observable costs and match

prices to them. Similarly, the price under the stylised price cap is highest, in

21Lower effort from high-β RECs means that low-β firms who mimic need to be reim-
bursed for smaller levels of disutility of effort.
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order to cover the REC’s highest expected cost (within the relevant β-range).

The sliding-scale price lies between the two, again reflecting the regulator’s

desire to trade rent for cost-reducing incentives.

For our estimated parameter values the sliding-scale price in fact closely

tracks the First Best which suggests that the welfare outcome of the sliding

scale should not be too far away from the optimal welfare. To quantify the

welfare effects, we examine the benefits of sliding scale versus the stylised

price cap in terms of the following measure:

G =
wel(ss) − wel(pc)

wel(fb) − wel(pc)
(31)

where wel(i), i = ss, pc, fb is the social welfare under the sliding scale, price

cap and First-Best regimes respectively. Thus, since wel(fb) > wel(ss) >

wel(pc), G ∈ (0, 1). G is a measure of how much better the sliding scale

regime is in relation to the price cap in solving the asymmetric information

problem. Our results for all twelve RECs are contained in Table 4. For each

range, it is apparent that the welfare gains from the sliding scale vary some-

what, although the average gains are appreciable. Thus, given asymmetric

information, the Range 1 sliding scale makes up roughly 55% (on average) of

the welfare loss under the price cap. As anticipated above, this improvement

increases (to 63% on average) as we move to the wider Range 2: when the

regulator seeks to cover greater productivity differences, the price cap rises

and the sliding scale’s performance improves. An implication of this is that

smaller benefits will accrue to the sliding scale if the regulator designs policy

for only a narrow range of possible efficiencies. As explained above, the wel-

fare gain comes about because the sliding scale allows the regulator to trade

rent and productivity in a way that the price cap prevents. When comparing

the values of G across RECs, it is notable that the smallest gains tend to
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be associated with small elasticities of demand (RECS 8 and 10) because in

these cases the higher distribution price in the price cap regimes depresses

the consumer surplus by less. As a consequence of this the sliding scale price

follows the price cap more closely and in fact very closely for REC 8 where

the elasticity is almost zero.

Table 4 about here

6 Conclusions

We have shown how a sliding scale regulation scheme linking the regulated

price to observed marginal cost can be constructed. Data from the twelve

UK RECs (as they were called during our data period) have been used to

estimate the parameters needed to simulate this scheme and to support the

functional forms used to implement it. Unlike previous attempts to calibrate

optimal regulatory mechanisms, the use of panel estimation allows us to gain

some measure of the degree of technological uncertainty facing the regulator

when seeking to ascertain firms’ costs. Comparisons with a stylised price

cap regime for electricity distribution in England and Wales suggest that

significant welfare gains are obtainable (as also confirmed by Gasmi et al.

(1994)), especially when the regulator designs both schemes for almost every

conceivable realisation of the unobserved productivity parameter and the

price elasticity of consumer demand is high.22

Our results are significant in the light of the UK debate surrounding price

regulation and the provision of incentives in the utilities, including the focus

22In a sense, we have underestimated the gains from incentive contracts; increasing the
space of characteristics unknown to the principal would be expected to increase these
welfare gains.
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of our study: the electricity industry. As various consultations regarding

electricity distribution price reviews make clear (OFFER (1999a), OFFER

(1999b), OFGEM (2004b)), regulators acknowledge facing notable informa-

tion asymmetries when setting prices (before and after investing consider-

able time and effort to minimise these). It is therefore important to consider

whether benefits might accrue from offering firms a choice of price-cost com-

binations (in the presence of such asymmetries), as opposed to prescribing a

particular price cap. It is also interesting that the electricity regulator has

proposed a sliding scale to cover the costs of distributors’ capital expendi-

ture (while retaining an overall RPI-X price cap). Given the strengths that

we (and others) have found in optimal price regulation, such developments

appear to have merit; it will be interesting to examine the effects of this

proposal as it is rolled out.

We have compared the sliding scale with a stylised price cap in terms of

their effects on overall economic welfare. Pollitt (2005) (p. 5) lists several ad-

ditional criteria that regulatory proposals should satisfy and it is interesting

to consider briefly how the sliding scale performs against some of these (see

also Bauer et al. (1998); CEPA (2003)). Arguably, the sliding scale scores well

in terms of criteria such as transparency and consistency with economic the-

ory. The robustness of the empirical methodology we have adopted is sound

though (as Pollitt notes) data are not always forthcoming in this area; how-

ever, Pollitt argues for a panel approach to OFGEM’s benchmarking so our

implementation of the sliding scale may satisfy this interpretation of the cri-

terion. Other criteria involve practical relevance, capture of industry-specific

factors and low regulatory burden. These raise an interesting question about

the optimal mix of ingredients for determining regulated prices. Until now,

we have interpreted the sliding scale as a potential approach to price set-
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ting once the regulator has collected information from the industry. Yet, its

ability to handle asymmetric information suggests that its use might create

the need for less information to be collected. Whilst it is always desirable to

attain a full information outcome, regulatory experience suggests that this

is costly, time-consuming and impossible.23 Thus, implementing the sliding

scale at an earlier stage in the review process may reduce the regulatory

burden compared to OFGEM’s current approach, though possibly at the ex-

pense of capturing some industry-specific factors. On this interpretation, the

decision to implement a sliding scale relates not only to the potential avail-

ability of welfare gains, but also to the potential trade-off between these two

objectives.

There are several ways in which our paper would be extended. Some

might be expected to weaken our results while others may strengthen them.

Two complications in the former category are dynamic interaction between

the regulator and the firm, and the challenges raised by regulating conglomer-

ate utilities. Whilst acknowledging the superiority of sliding scale regulation

in a static single-product context such as ours, Mayer and Vickers (1996) ar-

gue that relaxing these assumptions would favour price capping. The reasons

for this are that cost-sharing dampens cost-reducing incentives so that, in or-

der to achieve the efficiencies available under price capping, the regulatory

lag would have to be lengthened which may in turn increase the regulator’s

time inconsistency problem. Meanwhile, multiple cost centres within one

utility make is harder to gain sufficient information about the full range of

productivity parameters along which the sliding scale must be defined. In

contrast, the price cap only requires detailed knowledge about the least pro-

23Interestingly, OFGEM’s assessment of its recent distribution price review (OFGEM
(2005)) acknowledges issues in relation to data collection and workload, and considers the
scope for a lower volume consultation exercise in future.
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ductive firm (although some knowledge of the range is presumably necessary

in order to identify this firm). These are clearly important areas for future

research.

In other respects, our model may actually have favoured price cap regu-

lation. Thus, for example, we have ignored issues of quality regulation and

the uncertainty about costs or demand that both regulator and firm might

face after having designed and selected from the sliding scale menu respec-

tively. In the former case, the price cap’s sharp incentives for cost-reduction

are often claimed to be damaging (see Armstrong et al. (1994)), while on the

latter, Burns et al. (1995) suggest that the sliding scale provides for a suit-

able sharing of any risk between the parties. A further issue, raised by the

Utilities Act 2000 concerns distributional matters between the regulated firm

and its customers. The Act places a prior duty on regulators to design policy

with consumer interests foremost in mind (i.e. to place additional weight on

consumer surplus in our model). This is likely to increase the welfare gains

available from the sliding scale because, as we have seen, it allows regulators

to adjust prices (and efforts) in order to extract rent from the firm. This

does not happen with price caps, where the need to ensure sustainability of

the firm guarantees substantial rents in the event that the firm has low costs.

It seems clear additional research can help identify the most appropriate

method of regulating utilities prices. In the meantime, our results suggest

that sliding scale regulation may prove a useful tool. In addition, we have

shown how a combination of theory and estimation-based simulation may be

useful in evaluating the available regulatory alternatives.
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Appendix

A The First-Best solution

To solve the program in Section 2, let ν ≥ 0 be the shadow price associated
with the IR constraint. Define the Lagrangian

L(e, q) = B(q) −R(q) + U(e, q) + ν[R(q) − C(e, q) − ψ(e)]

= B(q) − C(e, q) − ψ(e) + ν[R(q) − C(e, q) − ψ(e)] (A.1)

The Kuhn-Tucker first-order conditions are

e : ψ′(e) = −Ce (A.2)

q : B′(q) = (1 + ν)Cq − νR′(q) (A.3)

CS : νU = 0 (A.4)

Equation (A.2) equates the marginal disutility of effort with its marginal
benefit and, similarly, (A.3) equates the marginal benefit of output with its
marginal cost. Equation (A.4) is the complementary-slackness condition.
Using the fact that the gross consumer surplus is defined by

B(q) =

∫ q

0

P (q′) dq′ (A.5)

we have that B′(q) = P (q). Using this result (A.3) can be written

L =
p− Cq

p
=

ν

(1 + ν)η
(A.6)

where L is the Lerner index and η = −pD′/q is the absolute value of the
elasticity of demand. For the IR constraint to be satisfied at positive levels
of effort we must have p > Cq. Hence, from (A.6), ν > 0 and, from the CS
condition, U = 0; i.e. the IR constraint binds. Solving (A.6), U(e, q) = 0,
p = P (q) gives e, q and p at the First-Best.

B A note on form of the cost function

The numerical implementation of the sliding scale requires functional forms
for D(q) and f(β). We have already commented on these in the text. In
addition, we have restricted the distributor’s cost function to be linear in
effort and output and the disutility of effort function to ψ(e) = γe2/2. Each
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of these requires comment.
A more general version of (1) than the one we have used would be

C = α+ [β − φ(e)]q (B.7)

where φ(0) = 0, φ′ > 0, φ′′ ≤ 0. Using a more general ψ(e) function and
assuming that the price cap is in place (as does our empirical procedure), a
rent-maximising distributor would choose e such that

ψ′(e) = φ′(e)q (B.8)

Expanding as a Taylor series and using φ(0) = ψ(0) = 0 we have

ψ(e) = b0e+
1

2
b1e

2 + · · · (B.9)

φ(e) = a0e+
1

2
a1e

2 + · · · (B.10)

Equation (B.8) then becomes

b0 + b1e = (a0 + a1e)q (B.11)

with solution e = e(q). Under the assumption that zero effort corresponds
to zero output (e(0) = 0) we have that b0 = 0 and hence from (B.11)

e(q) =
a0

b1
q + terms in q2 and higher

By appropriate choice of units we can put a0 = 1 and in the notation of the
model we have that b1 = γ. Using this, the average variable cost for REC i
at time t is

Vit

qit
= βit − q

γ
+ terms in q2 and higher (B.12)

Our estimation procedure tests (B.12) and finds no support for including the

quadratic terms in output. Hence, ψ(e) = γe2

2
and φ(e) = e are consistent

with our data.

C Details of the simulation procedure

We analyse the system of equations in Section 4 using a series of MATLAB
subroutines. The structure of our procedure is as follows:
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1. For a given value of U(β) = U solve the equations

(p− ĉ)D(p) − α = U +
γ

2
e2

e = D(p)/γ

ĉ = β − e

k =
D(p)

D(p) + (p− ĉ)D′(p)

2. Given v = v(U) and W (β) = 0, solve the system of differential equa-
tions (24). This gives trajectories for v as functions of U . In particular
we get U(β) = θ(U).

3. Solve θ(U) = 0 to obtain the initial boundary value U .

D Data sources

At privatization, the electricity industry of England and Wales was organised
into twelve regional electricity companies (RECs) each having an exclusive
licence to distribute electricity to customers in a specific geographical area.
Measures were taken to ensure that even if the RECs were taken over by new
owners, separate accounts would be kept of the regulated components of the
businesses thereby ensuring a consistent record for regulatory purposes. It is
only since privatization that electricity distribution has been subject to price
capping regulation and, since equation (30) depends on the impact of such
regulation, we are confined to the period since the start of the 1990s for the
cost function estimation.

Two alternative sources of data are available for cost estimation. The
Office for Electricity Regulation (OFFER—now part of OFGEM) conducted
an analysis of regulatory accounts in the recent review of public electricity
suppliers (OFFER (1999a)) This is a detailed investigation of accounting
procedures and attempts to adjust the accounts for differences in treatment
of a large number of items. Unfortunately, the analysis only extends back
to 1993, and without detailed information of the sort only available to the
regulator, it is impossible to make appropriate amendments to previous data.
In addition certain procedures adopted by OFFER are disputed by the in-
dustry, so that to date there exists no agreed reconstruction of the accounts.
The alternative is to take the collected raw accounts as made available by the
Centre for Regulated Industries (see Board (1999)). These are available from
1990/91 to 1999/2000, and provide details of distribution operating costs and
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amounts of electricity distributed. This gives a total of ten years of data are
available from this source. In view of the longer data set and minimum con-
sistency imposed by the electricity legislation, we based our analysis of costs
on the published accounts. In all 96 usable observations were available.

Electricity demand data were taken from the Centre for Regulated In-
dustries and Handbooks of Electricity Supply Statistics. GDP data for each
REC area were obtained from Business Strategies Limited (BSL).24 This se-
ries was obtainable back to 1982/83. Therefore, the dataset covers each REC
for the period 1982/83 to 1996/97.25 The nominal electricity prices for each
REC were based on the prices for representative cities within each REC area
taken from various issues of the Digest of UK Energy Statistics (DUKES).
The real electricity prices were computed by deflating the nominal prices for
each REC by the RPI. The twelve RECs are numbered as follows:

No. REC
1 LEB
2 SEEBOARD
3 Southern
4 SWEB
5 Eastern
6 East Midlands
7 MEB
8 SWALEC
9 MANWEB
10 Yorkshire
11 Northern
12 NORWEB
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Table 1: Electricity average variable distribution cost estimates
Variable C1 C2 C3 C4
Constant 3.2143** 2.1493** 3.9451** 2.6344**
q -12.2925** -4.4067** -16.7358** -6.5532**
q2 14.3202 18.7752*
Time trend 0.0048 -0.0003
No. of REC dums 11 11 11 11
No. of Time dums 9 9
Diagnostics

Degs. of freedom 97 98 105 106
Adjusted R2 0.674 0.671 0.615 0.606
Amemiya pred. -4.42 -4.41 -4.31 -4.29
Akaike info. -1.58 -1.58 -1.47 -1.46
RESET(1) F(1,96) = 14.79 F(1,97) = 13.62 F(1,104) = 3.85 F(1,105) = 3.74
Normality χ2

2 = 10.68 χ2
2 = 5.59 χ2

2 = 7.58 χ2
2 = 5.25

Test of zero restrictions on:
All variables F(22,97) = 12.20 F(21,98) = 12.53 F(14,105) = 14.55 F(13,106) = 15.11
REC dums F(11,97) = 6.16 F(11,98) = 6.17 F(11,105) = 5.77 F(11,106) = 5.58
Time dums F(9,97) = 3.08 F(9,98) = 3.19

Notes: [1] All equations are estimated in LIMDEP 7. [2] Time period is 1990/01–
1999/2000. [3] t-statistics and probabilities are based upon standard errors corrected
for heteroskedasticity. [4] * and ** indicate that a coefficient is significantly different
from zero at the 10% and 5% levels respectively. [5] Bold type indicates a failure of a
diagnostic test at the 5% level.
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Table 2: Electricity demand model estimates by REC
Variables D1 D2 D3 D4
log h 0.1868** 0.1626** 0.1482** 0.1606**
log p1 -0.2391** -0.0727** -0.1885** -0.2513**
log p2 -0.1319* 0.0703 -0.0911 -0.1640**
log p3 -0.1714** 0.0224 -0.1333** -0.2016**
log p4 -0.1186* 0.0605 -0.0853 -0.1473**
log p5 -0.2280** -0.0282 -0.1836** -0.2555**
log p6 -0.1905** 0.0456 -0.1419* -0.2267**
log p7 -0.1802** 0.0360 -0.1383** -0.2152**
log p8 0.0438 0.2381** 0.0800 -0.0115R
log p9 -0.1644 0.0683 -0.1174 -0.1996**
log p10 -0.0127 0.2218* -0.0435 -0.1220
log p11 -0.1100 0.0786 -0.1309** -0.1959**
log p12 -0.2335** -0.0080 -0.1862** -0.2659**
Time trend 0.0005
log q(−1) 0.7426** 0.7333** 0.7850** 0.7694**
Constant -0.5909** -0.9731** -0.4803** -0.3903**
Dum REC 8:1988/89 0.0279** 0.0277**
Dum REC 10:1984/85 -0.0382** -0.0365**
Dum REC 10:1989/90 0.0271** 0.0289**
Dum REC 10:1990/90 -0.0564** -0.0548**
Dum REC 11:1984/85 0.0279** 0.0278**
Dum REC 11:1989/90 -0.0411** -0.0409**
No. of REC dums 11 11 11 11
No. of Time dums 13 13 13
Diagnostics

Degs. of freedom 129 141 123 124
Adjusted R2 0.998 0.997 0.999 0.999
Amemiya pred. -8.55 -8.22 -8.92 -8.92
Akaike info. -5.72 -5.38 -6.09 -6.09
Error autocorr(1) F(1,117) = 3.52 F(1,128) = 10.05 F(1,111) = 2.08 F(1,112) = 1.87
RESET(1) F(1,128) = 2.00 F(1,140) = 4.41 F(1,122) = 1.67 F(1,123) = 0.62
Normality χ2

2 = 12.21 χ2
2 = 3.37 χ2

2 = 0.08 χ2
2 = 0.48

Test of zero restrictions on:
All variables F(38,129) = 2260.6 F(26,141) = 2223.7 F(44,123) = 2897.9 F(43,124) = 2652.4
REC dums F(11,129) = 2.76 F(11,141) = 2.36 F(11,123) = 3.30 F(11,124) = 3.22
Time dums F(13,129) = 6.21 F(13,123) = 9.27 F(13,124) = 12.67
Test of coefficient restrictions:
Against D3 F(6,168) = 15.56 F(1,168) = 2.26

Notes: [1] All equations are estimated in LIMDEP 7. [2] Time period is 1982/83–1996/97.
[3] t-statistics and probabilities are based upon standard errors corrected for heteroskedas-
ticity. [4] * and ** indicate that a coefficient is significantly different from zero at the
10% and 5% levels respectively. [5] ‘R’ for REC 8 (in D4) indicates a constrained
coefficient—see Section 5.2.2. [6] Bold type indicates a failure of a diagnostic test at the
5% level. [7] The absolute values of the estimated long-run price elasticities are given in
Table 3 (column 8). [8] The estimated long-run income elasticities are 0.73, 0.61, 0.69
and 0.70 for models D1, D2, D3 and D4 respectively.
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Table 3: Summary of parameter values
REC bi s.e. Range 1 Range 2 γ ηi Ai zi αi

(95% c.i.) (99% c.i.)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 2.58 0.30 2.00 3.17 1.81 3.36 1.50 1.09 3.27 5.6 0.78
2 2.32 0.26 1.80 2.84 1.63 3.01 1.50 0.71 2.48 5.6 0.60
3 2.73 0.40 1.94 3.53 1.68 3.79 1.50 0.87 3.96 5.6 1.18
4 2.19 0.18 1.82 2.56 1.70 2.67 1.50 0.64 1.74 5.9 0.58
5 3.00 0.45 2.11 3.89 1.82 4.18 1.50 1.11 4.91 5.5 0.82
6 2.64 0.36 1.93 3.35 1.70 3.58 1.50 0.98 3.73 5.7 0.93
7 2.61 0.35 1.90 3.31 1.68 3.54 1.50 0.93 3.64 5.7 0.87
8 2.03 0.16 1.72 2.34 1.62 2.44 1.50 0.05 1.13 6.0 0.63
9 2.19 0.25 1.68 2.69 1.52 2.85 1.50 0.87 2.70 6.3 0.72
10 2.48 0.33 1.83 3.12 1.62 3.33 1.50 0.53 2.87 5.9 0.63
11 2.14 0.21 1.72 2.57 1.58 2.70 1.50 0.85 2.15 6.0 0.46
12 2.63 0.32 1.99 3.28 1.78 3.48 1.50 1.15 3.69 5.6 0.73

Notes: Input price (z) is in pence/kWh and is defined for REC i as zi = pi−di,
where pi is the consumer price of electricity and di is the distribution price.
A unit of output (A) is in 1010 kWh/year. Thus, if p1 = 7.3p/kWh, annual
revenue for REC 1 would be d1 × q1 = (p1 − z1) × A1 × p−1.09

1
× 1010 =

1.7 × 3.27 × 7.3−1.09 × 1010pence ≈ £64m. Further, αi above, and rent and
transfers in the figures that follow, are measured in £102m per year.
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Table 4: Welfare gains from the sliding scale
REC G for Range 1 G for Range 2
1 86% 89%
2 41% 55%
3 48% 54%
4 37% 51%
5 82% 86%
6 76% 81%
7 69% 76%
8 0.8% 2.1%
9 62% 70%
10 18% 37%
11 55% 65%
12 88% 90%
Average 55% 63%
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Figure 1: Sliding Scale for REC1. 95% c.i. for β. NOTE: Units for all
graphs are: distribution price, p/kWh; cost and rent, £100m per year.
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Figure 2: Transfer for REC1. 95% c.i. for β
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Figure 3: Rent and Effort for REC1. 95% c.i. for β.
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