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Rationalizable voting

Tasos Kalandrakis
Department of Political Science, University of Rochester

When is a finite number of binary voting choices consistent with the hypothe-
sis that the voter has preferences that admit a (quasi)concave utility representa-
tion? I derive necessary and sufficient conditions and a tractable algorithm to
verify their validity. I show that the hypothesis that the voter has preferences
represented by a concave utility function is observationally equivalent to the hy-
pothesis that she has preferences represented by a quasiconcave utility function,
I obtain testable restrictions on the location of voter ideal points, and I apply the
conditions to the problem of predicting future voting decisions. Without knowl-
edge of the location of the voting alternatives, voting decisions by multiple voters
impose no joint testable restrictions on the location of their ideal points, even in
one dimension. Furthermore, the voting records of any group of voters can always
be embedded in a two-dimensional space with strictly concave utility representa-
tions and arbitrary ideal points for the voters. The analysis readily generalizes to
choice situations over general finite budget sets.
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1. Introduction

What can we learn about individual voter preferences on the basis of data consisting of
a finite number of binary choices? Is it possible to deduce whether the voter has pref-
erences represented by a utility function that rationalizes these choices? Without re-
strictions on the shape of the utility function, finite voting data impose minimal testable
restrictions that are no stronger than the familiar cyclic consistency of choices. However,
I show in this paper that concavity or its variants impose significant testable restrictions
on observed voting choices.

I assume a spatial framework such that voters are confronted with a finite number
of choices between two alternatives drawn from a finite-dimensional Euclidean policy
space. I consider the assumptions that each choice indicates strict or weak preference
separately and develop rationalizability criteria for each of the two interpretations of
the data in the voting record. Accordingly, I derive necessary and sufficient conditions
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so that the voting record is rationalized by a concave utility function and by a quasicon-
cave utility function. I show that finite voting records do not allow us to discriminate
between the hypothesis that voters have (strictly) concave utility representations and
the hypothesis that the voters have (strictly) quasiconcave utility representations. Yet,
unlike the classical revealed preference theory of the consumer, the testable restrictions
that emerge due to concavity and its variants extend well beyond the cyclical consis-
tency of the choices in the voting record.

The rationalizability conditions I derive can be verified on a computer using a
tractable algorithm that involves a finite sequence of standard linear programming rou-
tines. I apply these conditions to test the hypothesis that voter preferences admit sa-
tiation at candidate ideal points and to predict future voting choices. The assumption
that voting data arise from the maximization of a (quasi)concave utility representation
generates nontrivial testable restrictions on the location of voter ideal points, yielding a
promising route for the nonparametric estimation of these points.

Estimates of voter ideal points that rely on parametric restrictions on voters’ util-
ity representations are now routinely obtained using probabilistic choice models and
data from past voting decisions (e.g., Poole and Rosenthal 1985, Heckman and Snyder
1997). Unlike these techniques, which simultaneously estimate both the voters’ utility
functions and the location of the voting alternatives, the nonparametric tests developed
in this paper require knowledge of the location of the voting alternatives in Euclidean
space. In fact, I show that if the location of the voting alternatives is unknown and unre-
stricted, then voting data impose no testable restrictions whatsoever on the joint loca-
tion of voter ideal points, even if the space of alternatives is one-dimensional. For any
arbitrary set of ideal points for the voters and for any record of voting decisions (yes or
no) by these voters on any finite number of choice situations, it is possible to simulta-
neously locate the voting alternatives and find strictly concave utility functions for all
voters such that all voters have the prespecified ideal points and all individual voting
decisions are rationalized by these utility functions.

I also consider the possible role of intermediate assumptions regarding knowledge
of the alternatives that appear in the voting agenda to identify the location of voter ideal
points. For example, it may be known that the same alternative appears in two separate
choice situations for the voters, even though the location of the voting alternatives in
Euclidean space is unknown. I establish that such additional equality restrictions on the
voting alternatives across choice situations, coupled with (quasi)concavity of individual
voter preferences, do not jointly restrict voter ideal points in spaces of two dimensions or
higher. In particular, the voting records of any group of voters can always be embedded
in a two-dimensional space with strictly concave utility representations and arbitrarily
prespecified ideal points for these voters.

The present study is connected with a branch of the literature on the revealed pref-
erence theory of the consumer pioneered by Afriat (1967). Afriat derives necessary and
sufficient conditions that must be met by a finite number of observations of prices and
quantity choices of commodities so that these observations are consistent with indi-
vidual maximization of a monotone concave utility function. At the same time, he con-
structs the required utility representation. Varian (1982) builds on this approach to study
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the nonparametric estimation of demand. The present study follows in this tradition,
but differs from the classical theory of the consumer in that I assume finite nonconvex
budget sets that violate free disposal assumptions.

A number of other studies explore the testable implications of concavity and
monotonicity assumptions from observations of choices over nonstandard (although
not necessarily finite) budget sets (e.g., Matzkin 1991, Chavas and Cox 1993, Forges and
Minelli 2009). Finite budget sets are assumed by Chambers and Echenique (2009), who
consider the testable implications of supermodularity, assuming nonsatiated prefer-
ences. In the present study, I admit data that may contradict nonsatiation. In fact, as al-
ready discussed, given my interest in political environments in which voters are typically
assumed to have ideal points, much of the analysis focuses on tests of the hypothesis of
satiation. Nonmonotonicities (although not necessarily leading to satiation) may also
arise naturally in economic models of altruism, as recently studied by Cox et al. (2008).
Note that, while I do not assume it, I do not rule out monotonicity of preferences, and
the present analysis can be applied to the problem of a consumer facing a finite budget
set, as discussed in Section 6.

While I shed monotonicity assumptions, I do rely on convexity of voter preferences,
so the analysis is intimately related with the literature on the concavifiability of individ-
ual preferences. Kannai (1977) tackles this question for the case of continuous prefer-
ences on infinite convex sets. For my purposes, the relevant question is concavifiabil-
ity of preferences on finite sets—a question that was recently taken up by Richter and
Wong (2004) and Kannai (2005), whose results provide a departure point for the present
study. Via an application of a Theorem of the Alternative, Richter and Wong derive a
necessary and sufficient condition for the existence of a (strictly) concave utility func-
tion that represents complete and transitive preferences over finite sets. Kannai (2005)
discusses various alternative conditions that focus on the construction of the requisite
utility function. In the present study, I consider a range of possible utility representa-
tions from strict concavity to mere quasi-concavity of the rationalizing utility function.
The conditions I derive differ from those of Richter and Wong (2004) and Kannai (2005)
in that they are applicable to any partial order over a finite set of alternatives.

In addition to the connection with the extensive literature on ideal point estima-
tion using roll-call voting records that is reviewed in Kalandrakis (2006), a number of
recent studies analyze the consistency of voting choices with the assumption that the
voter’s preferences admit specific parametric utility representations. Bogomolnaia and
Laslier (2007) establish bounds on the number of policy dimensions of the policy space
that are sufficient to represent any voter preferences over a fixed number of alterna-
tives by Euclidean utility functions. They also briefly consider general convex (although
not strictly concave) preferences and independently establish a theorem related to the
embedding Theorem 5 of the present study. Degan and Merlo (2009) establish condi-
tions on observable choices over multiple elections to falsify the hypothesis that voters
with Euclidean preferences vote sincerely. Working in a discrete space of alternatives,
Schwartz (2007) shows that observed voting histories cannot refute in either direction
the hypothesis that a committee’s majority rule social preference over the finite number
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of voting alternatives in the voting record is transitive. He also provides a sufficient con-
dition on voting histories so that the committee’s preference profile over this finite set
has a single-peaked representation and a sufficient condition to refute the existence of
such a representation.

I now proceed to the analysis. In the next section, I develop notation and review
the question of rationalizability without convexity restrictions. In Section 3, I consider
the rationalization of voting records by concave utility functions. In Section 4, I analyze
how or whether the conditions derived in Section 3 can be used for the nonparametric
estimation of voter ideal points. In Section 5, I study the use of the voting record for the
purposes of prediction. I discuss how the analysis generalizes to arbitrary finite revealed
preference data in Section 6. I conclude in Section 7. All proofs are relegated to the
Appendix.

2. Rationalizable voting

A voter is confronted with a finite number m of binary choices. In keeping with the lit-
erature on roll-call voting in legislatures, I call each pairwise comparison a voting item
and index the set of voting items by M = {1� � � � �m}. The agenda for voting item j is an or-
dered pair (pj�qj), with the alternatives pj�qj drawn from a set X and assumed distinct,
i.e., pj�qj ∈ X , pj �= qj . For most of the analysis I assume a spatial framework such that
X corresponds to finite-dimensional Euclidean space, but I explicitly introduce this re-
striction only when necessary for the results. The voter’s decision on the jth voting item
is denoted by vj ∈ {yes�no}, with the interpretation that the voter votes in favor of alter-
native pj on the jth voting item when the voting decision is vj = yes and votes in favor
of alternative qj when the voting decision is vj = no. For most of the analysis prior to
my consideration of multiple voters deciding on the same agenda in Section 4.2, I repre-
sent this information more economically using a voting record V = {(yj� zj)}j∈M , which
is a collection of m ordered pairs of alternatives obtained from the voting agenda and
corresponding decisions according to the following definition.

Definition 1. The voting record V = {(yj� zj)}j∈M is generated from the agenda and
voting decisions {((pj�qj)� vj)}j∈M if (yj� zj) = (pj�qj) for all voting items j ∈M with vj =
yes and (yj� zj)= (qj�pj) for all voting items j ∈M with vj = no.

Thus, we can equivalently think of an individual voting record as an irreflexive re-
vealed preference relation V ⊂ X ×X . Any subset V ′ of V represents a restricted voting
record comprising a subset of voting items. If it is necessary to be explicit about the sub-
set of voting items M ′ ⊆M included in a restricted voting record, I use the more specific
notation VM ′ = {(yj� zj)}j∈M ′ . It will be convenient to keep track of subsets of the voting
alternatives that are contained in the voting agenda. For that purpose, for any restricted
voting record V ′, let Y(V ′) represent the set of voting alternatives that the voter voted in
favor of in voting record V ′, i.e.,

Y(V ′) = {x | (x� z) ∈ V ′}�
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Similarly, let N(V ′) denote the set of voting alternatives the voter voted against in voting
record V ′, i.e.,

N(V ′) = {x | (y�x) ∈ V ′}�
Finally, let X(V ′) denote the set of alternatives compared in the voting record V ′, so that

X(V ′) = N(V ′)∪Y(V ′)�

The following additional notation is mostly standard, but I briefly review it for complete-
ness. For any set K ⊂ Rd , I use C(K) to denote the convex hull of K. I denote the set of
extreme points of K ⊂ Rd by E(K), which is the set of all the elements of K that cannot
be written as a strict convex combination of alternatives in K. For finite K ⊂ Rd , the set
of extreme points of K, E(K), is nonempty and coincides with the vertexes of C(K). I use
|K| to indicate the cardinality of the set K, and let K \K′ denote set difference between
sets K and K′.

Upon observing a voting record V , a first question to address is whether there exists
a utility function1 such that every voting decision in V is consistent with the utility max-
imization of that function. In particular, I seek conditions for the existence of a utility
function that satisfies the following rationalizability criterion.

Definition 2. A utility function u :X → R strictly rationalizes the voting record V if
u(y) > u(z) for all (y� z) ∈ V .

The above definition rules out the possibility of indifference between any pair of al-
ternatives in any voting item. The requirement that any vote indicates strict preference
apparently maximizes the information on the voter’s preferences that can be extracted
from the voting record. It is not a particularly stringent requirement if, for example,
the following conditions hold: The space of alternatives satisfies X = Rd , voters have
“thin” indifference sets, and one of the alternatives in the agenda of each voting item is
drawn from a distribution that is absolutely continuous with respect to Lebesgue mea-
sure. Alternatively, voter indifference arises naturally in many equilibrium models of
voting when proposals are determined endogenously by a utility-maximizing agenda
setter. Thus, a less restrictive interpretation of the voting record leads to the following
weaker criterion.

Definition 3. A utility function u :X → R rationalizes the voting record V if u(y) ≥ u(z)

for all (y� z) ∈ V .

In accordance with the above definitions, I say that a voting record is (strictly) ra-
tionalizable, if there exists a utility function that (strictly) rationalizes that record. Nat-
urally, these tests are most relevant when the voter’s decisions are sincere, that is, they
reveal a true preference between the pair of alternatives compared in each voting item.

1Of course, an intermediate question is whether there exists a preference ordering that is consistent with
the voter’s choices. Since V is finite, such an ordering exists only if a utility function exists.
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This interpretation is standard in the revealed preference analysis of the consumer and
is maintained in the analysis that follows. Of course, if the voter is assumed to be a
strategic participant in a voting game, then voting decisions may not reveal a true pref-
erence because, for example, the voter believes that her vote is not pivotal and hence
does not alter the voting outcome, or because some voting items constitute only the
early stages of a sequential voting game and the voter believes that a sophisticated vot-
ing strategy (Farquharson 1969) may lead to more favorable outcomes in subsequent
voting stages. Nevertheless, the above rationalizability criteria are also applicable in cer-
tain game-theoretic voting contexts in which each voting item corresponds to a simple
voting game in which the voter’s payoff is determined by the alternative that wins the
collective vote. If the voting record data are obtained from a sequence of observations
of individual play in such games, then (strict) rationalizability tests the hypothesis that
the voter employs a weakly undominated voting strategy.

Well known arguments imply that, without any additional requirements on the ra-
tionalizing utility function, even the strongest of the above two rationalizability criteria
places weak testable restrictions on finite voting records.

Proposition 1. (i) Every voting record is rationalizable.

(ii) A voting record V is strictly rationalizable if and only if it satisfies

(A) Y(V ′) �= N(V ′) for all nonempty V ′ ⊆ V �

Part (i) is trivial since a constant function rationalizes any voting record. To see
part (ii), note that condition (A) is, in fact, the familiar acyclicity condition. In partic-
ular, (A) is necessary and sufficient to ensure that there does not exist a set of voting
items and corresponding votes that produce a chain of comparisons between voting al-
ternatives of the form x 
 x′ 
 · · · 
 x. If (A) holds, the transitive closure of the voting
record V is a strict partial order in the set of alternatives X(V ), which can be extended
to a strict linear order by Szpilrajn (1930) (e.g., Lemma 2 in Richter 1966). Since the set of
alternatives X(V ) is finite, the construction of a rationalizing utility function u is trivial.

Condition (A) can be traced to general revealed preference analyses by Arrow (1959),
Richter (1966), etc. It amounts to a finite version of Ville–Houthakker Strong Axiom
of Revealed Preference (SARP) in the context of revealed preference theory of the con-
sumer, but has significantly less bite in the context of binary voting on a finite number of
voting items. For example, a sufficient condition on the voting agenda for condition (A)
to be satisfied for all voting decisions is

(N) |X(VM ′)| > |M ′| for all M ′ ⊆ M�

Condition (N) is a mild restriction, requiring that the voting agenda is sufficiently rich
so that the number of alternatives voted on in each subset of voting items exceeds the
number of voting items in that subset. Figure 1 illustrates four voting records in two-
dimensional space, only one of which (Figure 1(a)) violates (N) and (A). In light of the
above discussion, questions about the rationalizability of voting choices become inter-
esting only under additional restrictions on voters’ preferences. I take up this analysis in
the next section.
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Figure 1. Strict rationalizability. An arrow emanating from y and pointing to z indicates
(y� z) ∈ V . (a) The voting record V = {(yj� zj)}3

j=1 violates (A) and (S). (b) The voting record

V = {(yj� zj)}6
j=1 satisfies (S′) (and (S)) with the sequence V1 = V and x1 = z6; V2 = V{1�2�3�4�5} and

x2 = z5; V3 = V{1�2�3�4} and x3 = z4; V4 = V{1�2} and x4 = z2; V5 = V{1} and x5 = z1; V6 = ∅. (c) The
voting record V = {(yj� zj)}4

j=1 satisfies (A) and violates (S) because there is no zj ∈ E(X(V )).

(d) The voting record V = {(yj� zj)}2
j=1 satisfies (S).

3. Concave rationalizations

In this section, I cast the analysis in a spatial setting by assuming that the space of al-
ternatives corresponds to the d-dimensional Euclidean space, that is, X = Rd , d ≥ 1.
I seek conditions on observed voting records that are consistent with the hypothesis that
the voter’s decisions are generated by convex preferences. I consider several variants of
this hypothesis, the strongest of which is the existence of a rationalizing utility function,
u :Rd → R, that is strictly concave:

u(λx+ (1 − λ)x′) > λu(x)+ (1 − λ)u(x′) for all x�x′�x �= x′ and all λ ∈ (0�1)� (1)

A weaker restriction is strict quasiconcavity:

ui(λx+ (1 − λ)x′) > min{ui(x)�ui(x′)} for all x�x′�x �= x′ and all λ ∈ (0�1)� (2)
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When relevant, I also consider mere concavity and quasiconcavity, which are obtained
from (1) and (2), respectively, by allowing weak inequality. The restriction to quasi-
concave utility representations has a natural place in the theory of voting. In one-
dimensional space (d = 1), strict quasiconcavity of preferences boils down to the fa-
miliar single-peakedness condition from social choice theory. Concavity is apparently
a much stronger requirement that is harder to justify in commonly constructed politi-
cal scales that represent the space of alternatives because the property is not preserved
by dimensionwise monotonic transformations of these scales. Of course, in cases in
which there is an unambiguous numerical representation of the space of alternatives
in Euclidean space, concavity has a clear interpretation in terms of the voter’s attitude
toward risk, which may justify such voter utility functions on substantive grounds.

The a priori merits of assuming concave versus quasiconcave voter preferences
notwithstanding, it turns out that it is impossible to discriminate between these util-
ity representations on the basis of finite voting records. Yet, not all voting records that
are strictly rationalizable can be strictly rationalized by a (quasi)concave utility function.
In the next theorem, I state necessary and sufficient conditions.

Theorem 1. Assume X = Rd and let V = {(yj� zj)}mj=1 be a voting record. Then the fol-
lowing conditions are equivalent.

(S) For all nonempty V ′ ⊆ V , there exists x ∈ E(X(V ′)) such that x /∈ Y(V ′).

(S′) There exists a sequence of restricted voting records {Vt}k+1
t=1 and alternatives {xt}kt=1

such that V1 = V , Vk+1 = ∅, Vt+1 = {(y� z) ∈ Vt | z �= xt}, xt ∈ E(X(Vt)), and xt /∈
Y(Vt) for all t = 1� � � � �k.

(Sc) There exists a strictly concave utility function that strictly rationalizes V .

(S′
c) There exists a concave utility function that strictly rationalizes V .

(Sq) There exists a strictly quasiconcave utility function that strictly rationalizes V .

(S′
q) There exists a quasiconcave utility function that strictly rationalizes V .

Furthermore, if d = 1, then (S) is equivalent to the following condition.

(S1) For all V ′ ⊆ V with |V ′| = 2, there exists x ∈ E(X(V ′)) such that x /∈ Y(V ′).

Of course, condition (S) implies condition (A) but it is, in fact, a significant strength-
ening of that condition. This is in contrast to standard neoclassical theory of the con-
sumer where a version of SARP acyclicity is sufficient for that consumer to have a
(strictly) concave utility representation as shown by Afriat (1967), Varian (1982), Matzkin
and Richter (1991), etc. Note that in the standard theory of the consumer, choice is re-
stricted to convex budget sets and the data do not directly contradict nonsatiation. Con-
vexity of the budget sets is relaxed by Matzkin (1991), who allows for co-convex sets (i.e.,
sets B such that Bc ∩ Rd+ is convex), Chambers and Echenique (2009), who study finite
budget sets, and Forges and Minelli (2009), who consider more general budget sets than
Matzkin (1991) but exclude finite sets due to a free disposal assumption. In the setting
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of Forges and Minelli (2009), concavity entails additional testable restrictions beyond
those required for rationalization of observed choices.2 In the present analysis, the voter
chooses from finite, certainly nonconvex budget sets, the data may violate nonsatiation,
and the additional restrictions implied by concavity are significant.

Condition (S) requires that, on the basis of any restricted voting record V ′ ⊆ V , we
cannot refute the possibility that one of the extreme points of X(V ′) is least preferred
among all alternatives in X(V ′). The necessity of (S) is straightforward, as a quasicon-
cave function minimized over a convex polytope must attain a minimum at one of the
polytope’s extreme points. Thus, as pointed out by a referee, Theorem 1 conforms with
a widely used principle in revealed preference theory by establishing that if the data do
not contradict the hypothesis that the voter has preferences represented by a (strictly
quasi)concave utility function, then we can actually obtain such a function. Before I dis-
cuss the sufficiency of condition (S), note that the condition involves identifying an ex-
treme point with the required property for each of the

∑m
h=1

(m
h

)
subsets X(V ′) ⊆ X(V )

of the voting alternatives. While this task appears daunting as the number of voting
items increases, the equivalent condition3 (S′) of Theorem 1 provides a palatable rem-
edy: It suffices to identify such extreme points for at most m restricted voting records
V ′ ⊆ V . The practical value of this equivalent version of condition (S) is that the valid-
ity of (S′) can be ascertained on a computer using standard routines via the following
algorithm.

Algorithm 1. Assume X = Rd and let V = {(yj� zj)}mj=1 be a voting record.

Step 1. Set V1 = V and proceed to Step 2 with t = 1.

Step 2. For each x ∈ N(Vt) \ Y(Vt), test whether x ∈ E(X(Vt)) until x ∈ E(X(Vt)) ∩
(N(Vt) \Y(Vt)) is found; set xt = x and proceed to Step 3. If E(X(Vt))∩ (N(Vt) \
Y(Vt)) = ∅, V does not satisfy (S).

Step 3. Set Vt+1 = {(y� z) ∈ Vt | z �= xt} and proceed to Step 4.

Step 4. If Vt+1 = ∅, V satisfies (S); else, proceed to Step 2 with t = t + 1.

It is straightforward to show that Algorithm 1 terminates with the correct conclusion
in at most m iterations. Computationally, the most demanding part of the algorithm is
the identification of an extreme point xt ∈ E(X(Vt)) in Step 2, a task that can be executed
efficiently by solving at most |N(Vt) \Y(Vt)| linear programs. As an illustration of condi-
tion (S′), consider the voting record in the example depicted in Figure 1(b), for which it
is easy to ascertain the validity of the condition with a sequence of length k= 5 <m = 6:
First V1 = V and x1 = z6; then V2 = V{1�2�3�4�5} and x2 = z5; V3 = V{1�2�3�4} and x3 = z4;

2As discussed by Chambers and Echenique (2009), concavity coupled with supermodularity jointly imply
additional testable restrictions, although neither imposes such restrictions as an individual assumption.

3Yet another equivalent statement of condition (S) that appears in previous versions is

(S′′) for all nonempty V ′ ⊆ V , there exists x ∈ N(V ′) such that x /∈ C(Y(V ′)).
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V4 = V{1�2} and x4 = z2; and, finally, V5 = V{1} and x5 = z1, at which point we clearly ob-
tain V6 = ∅.

The sufficiency of condition (S) (or (S′)) follows by an inductive proof that proceeds
by reversing the order of the algorithm described in the previous paragraph. First,
assuming the sequence {(Vt�xt)}kt=1 is available, observe that {xk} = N(Vk) (because
Vk+1 = ∅) and that xk is an extreme point of X(Vk), so that it is trivial to find a con-
cave function that assumes its minimum over X(Vk) at xk, thus strictly rationalizing
the voting record Vk. This function can then be modified by moving “outward” so as
to represent revealed preferences over X(Vk−1) by preserving the existing comparisons
among alternatives in X(Vk) and by assigning a sufficiently lower indifference contour
to the extreme point xk−1. Proceeding as above, at the tth step of the process, it is possi-
ble to strictly rationalize revealed preferences over the larger set X(Vk−t+1) by assigning
a sufficiently lower indifference contour to the extreme point xk−t+1, etc. These argu-
ments are almost identical for the proof of Theorem 2 that deals with the case of mere
rationalizability, so, to avoid duplication, I rely on Theorem 2 to prove Theorem 1 in the
Appendix.

A different simplification of condition (S) obtains in the one-dimensional case
(d = 1). Here, condition (S) is equivalent to (S1), which requires only the existence of the
requisite extreme points for pairs of voting items. In one dimension, X(V ′) has only two
extreme points for any nonempty restricted voting record V ′ ⊆ V , so that if condition (S)
fails for a restricted record V ′ = VM ′ that comprises three or more voting items, then the
condition must also fail for a further restricted voting record V{j�h} that comprises a pair
of voting items {j�h} ⊆ M ′ such that Y(V{j�h}) = E(Y(VM ′)). Intuition may suggest that
an analogous weakening of condition (S) is possible in more than one dimension by re-
quiring that this condition be applied only to subsets that comprise at most d+ 1 voting
items when d > 1. Unfortunately, this is not the case, as is illustrated in Figure 1(c) in a
two-dimensional setting: While condition (S) holds for all triplets (d + 1 = 3) of voting
items, it fails when we consider all four items in the voting record. In two or more di-
mensions, there is no bound on the number of extreme points analogous to the one that
holds in one dimension.

Theorem 1 also establishes that if there exists a quasiconcave utility function that
strictly rationalizes a voting record, then there also exists a (strictly) concave function
that strictly rationalizes that voting record. The finiteness of the voting record is clearly
necessary for this result. It is well known since de Finetti (1949) that there exist (strictly)
convex preferences that do not admit a concave utility representation, a problem stud-
ied systematically by Kannai (1977). Thus, given the asymmetric part of such prefer-
ences as a (infinite) voting record, it is not possible to recover a concave function that
strictly rationalizes it, even though there exists a quasiconcave function that does. But
when a quasiconcave utility function strictly rationalizes a finite voting record, alterna-
tives in the record are sufficiently far apart to be able to assign inferior voting alterna-
tives to sufficiently lower indifference contours and transform the original quasiconcave
utility function to a strictly concave one.

Even finite information on preferences can bar concave but allow quasiconcave rep-
resentations, and Richter and Wong (2004) provide an example of complete and tran-
sitive preferences over a set K of three alternatives with that property. That example,
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though, requires both strict preference and indifference, and indifference is ruled out
a priori when we interpret all voting decisions to reveal strict preference. This leaves
open the possibility that finite voting records may discriminate between the hypothe-
sis that the voter’s preferences are represented by a quasiconcave utility function and
the hypothesis that they are represented by a concave utility function if the voting de-
cisions may indicate indifference. Yet, if voting decisions may indicate indifference, we
can always rationalize any voting record by a concave constant utility function even if
the voter’s actual preferences cannot be represented by a concave function. Further-
more, the example of Richter and Wong (2004) involves preferences that do not admit
a strictly quasiconcave representation. As I establish in the remainder of this section, if
voting decisions may indicate indifference, then finite voting records can be rationalized
by a strictly concave utility function whenever they can be rationalized by a strictly qua-
siconcave utility function. Thus, the analysis establishes that the hypotheses of (strict)
concavity or quasiconcavity of voter preferences are observationally equivalent for any
finite voting record and either of the two rationalizability criteria I have defined.

The necessary and sufficient condition for a voting record to be rationalizable by
a strictly (quasi)concave function, turns out to be only mildly weaker than the corre-
sponding condition of Theorem 1, as I establish in Theorem 2. Furthermore, when this
necessary and sufficient condition is met, it is possible to assign strict preferences to all
pairwise comparisons in the voting record except those that are entangled in a directly
revealed (i.e., via a sequence of votes) individual preference cycle, in accordance with
the following intermediate criterion for rationalizability.

Definition 4. A utility function u :X → R almost strictly rationalizes the voting record
V if it rationalizes that record and, in addition, it strictly rationalizes the restricted voting
record4

Va = {(y� z) ∈ V | �V ′ ⊆ V such that (y� z) ∈ V ′ and Y(V ′)= N(V ′)}� (3)

When a voting record is almost strictly rationalized, indifference between any pair
of alternatives is imputed by the rationalizing function in a minimal way. As shown
in the next theorem, a voting record can be almost strictly rationalized by a strictly
(quasi)concave utility function whenever it can be rationalized by such a function.

Theorem 2. Assume X = Rd and let V = {(yj� zj)}mj=1 be a voting record. Then the fol-
lowing conditions are equivalent.

(W ) For all nonempty V ′ ⊆ V , either there exists x ∈ E(X(V ′)) such that x /∈ Y(V ′)
or there exists a nonempty V ′′ ⊆ V ′ such that N(V ′′) = Y(V ′′) ⊆ E(X(V ′)) and
Y(V ′′)∩Y(V ′ \ V ′′) = ∅.

(W ′) There exists a sequence of restricted voting records {Vt}k+1
t=1 and sets of alterna-

tives {Xt}kt=1 such that V1 = V and Vk+1 = ∅, and for all t = 1� � � � �k, Xt ⊆
E(X(Vt)), Vt+1 = {(y� z) ∈ Vt | z /∈Xt}, and either Xt = {xt} with xt /∈ Y(Vt) or Xt =
N(Vt \ Vt+1)= N(V ′

t )= Y(V ′
t ) for some V ′

t ⊆ Vt \ Vt+1 and Xt ∩Y(Vt+1) = ∅.

4Alternatively, Va is the intersection of V and the antisymmetric part of the transitive closure of V .
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Figure 2. Rationalizability and admissible cycles. An arrow emanating from y and pointing to
z indicates (y� z) ∈ V . (a) V = {(yj� zj)}4

j=1 violates (W) because the indifference contour crossing

y1� � � � � y4 cannot delineate a convex set. (b) V = {(yj� zj)}6
j=1 satisfies (W) but V = {(yj� zj)}7

j=1
does not since the nested indifference contour crossing through y1� y2� y3 cannot be ranked above
the contour crossing through y4� y5� y6.

(W ′
c ) There exists a strictly concave utility function that almost strictly rationalizes V .

(W ′
q) There exists a strictly quasiconcave utility function that almost strictly rational-

izes V .

(Wc) There exists a strictly concave utility function that rationalizes V .

(Wq) There exists a strictly quasiconcave utility function that rationalizes V .

Furthermore, if d = 1, then (W ) is equivalent to the following condition.

(W1) For all V ′ ⊆ V with |V ′| = 2, either there exists x ∈ E(X(V ′)) such that x /∈ Y(V ′)
or N(V ′) = Y(V ′).

Condition (W) requires that, on the basis of any restricted voting record V ′ ⊆ V , if
we can refute the possibility that one of the extreme points of X(V ′) is least preferred
among all alternatives in X(V ′), then we cannot refute the possibility that a subset of
extreme points of X(V ′) belonging in an indifference class are least preferred among al-
ternatives in X(V ′). An inspection of condition (W) reveals that voting records that can-
not be strictly rationalized but can be rationalized by strictly (quasi)concave functions
exhibit a particular type of violation of acyclicity, (A). To rationalize voting records that
violate (A), all alternatives that are entangled in the revealed voting cycle must be as-
signed to the same indifference contour. While this is possible in the case of Figure 1(a)
without violating the convexity requirement on the voter’s preferences, not all revealed
preference cycles can be so rationalized without violating convexity of the voter’s pref-
erences as illustrated in Figure 2. In the case of Figure 2(a), the required indifference
contour cannot delineate a convex set; in the case of Figure 2(b), two nested indiffer-
ence contours that rationalize cycles cannot be ranked in ascending order, due to the
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fact that (y7� z7) ∈ V . Clearly, if violations of acyclicity are ruled out, such as is the case
when (N) holds, then conditions (S) and (W) are equivalent.

Remark 1. If X = Rd and the voting record V satisfies (A), then (S)⇔(W).

Condition (W) is equivalent to condition (W′), which (like condition (S′)) is much
easier to verify. Indeed, a modification of Algorithm 1 can be employed to ascertain the
validity of condition (W′): the details are contained in the Appendix.

It is useful to compare conditions (S) and (W) with the following (slightly restated)
necessary and sufficient conditions of Richter and Wong for the existence of a strictly
concave function (Richter and Wong 2004, Theorem 2) that rationalizes a reflexive, tran-
sitive, and complete preference relation 
 over a finite set K ⊂ Rd .

(G′) For all Y ⊆ K such that |Y | ≤ d + 1 and E(Y) = Y , and for all x ∈ K \Y such that
x ∈ C(Y), there exists x′ ∈ Y such that x
 x′ and x′ �
 x.

Note that, since (G′) is necessary and sufficient, if the revealed preference relation, V ,
defined by the voting record can be extended to a reflexive, transitive, and complete
preference relation V ∗ ⊃ V on X(V ) that can be rationalized by a strictly concave utility
function, then condition (G′) must hold for that extension, V ∗. But condition (G′) ap-
plied to the incomplete revealed preference relation V defined by the voting record is
neither necessary nor sufficient for the existence of a strictly concave rationalizing util-
ity function. The fact that (G′) is not sufficient is illustrated with the voting record V

depicted in Figure 1(a) in the case of strict rationalizability and with the voting record
V depicted in Figure 2(a) in the case of mere rationalizability. In particular, when (W)
fails, as is the case in Figure 2(a), there does not exist a reflexive, transitive, and complete
preference relation V ∗ ⊃ V that satisfies (G′), even though V satisfies (G′). But note that
if the voting record V satisfies both (A) and (G′), then it is strictly rationalizable by a
strictly concave utility function, as is the case for the voting record illustrated in Fig-
ure 1(d). In that example, the fact that the voter reveals that (y2� z2) ∈ V ensures that (G′)
holds for any extension of V to a reflexive, transitive, and complete V ∗ ⊃ V .5 Condition
(G′) is also not necessary for (strict) rationalizability. Indeed, in typical situations, con-
dition (G′) does not hold on the basis of the information directly or indirectly6 revealed
by the voting record, as is the case in Figure 1(b) and (c). Nevertheless, a rationalizing
strictly concave utility function does exist in the case of Figure 1(b), but not in the case
of Figure 1(c).

In this section I have derived necessary and sufficient conditions that must be sat-
isfied by a voting record for it to be strictly rationalized by a (strictly) (quasi)concave
function. If the rationalizing utility function is required to be strictly quasiconcave, then
mildly weaker conditions are necessary and sufficient to (merely) rationalize a voting
record. These conclusions are summarized in Table 1. In the next section, I use these

5Richter and Wong (2004) discuss the additional acyclicity condition required to render condition (G′)
(or its counterpart, condition (G), for mere concavity) sufficient for concave rationalizability of a pair of
incomplete strict preference and indifference relations in their Remark 4, page 344, and footnote 8.

6That is, even if we consider the transitive closure of the directly revealed preferences, V .
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u need not be u is u is strictly
quasiconcave (quasi)concave (quasi)concave

There exists u that rationalizes V no restrictions no restrictions (W)
There exists u that strictly rationalizes V (A) (S) (S)

Table 1. Necessary and sufficient conditions for rationalizability of voting record V .

conditions to test the hypothesis that the voter has preferences that are satiated at some
voting alternative.

4. Ideal points

4.1 One voter, known set of alternatives

Assuming a voting record V is (strictly) rationalizable, the voter may have an ideal point,
i.e., there may exist an alternative x̂ ∈ X such that the voter strictly prefers x̂ over all
other alternatives. In particular, the evidence from the voting record V cannot refute the
existence of such an ideal point x̂ whenever V can be rationalized by a utility function
that is uniquely maximized at x̂.

Definition 5. A utility function u :X → R (strictly) rationalizes the voting record V with
ideal point x̂ ∈ X if it (strictly) rationalizes V and

u(x̂) > u(x) for all x ∈X�x �= x̂�

Armed with the above criterion, we may then inquire whether a voting record places
any testable restrictions on the location of the voter’s ideal point? Obviously, this ques-
tion has a trivial answer without any restrictions on voter preferences: If a voting record
can be rationalized, then it can be rationalized with any ideal point x̂ /∈ N(V ). On the
other hand, under convexity restrictions on preferences, the results contained in the
previous section provide a more promising approach to the problem. In fact, as I dis-
cuss shortly, the following lemma reduces the question on the nature of testable restric-
tions on a voter’s ideal point from voting data to a question of rationalizability of an
augmented voting record.

Lemma 1. Assume X = Rd , let V be a finite voting record, and assume that there exists
a strictly concave utility function u :Rd → R that (strictly) rationalizes V . If there exists
alternative x̂ ∈ Rd \N(V ) such that u(x̂) ≥ u(x) for all x ∈X(V ), then there exists another
strictly concave function ũ :Rd → R that (strictly) rationalizes V with ideal point x̂.

Thus, if the finite voting record V can be rationalized by a strictly concave function
and this rationalizing utility function assigns at least as high a utility level to an alter-
native x̂ /∈ N(V ) compared to the utility level assigned to every other alternative in the
agenda of the voting record, then we cannot reject the hypothesis that the voter has
a strictly concave utility function with ideal point x̂. Lemma 1 suggests a straightfor-
ward test for the hypothesis that the voting record V can be strictly rationalized by a
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strictly concave utility function with ideal point x̂ by testing the rationalizability of an
augmented voting record that includes |X(V ) \ {x̂}| additional voting items of the form
(x̂� z), one for each of the alternatives z ∈X(V ) \ {x̂}. Specifically, this augmented voting
record is defined as follows.

Definition 6. Given a voting record V and an alternative x̂ ∈ X , the x̂-augmented vot-
ing record is

V̂ = V ∪ {(x̂� z) | z ∈X(V ) \ {x̂}}�

By Lemma 1 and Theorem 1, there exists a strictly concave utility function that
strictly rationalizes the voting record V with ideal point x̂ if and only if the x̂-augmented
voting record V̂ satisfies (S). In Theorem 3, I state this necessary and sufficient condi-
tion as (̂S′) and show that, in fact, it is equivalent to the apparently weaker condition (̂S)
of that theorem.

Theorem 3. Assume X = Rd and x̂ ∈ Rd , and let V = {(yj� zj)}j∈M be a voting record.
Then the following conditions are equivalent.

(Ŝ) For all nonempty V ′ ⊆ V , there exists x ∈ E(X(V ′)∪ {x̂}) such that x /∈ Y(V ′)∪ {x̂}.

(Ŝ′) The x̂-augmented voting record V̂ satisfies (S) or (S′).

(Ŝc) There exists a strictly concave utility function that strictly rationalizes V with ideal
point x̂.

(Ŝq) There exists a strictly quasiconcave utility function that strictly rationalizes V with
ideal point x̂.

(Ŝ′
c) There exists a concave utility function that strictly rationalizes V with ideal

point x̂.

(Ŝ′
q) There exists a quasiconcave utility function that strictly rationalizes V with ideal

point x̂.

If d = 1, then (Ŝ) is equivalent to the following condition.

(Ŝ1) For all V ′ ⊆ V , 1 ≤ |V ′| ≤ 2, there exists x ∈ E(X(V ′) ∪ {x̂}) such that x /∈
Y(V ′)∪ {x̂}.

Condition (̂S) provides a precise set of testable restrictions on the location of the
voter’s ideal point that arises from her voting record, assuming that the voter has a
(strictly quasi)concave utility function. Of course, condition (̂S) implies condition (S).
Furthermore, as is true for Theorem 1, the one-dimensional case admits a further sim-
plification of condition (̂S). I provide a graphical illustration of the implications of
Theorem 3 in Figure 3, where I depict five voting alternatives associated with four vot-
ing items (m = 4) in a two-dimensional space. Application of condition (̂S) restricts the
voter’s ideal point, x̂, to lie outside the gray areas in Figure 3(b). Because Lemma 1 con-
cerns both strict and mere rationalizability, virtually identical arguments deal with the
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Figure 3. Ideal point restrictions. (a) Voting record V = {(yj� zj)}4
j=1; an arrow emanating from

y and pointing to z indicates (y� z) ∈ V . (b) The voter with voting record V of (a) cannot have a
(strictly) (quasi)concave utility function with ideal point that lies in the gray areas. For each x̂ in
these areas, condition (̂S) is violated for the indicated restricted voting record V ′.

case of mere rationalizability with an ideal point, and I state the corresponding result as
Theorem 6 in the Appendix.

4.2 Many voters, unknown set of alternatives

Theorem 3 (and Theorem 6 in the Appendix) establishes that finite voting records im-
pose nontrivial testable restrictions on the location of voter ideal points. Compared to
existing parametric methods for the estimation of voters’ ideal points, though, the non-
parametric tests suggested by Theorems 3 and 6 impose a significant burden on the an-
alyst, because they require knowledge of the location of the voting alternatives across
all voting items. On the contrary, most existing techniques for the estimation of voter
ideal points rely only on partial information that typically reduces to mere knowledge
of the vector of voting decisions, yes or no, of a set of voters on a collection of voting
items. In particular, these techniques simultaneously estimate both the voting agenda,
{(pj�qj)}j∈M and the voters’ ideal points.7 Given that in many voting contexts the vot-
ing agenda involves intangible issues that are hard to represent on numerical scales,8 it
is important to ask whether the testable restrictions on ideal points derived so far have
any bearing if we relax the assumption that the location of the voting alternatives in the
voting agenda, (pj�qj), is known. I devote the rest of this section to this question.

7Much of this literature bears a close relationship with item response models used in the psychometrics
literature on educational testing (e.g., see discussion in Clinton et al. 2004, p. 356) in which the data are
given by, for example, true or false responses of a number of test subjects (the analogue of the voters) on
a series of test questions, and the estimator simultaneously recovers the ability (which corresponds to the
ideal points of the voters in the roll-call analysis) of the test subjects and the discriminating power of the
items/questions on the test (which in the case of roll-call data corresponds to statistics of the location of
the two voting alternatives in the voting agenda).

8Of course there are exceptions, such as when voting takes place over financial legislation that disburses
funds in different policy areas.
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Figure 4. Illustration of Theorem 4. An example of the construction in the proof of Theorem 4
for n= 3 voters, m= 5 voting items, and ideal points that satisfy x̂1 < x̂2 < x̂3. The voting alterna-
tives are located so that condition (S1) is satisfied for any voting decisions by these voters. In this
example, the voting decisions are given by v1

j = yes for all j = 1� � � � �5 for voter 1, v2
1 = v2

3 = v2
4 = no

and v2
2 = v2

5 = yes for voter 2, and v3
3 = v3

4 = v3
5 = no and v3

1 = v3
2 = yes, for voter 3.

Recall that the voting record V = {(yj� zj)}j∈M is generated from the voting agenda
and voting decisions {((pj�qj)� vj)}j∈M if (yj� zj) = (pj�qj) when vj = yes and (yj� zj) =
(qj�pj) when vj = no for all j. First, I show that the conditions of Theorem 3 (or those
of Theorem 6) are vacuously met for all voters and for every number of issue dimen-
sions d ≥ 1 if the location of the voting alternatives that appear on the voting agenda is
unrestricted. Specifically, the following theorem holds.

Theorem 4. Let vi ∈ {yes�no}m� i = 1� � � � � n, represent the voting decisions of each of n
voters 1� � � � � n on m voting items indexed by M = {1� � � � �m}. For every d ≥ 1 and every
n-tuple of points x̂1� � � � � x̂n ∈ Rd , there exist alternatives pj�qj ∈ Rd , pj �= qj , j ∈ M , such
that for every voter i there exists a (strictly) (quasi)concave utility function ui with ideal
point x̂i that strictly rationalizes the voting record generated from the voting agenda and
voting decisions {((pj�qj)� v

i
j)}j∈M .

Note that Theorem 4 states that all possible voting decisions and all possible ideal
points for the n voters can be jointly rationalized by appropriately choosing the location
of the voting alternatives across the m voting items. That is, one choice of the location
of the voting alternatives works for all voters at the same time. In the one-dimensional
case, Theorem 4 is shown by constructing an agenda that satisfies condition (̂S) inde-
pendent of the voting decisions on this agenda. An illustration of this construction is
provided in Figure 4. In the example of Figure 4, there are five voting items and the vot-
ing alternatives pj�qj , j = 1� � � � �5, are ordered according to p1 < p2 < · · · < p5 < q5 <

q4 < · · · < q1. This arrangement ensures that all possible voting records generated from
this agenda and any voting decisions on that agenda necessarily satisfy condition (S1)
of Theorem 1. In particular, for any pair of voting items j�h with j < h, it is the case that
E(X(Vj�h)) = {pj�qj}, and it cannot be that any voter votes both for pj and for qj . Clearly,
the construction in this example can be easily generalized to arbitrary numbers of vot-
ing items. It is then a simple additional step to translate the arrangement of the voting
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alternatives around the predetermined ideal points to ensure that the added restrictions
of condition (̂S1) of Theorem 3 are not violated. In the generic case when voters’ ideal
points are distinct, this construction can be achieved while at the same time ensuring
that at least one of the voting alternatives pj�qj lies in the voters’ Pareto set for each
voting item j ∈M , as is the case in Figure 4.

Theorem 4 forecloses nonparametric estimation of agnostic (Londregan 1999) mod-
els of legislator ideal points, i.e., models in which the voting alternatives are unknowns
to be estimated along with the legislators’ ideal points. Barring knowledge of the vot-
ing alternatives, nonparametric estimation of voter preferences requires at least some
restrictions on their location for identification purposes. One such extra identification
restriction in the context of a parametric probabilistic voting model is used by Clinton
and Meirowitz (2001). They assume that the agenda of each voting item j, (pj�qj), com-
prises a proposal pj and a status quo qj , and the status quo qj+1 is equal to one of the
two alternatives pj�qj that prevailed in the vote for the jth item. With this extra re-
striction, the conclusion of Theorem 4 no longer obtains. In particular, consider an
example with m = 2 voting items, an agenda that satisfies p1 = a, q1 = b, p2 = c, and
q2 = a, and n = 3 voters with voting records V 1 = {(a�b)� (c�a)}, V 2 = {(b�a)� (a� c)}, and
V 3 = {(b�a)� (c�a)}. Note that there is no location for the three alternatives a�b� c on
the real line, so that all three voters’ records satisfy condition (S1) of Theorem 1, since
Y(V 1) = {a� c}, Y(V 2) = {a�b}, and Y(V 3) = {b� c}.9 Thus, in contrast to the conclusion
of Theorem 4, due to the restriction that p1 = q2, it is not possible to strictly rationalize
the voting record of all three voters in d = 1 dimension, a fact that leaves open the possi-
bility for nonparametric estimation of the one-dimensional probabilistic voting model.
Yet, as the following theorem shows, the identifying role of this additional restriction,
while possibly strong in one dimension, has no bite in higher dimensions.

Theorem 5 (Embedding). Let V 1� � � � � V n be the finite voting records of n voters 1� � � � � n.
For every d ≥ 2 and for every n-tuple of points x̂1� � � � � x̂n ∈ Rd , there exists a one-to-one
function f :

⋃n
i=1 X(V i) → Rd such that for every voter i ∈ {1� � � � � n}

(i) there exists a (strictly) (quasi)concave utility function ui :Rd → R with ideal point
x̂i that almost strictly rationalizes the voting record {(f (y)� f (z)) | (y� z) ∈ V i}

(ii) if V i satisfies (A), then there exists a (strictly) (quasi)concave utility function
ui :Rd → R with ideal point x̂i that strictly rationalizes the voting record {(f (y)�
f (z)) | (y� z) ∈ V i}.

According to Theorem 5, it is always possible to embed any collection of finite voting
records for any set of voters in a two-dimensional space while at the same time endow-
ing each voter with a strictly concave rationalizing utility function that has an arbitrarily
prespecified ideal point in that space. The domain of the function f and the fact the f is

9This example replicates an argument by Bogomolnaia and Laslier (2007, Proposition 17). Recently,
Schwartz (2007, Theorem 4), working in a discrete space of alternatives, gave a sufficient condition on the
voting record that guarantees violation of single-peakedness of the preferences of at least one voter over
the voting alternatives, XM .
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injective ensure that the new embedded voting record {(f (y)� f (z)) | (y� z) ∈ V i} respects
all the equality restrictions on the voting alternatives across different voting items in the
original voting record V i. Thus, unlike the construction in Theorem 4, the embedded
voting records {(f (y)� f (z)) | (y� z) ∈ V i}, like the original voting records V i, i = 1� � � � � n,
may feature voting agendas such that the victorious alternative in early voting items be-
comes the status quo in subsequent voting items or feature any possible recurrence of
voting alternatives across voting items. In fact, the theorem places no other restrictions
on the location of the original voting alternatives, so that the original voting record may
involve alternatives drawn from some space X other than Euclidean space. Also, as long
as the original voting record does not reveal any individual preference cycles, this rep-
resentation can be achieved while at the same time ensuring that every voting record
is strictly rationalized by part (ii) of the theorem. Last, note that the theorem does not
require that all n voters vote on the same set of voting items, a generality that accommo-
dates the possibility that, for example, some voters may have abstained in some voting
items or may have voted on different agendas because they have nonoverlapping careers
in the legislature, etc. Over all, Theorem 5 provides a new twist on the common finding
of many parametric ideal point estimation techniques that two-dimensional represen-
tations are sufficient to fit voting patterns in existing roll-call data as is the case, for ex-
ample, in the analysis of the history of U.S. Congressional roll-call votes by Poole and
Rosenthal (1997).10

The proof of Theorem 5 proceeds by positioning all the voting alternatives in two-
dimensional space so that they are all extreme points of the union of the voting alterna-
tives and the given ideal points. The positioning of all the voting alternatives so that they
all have the property of being extreme points is possible in two (or more) dimensions,
but not in one dimension, which accounts for the fact that Theorem 5 does not cover
the one-dimensional case. To the degree that it relies on the positioning of voting alter-
natives in the set of extreme points, the proof of Theorem 5 bears a connection with a
result developed independently by Bogomolnaia and Laslier (2007, Theorem 16) that all
individual transitive and complete preferences over a finite set of alternatives, X̃ ⊂ R2,
can be rationalized by convex preferences in R2 if and only if X̃ = E(X̃). Despite this
similarity, both the content and the proof of Theorem 5 differ significantly from that of
Bogomolnaia and Laslier (2007). Bogomolnaia and Laslier (2007) prove their theorem
by constructing the required convex preferences. These constructed preferences are not
continuous and cannot be represented by a strictly concave utility function. Theorem 5
is proved by invoking conditions (̂S) and (Ŵ) of Theorems 3 and 6 instead of constructing
the required utility function, and yields preferences over R2 that can be represented by
strictly concave utility functions. Finally, Theorem 5 also ensures that the revealed pref-
erence relations of all n voters are jointly rationalized with arbitrarily prespecified ideal
points, which need not be extreme points of the union of the set of voting alternatives
and ideal points.

10See Heckman and Snyder (1997) for different conclusions on the dimensionality of the policy space in
U.S. Congressional voting.
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5. Vote prediction

In this section, I turn to the question of predicting the future voting behavior of an
individual voter on the basis of past observations of that individual’s voting choices.
Theorems 1 and 2 suggest a straightforward strategy for the task. Suppose the fol-
lowing: X = Rd , the voter’s preferences are represented by an unobserved (strictly)
(quasi)concave utility function u :Rd → R, the voting record V = {(yj� zj)}j∈M is avail-
able, each past voting decision indicates strict preference, and the voter is faced with a
decision between an alternative x ∈ Rd , and some alternative x′ ∈ Rd . Then, by Theo-
rem 1, it follows that this voter must weakly prefer x′ over x (ui(x′) ≥ ui(x)) if x′ belongs
in the set11

R(x) = {
x′ ∈ Rd \ {x} | the record V ∪ {(x�x′)} violates (S)

}
�

In particular, if u(x) > u(x′), instead, then the voting record V ∪ {(x�x′)} is strictly ra-
tionalized by the voter’s utility function u, which is impossible since that voting record
violates (S). An identical argument ensures that we must have u(x) ≥ u(x′) if x′ belongs
in the set

R−1(x) = {
x′ ∈ Rd \ {x} | the record V ∪ {(x′�x)} violates (S)

}
�

In fact, stronger conclusions obtain by relaxing the assumption that the voter’s
choices indicate strict preference, while strengthening the assumption on the voter’s
unobserved utility function. In particular, I now assume that the voter has a strictly
(quasi)concave utility function u :Rd → R and that the record V = {(yj� zj)}j∈M of past
votes reveals weak preference with each voting decision. Then, if the voter is faced with
a decision between an alternative x ∈ Rd and some alternative x′ ∈ Rd , it must be that
u(x′) > u(x) if x′ belongs in the set

P(x) = {
x′ ∈ Rd \ {x} | the record V ∪ {(x�x′)} violates (W)

}
�

The stronger conclusion obtains, because now it suffices to have u(x) ≥ u(x′) so that u
rationalizes the voting record V ∪ {(x�x′)}, in contradiction to Theorem 2. Analogously,
it must be that u(x) > u(x′) if x′ belongs in

P−1(x) = {
x′ ∈ Rd \ {x} | the record V ∪ {(x′�x)} violates (W)

}
�

In summary, we have the following corollary of Theorems 1 and 2.

Corollary 1. Assume X = Rd , let V = {(yj� zj)}j∈M be a voting record, and consider any
x ∈ Rd .

(i) If a (strictly) (quasi)concave function u :Rd → R strictly rationalizes V , then
u(x′)≥ u(x) for all x′ ∈R(x) and u(x′) ≤ u(x) for all x′ ∈R−1(x).

11Alternatively, R(x) can be more explicitly defined as R(x) = ⋃
V ′⊆V {x′ ∈ Rd \ {x} | E(X(V ′) ∪ {x�x′}) ⊆

Y(V ′)∪ {x}}.
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Figure 5. Vote prediction. (a) Any quasiconcave (strictly quasiconcave) utility function u

that strictly rationalizes (rationalizes) the voting record V of (a) must satisfy u(x′) ≥ u(x)

(u(x′) > u(x)) for all x′ in the gray area; otherwise condition (S) (condition (W)) is violated for
V ′ = {(x�x′)� (y1� z1)� (y2� z2)� (y4� z4)}. (b) Any quasiconcave (strictly quasiconcave) utility func-
tion u that strictly rationalizes (rationalizes) the voting record V of (a) must satisfy u(x) ≥ u(x′)
(u(x) > u(x′)) for all x′ in the gray area; otherwise condition (S) (condition (W)) is violated for
V ′ = {(x′�x)� (y1� z1)� (y2� z2)}.

(ii) If a strictly (quasi)concave function u :Rd → R rationalizes V , then u(x′) > u(x)

for all x′ ∈ P(x) and u(x′) < u(x) for all x′ ∈ P−1(x).

(iii) If V satisfies (A), then R(x) \Y(V ) ⊆ P(x) ⊆ R(x) and R−1(x) \N(V ) ⊆ P−1(x) ⊆
R−1(x).

Figure 5 depicts the same voting record as the one depicted in Figure 3(a) and dis-
plays the set of alternatives P(x) that must be strictly preferred over alternative x by
the voter, given the observed voting behavior and assuming that the voter has a strictly
(quasi)concave utility function that dictates his/her voting decisions. Similarly, the voter
must strictly prefer x over all alternatives in the set P−1(x) of Figure 5(b). Part (iii) of
Corollary 1 states that if the voting record satisfies the acyclicity condition (A), then the
sets P(x) and R(x) (P−1(x) and R−1(x)) differ from each other by at most a finite num-
ber of alternatives. Thus, if (A) holds, the set of future voting agendas (x�x′) for which we
can predict the voter’s decisions is almost identical whether we assume that each past
vote indicates weak preference (as in part (ii) of Corollary 1) or strict preference (as in
part (i) of Corollary 1).

6. General revealed preference data

I have focused the analysis on preference revelation from binary voting choices, but
the analysis readily generalizes to arbitrary choice situations over a finite set of alter-
natives. To be concrete, suppose an individual makes a choice xj ∈ Bj in each of m

choice situations j = 1� � � � �m, where Bj ⊂ Rd is a finite budget set with |Bj| ≥ 2. Cast
in that language, the voting record generated from voting agenda and voting decisions
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{((pj�qj)� vj)}mj=1 can be equivalently represented by {(Bj�xj)}mj=1, where Bj = {pj�qj}
and xj = pj if vj = yes and xj = qj if vj = no. Conversely, the data {(Bj�xj)}mj=1 with bud-
get sets of arbitrary finite cardinality can be summarized in the form of a voting record
with

∑m
j=1(|Bj| − 1) voting items, that is, by creating |Bj| − 1 voting items (xj� z), one for

each z ∈ Bj \ {xj}. In that form, these multiple-choice data yield the relation

V =
m⋃
j=1

{(xj� z) | z ∈ Bj \ {xj}}�

Clearly, the rationalizability conditions established in Theorems 1 and 2 are also nec-
essary and sufficient when applied to the record V obtained from multiple-choice data
{(Bj�xj)}mj=1 and finite budget sets.

More generally, independent of their origin, the available data may consist of any
irreflexive finite revealed preference relation V . It is straightforward to extend the def-
initions of the various rationalizability criteria: The relation V is strictly rationalized if
there exists a utility function u :Rd → R such that u(y) > u(z) for all (y� z) ∈ V , merely ra-
tionalized if u(y) ≥ u(z) instead, and almost strictly rationalized if it is rationalized and
the subrelation Va defined in (3) is strictly rationalized.

Then the following result generalizes Theorems 1 and 2.

Corollary 2. Let K ⊂ Rd be a finite set, let P ⊂ K × K be irreflexive, and let I ⊂ K × K

be irreflexive and symmetric.

(i) Let V = P . Then there exists a (strictly) (quasi)concave utility function u :Rd → R

that strictly rationalizes V if and only if V satisfies (S) (or (S′)).

(ii) Let V = P . Then there exists a strictly (quasi)concave utility function u :Rd → R

that (almost strictly) rationalizes V if and only if V satisfies (W ) (or (W ′)).

(iii) Let V = P∪I and further assume that there does not exist V ′ ⊆ V such thatN(V ′) =
Y(V ′) and V ′ ∩ P �= ∅. Then there exists a strictly (quasi)concave utility func-
tion u :Rd → R such that u(x) > u(x′) for all (x�x′) ∈ P and u(x) = u(x′) for all
(x�x′) ∈ I if and only if V satisfies (W ) (or (W ′)).

Parts (i) and (ii) of Corollary 2 are mere restatements of Theorems 1 and 2, respec-
tively. The only difference is in the interpretation of the source of the data V . Instead of a
voting record, V in Corollary 2 is an arbitrary revealed preference relation that may arise
from, for example, multiple-choice data {(Bj�xj)}mj=1. Part (iii) of the theorem demon-
strates the reach of the analysis outside a revealed preference context. The data for
part (iii) consist of an “indifference” relation I and a “strict preference” relation P . These
relations may comprise only a fraction of the strict preference and indifference pairs of
the individual’s actual preferences within the set K. Part (iii) states that if P is acyclic and
V = P ∪ I reveals no cycle of the form x I x′ · · · y P z I x, then condition (W) is necessary
and sufficient for the existence of a strictly (quasi)concave utility function that repre-
sents all the indifferences in I and all the strict preferences in P . This essentially follows
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from part (ii) of the corollary. In particular, the symmetry of I ensures that u(x) = u(x′)
for all (x�x′) ∈ I when u rationalizes V . Furthermore, Va = P ⊆ V (where Va is defined
in (3)) since there does not exist V ′ ⊆ V such that N(V ′) = Y(V ′) and V ′ ∩P �= ∅, that is,
P is the component of V that is strictly rationalized by the utility function u that almost
strictly rationalizes V = P ∪ I.

7. Conclusions

I have derived necessary and sufficient conditions for observed binary voting choices to
be consistent with the hypothesis that the voter has preferences that admit (quasi)con-
cave utility representations. The derived conditions are computationally tractable and
can be verified by solving a finite sequence of linear programming problems. The analy-
sis demonstrates that the hypothesis that the voter has preferences represented by a
(strictly) concave utility function and the hypothesis that the voter has preferences rep-
resented by a (strictly) quasiconcave utility function are observationally equivalent on
the basis of finite data. Furthermore, the conditions that ensure the existence of a ratio-
nalizing (quasi)concave utility function consistent with observed voting behavior imply
simple testable restrictions on the location of the voter’s ideal point, and can be used
to predict future voting decisions. If the location of voting alternatives is unknown and
unrestricted (as is assumed in prevalent political methodology techniques for the esti-
mation of legislators’ ideal points), then the derived conditions are vacuously satisfied
for arbitrary ideal points and arbitrary voting decisions by a group of voters, even if the
voting alternatives are restricted to lie in one dimension. The same is true in two or more
dimensions if the location of the voting alternatives is unknown but these alternatives
satisfy known equality restrictions across voting items. The analysis is readily applicable
to the nonparametric study of general deterministic choice situations over general finite
budget sets with only convexity restrictions on individual preferences.

Appendix A: Verification of conditions (W) and (W′)

The following algorithm can be used to verify the validity of condition (W) (or (W′)) of
Theorem 2.

Algorithm 2. Assume X = Rd and let V = {(yj� zj)}mj=1 be a voting record.

Step 1. Set V1 = V and proceed to Step 2 with t = 1.

Step 2. For each x ∈ N(Vt) \ Y(Vt), test whether x ∈ E(X(Vt)). If x ∈ E(X(Vt)) ∩
(N(Vt) \ Y(Vt)) is found, set Xt = {x} and proceed to Step 4. If E(X(Vt)) ∩
(N(Vt) \Y(Vt)) = ∅, proceed to Step 3.

Step 3. Enumerate all x ∈ E(Y(Vt)). Set V ′ = {(y� z) | y ∈ E(Y(Vt))} and, using the func-
tion T : 2V

′ → 2V
′

defined as T(A) = {(y� z) ∈ A :y ∈ N(A)}, construct the se-
quence V0 = V ′, V1 = T(V0), Vt ′+1 = T(Vt ′) until T(Vt ′) = Vt ′ = V ′′ for some t ′.12

12See footnote 13 for a justification of this step.
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If V ′′ �= ∅, set Xt = N(V ′′) and proceed to Step 4. If V ′′ = ∅, V does not satisfy
(W ).

Step 4. Set Vt+1 = {(y� z) ∈ Vt | z /∈Xt} and proceed to Step 5.

Step 5. If Vt+1 = ∅, V satisfies (W ); else, proceed to Step 2 with t = t + 1.

The most challenging computation in Algorithm 2 is the enumeration of all extreme
points of E(Y(Vt)) in Step 3—a task that can be executed by solving at most |Vt | linear
programs.

Appendix B: Ideal points and rationalizability

In the following theorem, I derive testable restrictions on the location of voter ideal
points when votes may indicate weak preference.

Theorem 6. Assume X = Rd , x̂ ∈ Rd and let V = {(yj� zj)}mj=1 be a voting record. Then
the following conditions are equivalent.

(Ŵ ) For all nonempty V ′ ⊆ V , either there exists x ∈ E(X(V ′) ∪ {x̂}) such that
x /∈ Y(V ′) ∪ {x̂} or there exists nonempty V ′′ ⊆ V ′ such that N(V ′′) = Y(V ′′) ⊆
E(X(V ′)∪ {x̂}) and Y(V ′′)∩Y(V ′ \ V ′′) = ∅.

(Ŵ ′) The x̂-augmented voting record V̂ satisfies (W ) or (W ′), and x̂ /∈N(V ).

(Ŵc) There exists a strictly concave utility function that (almost strictly) rationalizes V
with ideal point x̂.

(Ŵq) There exists a strictly quasiconcave utility function that (almost strictly) rational-
izes V with ideal point x̂.

If d = 1, then (Ŵ ) is equivalent to the following condition.

(Ŵ1) For all V ′ ⊆ V , 1 ≤ |V ′| ≤ 2, there exists x ∈ E(X(V ′)∪{x̂}) such that x /∈ Y(V ′)∪{x̂}
or N(V ′) = Y(V ′)⊆ E(Y(V ′)∪ {x̂}).

Proof. First note that (Ŵc)⇒(Ŵq)⇒[V̂ satisfies (Wq) and x̂ /∈ N(V )]⇒(Ŵ′), the latter
implication by Theorem 2. Next, I show that (Ŵ′)⇒(Ŵc). Note that by Theorem 2,
if the x̂-augmented voting record V̂ satisfies (W), then there exists a strictly concave
utility function that (almost strictly) rationalizes V̂ . Since x̂ /∈ N(V ), x̂ /∈ N(V̂ ) and, by
Lemma 1, there exists a strictly concave utility function that (almost strictly) rationalizes
V̂ with ideal point x̂. As a result, Theorem 2 and Lemma 1 jointly imply the equivalence
(Ŵ′)⇔(Ŵc)⇔(Ŵq). To establish that (Ŵ′)⇔(Ŵ), I first show (Ŵ′)⇒(Ŵ). Consider any
nonempty V ′ ⊆ V and define V̂ ′ = V ′ ∪ {(x̂� z) | z ∈ X(V ′)} ⊆ V̂ . By (Ŵ′), V̂ satisfies (W),
so either there exists x ∈ E(X(V̂ ′)) = E(X(V ′)∪{x̂}) such that x /∈ Y(V̂ ′)= Y(V ′)∪{x̂}, or
there exists a nonempty V̂ ′′ ⊆ V̂ ′ such that N(V̂ ′′) = Y(V̂ ′′) ⊆ E(X(V̂ ′)) = E(X(V ′)∪ {x̂})
and Y(V̂ ′′)∩Y(V̂ ′ \ V̂ ′′) = ∅ = Y(V̂ ′′)∩Y(V ′ \ V̂ ′′). By (Ŵ′), x̂ /∈ N(V ) so that x̂ /∈ N(V̂ ′′) =
Y(V̂ ′′). It follows that V̂ ′′ ⊆ V ′, thus establishing that (Ŵ′)⇒(Ŵ). It remains to show
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(Ŵ)⇒(Ŵ′), i.e., to show that the x̂-augmented voting record V̂ satisfies condition (W)
and that x̂ /∈ N(V ) when (Ŵ) holds. To show that x̂ /∈ N(V ), assume x̂ ∈ N(V ) to get a
contradiction. Then there exists (y� x̂) ∈ V which contradicts the assumption that (Ŵ)
holds, since Y(V ′) ∪ {x̂} = X(V ′) and N(V ′) �= Y(V ′) for V ′ = {(y� x̂)}. Thus, x̂ /∈ N(V )

when (Ŵ) holds and I need to show that V̂ satisfies condition (W). Consider any V ′ ⊆ V̂

and, assuming (Ŵ) holds, distinguish three possibilities.
Case 1: V ′ ⊆ V̂ \ V . Then Y(V ′) = {x̂} and, since x̂ /∈ N(V ′), there exists x ∈ E(X(V ′))

such that x /∈ Y(V ′).
Case 2: V ′ ∩V �= ∅ and there exists x ∈ E(X(V ′ ∩V )∪{x̂}) such that x /∈ Y(V ′ ∩V )∪{x̂}.

It follows that x ∈ X(V ′ ∩ V ) \ C(Y(V ′ ∩ V ) ∪ {x̂}). Furthermore, X(V ′) ⊇ X(V ′ ∩ V )

and Y(V ′) ⊆ Y(V ′ ∩ V ) ∪ {x̂}, since Y({(y� z)}) = {x̂} for all (y� z) ∈ V ′ \ V . Thus, x ∈
X(V ′) \ C(Y(V ′)), hence there exists x′ ∈ E(X(V ′)) such that x′ /∈ Y(V ′).

Case 3: V ′ ∩ V �= ∅, and there exists nonempty V ′′ ⊆ V ′ ∩ V such that Y(V ′′) =
N(V ′′) ⊆ E(X(V ′ ∩ V ) ∪ {x̂}) and Y(V ′′) ∩ Y((V ′ ∩ V ) \ V ′′) = ∅. I distinguish two sub-
cases.

Subcase 3.1: N(V ′ \V )\ C(X(V ′ ∩V )∪{x̂}) �= ∅. Since N(V ′ \V )\ C(X(V ′ ∩V )∪{x̂}) �=
∅, then V ′ \V �= ∅ so that Y(V ′ \V )= {x̂}, and there exists x ∈ E(X(V ′))∩N(V ′ \V ) such
that x /∈ C(X(V ′ ∩ V )∪ {x̂}). Hence, since Y(V ′) = Y(V ′ ∩ V )∪Y(V ′ \ V ) = Y(V ′ ∩ V )∪
{x̂} ⊆ C(X(V ′ ∩ V )∪ {x̂}), it follows that there exists x ∈ E(X(V ′)) such that x /∈ Y(V ′).

Subcase 3.2: N(V ′ \ V ) ⊂ C(X(V ′ ∩ V ) ∪ {x̂}). Consider nonempty V ′′ ⊆ V ′ ∩ V such
that Y(V ′′) = N(V ′′) ⊆ E(X(V ′ ∩ V ) ∪ {x̂}), and Y(V ′′) ∩ Y((V ′ ∩ V ) \ V ′′) = ∅ assumed
to exist in Case 3. Recall that condition (Ŵ) implies x̂ /∈ N(V ′′). Thus, since X(V ′) ∪
{x̂} = X(V ′ ∩ V ) ∪ (N(V ′ \ V ) ∪ {x̂}) and N(V ′ \ V ) ⊂ C(X(V ′ ∩ V ) ∪ {x̂}), it follows
that Y(V ′′) = N(V ′′) ⊆ E(X(V ′ ∩ V ) ∪ {x̂}) \ {x̂} = E(X(V ′) ∪ {x̂}) \ {x̂} ⊆ E(X(V ′)).
Furthermore, Y(V ′ \ V ′′) ⊆ Y((V ′ ∩ V ) \ V ′′) ∪ {x̂} since Y(V ′ \ V ) ⊆ {x̂}. Because
Y(V ′′)∩Y((V ′ ∩ V ) \ V ′′) = ∅ and x̂ /∈ Y(V ′′), it follows that Y(V ′′)∩Y(V ′ \ V ′′) = ∅.

In sum, in all three cases, either there exists x ∈ E(X(V ′)) such that x /∈ Y(V ′) or
there exists nonempty V ′′ ⊆ V ′ such that Y(V ′′) = N(V ′′) ⊆ E(X(V ′)) and Y(V ′′) ∩
Y(V ′ \ V ′′) = ∅, completing the proof of (Ŵ)⇒(Ŵ′), so that (Ŵ)⇔(Ŵ′).

Also, from the same arguments, it follows that (Ŵ1)⇒[V̂ satisfies (W1) and x̂ /∈
N(V )]. If d = 1, (W1)⇔(W) by Theorem 2; hence (Ŵ1)⇒(Ŵ′)⇔(Ŵ), thus establishing
(Ŵ1)⇔(Ŵ) when d = 1. �

Appendix C: Proofs

In this appendix, I prove the results stated in the main body of the paper. I start with
four lemmas (including Lemma 1) and then prove the remaining results in the order in
which they appear in the text.

Lemma 1 (Restated). Assume X = Rd , let V be a finite voting record, and assume that
there exists a strictly concave utility function u :Rd → R that (strictly) rationalizes V . If
there exists alternative x̂ ∈ Rd \ N(V ) such that u(x̂) ≥ u(x) for all x ∈ X(V ), then there
exists another strictly concave function ũ :Rd → R that (strictly) rationalizes V with ideal
point x̂.
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Proof. I start by constructing a system of equalities and inequalities with unknowns
ux ∈ R and dx ∈ Rd , one for each x ∈ X(V )∪ {x̂}:

uy − uz > 0 for all y� z ∈X(V )∪ {x̂} such that u(y) > u(z)

uy − uz = 0 for all y� z ∈X(V )∪ {x̂} such that u(y) = u(z)

uy − uz − (dy)T (y − z) > 0 for all distinct y� z ∈X(V )∪ {x̂}�

Observe that since u is strictly concave, the above system has a solution (by setting
ux = u(x) and dx equal to a supergradient of u at x for all x ∈ X(V ) ∪ {x̂}). By setting
dx̂ = 0, ux̂ = u(x̂) + η for small enough η > 0, and maintaining the remaining values of
the original solution, we obtain a solution to the modified system:

ux̂ − ux > 0 for all x ∈ X(V ) \ {x̂}
uy − uz > 0 for all y� z ∈X(V ) \ {x̂} such that u(y) > u(z)

uy − uz = 0 for all y� z ∈X(V ) \ {x̂} such that u(y) = u(z)

uy − uz − (dy)T (y − z) > 0 for all distinct y� z ∈X(V )∪ {x̂}�

This solution to the latter system produces a strictly concave utility function ũ :Rd → R

(as in Matzkin and Richter 1991 or Richter and Wong 2004) defined as

ũ(x) = min
z∈X(V )∪{x̂}

{uz + (dz)T (x− z)− ε(x− z)T (x− z)}�

For small enough ε > 0, this new utility function ũ (strictly) rationalizes the voting record
V with ideal point x̂. �

The first of the next three lemmas concerns well known properties of the minimizers
of quasiconcave functions on a polytope and is stated without proof.

Lemma 2. Consider a finite set K ⊂ Rd and a quasiconcave function u :Rd → R.

(i) There exists x ∈ E(K) that minimizes u over C(K).

(ii) If u is strictly quasiconcave, then arg min{u(x) | x ∈ C(K)} ⊆ E(K).

Lemma 3. Consider disjoint finite sets K�K′ ⊂ Rd (K possibly empty) such that K′ ⊆
E(K ∪ K′) and consider a strictly concave function u :Rd → R. Then there exists an-
other strictly concave u′ :Rd → R such that u′(x) ≥ u′(x′) if and only if u(x) ≥ u(x′) for
all x�x′ ∈ K, u′(x) = u′(x′) for all x�x′ ∈ K′ and such that u′(x) > u′(x′) for all x ∈ K,
x′ ∈K′.

Proof. Given u, define a reflexive, complete, and transitive preference relation 
 on
K ∪ K′ × K ∪ K′ as follows: For all x�x′ ∈ K, let x 
 x′ if and only if u(x) ≥ u(x′), let
x 
 x′ and x′ 
 x for all x�x′ ∈ K′, and let x 
 x′ for all x ∈ K, x′ ∈ K′. By definition, the
function u represents the restriction of 
 on K. Thus, since u is strictly concave, the
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restriction of 
 on K satisfies condition (G′) of Richter and Wong (2004). Consider any
X ⊆K ∪K′ such that |X| ≤ d+ 1 and X ∩K′ �= ∅. For every x ∈ C(X) \X , we have x /∈ K′
since K′ ⊆ E(K ∪ K′). Furthermore, there exists x′ ∈ X ∩ K′, since X ∩ K′ �= ∅, and x′
satisfies x 
 x′�x′ �
 x. Thus, 
 also satisfies (G′) on K ∪K′, ensuring the existence of the
required function u′ by Theorem 2 of Richter and Wong (2004). �

Lemma 4. Assume X = Rd and let V ′ be a nonempty finite voting record such that
N(V ′) ⊆ Y(V ′). Then there exists nonempty V ′′ ⊆ V ′ such that N(V ′′) = Y(V ′′) and
Y(V ′ \ V ′′)∩Y(V ′′)= ∅.

Proof. Define the function T : 2V
′ → 2V

′
as T(A) = {(y� z) ∈ A | y ∈ N(A)}. Consider

the sequence V0 = V ′, V1 = T(V0), Vt+1 = T(Vt). By the definition of T , Y(Vt) ⊇ N(Vt) =
Y(Vt+1) ⊇ N(Vt+1) �= ∅. Since 2V

′
is finite, the sequence converges to a fixed point13

V ′′ = T(V ′′) �= ∅ that also satisfies N(V ′′) = Y(V ′′). To show Y(V ′′) ∩ Y(V ′ \ V ′′) = ∅,
note that otherwise there exists (y� z) ∈ V ′ \ V ′′ such that y ∈ Y(V ′′) = N(V ′′) and, as a
consequence, (y� z) ∈ T(Vt) for all t; hence, (y� z) ∈ V ′′, which is absurd. �

To avoid duplication of arguments, the proof of Theorem 1 relies on Theorem 2.

Theorem 1 (Restated). Assume X = Rd and let V = {(yj� zj)}mj=1 be a voting record. Then
(S)⇔(S′)⇔(Sc)⇔(Sq)⇔(S′

c)⇔(S′
q). Furthermore, if d = 1, then (S)⇔(S1).

Proof. Note that (Sc)⇒(S′
c)⇒(S′

q) and (Sc)⇒(Sq)⇒(S′
q). Thus, it suffices to show

(S′
q)⇒(S), (S)⇒(S′), and (S′)⇒(Sc).

(S′
q)⇒(S): Let quasiconcave u :Rd → R strictly rationalize V . Fix any nonempty

V ′ ⊆ V . There exists an alternative x ∈ E(X(V ′)) such that u(x) ≤ u(y) for all y ∈
C(X(V ′)) by Lemma 2, part (i). If x ∈ Y(V ′), then, since u strictly rationalizes V , there
exists x′ ∈ X(V ′) such that u(x) > u(x′), a contradiction. Thus, x /∈ Y(V ′). Proving
(S′

q)⇒(S).
(S)⇒(S′): Since (S)⇒(W), then (S)⇒(W′) by Theorem 2. Furthermore (S)⇒(A), so

that (S)⇒[(W′) and (A)]⇒(S′).
(S′)⇒(Sc): I will first show that (S′)⇒(A). To get a contradiction, suppose not, i.e.,

suppose (S′) holds and there exists nonempty V ′ ⊆ V such that N(V ′) = Y(V ′). Let
{xt}kt=1 be the sequence identified by condition (S′) and set t ′ = min{t | xt ∈ N(V ′)} so
that V ′ ⊆ Vt ′ . Thus, xt ′ ∈ N(V ′) but xt ′ /∈ Y(Vt ′) ⊇ Y(V ′), contradicting N(V ′) = Y(V ′).
Hence, (S′)⇒[(A) and (W′)]⇒[(A) and (W′

c)] by Theorem 2. But [(A) and (W′
c)]⇒(Sc)

since we have V = Va defined in (3), when (A) is true.
For the last part of the theorem, since (S)⇒(S1), it remains to show one last relation-

ship.
[d = 1 and (S1)]⇒(S): Assume d = 1 and (S1) holds, and suppose (S) fails, so as to get a

contradiction. Then there exists V ′ ⊆ V with |V ′| > 2 for which E(X(V ′)) ⊆ Y(V ′). Since

13Indeed, V ′′ is the greatest fixed point of T , which exists by the Knaster–Tarski Fixed Point Theorem

since the mapping T is monotone (T(A) ⊆ T(A′) for any A�A′ such that A ⊆ A′) and 2V
′

is a complete
lattice ordered by set inclusion.
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d = 1 and |X(V ′)| ≥ 2, E(X(V ′)) = {x�x′} for some distinct x�x′ ∈ Y(V ′). Let j�h ∈ M be
such that x ∈ Y(V{j}) and x′ ∈ Y(V{h}). Then E(X(V{j�h})) = Y(V{j�h}), which contradicts
the assumption that condition (S1) holds. �

Theorem 2 (Restated). Assume X = Rd and let V = {(yj� zj)}mj=1 be a voting record. Then
(W )⇔(W ′)⇔(W ′

c )⇔(W ′
q)⇔(Wc)⇔(Wq). Furthermore, if d = 1, then (W )⇔(W1).

Proof. Since (W′
c)⇒(Wc)⇒(Wq) and (W′

c)⇒(W′
q)⇒(Wq), it suffices to show (Wq)⇒(W),

(W)⇒(W′), and (W′)⇒(W′
c).

(Wq)⇒(W): Let u be a strictly quasiconcave function that rationalizes V . Consider
any V ′ ⊆ V . If there does not exist x ∈ E(X(V ′)) such that x /∈ Y(V ′), then E(X(V ′)) ⊆
Y(V ′). Furthermore, by part (ii) of Lemma 2 it follows that arg min{u(x) | x ∈ C(X(V ′))} ⊆
E(X(V ′)) ⊆ Y(V ′). I now show that there exists nonempty V ′′ ⊆ V ′ such that Y(V ′′) =
N(V ′′) ⊆ E(X(V ′)) and Y(V ′′) ∩ Y(V ′ \ V ′′) = ∅. Set K = arg min{u(x) | x ∈ C(X(V ′))}
and define

Vm = {(y� z) ∈ V ′ | y ∈ K}�
Since K ⊆ Y(V ′), it must be that Y(Vm) = K and Vm is nonempty. I also claim that
N(Vm) ⊆ Y(Vm). If not, then there exists x ∈ N(Vm) such that x ∈ X(V ′) \ K. But
then u(x) > u(y) for all y ∈ Y(Vm) = K, contradicting the assumption that u rational-
izes V . Hence it must indeed be that N(Vm) ⊆ Y(Vm) = K ⊆ E(X(V ′)). It follows by
Lemma 4 that there exists nonempty V ′′ ⊆ Vm such that N(V ′′) = Y(V ′′) ⊆ E(X(V )) and
Y(V ′′) ∩ Y(Vm \ V ′′) = ∅. It remains to show that Y(V ′′) ∩ Y(V ′ \ V ′′) = ∅. If not, there
exists (y� z) ∈ V ′ \ Vm such that y ∈ Y(V ′′) =N(V ′′)⊆ K. But then y /∈K by the definition
of Vm, a contradiction proving that Y(V ′′)∩Y(V ′ \ V ′′)= ∅.

(W)⇒(W′): To construct the required sequence, I proceed inductively starting with
V1 = V . Consider the tth step with Vt already specified. Note that by (W) either there ex-
ists xt ∈ E(X(Vt)) such that xt /∈ Y(Vt) or there exists V ′′ ⊆ Vt such that N(V ′′) = Y(V ′′) ⊆
E(X(Vt)) and Y(V ′′)∩Y(Vt \ V ′′)= ∅. Accordingly, I distinguish two cases:

Case 1: There exists xt ∈ E(X(Vt)) such that xt /∈ Y(Vt). Let Xt = {xt} and Vt+1 =
{(y� z) ∈ Vt | z /∈Xt}. Clearly Xt ⊆ E(X(Vt)) and xt /∈ Y(Vt) as required by (W′).

Case 2: There exists V ′′ ⊆ Vt such that N(V ′′)= Y(V ′′)⊆ E(X(Vt)) and Y(V ′′)∩Y(Vt \
V ′′) = ∅. Let Xt = N(V ′′), V ′

t = V ′′, and Vt+1 = {(y� z) ∈ Vt | z /∈ Xt}. Note that Xt ⊆
E(X(Vt)). Since V ′

t = V ′′, Xt = N(V ′
t ) = Y(V ′

t ). Furthermore, by the definition of Vt+1,
Vt \ Vt+1 = {(y� z) ∈ Vt | z ∈ Xt} ⊇ V ′′ = V ′

t and it follows that Xt = N(Vt \ Vt+1). Finally,
Xt = Y(V ′′) and Vt+1 ⊆ Vt \ V ′′, so that Y(Vt+1) ⊆ Y(Vt \ V ′′) and it follows that Xt ∩
Y(Vt+1) = ∅ because Y(V ′′)∩Y(Vt \ V ′′) = ∅.

Since V is finite, we obtain the sequences required by (W′) at the k + 1th step, k ≤
|N(V )|, with Vt+1 = ∅.

(W′)⇒(W′
c): The proof proceeds by induction, first establishing the existence of the

required function for the record Vk. Consider any strictly concave function u : Rd →
R. By (W′), N(Vk) ⊆ E(X(Vk)), so now Lemma 3 (applied on K = X(Vk) \ N(Vk), K′ =
N(Vk)) ensures the existence of a strictly concave uk that strictly rationalizes the voting
record Vk if |N(Vk)| = 1 and almost strictly rationalizes this record if |N(Vk)| > 1, since
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in that case K = Y(Vk) \ Y(V ′
k), and K′ = N(Vk) = N(V ′

k) = Y(Vk) for some V ′
k ⊆ Vk by

condition (W′). But now, suppose there exists a strictly concave function ut :Rd → R that
almost strictly rationalizes the record Vt , t > 1, t ≤ k. I wish to show that there also exists
such a function ut−1 that almost strictly rationalizes the record Vt−1. By (W′) there exists
Xt−1 = N(Vt−1 \ Vt) ⊆ E(X(Vt−1)) and N(Vt−1 \ Vt) ∩X(Vt) = ∅. Set K = X(Vt−1) \Xt−1

and K′ = Xt−1. By Lemma 3 there exists a strictly concave ut−1 :Rd → R that satisfies

ut−1(x) > ut−1(x′)⇔ ut(x) > ut(x′) for all x�x′ ∈K

ut−1(x) > ut−1(x′) for all x ∈K�x′ ∈K′

ut−1(x) = ut−1(x′) for all x�x′ ∈K′�

Thus, ut−1 almost strictly rationalizes the voting record Vt−1; in particular, concerning
the additional voting items in Vt−1 \Vt , ut−1(x) > ut−1(x′) for all x ∈ Y(Vt−1 \Vt) \Xt−1 ⊆
K and all x′ ∈ N(Vt−1 \ Vt) = Xt−1 = K′, and ut−1(x) = ut−1(x′) for all x�x′ ∈ Xt−1 = K′,
where K′ = N(Vt−1 \ Vt) = N(V ′

t−1) = Y(V ′
t−1) ⊆ Y(Vt−1 \ Vt) for some V ′

t−1 ⊆ Vt−1 \ Vt
when |Xt−1| > 1.

To complete the proof, I must show [d = 1 and (W1)]⇒(W), as it is clearly the case
that (W)⇒(W1): If (W) holds and E(X(V ′)) ⊆ Y(V ′) for some |V ′| = 2, then N(V ′) =
Y(V ′), since y �= z for all (y� z) ∈ V . Thus, to show that (W1)⇒(W) when d = 1, con-
sider an arbitrary V ′ ⊆ V with |V ′| > 2. If there does not exist x ∈ E(X(V ′)) such that
x /∈ Y(V ′), then E(X(V ′)) ⊆ Y(V ′) and it must be shown that there exists nonempty
V ′′ ⊆ V ′ such that N(V ′′) = Y(V ′′) ⊆ E(X(V ′′)) and Y(V ′′) ∩ Y(V ′ \ V ′′) = ∅. Since
E(X(V ′)) ⊆ Y(V ′), E(X(V ′)) = {xL�xR} for some xL�xR ∈ Y(V ′). Let V ′′ ⊆ V ′ be the
largest subset of V ′ such that Y(V ′′) = {xL�xR}, so that Y(V ′′) ∩ Y(V ′ \ V ′′) = ∅. It suf-
fices to show that N(V ′′) = Y(V ′′) = {xL�xR}. First, it cannot be that N(V ′′) = {x} ⊆
{xL�xR} because in that case, y = z for some (y� z) ∈ V ′′, which is absurd. Thus, the proof
is complete if N(V ′′) ⊆ {xL�xR} because then it must be that N(V ′′) = Y(V ′′) = {xL�xR}.
Suppose instead that there exists x ∈ N(V ′′) such that x /∈ {xL�xR} so as to get a con-
tradiction. Without loss of generality, let (xL�x) ∈ V ′′ and select any (xR�z) ∈ V ′′. Then
we have both E(X({(xL�x)� (xR�z)})) ⊆ Y({(xL�x)� (xR�z)}) and Y({(xL�x)� (xR�z)}) �=
N({(xL�x)� (xR�z)}), which is absurd because (W1) holds. Thus, N(V ′′) = Y(V ′′) =
{xL�xR} and the proof is complete. �

Theorem 3 is proved using Theorem 6.

Theorem 3 (Restated). Assume X = Rd and x̂ ∈ Rd , and let V = {(yj� zj)}j∈M be a voting
record. Then (Ŝ)⇔(Ŝ′)⇔(Ŝc)⇔(Ŝq)⇔(Ŝ′

c)⇔(Ŝ′
q). Furthermore, if d = 1, then (Ŝ)⇔(S1).

Proof. First (̂S′
q)⇒[V̂ satisfies (S′

q)]⇔(̂S′), the latter equivalence by Theorem 1. Fur-

thermore, (̂S′) implies that x̂ /∈ N(V ). Indeed, if x̂ ∈ N(V ), then (y� x̂) ∈ V ⊂ V̂ and
(x̂� y) ∈ V̂ , and V̂ violates (S) since it violates (A) which is absurd. Thus, x̂ /∈ N(V )

and, by Lemma 1, (̂S′)⇒(̂Sc). Since (̂Sc)⇒(̂Sq)⇒(̂S′
q) and (̂Sc)⇒(̂S′

c)⇒(̂S′
q), it follows that

(̂S′)⇔(̂Sc)⇔(̂Sq)⇔(̂S′
c)⇔(̂S′

q). Further note that (̂S)⇒(̂S′) follows from Cases 1 and 2 in
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the proof of Theorem 6. To also show that (̂S′)⇒(̂S), consider any V ′ ⊆ V and define
V̂ ′ = V ′ ∪ {(x̂� z) | z ∈X(V ′)}. By (̂S′) there exists x ∈ E(X(V̂ ′)) = E(X(V ′)∪{x̂}) such that
x /∈ Y(V̂ ′) = Y(V ′)∪ {x̂}. Thus, (̂S′)⇔(̂S), proving the first part of the theorem.

From the arguments in Cases 1 and 2 in the proof of Theorem 6 it follows that
(̂S1)⇒[V̂ satisfies (S1)]. If d = 1, (S1)⇔(S) by Theorem 1; hence (̂S1)⇒[V̂ satisfies
(S)]⇒(̂S) when d = 1. Thus, if d = 1, (̂S1)⇔(̂S). �

Theorem 4 (Restated). Let vi ∈ {yes�no}m� i = 1� � � � � n, represent the voting decisions of
each of n voters 1� � � � � n on m voting items indexed by M = {1� � � � �m}. For every d ≥ 1 and
every n-tuple of points x̂1� � � � � x̂n ∈ Rd , there exist alternatives pj�qj ∈ Rd , pj �= qj , j ∈ M ,
such that for every voter i there exists a strictly concave utility function ui with ideal point
x̂i that strictly rationalizes the voting record generated from the voting agenda and voting
decisions {((pj�qj)� v

i
j)}j∈M .

Proof. Assume d = 1. Without loss of generality, let x̂1 ≤ x̂2 ≤ · · · ≤ x̂n. The proof pro-
ceeds by constructing the agenda and then verifying condition (̂S1). Position alterna-
tives p1� � � � �pm in the interval (−∞� x̂1) so that p1 < · · · <pm < x̂1. Position alternatives
q1� � � � � qm in (x̂n�+∞) so that x̂n < qm < · · · < q1. Now, for every voter i, consider the vot-
ing record V i generated from voting agenda and voting decisions {((pj�qj)� v

i
j)}j∈M . For

every pair of voting items h� j ∈ M and for every voter i, N(V i
{j}) ∩ (Y(V i

{j�h}) ∪ {x̂i}) = ∅.
Furthermore, if h > j, we have pj < ph < qh < qj . Thus, for every voter i the alternative
x ∈ N(V i

{j}) is such that x ∈ E(X(V i
{j�h}) ∪ {x̂i}) and x /∈ Y(V i

{j�h}) ∪ {x̂i}. Thus, the voting

record V i generated from the voting agenda and voting decisions {((pj�qj)� v
i
j)}j∈M sat-

isfies condition (̂S1), so, by Theorem 3, for every i the voting record V i is rationalizable
by a strictly concave utility function ui with ideal point x̂i.

For the case of d′ > 1 dimensions, note that the above constructed voting records,
V 1� � � � � V n in d = 1, dimension are strictly rationalizable and satisfy (N). As a result, each
V i also satisfies (A). Then, by part (ii) of Theorem 5, for every ideal point x̂1� � � � � x̂n ∈
Rd′

, there exists a function f :
⋃

j∈M{pj�qj} → Rd such that for every voter i, the voting

record V i′ = {(f (y)� f (z)) | (y� z) ∈ V i} is strictly rationalizable by a strictly concave utility
function ui with ideal point x̂i. �

Theorem 5 (Embedding) (Restated). Let V 1� � � � � V n be the voting records of n voters
1� � � � � n. For every d ≥ 2 and for every n-tuple of points x̂1� � � � � x̂n ∈ Rd , there exists a
one-to-one function f : ⋃n

i=1 X(V i) → Rd such that for every voter i ∈ {1� � � � � n}
(i) there exists a strictly concave utility function ui :Rd → R with ideal point x̂i that

almost strictly rationalizes the voting record {(f (y)� f (z)) | (y� z) ∈ V i}
(ii) if V i satisfies (A), then there exists a strictly concave utility function ui :Rd →

R with ideal point x̂i that strictly rationalizes the voting record {(f (y)� f (z)) |
(y� z) ∈ V i}.

Proof. Let X̂ = {x̂1� � � � � x̂n} and construct a finite set X̃ ⊂ Rd such that X̃ ∩ X̂ = ∅,
|X̃| = |⋃n

i=1 X(V i)|, and X̃ ⊆ E(X̃∪X̂). Since d > 1, such a set X̃ trivially exists. Consider
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any onto function f :
⋃n

i=1 X(V i) → X̃ and, for every i and every V ′ ⊆ V i, let f [V ′] =
{(f (y)� f (z)) | (y� z) ∈ V ′} denote the restricted voting record V ′ embedded in Rd via the
function f . I show that for every voter i, the embedded voting record f [V i] satisfies
(Ŵ). In particular, I show that if E(X(f [V ′])∪ {x̂i}) ⊆ Y(f [V ′])∪ {x̂i} for some nonempty
V ′ ⊆ f [V i], then there exists nonempty V ′′ ⊆ V ′ such that N(V ′′) = Y(V ′′) ⊆ E(X(V ′) ∪
{x̂i}) and Y(V ′′) ∩ Y(V ′ \ V ′′) = ∅. Since X(f [V i]) ⊆ E(X(f [V i]) ∪ X̂), it must be that
N(V ′) ⊆ X(V ′) ⊆ E(X(V ′) ∪ {x̂i}) ⊆ Y(V ′) ∪ {x̂i}. Since x̂i /∈ X(V ′), N(V ′) ⊆ Y(V ′). By
Lemma 4, there exists nonempty V ′′ ⊆ V ′ such that N(V ′′) = Y(V ′′) ⊆ E(X(V ′) ∪ {x̂i})
and Y(V ′′) ∩ Y(V ′ \ V ′′) = ∅. We conclude that the voting record f [V i] satisfies (Ŵ) for
every i, so part (i) follows by Theorem 6. Under the additional assumption of part (ii),
the voting record f [V i] satisfies (A), because the original record V i does and because f

is one-to-one. Thus, since f [V i] satisfies (Ŵ) and (A), it also satisfies (̂S), and part (ii)
now follows from Theorem 3. �

Corollary 1 (Restated). Assume X = Rd , let V = {(yj� zj)}j∈M be a voting record, and
consider any x ∈ Rd .

(i) If a (strictly) (quasi)concave function u :Rd → R strictly rationalizes V , then
u(x′)≥ u(x) for all x′ ∈R(x) and u(x′) ≤ u(x) for all x′ ∈R−1(x).

(ii) If a strictly (quasi)concave function u :Rd → R rationalizes V , then u(x′) > u(x)

for all x′ ∈ P(x) and u(x′) < u(x) for all x′ ∈ P−1(x).

(iii) If V satisfies (A), then R(x) \Y(V ) ⊆ P(x) ⊆ R(x) and R−1(x) \N(V ) ⊆ P−1(x) ⊆
R−1(x).

Proof. Parts (i) and (ii) follow immediately from Theorems 1 and 2, so it remains to
show part (iii). By Remark 1, a voting record that satisfies (A) violates (W) if and only
if it violates (S). Since V satisfies (A), V ∪ {(x�x′)} must satisfy (A) if x′ /∈ Y(V ) and V ∪
{(x′�x)} must satisfy (A) if x′ /∈ N(V ). �
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