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Delay aversion
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We address the following question: When can one person properly be said to be
more delay averse than another? In reply, several (nested) comparison methods
are developed. These methods yield a theory of delay aversion which parallels
that of risk aversion. The applied strength of this theory is demonstrated in a va-
riety of dynamic economic settings, including the classical optimal growth and
tree cutting problems, repeated games, and bargaining. Both time-consistent and
time-inconsistent scenarios are considered.
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“The present always gets its rights.” (Eugen von Böhm-Bawerk, The Positive
Theory of Capital, 1891)

1. INTRODUCTION

Most, if not all, of an individual’s decisions have consequences through time, making it
imperative for analysts to have a clear understanding of agents’ attitudes towards delay,
and a framework for discussing these attitudes. Unsurprisingly, then, the study of time
preference has a rich history, going back at least as far as Rae (1834) and Böhm-Bawerk
(1891). In recent years, this topic has received an exceptional amount of attention from
economists, much of it questioning the canonical exponential discounting model.1 De-
spite this large body of work, one straightforward question seems to have gone almost
entirely unaddressed in the economics literature: How does one compare the attitudes
of two different agents towards time delay?
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Drawing a parallel to the modern theory of choice under risk and uncertainty is
telling. By the end of the 1960s, a powerful theory of comparative risk aversion was well-
established within the expected utility paradigm, thanks to the seminal contributions of
Arrow (1964) and Pratt (1964), among others. Comparative risk aversion is now a text-
book topic with a plethora of economic applications. Moreover, it has been generalized
to the context of various non-expected utility models. By stark contrast, time preference
theory at large lacks methods for comparing the attitudes of individuals towards delay,
even within the entirely standard setting of exponential discounting.2

That there is such a lacuna may not be apparent at first glance. After all, at least
within the exponential discounting model, there is reason to view the discount factor
of an individual as a natural index of his “impatience.” This may tempt one to view
the problem of making impatience comparisons across individuals as one that is readily
settled by comparing the discount factors of the involved parties. There are at least three
problems with this position, however.

First, at a fundamental level, a comparison of attitudes towards delay should not
be tied to a particular representation of preferences. Indeed, it should be possible to
reject the exponential discounting model and still make comparisons about the relative
impatience of two or more decision makers.

Second, even if one accepts the exponential discounting model, using discount fac-
tors to make comparisons is not always meaningful. Consider an environment in which
the choice objects are dated monetary outcomes. (A prototypical example of such an en-
vironment is provided by sequential bargaining, where the game ends with each player
receiving a one-time payment.) As is usual, denote the dated outcome in which x dol-
lars are received in period t as (x , t ). Take an individual whose preferences over dated
outcomes are represented by the intertemporal utility function (x , t ) 7→ αt u (x ), where
u is the agent’s instantaneous utility function and 0 < α < 1 is his discount factor. Now
choose any 0 < β < 1. One can show that the very same preferences, which are repre-
sented by (x , t ) 7→ αt u (x ), can also be represented by (x , t ) 7→ β t v (x ), for some instan-
taneous utility function v .3 Hence, the choice of the discount factor used to represent
an individual’s preferences is entirely arbitrary in this environment; it follows that, here,
discount factors cannot possibly form a meaningful basis for comparing attitudes to-
wards delay.

Third, even in contexts where the exponential discounting model is appropriate, and
discount factors are uniquely determined by preferences, making a comparison based
solely on these discount factors is questionable. Consider two infinitely lived agents,
1 and 2, who evaluate an arbitrary consumption path (x0,x1, . . .) as

∑∞
t=0δ

t
1u 1(x t ) and

∑∞
t=0δ

t
2u 2(x t ), respectively. Here, unlike in the example considered above, the discount

2Starting with Koopmans (1960) and Koopmans et al. (1964), there has been much work on the formal-
ization of the notion of “impatience” and the link between this concept and the continuity of intertemporal
utility functions. (See Epstein 1987 for a related survey.) While there is still some interest in this matter today
(cf. Marinacci 1998), these works are not helpful for comparing the “impatience” of two decision makers.
To the best of our knowledge, the only article that studies this issue is a nice, albeit largely unknown, note
by Horowitz (1992), about which more in Section 3.

3The proof follows upon setting v := u lnβ/ lnα. (See Theorem 3 of Fishburn and Rubinstein 1982.)
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factor δi is uniquely determined by the i th person’s intertemporal preferences, and the
instantaneous utility function u i is uniquely determined up to a positive affine trans-
formation. Nevertheless, it would still not be reasonable to compare the relative de-
lay aversion of these individuals by looking only at their discount factors. To see the
flaw with such an approach, consider the special case in which u 1(x ) = x , u 2(x ) =

p
x ,

x ≥ 0, and 1 > δ1 > δ2 > 0. Suppose that each person must decide how to allocate a
fixed total wealth over time. Clearly, the first person maximizes by consuming the entire
amount in the first period, while the second person spreads her wealth through time,
since u ′2(0) =∞. Thus, from an observational point of view, the first person exhibits a
much stronger bias towards the present, although the second person seems to be the
more present-oriented based upon a comparison of discount factors alone.

The culprit behind the second and third points is clear. The instantaneous utility
function of an agent, along with his discount factor, plays an essential role in shaping his
attitude toward time delay. (For instance, in the last example, the square root function
reveals a desire for consumption smoothing.) As a result, even within the exponential
discounting framework, comparing the aversion of two decision makers towards delay
solely on the basis of their discount factors is troublesome. In the literature, this diffi-
culty has commonly been circumvented by the practice of making impatience compar-
isons across decision makers only when these agents share a single instantaneous utility
function.4 As a basis for formal comparative static exercises, this practice is, as we shall
see, sound. Beyond such exercises, however, it is severely wanting. Consider, for in-
stance, the following question: To what extent can differences in the time series wealth
profiles of two countries be explained by differences in the delay aversion of the citizens
of the countries? Suppose, to address the question, each country is modeled by a repre-
sentative agent. While this standard simplification may be acceptable, there would seem
to be little justification for further assuming that the two representative agents have the
same instantaneous utility functions. Indeed, once it is admitted that the representa-
tives of the two countries may differ, as it must be to address the question, it is entirely
arbitrary to restrict this difference to one of discount factors. Granted, one might wish to
argue that differences in discount factors capture differences in delay aversion provided
that instantaneous utility functions do not differ too much, so that positing identical
utilities may be an an acceptable simplification. However, merely to formulate such an
argument an independent notion of relative delay aversion is first needed. Moreover,
the idea that one needs to keep the instantaneous utility functions of two individuals
constant to compare their delay attitudes runs into obvious difficulties the moment one
departs from the separable time preference model.

The objective of this paper is to develop rigorous techniques for comparing the aver-
sion of decision makers towards time delay. The discussion above, and the parallel we

4For instance, studies that aim to compare the impatience of the representative members of distinct so-
cioeconomic classes are often forced to postulate the homogeneity of static preferences for agents across
the classes under consideration (cf. Lawrance 1991). Similarly, in dynamic economic analysis, the implica-
tions of one party being more impatient than another is explored almost exclusively by varying the discount
factors while holding the instantaneous utility functions constant. (Section 4 contains several examples of
this nature.) Finally, to our knowledge, all experimental studies that estimate personal discount rates work
under the assumption that the subjects have the same utility function for money.
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seek to risk theory, suggests at least three constraints in this endeavor. First, the pro-
posed techniques should not, at least at the level of their primitive definitions, depend
on the way in which intertemporal preferences are modeled. Second, they should be
“easy” to apply, at least within specialized models (such as that of separable intertempo-
ral preferences). Third, these methods should be useful in dynamic economic analysis.
That is, they should allow for rigorous comparative statics exercises in actual economic
models.5 With these considerations in mind, we organize this paper in three major parts,
each one of which contains subdivisions that address these three concerns.

In Section 3 we introduce a simple (partial) method of comparing two agents’ ea-
gerness to enhance earlier consumption at the expense of future consumption, without
subscribing to a particular model of intertemporal preferences. Roughly speaking, we
qualify individual A as more delay averse than individual B if whenever B prefers receiv-
ing an increase in consumption at an earlier date to receiving an increase at a later date,
A does too, ceteris paribus. We go on to obtain several characterizations of the induced
ordering for the special case of separable intertemporal utilities. These characteriza-
tions yield further insight into the structure and appeal of our delay aversion ordering.
In particular, we find that in the exponential discounting model, if one agent is more
delay averse than another, then her discount factor must be lower than that of the latter,
but not conversely. These characterizations also show how to transform a given separa-
ble intertemporal utility function into a more delay averse one.

The approach to relative delay aversion taken in Section 3 is “bottom line” in nature,
in that it inquires into an individual’s desire for enhanced early consumption without
distinguishing to what degree this desire reflects a specific bias towards the present and
to what degree it is instead a reaction to any unevenness in the individual’s underlying
endowment stream. Note in this regard that the same individual could want to borrow
if his endowment stream was increasing and lend if it was decreasing. This approach to
delay aversion can be contrasted with an inquiry into what may be thought of as “pure
time bias,” namely, a psychological preference for early gratification, which may or may
not overwhelm other considerations. In Section 4, we refine our approach to provide
an ordering that aims at capturing a pure time preference motive instead. We term this
(more complete) ordering an impatience ordering, and provide various characteriza-
tions of it in the case of separable intertemporal preferences.

Specific economic applications, which demonstrate the applicability of the relative
delay aversion and impatience notions, and their various characterizations, are inter-
spersed throughout the paper. In particular, in the context of the one-sector optimal
growth problem with exponential discounting, we show that the optimal capital stock of
a country can never fall strictly below that of a more delay averse country. Becker (1983)

5Recall that, in risk theory, the basic definitions of risk aversion and related concepts do not depend
on how one’s preferences over risky prospects are represented. Moreover, within specific models (such
as the expected utility model), these abstract definitions yield characterizations (via the Arrow–Pratt coeffi-
cients, Jensen’s inequality, etc.) that accentuate their applicability substantially. Finally, there are numerous
economic applications (e.g. the models of demand for insurance and portfolio diversification) that mesh
extremely well with these definitions and their characterizations.
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obtains a similar result by varying the discount factors of agents with identical instan-
taneous utility functions. It is not clear from Becker’s analysis if this result stems from
differing degrees of delay aversion of the countries or from their relative impatience. Our
approach clarifies that a pure time motive alone cannot account for this result—one
needs the full strength of comparative delay aversion.

We also apply our delay aversion theory to dynamic games. First, for infinitely re-
peated games, we provide conditions under which the Nash equilibrium of a game re-
mains an equilibrium as players become less delay averse. A particular novelty of this
application is that the players are not assumed to be exponential, or even separable,
utility maximizers. Second, in Rubinstein bargaining, we revisit a well-known result of
Roth (1985) that shows that an agent’s equilibrium share decreases as his utility func-
tion becomes more concave. While Roth interprets this to mean that becoming more
risk averse harms an agent, this interpretation has long been considered to be dubious,
as there is no risk in the model. Our results clarify the nature of Roth’s observation by
showing formally that it is properly understood as a result about delay aversion, not risk
aversion.

The above applications concern agents who either have time-consistent preferences
or can commit to their plans. The delay aversion theory we develop is applicable
in the absence of these assumptions as well. To demonstrate, we study the classical
Wicksellian tree-cutting problem for (naive and sophisticated) individuals with time-
inconsistent preferences who cannot commit to their plans. While naive agents behave
according to intuition, we find, somewhat paradoxically, that a sophisticated person
may cut his tree later as he becomes more delay averse. Notably, however, this rever-
sal disappears when preferences are present-biased, as in the case of hyperbolic and
quasi-hyperbolic discounting models.

2. PRELIMINARIES

For expositional simplicity we develop our formalism only for infinitely-lived agents and
bounded streams of outcomes—the entire analysis adapts in a straightforward manner
to the case of finitely lived agents. Accordingly, we take an intertemporal choice item to
be a real sequence (x0,x1, . . .) with x t ≥ 0 for all t , and sup{x t : t ∈ Z+} <∞. Of course,
we think of x t as the level of consumption at time t . We denote the set of all such real
sequences asX , and endowX with the product topology.

The generic members ofX are denoted as x, y, etc.; we adopt the convention of de-
noting the t -th term of x as x t , so that x≡ (x0,x1, . . .). By (a , x−t ), we denote the sequence
y, where yt = a and ym = xm for all m 6= t . Similarly, for any k ∈N and distinct positive
integers t1, . . . , tk , the expression (a t1 , . . . , a tk , x−(t1,...,tk )) stands for the sequence y where
yt i = a t i , i = 1, . . . , k , and ym = xm for all m ∈Z+ \ {t1, . . . , tk }.

We work with strictly increasing preferences over consumption streams, that is, pref-
erences for which more consumption is preferred to less at any period. Moreover, we
consider only those preference relations that can be represented by a utility function
U on X such that the restriction U |[0,a ]∞ is continuous for any 0 ≤ a <∞. Such maps
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are referred to as cube-continuous in what follows.6 For the case of finitely-lived agents,
cube-continuity reduces to the standard notion of continuity.

DEFINITION 1. A cube-continuous and strictly increasing map U : X → R such that
U (0, 0, . . .) = 0 is called an intertemporal utility function.7 We denote the set of all in-
tertemporal utility functions by U.

The most prevalent types of intertemporal utility functions in economic analysis
posit the separability of the evaluation of time and outcomes, presume an additively
separable form, and consider stationary instantaneous utility functions. In this paper
we refer to such members of U succinctly as separable. To define this subclass formally,
let us call a function δ :Z+→ (0, 1] a discount function if δ is strictly decreasing, δ(0) = 1,
andδ(0)+δ(1)+· · ·<∞.8 We refer to a continuous and strictly increasing map u :R+→R
as an instantaneous utility function provided that u (0) = 0 and u (∞) =∞.9 The class of
all discount functions is denoted byD and the class of all instantaneous utility functions
byU . At times we work with differentiable members ofU . The following class receives
particular attention:

V := {u ∈U : u is continuously differentiable and u ′|(0,∞) > 0}.

Note that any member u of V has an inverse u−1, which is continuously differentiable
with a finite positive derivative on (0,∞).10

We call a map U : X → R a separable intertemporal utility function if there exists
(u ,δ)∈U ×D such that

U (x) =
∞
∑

t=0

δ(t )u (x t ) for all x∈X . (1)

We denote the class of all separable intertemporal utility functions by Usep. The fol-
lowing elementary result justifies our terminology by establishing that every separable
intertemporal utility function is indeed an intertemporal utility function. In particular,
every separable intertemporal utility function is cube-continuous.

6Put differently, U is cube-continuous if and only if the restriction of U to any Hilbert cube inX is con-
tinuous. (Recall that a compact subset [a ,b ]∞ ofX is called a Hilbert cube inX for any real numbers a and
b with 0 ≤ a < b .) Hence, the term “cube-continuous.” Given thatX is endowed with the product topol-
ogy, the continuity of a real map on X is much more demanding than its cube-continuity. For example,
the map f :X → R defined by f (x) :=

∑∞
t=0δ

t xσt is not continuous for any choice of 0 < δ,σ < 1, but it is
cube-continuous for any such choice of δ andσ.

7The requirement U (0, 0, . . .) = 0 is merely a normalization that simplifies the exposition.
8The convergence of the series

∑∞
t=0δ(t ) ensures that the map x 7→

∑∞
t=0δ(t )u (x t ) is real-valued onX

whenever u is a continuous function onR+. The assumption that δ is strictly decreasing is standard in the
literature; it amounts to saying that people dislike time delay in general. We adopt this formulation here
to conform with the literature, but note that the main results of this section remain valid in the absence of
this assumption.

9The assumption u (∞) =∞ considerably simplifies the subsequent analysis, but is not essential for it.
In particular, the “if” parts of all of our characterization theorems remain valid without this assumption.

10u−1 is also right-differentiable at 0, but its right-derivative at 0 may belong to {0,∞}.
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LEMMA 1. Usep ⊆U.

The proof of this result is in the Appendix, together with the proofs of other results
not given in the text.

In what follows, by the tuple (u ,δ) inU ×D , we mean the separable intertemporal
utility function induced by u and δ by way of (1). We use the notation (u ,δ) and U
interchangeably when (1) holds.

Perhaps the most important subclass of Usep is the one consisting of exponential
intertemporal utility functions. Formally, an exponential intertemporal utility function
is defined as a map U :X →Rwith

U (x) =
∞
∑

t=0

δt u (x t ) for all x∈X , (2)

where u ∈ U and 0 < δ < 1. In this case, δ is called a discount factor. The class of all
exponential intertemporal utility functions is denoted by Uexp. Obviously, Uexp ⊆ Usep.
Again, by the tuple (u ,δ) in U × (0, 1), we mean the exponential intertemporal utility
function induced by u and δ through (2), and hence, with a slight abuse of terminology,
we refer to any such pair (u ,δ) as an “exponential intertemporal utility function.”

In recent years, a large amount of experimental data has been gathered that ques-
tions the exponential discounting model in particular, and the stationarity of time pref-
erences in general. This has led economists to give serious consideration to certain
generalizations of the exponential discounting model.11 Most of these generalizations,
such as the quasi-hyperbolic and hyperbolic discounting models, still carry the form of a
separable intertemporal utility function (viewed as representing the commitment pref-
erences of the individuals), and are thus captured by our results that pertain to Usep. It
is, however, fair to say that the exponential discounting model remains the most widely
used framework in dynamic economic analysis, and hence we emphasize the exact na-
ture of our subsequent results for this specific model.

3. COMPARATIVE DELAY AVERSION

3.1 Main definition

Consider an individual, A, facing a fixed endowment stream ω ∈ X . Suppose that he
has won a prize that allows him to choose between an additional consumption of 100
in period s and 120 in period s + 1. Without knowing his preferences and endowment,
we cannot, of course, predict which of the two options he prefers, but suppose that, as it
happens, he favors the additional 100 in period s . Thus, we understand that A does not
consider it to be worth waiting an extra period beyond s in order to receive the larger
amount of 120. Now consider an individual, B , in identical circumstances, but, who is
known to dislike delay more than A does. Naturally, we expect that she too considers the

11A very good survey of the recent developments in time preference theory is provided by Frederick et al.
(2002).
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a. If an agent prefers the consumption path on the left, so does a more delay averse agent.
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b. If an agent prefers the consumption path on the right, so does a more delay averse agent.

FIGURE 1.

larger amount of 120 to be insufficient compensation for waiting an extra period, and,
instead, prefers receiving 100 in period s .

The fact that the above thought experiment was couched in terms of payments made
to the individuals is not essential. Precisely the same reasoning would apply in terms of
payments made by them. Suppose that individual A prefers paying b dollars at time
t to paying a dollars at an earlier date s . Individual B , who faces the same objective
circumstances as individual A, but is more delay averse, should also prefer making the
later payment to the earlier one.

Of course, there is nothing special in a particular choice of endowment stream, pay-
ments, and time periods. These considerations prompt the following definition, which
is illustrated in Figure 1.

DEFINITION 2. An intertemporal utility function V ∈ U is more delay averse than U ∈ U

if, for any given s , t ∈Z+ with s < t and anyω∈X ,

U (ωs +a ,ω−s )

¨

≥
>

«

U (ωt +b ,ω−t ) implies V (ωs +a ,ω−s )

¨

≥
>

«

V (ωt +b ,ω−t ) (3)
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for all a ,b ≥ 0, and

U (ωt −b ,ω−t )

¨

≥
>

«

U (ωs −a ,ω−s ) implies V (ωt −b ,ω−t )

¨

≥
>

«

V (ωs −a ,ω−s ) (4)

for all ωs ≥ a ≥ 0 and ωt ≥ b ≥ 0. In turn, we define the binary relation  on U as
U  V if and only if V is more delay averse than U . The asymmetric part of this relation
is denoted as ≺, that is, U ≺ V if and only if U  V but not V U . When U ≺ V , we say
that V is strictly more delay averse than U .12

The first condition of this definition says that if agent B is more delay averse than
agent A, then B prefers receiving an earlier payment to a (possibly different) later pay-
ment whenever A does.13 The second condition says that the relatively delay averse B
prefers making a later payment whenever A does.

A few remarks on the mathematical structure of the binary relation  are in order.
This relation is a vector preorder on U; that is,  is a reflexive and transitive binary rela-
tion on U such that U V if and only if λU+W λV +W for all λ> 0 and U , V, W ∈U.14

Moreover, this ordering is continuous in the sense that if U  V holds and W is close
enough to U uniformly, then W V . The following proposition summarizes these facts.

PROPOSITION 1. The binary relation  is a vector preorder on U. Moreover, if (Un ) and
(Vn ) are any two sequences in U with Un  Vn for each n, and U and V are intertemporal
utility functions with Un →U uniformly and Vn →V uniformly, then U V .

It is not difficult to see that our delay aversion ordering  is not complete. In Sec-
tion 3.3 we encounter a few interesting intertemporal utility functions that cannot be
compared on the basis of this preorder.

3.2 Single-crossing and investments

To the best of our knowledge, the only other preorder introduced in the literature to
compare the attitudes of two individuals towards time delay is that of Horowitz (1992).
While Horowitz formulates his ordering in a continuous time framework, it is easy to
adapt it to the present discrete time setting.15 First we need to introduce the auxiliary
concept of single-crossing streams.

12We should note that, from a formal point of view, Definition 2 contains a redundancy. Given that we are
working with all endowment streams ω, the second part of this definition (i.e. the part that concerns (4))
is implied by its first part, and vice versa. (See Lemma 3 in the Appendix.) We maintain this redundancy
because these two parts of the definition are conceptually distinct. Moreover, in the subsequent sections
we work with particular subsets of endowment streams and this redundancy disappears.

13Naturally, we say that agent B is more delay averse than agent A if B ’s intertemporal utility function is
more delay averse than A’s.

14Throughout this paper, we refer to any reflexive and transitive binary relation as a preorder and ordering
interchangeably.

15Horowitz’s choice to model time continuously proves to be unfortunate in a number of respects. Most
notably, within the standard exponential utility discounting model it results in a vastly incomplete ordering,
which applies only when the decision makers have the same instantaneous utility functions. As will become
clear shortly, this finding contrasts markedly with our present results.



80 Benoît and Ok Theoretical Economics 2 (2007)

DEFINITION 3. For any x, y ∈X , we say that y single-crosses x from above if there exists
t ∗ ∈N such that ym ≥ xm for all m = 0, . . . , t ∗−1, and ym ≤ xm for all m = t ∗, t ∗+1, . . ..

Horowitz’s idea is that if one individual favors a consumption stream that single-
crosses another from above, then so should a more delay averse person. This is the
content of the following definition.

DEFINITION 4. An intertemporal utility function V is single-crossing more delay averse
than U ∈U if, for any x, y∈X ,

U (y)

¨

≥
>

«

U (x) implies V (y)

¨

≥
>

«

V (x)

whenever y single-crosses x from above.

A comparison of  and the single-crossing ordering readily reveals that the latter
implies the former. Indeed, our ordering is defined in terms of particularly simple
single-crossing consumption streams while Horowitz’s ordering uses all single-crossing
streams. This suggests that the latter ordering might be significantly more demanding
than . In fact, however, these two orderings are equivalent.

THEOREM 1. For any intertemporal utility functions U and V , V is more delay averse than
U if and only if V is single crossing more delay averse than U.

The simplicity of the comparisons involved in the definition of our ordering  is an
obvious advantage—one that we exploit in deriving many of the results of the subse-
quent sections. Theorem 1 shows that this simplicity comes at no conceptual cost.

An analogy may be helpful here. In risk theory, the notion of mean preserving
spreads is used to get a basic handle on ranking lotteries on the basis of their riskiness.
While the simplicity of this method is appealing, its usefulness seems limited, for in
practice it is unlikely that one would deal with two lotteries one of which is derived from
the other by means of a single mean preserving spread. In this regard, the second or-
der stochastic dominance ordering seems superior. A celebrated result, however, tells
us that these two methods are formally equivalent. Theorem 1 has the same flavor. It
shows that the simpler (and apparently less applicable) ordering  is equivalent to the
more complicated (but apparently more applicable) ordering of Horowitz.

There are, of course, other ways of thinking about the notion of relative delay aver-
sion. Notably, one may wish to base this notion on the comparative investment behavior
of decision makers. Since an investment is a form of delayed gratification, relatively de-
lay averse people should undertake relatively few investments, and conversely. In fact,
this point of view is completely consistent with that of the delay aversion ordering .

Consider a person with initial endowment streamω who has an investment oppor-
tunity that costs a ≤ ωs units of consumption in period s and yields returns x i ≥ 0 in
ensuing periods. If he undertakes the investment, he ends up with the stream

ω′ := (ω0, . . . ,ωs−1,ωs −a ,ωs+1+x1,ωs+2+x2, . . .).
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In concert with intuition, if this person prefersω toω′ (that is, chooses not to undertake
the associated investment), then any more delay averse person does too. This fact fol-
lows immediately from Theorem 1, sinceω single crossesω′ from above. The converse
is also true:

Suppose that, whenever person A prefersω ∈X to anω′ obtained fromω through
an investment, as above, then person B does as well. Then B is more delay averse than
A.16

3.3 Comparative delay aversion with separability

An especially important class of intertemporal utility functions is that of separable in-
tertemporal utility functions. In this section we provide several characterizations of our
“more delay averse than” ordering for these utility functions. The following is the main
result of the paper.

THEOREM 2. For any two separable intertemporal utility functions (u ,α) and (v,β ), the
following two statements are equivalent.

(a) (v,β ) is more delay averse than (u ,α).

(b) There exists a map h :R+→R+ such that v = h ◦u and

h

�

x +
α(t )
α(s )

y

�

≥ h(x )+
β (t )
β (s )

(h(y + z )−h(z )) (5)

for all s , t ∈Z+ with s < t and x , y , z ≥ 0.

Moreover, if u and v belong to V , then either of the above statements is equivalent to
either of the following statements.

(c) There exists a continuously differentiable map h :R+→R+ such that v = h ◦u and

inf{h ′(x ) : x > 0} ≥
�

β (t )/β (s )
α(t )/α(s )

�

sup{h ′(x ) : x > 0} whenever s < t .

(d)
β (s )
β (t )

v ′(x )
v ′(y )
≥
α(s )
α(t )

u ′(x )
u ′(y )

for all s , t ∈Z+ with s < t and x , y ≥ 0.17

A basic result of risk theory states that a given von Neumann-Morgenstern utility
function is at least as risk averse as another if and only if the former is a concave trans-
formation of the latter. This observation enables one to generate more risk averse utility
functions from a given von Neumann-Morgenstern utility function and leads to useful
characterizations of the “more risk averse than” ordering in the case of differentiable
utility functions (via the Arrow–Pratt coefficients).

Theorem 2 provides analogous results for the preorder . Part (b) tells us that (v,β )
is more delay averse than (u ,α) if and only if v is a particular transformation of u . This

16This claim follows from the fact that person B prefers (ωt +b ,ω−t ) to (ωs +a ,ω−s ) , s < t , whenever A
does, since (ωt +b ,ω−t ) can be viewed as an investment relative to the endowment stream (ωs +a ,ω−s ).

17We note that the ratios β (t )/β (s ) and α(t )/α(s ) can be replaced by β (t + 1)/β (t ) and α(t + 1)/α(t ),
t = 0, 1, . . ., in the statements of (b), (c) and (d). The same holds for Corollaries 1 and 2 below.
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transformation is captured by the functional inequality (5) which, of course, incorpo-
rates the influence of the discount functions α and β . This inequality is extremely use-
ful. In particular, it allows us to obtain (d) by means of a straightforward application of
the Inverse Function Theorem.

In turn, the statement in (d) of Theorem 2 is easily interpretable. Think of x as con-
sumption in period s and y as consumption in period t > s . The statement then says
that (v,β ) (u ,α) if and only if (v,β ) has a larger marginal rate of intertemporal substi-
tution of (the earlier) s -th period consumption for (the later) t -th period consumption,
regardless of the levels of consumption at periods s and t .18

While the instantaneous utility function and the discount function of an agent both
contribute to the determination of his attitude towards delay, the following corollaries
point to a greater contribution on the part of the discount function.

COROLLARY 1. For any separable intertemporal utility functions (u ,α) and (v,β ),

(u ,α) (v,β ) implies
α(t )
α(s )
≥
β (t )
β (s )

whenever s < t .

In particular, (u ,α) (v,β ) implies α≥β .

As we argue in the Introduction, and as Examples 1 and 2 below confirm, discount
factors are not sufficient for making delay aversion comparisons for exponential utility
maximizers. On the other hand, as Corollary 1 shows, they are necessary for such com-
parisons. More precisely, if agent A is more delay averse than agent B, then A’s discount
factor is lower than B’s. It follows that, while the instantaneous utility function can undo
the effect of the discount factor, it cannot reverse it: If agent A has a lower discount fac-
tor than agent B, then either A is more delay averse than B, or the two agents cannot be
ranked.

The next corollary shows that the common comparative static exercise of lower-
ing an agent’s discount factor while holding his instantaneous utility function constant
amounts to rendering the agent more delay averse. At the same time, for preferences
that are separable but not exponential, lowering an agent’s discount function every-
where is not sufficient to render him more delay averse. In that case, the relative dis-
count functions α(t )/α(s ) and β (t )/β (s ) must also be considered. The corollary also
establishes that holding an agent’s discount factor constant while changing his instan-
taneous utility function (in a nontrivial manner), results in a noncomparable agent.

COROLLARY 2. For any separable intertemporal utility functions (u ,α) and (v,β ),

(u ,α) (u ,β ) if and only if
α(t )
α(s )
≥
β (t )
β (s )

whenever s < t .

18For Fisher (1930), a person is delay averse—he uses the term “impatient”—in an absolute sense, if his
marginal rate of intertemporal substitution is always greater than one. Part (d) of Theorem 2 shows that,
in an obvious way, our notion of relative delay aversion is the logical extension of Fisher’s definition to
comparisons.
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Moreover,
(u ,α) (v,α) if and only if u = θv for some θ > 0.

The next corollary is a simplification—and a trivial consequence—of Theorem 2 for
the case of exponential intertemporal utility functions.19

COROLLARY 3. Let (u ,α) and (v,β ) be exponential intertemporal utility functions with
u , v ∈V . The following statements are equivalent.

(a) (v,β ) is more delay averse than (u ,α).

(b) There exists a continuously differentiable map h :R+→R+ such that v = h ◦u and

inf{h ′(x ) : x > 0} ≥
β

α
sup{h ′(x ) : x > 0}. (6)

(c)
v ′(x )
βv ′(y )

≥
u ′(x )
αu ′(y )

for all x , y > 0.

We conclude with three simple exponential discounting examples, illustrating the
applicability of the above results.

EXAMPLE 1. Let u , v ∈ V be instantaneous utility functions such that u ′(0+) =∞ and
v ′(0+) <∞. Regardless of the values of the discount factors α and β , (u ,α) and (v,β )
cannot be ranked on the basis of . This follows immediately from the equivalence of
the statements (a) and (c) in Corollary 3.

More generally, if u and v in V are such that the right derivative of the function
h := v ◦ u−1 at 0 (or at any other point in R+) belongs to {0,∞}, then (u ,α) and (v,β )
cannot be ranked by . ◊

EXAMPLE 2. For any 0≤σ < 1, define the instantaneous isoelastic utility function uσ ∈
U by

uσ(x ) :=
x 1−σ

1−σ
,

and letU0 := {uσ : 0≤σ< 1}. This class is widely used in intertemporal macroeconomic
models. Let us take two exponential intertemporal utility functions (uσ1 ,α) and (uσ2 ,β )
inU0×(0, 1). When can these intertemporal utility functions be ranked by? The answer
is only when the agents have identical instantaneous utility functions.20 More precisely,

19The substance of this corollary is investigated by Horowitz (1992) in a continuous time framework. As
noted earlier, in that context one ends up with the rather limited result that two agents are comparable if
and only if their instantaneous utilities are positive affine transformations of each other.

20In practice, however, it may be possible to order this class more completely. Note that the definition
of delay aversion implicitly allows for any possible consumption stream. Suppose, however, that there is
reason to believe that agents’ consumptions in any single period always lie within certain bounds, say for
all time periods s , xs ∈ [x∗,x ∗]. Then it makes sense to restrict (3) of Definition 2, to a ,b , and ω such that
x∗ ≤ωs +c ≤ x ∗ for all s , where c = a , b , and similarly for (4). With this restricted definition, it is possible to
compare some members of this class with different instantaneous utilities.
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(uσ1 ,α) (uσ2 ,β ) if and only ifσ1 =σ2 andα≥β . The “if” part follows from Corollary 2.
To prove the “only if” part, observe that the right derivative of h := uσ1 ◦u−1

σ2
at 0 belongs

to {0,∞} unlessσ1 =σ2, and apply the last observation made in Example 1. ◊

These examples provide instances of the incompleteness of the delay aversion or-
dering . The next example provides an instance in which  applies in a nontrivial
manner.

EXAMPLE 3. Take any exponential intertemporal utility function (u ,α). We wish to find
(v,β ) ∈ U × (0, 1) such that (u ,α) ≺ (v,β ). This can be done for an arbitrarily chosen
β ∈ (0,α). For instance, from Corollary 3 we have (u ,α) ≺ (h ◦u ,β ) for any continuous
differentiable concave function h :R+→R+with h ′(∞)≥ (β/α)h ′(0+). ◊

3.4 Applications

3.4.1 Optimal growth theory Consider two countries (planners, etc.), each with an ini-
tial capital stock k0 > 0, and each with access to a twice differentiable production tech-
nology f :R+→R+, where f (0) = 0, f ′ > 0, and f ′′ ≤ 0. In every period t , each country
must decide how to divide its capital stock k t between consumption c t and investment
i t , where k t = f (i t−1), t = 1, 2, . . .. (There is no capital depreciation.) The preferences
of Country 1 over consumption paths is represented by the exponential intertemporal
utility function (u ,α), and those of Country 2 by (v,β ). We assume that u is twice differ-
entiable and that u ′ > 0, u ′′ < 0, and u ′(0+) =∞, and similarly for v . The optimization
problem of Country 1 is to choose nonnegative sequences (c0, c1, . . .) and (i 0, i 1, . . .) in
order to

maximize
∞
∑

t=0

αt u (c t ) subject to c0+ i 0 = k0 and c t + i t = f (i t−1), t = 1, 2, . . . .

The problem of Country 2 is analogous.
Let the optimal consumption and investment paths of Country j = 1, 2 be denoted

by (c0,j, c1,j, . . .) and (i 0,j, i 1,j, . . .), respectively. The optimal capital accumulation path of
Country j is denoted by (k0,j, k1,j, . . .), j= 1, 2.

Becker (1983) shows that if the two countries have the same instantaneous utility
function, but, say, Country 2 has a smaller discount factor, then Country 2’s optimal
capital stock is always larger than Country 1’s. As we know from Corollary 2, Becker’s
comparative static makes Country 2 more delay averse than Country 1, but it also does
more than this (for instance, it holds any consumption smoothing motive constant).
This raises the following question: Is his finding on differences in the optimal capital
stock paths a finding (just) about differences in delay aversion, or does it depend upon
other factors as well? Put differently, would the conclusion of Becker’s analysis be differ-
ent if Country 2 were assumed to be more delay averse than Country 1, without further
assuming that the two countries had identical instantaneous utilities?

To answer this question, recall that the optimal consumption and investment paths
of Countries 1 and 2 are determined by the following Ramsey–Euler equations:

u ′(c t ,1) =αu ′(c t+1,1) f ′(i t ,1) and v ′(c t ,2) =βv ′(c t+1,2) f ′(i t ,2), t = 0, 1, . . . .
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Since (u ,α) (v,β ), these equations and Corollary 3 yield

β

α

u ′(c t ,1) f ′(i t ,2)
u ′(c t+1,1) f ′(i t ,1)

=
v ′(c t ,2)

v ′(c t+1,2)
≥
β

α

u ′(c t ,2)
u ′(c t+1,2)

, t = 0, 1, . . .

so that
u ′(c t ,1) f ′(i t ,2)
u ′(c t ,2) f ′(i t ,1)

≥
u ′(c t+1,1)
u ′(c t+1,2)

, t = 0, 1, . . . . (7)

Now suppose the optimal capital stock of Country 1 falls strictly below that of Country 2
at some period, and let T ∈Nbe the first period at which this happens. That is, k t ,1 ≥ k t ,2

for all t = 0, . . . , T − 1 and kT,1 < kT,2. Clearly, i T−1,1 < i T−1,2 and cT−1,1 > cT−1,2. Since
f ′′ ≤ 0 and u ′′ < 0, we have [u ′(cT−1,1) f ′(i T−1,2)]/[u ′(cT−1,2) f ′(i T−1,1)] < 1 and, by (7),
also u ′(cT,1)/u ′(cT,2)< 1. Thus cT,1 > cT,2. Since kT,1 < kT,2, we then also have i T,1 < i T,2,
and repeating the previous argument yields cT+1,1 > cT+1,2. Continuing this way induc-
tively, we find that (cT,1, cT+1,1, . . .) > (cT,2, cT+1,2, . . .). This contradicts the optimality of
the consumption path (c0,2, c1,2, . . .) for Country 2, since, given that kT,1 < kT,2, it is fea-
sible for Country 2 to consume (cT,1, cT+1,1, . . .) instead of (cT,2, cT+1,2, . . .).

It follows that kT,1 < kT,2 cannot hold for any T ∈ N. Thus, Becker’s result is indeed
about relative delay aversion. More precisely, in the one-sector optimal growth model,
the optimal capital stock of a country can never fall strictly below that of a more delay
averse country.21

3.4.2 Repeated games When a single-shot game is repeated, new equilibrium possi-
bilities arise as players trade off present and future gains. In some general sense, one
expects that the more people value the future, the greater is the equilibrium set. In this
section we address this issue.

Although it is standard to model the players in repeated games as exponential utility
maximizers, we do not impose that restriction here. Rather, we allow players to use ar-
bitrary intertemporal utility functions in their evaluations of payoff streams. With such
a level of generality, it might seem difficult to derive a revealing result. Nevertheless, the
notion of relative delay easily yields a positive finding.

Let n ∈ {2, 3, . . .}. Consider an arbitrary (single-shot) game G := (N ,{A i , p i }i∈N ),
where N := {1, . . . , n} is the set of players, A i is the action space of player i , A := A1 ×
· · · ×An is the outcome space, and p i : A → R is the function that maps each outcome
to a monetary payoff. For each i ∈ N , let m i denote a pure strategy profile that min-
maxes player i in the game G . For any a ∈ A and i ∈N , let Bi (a ) denote a best response
of player i to a ∈ A. We assume that the sets of minmax strategies and the sets of best
responses are always nonempty.

Let (G ,{Vi }i∈N ) be the infinitely repeated game in which the stage game isG and Vi ∈
U is the intertemporal utility function that player i ∈ N uses to evaluate her monetary
payoff streams. Let Si stand for the set of all pure strategies of player i ∈N . (We restrict

21This result extends readily to the case of countries with preferences that are separable but not expo-
nential (with virtually the identical argument). Since the optimal plans, as viewed from period zero, may
then not be time consistent, this extension is best interpreted as concerning countries that can commit to
their plans.
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ourselves to pure strategies as we do not consider individuals’ attitudes towards risk.)
Formally, for any i ∈ N , a strategy s i ∈ Si is a sequence (s 0

i , s 1
i , . . .) where s 0

i ∈ A i and
s t

i : A t → A i for each t ∈ N. We let S := S1 × · · · × Sn , and for any s ∈ S, write s t for
(s t

1 , . . . , s t
n ), which is a map from A t into A. Any strategy profile s ∈ S inductively defines

an outcome path (a 0(s ), a 1(s ), . . .) for the repeated game (G ,{Vi }i∈N ) as follows: a 0(s ) :=
s 0 and a t (s ) := s t (a 0(s ), . . . , a t−1(s )), t = 1, 2 . . .. A Nash equilibrium of this game is a
strategy profile s ∈S such that

Vi (p i (a 0(s ), p i (a 1(s )), . . .))≥Vi (p i (a 0(s i , s−i ), p i (a 1(s i , s−i )), . . .))

for all s i ∈ Si and i ∈ N .22 The corresponding outcome path is a called a Nash equilib-
rium outcome path.

The simple intuition that the equilibrium payoff set is larger with less delay averse
players is not correct in general. Indeed, Sorin (1986) shows that an equilibrium payoff
stream need not remain one, even in the simple case of exponential utility maximizers
whose discount factors increase while their utility functions remain constant. However,
our next proposition shows that the intuition is correct, even outside the exponential
discounting model, provided that each player gets at least his minmax payoff in every
period along the equilibrium path.23

PROPOSITION 2. Suppose that (a 0, a 1, . . .) is a Nash equilibrium outcome path of the re-
peated game (G ,{Vi }i∈N ). For all i ∈ N , let Ui ∈ U be less delay averse than Vi , and for
each i with Ui 6=Vi suppose that

p i (a t )≥ p i (m i ) t = 0, 1, . . . .

Then (a 0, a 1, . . .) is also a Nash equilibrium outcome path of (G ,{Ui }i∈N ).

To see this, note first that since an intertemporal utility function is increasing in sin-
gle period payoffs, the most efficient “threat” against a potential deviator is to minmax
him for the remainder of the game. That is, the path (a 0, a 1, . . .) is an equilibrium of
(G ,{Vi }i∈N ) if and only if for each player i ∈N ,

Vi (p i (a 0), p i (a 1), . . .)≥Vi (p i (Bi (a 0)), p i (m i ), p i (m i ), . . .)

and

Vi (p i (a 0), p i (a 1), . . .)≥Vi (p i (a 0), . . . , p i (a k−1), p i (Bi (a k )), p i (m i ), p i (m i ), . . .)

22If each Vi is a time-consistent utility function, then this is just the standard definition of an equilibrium.
Otherwise, it presupposes that players commit to their strategies in period 0. The reader who is perturbed
by this latter case is free to restrict his or her attention to (possibly non-separable) time consistent utility
functions.

23For exponential utility maximizers, it follows from Theorem 3 of Abreu et al. (1990) that if players have
access to a public randomization device, then any equilibrium payoff of an infinitely repeated game re-
mains an equilibrium payoff as the players’ discount factors increase, holding their instantaneous utility
functions constant.
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for all k ∈ N. For each i ∈ N with Ui 6= Vi , since p i (a t ) ≥ p i (m i ) for all t , the
path (p i (a 0), p i (a 1), . . ., p i (a k−1), p i (Bi (a k )), p i (m i ), p i (m i ), . . .) single-crosses (p i (a 0),
p i (a 1), . . .) from above. It follows immediately from Theorem 1 that Ui Vi implies

Ui (p i (a 0), p i (a 1), . . .)≥Ui (p i (Bi (a 0)), p i (m i ), p i (m i ), . . .)

and

Ui (p i (a 0), p i (a 1), . . .)≥Ui (p i (a 0), . . . , p i (a s−1), p i (Bi (a k )), p i (m i ), p i (m i ), . . .)

for each i ∈ N and k ∈ N. Thus (a 0, a 1, . . .) is an equilibrium path for (G ,{Ui }i∈N ), as
claimed.24

3.4.3 Tree-cutting with time-inconsistent preferences The applications we have con-
sidered so far either use time-consistent preferences, or presume that a commitment
technology is available to the decision makers. In this section we consider agents with
time-inconsistent preferences who do not have the ability to commit to a plan. It is
well-known that such agents may exhibit counter-intuitive behavior (O’Donoghue and
Rabin 1999). We too find such anomalies. We show, however, that if agents are “present-
biased” these anomalies disappear, at least in the context of the so-called Wicksell tree-
cutting problem.

Consider a “tree” of initial size x0, whose growth is described by a strictly increasing
(and bounded) production function. An agent with initial endowment stream ω and
intertemporal utility function U ∈ U must decide when to cut down the tree and reap
its benefits. Formally, a tree-cutting problem can be described by a list (ω, x) ∈X 2 such
that 0< x0 ≤ x1 ≤ · · · . The set of potential outcomes of the problem (ω, x) is

X (ω, x) := {(ωτ+xτ,ω−τ) :τ= 0, 1, . . .},

where τ represents the period in which the tree is cut.25

Given the sequential nature of the tree-cutting problem, at any period t in which
the tree has not yet been cut the agent in effect faces a fresh tree-cutting problem
((ωt ,ωt+1, . . .), (x t ,x t+1, . . .)). In keeping with the recent literature, we assume that for
each of these t -period problems, the agent views himself as a different player—his t -
self —with utility function Ut defined onX (ω, x) by

Ut (ωτ+xτ,ω−τ) :=

(

U (ωt +x t ,ωt+1, . . .) τ= t

U (ωt , . . . ,ωτ−1,ωτ+xτ,ωτ+1, . . .) if τ> t .
(8)

24Proposition 2 readily implies that, if repeating the symmetric Pareto Optimal outcome in a Prisoner’s
Dilemma is part of a subgame perfect equilibrium, it remains so as the players become less delay averse.

25A slightly more involved version of this model would allow for the tree to “bear fruit” in every period—
for example, a bond is described by such a tree. We work here with fruitless trees only to simplify the
subsequent analysis. All of our conclusions (summarized in Proposition 3 below) remain valid for the more
general version of the tree-cutting problem.
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In a manner of speaking, whenever a period t is reached the agent treats it as if it is
period zero.26 We consider three (standard) ways in which the agent might solve a tree-
cutting problem.

Commitment Agent A commitment agent is presumed to have access to a commitment
technology, in the sense that he makes an optimal plan in period 0, and adheres
to it.

Naive Agent A naive agent makes an initial optimal plan in period 0, but then reopti-
mizes in every subsequent period (using the utility function defined in (8)). At any
given period t ≥ 0, the agent optimizes assuming, possibly incorrectly, that this
plan will be followed in the subsequent periods.

Sophisticated Agent Like the naive agent, a sophisticated agent solves an optimization
problem in every period. However, a sophisticated agent makes his optimal plans
in every period taking into account his reoptimization behavior. In effect, the de-
cision maker perceives his problem as an extensive-form game played noncoop-
eratively between his t -selves, and solves for the subgame perfect equilibrium of
this game.27

We now ask the following question:

Take an arbitrary tree-cutting problem (ω, x) and two agents V and U of the
same type (be it commitment, naive, or sophisticated). If agent V is more
delay averse than agent U , does V necessarily cut the tree (weakly) sooner
than U?

The answer to this question depends upon the type of agents involved. For a commit-
ment agent, the answer is, obviously, yes. Indeed, suppose a commitment U cuts down
the tree in period t ∈Z+. This implies that U (ωt+x t ,ω−t )>U (ωT+xT ,ω−T ) for any T ∈
{t + 1, t + 2, . . .}.28 Since V is more delay averse than U , we also have V (ωt +x t ,ω−t ) >
V (ωT+xT ,ω−T ) for any T ∈ {t +1, t +2, . . .}, so that V cuts the tree no later than period t .
A similar argument applies to naive agents. Specifically, if a naive U cuts the tree in pe-
riod t , then U (ωt+x t ,ωt+1, . . .)>U (ωt , . . . ,ωT−1,ωT+xT ,ωT+1, . . .) for any T ∈ {t+1, t+
2, . . .}. Since V is more delay averse than U , V (ωt +x t ,ωt+1, . . .)> V (ωt , . . . ,ωT−1,ωT +
xT ,ωT+1, . . .) for any T ∈ {t + 1, t + 2, . . .}, so that again V cuts the tree no later than U
does.

The most interesting case is that of a sophisticated agent. As the next example shows,
a sophisticated agent may cut a tree later as he becomes more delay averse.

26An implicit assumption here is that, for the t -self of the agent, consumption in periods before t does
not matter. This assumption is satisfied by any separable utility function U .

27The basic idea behind the sophisticated approach was introduced by Strotz (1956) and Phelps and
Pollak (1968). The game-theoretical modeling of time consistent decision making (with time-inconsistent
preferences) was then developed by several authors (cf. Peleg and Yaari 1973, Goldman 1980, Kocherlakota
1996, and Asheim 1997). This approach, which coincides with the naive approach for time consistent
preferences, is adopted routinely in applications of the hyperbolic discounting model (cf. Laibson 1997,
O’Donoghue and Rabin 1999, Carillo and Mariotti 2000).

28As a simplification, we assume away the possibility of indifferences in this discussion.
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EXAMPLE 4. Consider the tree cutting problem ((0, 0, . . .), (10, 21, 33, 33, . . .)), and an agent
with separable preferences (u ,α), where u is the identity function, and α(0) := 1, α(1) :=
2
3 and α(t ) := ( 1

5 )
t−1, t = 2, 3, . . . . Clearly, the only issue here is whether the agent will cut

the tree in period 0, 1, or 2.
Suppose the agent is sophisticated. Presented with an uncut tree, his 1-self would

not cut it, preferring that it be cut in period 2, since 21 < 2
3 (33). Anticipating this, his

0-self cuts the tree immediately, since 10> 1
5 (33).

Now suppose the agent’s preferences change to (u ,β ), where β (0) := 1, β (1) := 1
2

andβ (t ) := ( 1
10 )

t−1, t = 2, 3, . . .. Corollary 2 readily yields that (u ,β ) is strictly more delay
averse than (u ,α). With the preferences (u ,β ), the 1-self would choose to cut the tree, if
given the opportunity, since 21> 1

2 (33). Given this, the 0-self does not cut down the tree,

but waits for the tree to be cut in period 1, since 10< 1
2 (21). ◊

Thus we find that a sophisticated agent may act in a less delay averse manner as he
becomes more delay averse. While somewhat paradoxical, this reversal is arguably not
terribly surprising, given the game-theoretic nature of a sophisticated agent’s decision
problem. Less paradoxical, yet more surprising, at least a priori, is that such a reversal is
precluded if the agent’s preferences exhibit a present bias, as in the next definition.29

DEFINITION 5. An intertemporal utility function U ∈U is said to exhibit present bias if,
for anyω∈X , a , b ≥ 0 and s , t ∈Z++ with t > s > 1,

U (ω0, . . . ,ωs−1,ωs +a ,ωs+1, . . .)

¨

≥
>

«

U (ω0, . . . ,ωt−1,ωt +b ,ωt+1, . . .).

implies

U (ω1, . . . ,ωs−1,ωs +a ,ωs+1, . . .)

¨

≥
>

«

U (ω1, . . . ,ωt−1,ωt +b ,ωt+1, . . .).

Loosely speaking, the closer a period is to the present, the more important it is to
a present-biased agent. To see this, suppose an agent is present-biased and that he
initially prefers receiving a payment in some period s to receiving a possibly different
payment at a later time. Then, in every subsequent period up to, and including, pe-
riod s , he continues to favor receiving the earlier s -period payment.30 It is easy to show
that a separable intertemporal utility function (u ,δ) displays present bias if and only if
δ(t )/δ(s )≥ δ(t − 1)/δ(s − 1) for all s , t ∈ Z++ with t > s . Present bias is a property that
is shared by all hyperbolic discounting models, and which has received support from
psychological research. (See Frederick et al. 2002 for a large set of references.)

29Although we were not able to find the type of formalization presented in the definition in the existing
literature, the basic idea is commonly known. (The only formal definition we know is that of Prelec (2004).
While consistent with our definition, Prelec’s formalization is confined to a very specialized time preference
context.) To our knowledge, the term “present bias” was first coined by O’Donoghue and Rabin (1999).

30This fact follows inductively from Definition 5.
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The preferences (u ,α) in Example 4 are not present-biased. It turns out that this
is not happenstance. As the next proposition indicates, a sophisticated and present-
biased agent always cuts a tree sooner if he becomes more delay averse. To simplify the
statement of the proposition, we consider only problems (ω, x) that are generic in the
sense that, for a given intertemporal utility function U , for any t ∈Z+,

Ut (ωτ+xτ,ω−τ) 6=Ut (ωτ′ +xτ′ ,ω−τ′ ) for all τ,τ′ ∈ {t , t +1, . . .}.

We refer to any such tree-cutting problem as generic for U .

PROPOSITION 3. Let U , V ∈ U and (ω, x) be a tree-cutting problem that is generic for U,
and suppose U  V . Then the optimal cutting time for agent U is no later than the opti-
mal cutting time for agent V (provided these optima exist), if both agents can commit or
if both agents are naive. If the agents are sophisticated, this need not be the case. However,
if agent U is present-biased, then agent U’s optimal cutting time is no later than agent V ’s
(provided these optima exist), whether they both can commit, are both naive, or are both
sophisticated.

Given our earlier discussion, we need to prove only the final assertion of this propo-
sition. We use the following auxiliary observation for this purpose.

LEMMA 2. Let U ∈ U and (ω, x) be a tree-cutting problem that is generic for U. Suppose
that a sophisticated U optimally cuts the tree at time t ∈Z+, while, conditional on reach-
ing period t+1 without cutting the tree, he would have cut the tree at time T . If U exhibits
present bias, then

Ut (ωt +x t ,ω−t )>Ut (ωτ+xτ,ω−τ) for all τ= t +1, . . . , T.

Before proving this fact, let us see how it allows us to settle the final assertion of
Proposition 3. Take any U ∈ U that has present bias, and fix a tree-cutting problem
(ω, x) that is generic for U . Now suppose that the agent U is sophisticated, and chooses
to cut the tree at time t ∈ Z+. Let T1 > t be the time that this agent would choose
to cut the tree, conditional on reaching period t + 1 without cutting it. By Lemma 2,
Ut (ωt + x t ,ω−t ) >Ut (ωτ + xτ,ω−τ) for all τ = t + 1, . . . , T1. Since U  V , we also have
Vt (ωt + x t ,ω−t ) > Vt (ωτ+ xτ,ω−τ) for all τ = t + 1, . . . , T1, and hence V cannot choose
to cut the tree in {t + 1, . . . , T1}. Now let T2 > T1 be the time that the agent U would
choose to cut the tree, conditional on reaching period T1 + 1 without cutting it. Then,
by applying Lemma 2 to the tree-cutting problem ((ωT1 ,ωT1+1, . . .), ((xT1 ,xT1+1, . . .)) and
reasoning analogously, we find that the optimal cutting time of the agent V cannot be in
{T1+1, . . . , T2} either. The final assertion of Proposition 3 obtains inductively.

We conclude by proving Lemma 2. Begin by noting that

U (ωt +x t ,ωt+1, . . .)>U (ωt , . . . ,ωT−1,ωT +xT ,ωT+1, . . .), (9)

otherwise cutting the tree at time t would not have been optimal for the t -self of the
agent. Thus, if T = t + 1, we are done. Assume then that T > t + 1, and take any
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τ ∈ {t + 1, . . . , T − 1}. To derive a contradiction, let us suppose that Ut (ωt + x t ,ω−t ) ≤
Ut (ωτ+xτ,ω−τ). Combining this inequality with (9) yields

U (ωt , . . . ,ωτ−1,ωτ+xτ,ωτ+1, . . .)>U (ωt , . . . ,ωT−1,ωT +xT ,ωT+1, . . .).

Since U has present bias, we then have

U (ωτ+xτ,ωτ+1, . . .)>U (ωτ, . . . ,ωT−1,ωT +xT ,ωT+1, . . .).

But this implies that the τ-self of the agent would prefer to cut the tree in period τ in-
stead of waiting for period T , contradicting the hypothesis that, conditional on reaching
period t +1 without cutting it, the agent would cut the tree in period T .

4. COMPARATIVE IMPATIENCE

4.1 Main definition

Consider an agent whose endowment stream is (0, 10, 10, . . .), and who receives a lump
sum award of 10 which he may add to his consumption in any single period. Suppose
he chooses to consume the 10 in period zero. In so doing, he is certainly exhibiting
some aversion towards delay, but how much does this choice really tell us about his
attitude towards time? Arguably, very little. After all, his decision to consume the 10
immediately may stem more from a reaction to the uneven endowment stream than a
taste for early gratification. Indeed, it would hardly seem surprising, or inconsistent, if
the same person informed us that he would have consumed the additional 10 in period
one, rather than period zero, had his endowment stream been (10, 0, 10, 10, . . .) instead
of (0, 10, 10, . . .).

The same ambiguity arises when making comparative statements. Consider agents
A and B , both with the endowment stream (10, 0, 10, . . .). Suppose that agent A chooses
to consume an additional 10 immediately, while agent B waits one period. Then agent A
is certainly acting in a more delay averse manner than agent B , but does that mean that
A has the greater bias towards the present per se? Not necessarily. It may well be that
the two agents are equally present-oriented, but that agent B has a stronger reaction to
the uneven endowments.

The definition of relative delay aversion (purposely) makes no attempt to disentan-
gle the various motives that go into an agent’s allocation decisions. Rather, it blends
them to yield a very strong notion: One agent is more delay averse than another if and
only if his behavior is always more biased towards the present. While this universal re-
quirement is somewhat demanding, it is significantly less stringent than the common
practice of holding an agent’s instantaneous utility function fixed while varying his dis-
count factor (in the case of the exponential discounting model). Furthermore, it is in
the spirit of many prior intertemporal analyses. Of the earlier major thinkers about
time preferences, Böhm-Bawerk (1891) and Fisher (1930) were particularly clear about
the attitudes of an individual towards time delay being a consequence of two effects: a
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reaction to an uneven endowment stream and a preference for early consumption.31 In
line with this point of view, the notion of delay aversion commingles these two effects.

At the same time, many authors, including Friedman (1972), Olson and Bailey
(1981), and Stigler (1966), wish to concentrate on agents’ pure time preferences.32 Our
methodology also affords a means for isolating pure time biases. Recall that the delay
aversion ordering  is defined through simple choice problems relative to all endow-
ment streams, however uneven these streams may be. It is due to this fact that it picks
up influences besides pure time considerations. The latter effect can be isolated by com-
paring the preferences of agents only when their endowment streams are neutral with
respect to time, as in the following definition. (See Figure 2.) We reserve the term impa-
tience for this pure time notion.

DEFINITION 6. Let U and V be two intertemporal utility functions. We say that V is
more impatient than U if (3) and (4) hold for all endowment streams ω ∈ X such that
ω0 =ω1 = · · · . If V is more impatient than U but not conversely, we say that V is strictly
more impatient than U .

Note that by its very definition, this impatience ordering is a refinement of our delay
aversion ordering.33 Like, this ordering is a preorder onU that is continuous (relative
to the topology of uniform convergence).

4.2 Comparative impatience with separability

We next examine the comparative impatience ordering in the context of separable in-
tertemporal utility functions. We first state the analogue of the first part of Theorem 2
for this ordering.

THEOREM 3. Let (u ,α) and (v,β ) be separable intertemporal utility functions. Then (v,β )
is more impatient than (u ,α) if and only if there exists a map h : R+ → R+ such that
v = h ◦u and

h

��

1−
α(t )
α(s )

�

x +
α(t )
α(s )

y

�

≥
�

1−
β (t )
β (s )

�

h(x )+
β (t )
β (s )

h(y ) (10)

and

h

��

1−
α(t )
α(s )

�

y +
α(t )
α(s )

x

�

≤
�

1−
β (t )
β (s )

�

h(y )+
β (t )
β (s )

h(x ) (11)

for all s , t ∈Z+ with s < t and 0≤ x ≤ y .

31In the words of Böhm-Bawerk (1891, p. 275), “First, the individual may be badly off in the present. In
that case the pressing wants of the moment will, by themselves, absorb the small stock of present goods,
and, on the ground of this bad provision in the present, these goods will obtain a high value and a prefer-
ence over future goods. . . . Or, second, the individual may be equally well provided as regards both present
and future, but may have less forethought. This case leads to a similar result.”

32To this end, working with exponential utilities, these authors define an individual’s “absolute impa-
tience” by considering his marginal rate of substitution between earlier and later consumption along con-
stant endowment streams.

33We note that (3) may hold for all constant endowment streams, while (4) does not. Thus, in contrast to
Definition 2, there is no redundancy in Definition 6.
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a. If an agent prefers the consumption path on the left, so does a more impatient agent.
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b. If an agent prefers the consumption path on the right, so does a more impatient agent.

FIGURE 2.

Technically speaking, functional inequalities (10) and (11) are much less binding
than (5), because they depend on two variables (x and y ) while (5) depends on three
variables (x , y , and z ).34 Notice that sinceα(t )/α(s ) is a number between 0 and 1, (10) is
a functional inequality that resembles the definition of concavity. Indeed, if α≥β , this
inequality is trivially satisfied by any concave and increasing function on R+. On the
other hand, (11) is a functional inequality more in line with convexity. Consequently,
these two functional inequalities act as checks and balances, and tell us that if (v,β )
is to be more impatient than (u ,α), then v cannot be a “too concave” or “too convex”
transformation of u , where the permissible amount of concavity and convexity (or, more
generally, the variation in slope) depends on the discount functions α and β .

The use of Theorem 3 is similar to that of Theorem 2. In particular, the exact ana-
logues of the corollaries we deduced from Theorem 2 in the previous subsection can be
obtained from Theorem 3 for our impatience ordering.

34Both (10) and (11) (when stated for all 0≤ x ≤ y ) are special cases of (5) (when stated for all x , y , z ≥ 0),
as can be seen by a suitable change of variables.
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COROLLARY 4. Let (u ,α) and (v,β ) be separable intertemporal utility functions. If (v,β )
is more impatient than (u ,α), then α(t )/α(s ) ≥ β (t )/β (s ) whenever s < t . Moreover,
(u ,β ) is more impatient than (u ,α) if and only if (u ,α)  (u ,β ), and (v,α) is more im-
patient than (u ,α) if and only if u = θv for some θ > 0.

As in the case of delay aversion, the discount and utility functions contribute asym-
metrically to the determination of the impatience of an individual. Once again, no two
individuals with the same discount function but cardinally non-equivalent instanta-
neous utilities can be ranked, this time according to their relative impatience. On the
other hand, two individuals with the same instantaneous preferences may be ranked, in
which case the impatience and delay aversion orderings coincide.35

In the differentiable case, Theorem 2 provides easy necessary and sufficient condi-
tions for checking if a given separable intertemporal utility function is more delay averse
than another. Unfortunately, we have been unable to derive a similar characterization
for our impatience ordering. Nevertheless, the following result reports an easy-to-check
sufficient condition for the exponential discounting model, and also specializes Theo-
rem 2 to this setting.

COROLLARY 5. Let (u ,α) and (v,β ) be exponential intertemporal utility functions such
that u , v ∈ V . Then (v,β ) is more impatient than (u ,α) if and only if there exists a map
h :R+→R+ such that v = h ◦u ,

h((1−α)x +αy )≥ (1−β )h(x )+βh(y ) (12)

and

h((1−α)y +αx )≤ (1−β )h(y )+βh(x ) (13)

for all 0≤ x ≤ y . Moreover, if u , v ∈V and h := v ◦u−1 satisfies

max

�

α

β
,

1−β
1−α

�

h ′(y )≥ h ′(x )≥min

�

β

α
,

1−α
1−β

�

h ′(y ), (14)

for all 0≤ x ≤ y , then (v,β ) is at least as impatient as (u ,α).

We now give two applications of this corollary. The first application supplies a trans-
formation h that yields more impatient utility functions. The second application pro-
vides examples of impatience ranked utility functions that were earlier found to be non-
comparable by our delay aversion ordering. This example also shows that the sufficient
conditions of Corollary 5 are not necessary.

35It is natural that  and the “more impatient than” orderings coincide in comparing the separable in-
tertemporal utility functions (u ,α) and (u ,β ). Loosely speaking, the consumption smoothing motive is
identical in any two such utility functions, so the difference in attitudes towards time delay is due only to
the differences in impatience.
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EXAMPLE 5. Take any k > 0 and θ > 0, and define hθ : R+ → R+ by h(x ) := k x θ . We
claim: (1) For any θ ≥ 1, hθ satisfies (12) and (13) for all 0≤ x ≤ y if and only if αθ ≥ β ,
and (2) for any 1≥ θ > 0, hθ satisfies (12) and (13) for all 0≤ x ≤ y if and only if 1−β ≥
(1−α)θ .

We prove only the first claim, the proof of the second one being analogous. Fix any
θ ≥ 1. Since hθ is a strictly increasing convex function, it readily satisfies (13) for all
y ≥ x ≥ 0 . Thus, all we need to show is that (12) holds for all 0 ≤ x ≤ y if and only if
αθ ≥β . For any x ≥ 0, let us define the map f x : [x ,∞)→R by

f x (y ) := ((1−α)x +αy )θ − (1−β )x θ −βy θ .

For any 0≤ x < y , we have

d

d y
f x (y ) =αθ ((1−α)x +αy )θ−1−βθ y θ−1 ≥αθ (αy )θ−1−βθ y θ−1 = θ y θ−1(αθ −β ),

so it follows that if αθ ≥ β then f x is an increasing function for x ≥ 0. Since f x (x ) = 0,
we have f x ([x ,∞))≥ 0 for all x ≥ 0 if αθ ≥β . Conversely, if αθ <β , then (d /d y ) f 0(y )< 0
for small enough y > 0. Then, f 0(y )< 0 for small enough y > 0; that is, hθ fails to satisfy
(12) for x = 0 and small y > 0. ◊

EXAMPLE 2 CONTINUED. Consider the classU0× (0, 1) of exponential intertemporal util-
ity functions considered in Example 2. We saw earlier that no two members of this class
with distinct instantaneous utility functions can be ranked in terms of delay aversion. In
contrast, any two such members can be ranked in terms of impatience for appropriate
discount factors. Put precisely, if 0<σ1 ≤σ2 < 1, then

(uσ2 ,β ) is more impatient than (uσ1 ,α) if and only if (1−β )
1

1−σ2 ≥ (1−α)
1

1−σ1 ,

while if 0<σ2 ≤σ1 < 1, then

(uσ2 ,β ) is more impatient than (uσ1 ,α) if and only if α
1

1−σ1 ≥β
1

1−σ2 .

To prove this, let θ := (1 − σ2)/(1 − σ1), and define h : R+ → R+ by h(x ) :=
[(1−σ1)θ /(1−σ2)]x θ . Clearly, uσ2 = h ◦ uσ1 , so by Theorem 4, (uσ2 ,β ) is more im-
patient than (uσ1 ,α) if and only if h satisfies (12) and (13) for all 0 ≤ x ≤ y . It follows
from the results of Example 5 that h does indeed satisfy these two inequalities. ◊

4.3 Applications

4.3.1 Optimal growth theory revisited In Section 3.4.1 we saw that in the optimal solu-
tion of the one-sector optimal growth model, a more delay averse country invests less
than the other country at every period. A natural question is whether this finding re-
mains true under the weaker assumption that Country 2 is more impatient than Coun-
try 1. The answer is no. In fact, a country may invest strictly less than a more impatient
country at every period. To illustrate this, let us simplify the optimal growth problem of
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Section 3.4.1 by setting k0 = 1 and f (x ) = x for all x ≥ 0. The resulting model is that of
the standard cake-eating problem (the size of the cake being 1).36

Assume that u := uσ1 and v := uσ2 for some 0 < σ1,σ2 < 1, where uσ(x ) :=
x 1−σ/(1−σ) as in Example 2 of Section 3.3. With this specification, the optimal capi-
tal accumulation path of Country j= 1, 2 is found as (γj,γ2

j ,γ3
j , . . .), where γ1 = α1/σ1 and

γ2 =β1/σ2 . Therefore, the optimal capital accumulation path of Country 2 is everywhere
above that of Country 1 if and only ifα1/σ1 <β 1/σ2 . Notice that this impliesσ2 >σ1. Now
recall from the continuation of Example 2 above that when σ2 > σ1, Country 2 is more
impatient than Country 1 if and only if (1−β )1/(1−σ2) ≥ (1−α)1/(1−σ1). Therefore, for any
specification of 0<β <α< 1 and 0<σ1 <σ2 < 1 such that

α
1
σ1 <β

1
σ2 and (1−β )

1
1−σ2 ≥ (1−α)

1
1−σ1 , (15)

the optimal capital accumulation path of Country 2 is everywhere above that of Country
1, even though Country 2 is the more impatient of the two.37

4.3.2 Repeated games revisited The previous subsection shows that making changes in
peoples’ impatience, rather than their delay aversion, may result in radically different
conclusions. In contrast, in this section we present a setting in which changes in im-
patience and delay aversion have similar effects. The following proposition shows that
with exponential utility maximizers, any stationary equilibrium path of an infinitely re-
peated game remains an equilibrium path as players become less impatient, even if they
do not become less delay averse.38 We adopt the notation introduced in Section 3.4.2.

PROPOSITION 4. If (a , a , . . .) is a Nash equilibrium outcome path of the repeated game
(G ,{(vi ,βi )}i∈N ), then (a , a , . . .) is also a Nash equilibrium outcome path of the repeated
game (G ,{(u i ,αi )}i∈N ), where (u i ,αi ) ∈ Uexp is more patient than (vi ,βi ) ∈ Uexp for each
i ∈N .

To see this, note that (a , a , . . .) is an equilibrium path for (G ,{(vi ,βi )}i∈N ) if and only
if, for each i ∈N ,

1

1−βi
vi (p i (a ))≥ vi (p i (Bi (a )))+

βi

1−βi
vi (p i (m i )),

that is,
vi (p i (a ))≥ (1−βi )vi (p i (Bi (a )))+βi vi (p i (m i )). (16)

Now suppose that (u i ,αi ) is more patient than (vi ,βi ), and let h i := vi ◦ u−1
i for each

i ∈N . Then (16) and the functional inequality (13) of Corollary 5 yield

h i (u i (p i (a )))≥ (1−βi )h i (u i (p i (Bi (a ))))+βi h i (u i (p i (m i )))

≥ h i ((1−αi )u i (p i (Bi (a )))+αi u i (p i (m i )))

36It may be worth noting that in the special cake eating context, one can easily show that the optimal
consumption path of a country single crosses that of a less delay averse country from above. (This fact need
not hold for an arbitrary optimal growth problem.)

37The inequalities in (15) are compatible. For instance, they are satisfied for σ1 = 1
4

, σ2 = α= 1
2

, and any
β ∈ (0.25, 0.35).

38For less delay averse players, the conclusion is an immediate corollary of Proposition 2.
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for each i ∈N . Since h is increasing,

u i (p i (a ))≥ (1−αi )u i (p i (Bi (a )))+αi u i (p i (m i )) for all i ∈N .

Thus, (a , a , . . .) is an equilibrium path for (G ,{(u i ,αi )}i∈N ), as was sought.39

5. COMPARATIVE CRYONIC DELAY AVERSION

5.1 Main definition

In intertemporal decision theory, there are two major frameworks. The first of these is
the one we have worked within so far, namely, that of infinite (or finite) consumption
paths. The second of these takes as its basic choice alternatives dated outcomes that
specify the receival date and amount of a given consumption item.40 This setup cor-
responds to that of a large number of intertemporal choice experiments in which sub-
jects are asked to compare receiving two sums of money at two different time periods,
and are presumed not to consider the intervening periods. It is also used for modeling
bargaining games and preemptive investment scenarios, where disagreement (or non-
investment) periods are abstracted away from, with incomes in those periods taken to
be zero. Put differently, these models maintain that the agents solve their associated
problems as if they were “frozen” during intervening periods, making what we term cry-
onic comparisons.

In this alternative framework an agent makes comparisons among consumption
paths that are necessarily of the form (a , 0−s ), where a ≥ 0, s ∈ Z+, and 0 := (0, 0, . . .).
Consequently, within this framework it makes sense to apply the comparison methods
considered above only with respect to such consumption paths. This prompts the fol-
lowing modification of our delay aversion ordering.

DEFINITION 7. Let U and V be two intertemporal utility functions. We say that V is
cryonically more delay averse than U if for any given s , t ∈Z+ with s < t ,

U (a , 0−s )

¨

≥
>

«

U (b , 0−t ) implies V (a , 0−s )

¨

≥
>

«

V (b , 0−t )

for all a ,b ≥ 0. In this case we write U 0 V .

Note that this definition simply asks that condition (3) hold only when the initial
endowment stream is identically zero.41 Thus, while still partial, the “cryonically more
delay averse than” ordering 0 is a significant refinement of the “more impatient than”
ordering (which is itself a refinement of ). We should note that, within the context of

39It is clear from the above proof that Proposition 4 remains valid if “Nash equilibrium” is replaced by
“trigger-strategy equilibrium” in its statement. (A trigger-strategy equilibrium is a subgame perfect equilib-
rium in which deviations from the equilibrium path trigger the repeated play of a single-shot (pure strategy)
equilibrium until the end of the game.)

40See, for instance, Lancaster (1963), Fishburn and Rubinstein (1982), Rubinstein (2003), and Prelec
(2004).

41Condition (4) holds vacuously here, since no payments can be made from a starting point of 0.
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bargaining theory, a stationary version of this ordering is used by Osborne and Rubin-
stein (1994).

5.2 Comparative cryonic delay aversion with separability

Evidently, the “cryonically more delay averse than” ordering 0 is substantially more
complete than our delay aversion and impatience orderings. The following attests to
this. (Compare with Theorems 2 and 3.)

THEOREM 4. For any separable intertemporal utility functions (u ,α) and (v,β ), we have
(u ,α)0 (v,β ) if and only if there exists a map h :R+→R+ such that v = h ◦u and

h

�

α(t )
α(s )

x

�

≥
β (t )
β (s )

h(x ) for all s , t ∈Z+ with s < t and x ≥ 0. (17)

For any exponential intertemporal utility functions (u ,α) and (v,β ), we have (u ,α) 0

(v,β ) if and only if there exists a map h :R+→R+ such that v = h ◦u and

h(αx )≥βh(x ) for all x ≥ 0.

The functional inequality (17) is a special case of the functional inequalities (5) and
(10), pointing to the fact that the preorder 0 behaves quite differently from our two
previous orderings.

One striking difference is that the analogue of Corollary 1 is false here—it is possible
that the exponential intertemporal utility function (v,β ) is cryonically more delay averse
than (u ,α) even if β > α.42 Another important difference is that it may be possible to
rank two separable intertemporal utility functions that have the same discount function.
To identify exactly when this occurs, we need to recall the following definition from the
theory of functional inequalities: A function f : R+ → R+ is said to be star-shaped if
f (λx ) ≤ λ f (x ) for all x ≥ 0 and λ ∈ [0, 1]. One can show that f is star-shaped if and
only if f (0) ≤ 0 and x 7→ f (x )/x is an increasing map on R++. Thus, if f is convex and
f (0)≤ 0, then f is star-shaped (but not conversely). Recall that an instantaneous utility
function v ∈U is said to be less convex than u ∈U if v = h◦u , where−h is some convex
function. By analogy, we say that v is less star-shaped than u if v = h ◦u , where −h is a
star-shaped function.

COROLLARY 6. For any instantaneous utility functions u , v ∈ U , we have (u ,δ) 0 (v,δ)
for all δ ∈D if and only if v is less star-shaped than u . In particular, for any u , v ∈V

(u ,δ)0 (v,δ) for all δ ∈D if and only if
u ′(x )
u (x )
≥

v ′(x )
v (x )

for all x > 0. (18)

The following is almost an immediate consequence of the previous result.

42Example. Let 1
4
<α< 1

2
, and define u (x ) := x and v (x ) :=

p
x . Clearly, h := v ◦u−1 = v while

p
αx ≥ 1

2

p
x

for all x ≥ 0. It follows from Theorem 4 that (u ,α)≺0 (v, 1
2
), even though α< 1

2
.
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COROLLARY 7. For any exponential intertemporal utility functions (u ,α) and (v,β ), we
have (u ,α) 0 (v,β ) whenever α ≥ β and v is less star-shaped than u . In particular,
(u ,δ)0 (v,δ)whenever v is a concave transformation of u .43

5.3 Application: Bargaining theory

Roth (1985) argues that in Rubinstein’s bargaining model, a player’s equilibrium share
decreases as he becomes more risk averse. This result is generally regarded in the liter-
ature as somewhat difficult to interpret, given that Rubinstein bargaining does not in-
volve any risk.44 In this section, we argue that Roth’s result is in fact properly understood
as a result about delay aversion, not risk aversion.

Consider the standard complete-information alternating-offers bargaining game
where the size of the pie is 1. The utility function of the first mover, player 1, is a con-
cave function u ∈ U , and his discount factor is α ∈ [0, 1]. The utility function of the
second mover, player 2, is also a concave function w ∈ U , and her discount factor is
δ ∈ [0, 1]. Under this specification, the game has a unique subgame perfect equilib-
rium. Let (x , 1− x ) be the equilibrium offer of player 1, and (1− y , y ) that of player 2.
The values of x and y are determined as the unique solution of the following nonlinear
equation system in [0, 1]:

αu (x ) = u (1− y ) and δw (y ) =w (1−x ). (19)

Since player 1 is the first mover, the realized equilibrium allocation is (x , 1−x ).
Now replace player 1 with a player whose utility function is v ∈ U and discount

factor is β ∈ [0, 1]. Suppose that (u ,α) 0 (v,β ), that is, this new player is cryonically
more delay averse than the original player 1. Let us assume that the resulting bargaining
game has a unique subgame perfect equilibrium—a sufficient condition for this is that v
be concave. We denote the equilibrium offer of the (new) player 1 by (x ′, 1−x ′), and that
of player 2 by (1− y ′, y ′). The values of x ′ and y ′ are determined as the unique solution
of the following nonlinear equation system in [0, 1]:

βv (x ′) = v (1− y ′) and δw (y ′) =w (1−x ′) (20)

The realized equilibrium allocation is (x ′, 1−x ′).
Since the main force behind the equilibrium outcomes in the Rubinstein bargain-

ing game is the attitudes of the players towards time delay, a natural conjecture is that
the cryonically more delay averse agent (v,α) should perform less successfully than the
agent (u ,α), that is, x ≥ x ′. That this is indeed true follows from a general result (Propo-
sition 126.1) of Osborne and Rubinstein (1994). Here we provide an alternative proof
using Theorem 4.

43The converse of Corollary 7 is false. For instance, define u , v ∈U by u (x ) :=
p

x and v (x ) := x . Clearly,

h(x ) = x 2 for all x ≥ 0, where h := v ◦u−1. Thus, h(αx ) ≥ βh(x ) holds for all x ≥ 0 if and only if α ≥
p

β .
Hence, (u ,α)≺0 (v,β )may hold even when v is more convex than v .

44Roth himself recognizes this difficulty and claims that the game should be viewed as having “strategic
risk.” However, the concept of strategic risk is ill-defined, and the connection between this concept and the
concavity of a player’s static utility function is, at best, ambiguous.
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Observe first that (19) and (20) yield

x = 1−w−1(δw (y )) and x ′ = 1−w−1(δw (y ′)).

Letting A := y −w−1(δw (y )) and A ′ := y ′ −w−1(δw (y ′)), we may write 1− y = x − A
and 1− y ′ = x ′−A ′. Now, towards deriving a contradiction, assume that x ′ > x , that is,
y > y ′. Since w is concave, a routine argument shows that the map a 7→ a −w−1(δw (a ))
is increasing on R+. Thus, y > y ′ implies A ≥ A ′. Since u is strictly increasing and
concave,

u (x ′−A ′)−αu (x ′)≥ u (x ′−A)−αu (x ′)

≥α(u (x ′−A)−u (x ′))+ (1−α)u (x ′−A)

≥α(u (x −A)−u (x ))+ (1−α)u (x ′−A)

>α(u (x −A)−u (x ))+ (1−α)u (x −A)

= u (x −A)−αu (x )

= 0

where the last equality follows from (19). Thus, u (1−y ′) = u (x ′−A ′)>αu (x ′), so by (20)
we have

βh(u (x ′)) =βv (x ′) = v (1− y ′) = h(u (1− y ′))> h(αu (x ′)),

where h := v ◦u−1. Letting z := u (x ′), we see thatβh(z )> h(αz ), which contradicts (v,β )
being cryonically more delay averse than (u ,α), in view of Theorem 4. Conclusion: In
the Rubinstein bargaining model, a bargainer’s share decreases as he becomes cryonically
more delay averse.

Now let us revisit Roth’s result on increasing risk aversion. When Roth performs his
comparative static, he takes a concave transformation of one player’s instantaneous util-
ity function, holding the player’s discount factor constant. Presumably, the discount
factor is held constant in order to fix the player’s attitude towards time. However, fixing
the discount factor does not accomplish the task. Rather, as Corollary 7 shows, a con-
cave transformation of the instantaneous utility function holding the discount factor
constant, makes a player cryonically more delay averse. Hence, Roth has actually estab-
lished a special case of the above result; a non-concave but star-shaped transformation
would have yielded him the same conclusion.45

6. CONCLUDING COMMENTS

This paper begins with the observation that discount factors do not provide a proper
basis for a definition of comparative delay aversion. In response, we propose the nested
notions of comparative delay aversion, impatience, and cryonic delay aversion. We
show, by means of various characterization theorems and economic applications, that
these notions are tractable, and that the theory that surrounds them parallels in some
major ways the classical theory of risk aversion.

45We note that Osborne and Rubinstein’s general analysis does not yield any insight into Roth’s result;
Corollary 7 is essential in this regard.
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Needless to say, various avenues of related research have been left unexplored.
While we provide characterizations of our delay aversion and impatience orderings for
separable intertemporal preferences, the characterization of these orderings for other
interesting preference classes, such as recursive preferences, remains to be done. Per-
haps more importantly, our entire analysis is confined to decision problems in the ab-
sence of risk. A natural avenue of further research is the extension of the delay aver-
sion theory introduced here to environments in which the consumption streams are
stochastic. The basic definitions of relative delay aversion, impatience, and cryonic de-
lay aversion are all applicable to intertemporal preferences over stochastic streams, so
the present work provides a good starting point for such a study.46

7. APPENDIX: PROOFS

7.1 Proof of Lemma 1

The nontrivial part of the argument is to establish the cube-continuity of the map de-
fined by (1) for any given (u ,δ) ∈ U ×D . To this end, fix an arbitrary a > 0, and define
f :=U |[0,a ]∞ . We wish to show that f is continuous (in the product topology). Take any
x∈ [0, a ]∞ and ε > 0. Since

∑∞
t=0δ(t )<∞, there is a T ∈N such that

∞
∑

t=T+1

δ(t )<
ε

2u (a )
.

Moreover, since u is continuous, there is a neighborhood O of x such that O is open in
the product topology and

|u (x t )−u (yt )|<
ε

2

T
∑

t=0

δ(t ) for all y∈O and t = 1, . . . , T.

A straightforward application of the triangle inequality yields | f (x)− f (y)| < ε for any
y ∈O. We thus conclude that f is continuous. Since a > 0 is arbitrary in this discussion,
it follows that U is cube-continuous.

7.2 Proofs for Section 3

We begin with the following preliminary result, which facilitates some of the subsequent
arguments.

LEMMA 3. For any U , V ∈U, the following statements are equivalent.

(a) U V .

46Disentangling the effects of delay aversion and risk aversion may be an interesting issue in this regard.
Similar issues arise in separating the consumption smoothing and risk aversion motives in intertemporal
choice theory with risk (cf. Epstein and Zin 1989).
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(b) For any given x∈X and s , t ∈Z+ with s < t ,

U (xs +a ,x t −b , x−(s ,t ))

¨

≥
>

«

U (x) implies V (xs +a ,x t −b , x−(s ,t ))

¨

≥
>

«

V (x)

for all a , b ≥ 0 with x t ≥b .

(c) For any givenω∈X and s , t ∈Z+ with s < t ,

U (ωs +a ,ω−s )

¨

≥
>

«

U (ωt +b ,ω−t ) implies V (ωs +a ,ω−s )

¨

≥
>

«

V (ωt +b ,ω−t )

for all a , b ≥ 0.

PROOF. That (a) implies (c) is obvious. To prove (c) implies (b), take any x ∈ X , s , t ∈
Z+ with s < t , and fix any a ,b ≥ 0 with x t ≥ b . Define ω := (x t − b ,x−t ), and notice
that (ωs +a ,ω−s ) = (xs + a ,x t − b , x−(s ,t )) and (ωt + b ,ω−t ) = x. That (c) implies (b)
is thus evident from this change of variables. It remains to prove that (b) implies (a).
To this end, take any ω ∈ X , s , t ∈ Z+ with s < t , fix any a ,b ≥ 0, and assume first that
U (ωs+a ,ω−s )≥ (>)U (ωt +b ,ω−t ). Define x := (ωt +b ,ω−t ), and notice that (xs+a ,x t −
b , x−(s ,t )) = (ωs+a ,ω−s ). It thus follows from (b) that V (ωs+a ,ω−s )≥ (>)V (ωt +b ,ω−t ).
On the other hand, suppose that ωs ≥ a ≥ 0 and ωt ≥ b ≥ 0, and U (ωt −b ,ω−t )≥ (>)
U (ωs −a ,ω−s ). Defining x := (ωs −a ,ω−s ) and applying (b) we find V (ωt −b ,ω−t )≥ (>)
V (ωs −a ,ω−s ). Thus U V . �

PROOF OF THEOREM 1. We need to prove only the “only if” part of the assertion. Take
any U , V ∈U such that U  V . For any t ∗ ∈N, define T (t ∗) := {(x, y) ∈X 2 : U (y)≥U (x), y
single crosses x from above and |{m ∈Z+ : ym > xm }| ≤ t ∗}. We wish to show that

V (y)≥V (x) for all (x, y)∈ T (t ∗), t ∗ = 1, 2, . . .

(The case U (y) >U (x) implies V (y) > V (x) for all (x, y) ∈ T (1)∪ T (2)∪ . . . is analogous.)
The proof is by induction on t ∗.

Take any (x, y)∈X 2 and defineσ := sup{max{x i , yi } : i = 1, 2, . . .}. Since U and V are
cube-continuous, U |[0,σ]∞ and V |[0,σ]∞ are continuous functions. We use this fact below.

Assume first that (x, y) ∈ T (1). If x = y, there is nothing to prove, so let x 6= y. Then
we have |{m ∈ Z+ : ym > xm }| = 1. Without loss of generality, we assume y0 > x0. Let
S := {m ∈ N : yi < x i }, and to focus on the nontrivial case, suppose that S is an infinite
set. We define s1 :=minS and sm :=minS \ {s1, . . . , sm−1}, m = 2, 3, . . .. By monotonicity
of U , we have U (x0 + (y0 − x0), ys1 , x−(0,s1)) >U (y) ≥U (x). Therefore, by continuity of U
and the Intermediate Value Theorem, there exists ξ1 ∈ (0, y0−x0) such that

U (x0+ξ1, ys1 , x−(0,s1)) =U (x)≤U (y).

By Lemma 3, then, we have

V (x0+ξ1, ys1 , x−(0,s1))≥V (x).
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Similarly, there exists ξ2 > 0 such that

U (x0+ξ1+ξ2, ys1 , ys2 , x−(0,s1,s2)) =U (x0+ξ1, ys1 , x−(0,s1))≤U (y),

and hence Lemma 3 yields

V (x0+ξ1+ξ2, ys1 , ys2 , x−(0,s1,s2))≥V (x0+ξ1, ys1 , x−(0,s1))≥V (x).

Proceeding inductively, we obtain a sequence (ξm ) of positive numbers such that

U (z(m ))≤U (y) and V (z(m ))≥V (x),

where

z(m ) := (x0+
m
∑

i=1

ξi , ys1 , . . . , ysm , x−(0,s1,...,sm )), m = 1, 2, . . . .

Since U (z(m ))≤U (y) for each m , the monotonicity of U implies z 0(m )≤ y0, m = 1, 2, . . ..
Being an increasing sequence, then, (z 0(m ))must converge to some a ∈ (0, y0] as m →
∞. Consequently, for any ε > 0, continuity of V |[0,σ]∞ guarantees the existence of M 1 > 0
such that

|V (z(m ))−V (a , z(m )−0)|<
ε

2
for all m ≥M 1.

On the other hand, notice that (a , z(m )−0)→ (a , y−0) as m →∞ (in the product topol-
ogy). Thus, since V |[0,σ]∞ is continuous, there exists M 2 ∈N such that

|V (a , z(m )−0)−V (a , y−0)|<
ε

2
for all m ≥M 2.

Therefore, we find

|V (z(m ))−V (a , y−0)| ≤ |V (z(m ))−V (a , z(m )−0)|+ |V (a , z(m )−0)−V (a , y−0)|< ε

for all m ≥ max{M 1, M 2}. Then, since V (z(m )) ≥ V (x) for all m , we have V (a , y−0) >
V (x)− ε. Since ε > 0 is arbitrary here, we may conclude that V (a , y−0) ≥ V (x). But V is
increasing and y0 ≥ a , so V (y)≥V (a , y−0), which yields V (y)≥V (x), as sought.

Now, as the induction hypothesis, assume that there exists k ∈ N such that V (y) ≥
V (x) holds for all (x, y)∈ T (k ). Take any (x, y)∈ T (k+1). If x= y, there is nothing to prove,
so let x 6= y. Then we have {m ∈ N : ym > xm } 6= ;. Without loss of generality, assume
y0 > x0. Since (x, y) ∈ T (k + 1), U (y) ≥U (x) and there exists M ∈ N such that ym ≥ xm

for all m = 0, . . . , M − 1, and ym ≤ xm for all m ≥M . If ym = xm for each m ≥M , then
V (y)≥V (x) holds by monotonicity of V , so we assume that ym < xm for some m ≥M . In
that case, by using the monotonicity and continuity of U |[0,σ]∞ , we can find w ∈X such
that U (w) =U (x) and

x0 <w0 ≤ y0, xm ≤wm ≤ ym , m = 1, . . . , M −1, and wm = ym , m =M , M +1, . . .

Notice that, by the monotonicity of U , we have

U (w0, x−0)>U (x) =U (w)≥U (w0,x1, . . . ,xM−1, w−(0,...,M−1)).
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Therefore, by the continuity of U |[0,σ]∞ , there exists z∈X such that U (z) =U (x), and

z 0 =w0, z m = xm , m = 1, . . . , M −1, and xm ≥ z m ≥wm , m =M , M +1, . . . .

Since (x, z) ∈ T (1), we have V (z) ≥ V (x). Moreover, since |{m ∈ Z+ : wm > xm }| ≤ k + 1
and {m ∈Z+ : wm > z m }= {m ∈Z+ : wm > z m } \ {0}, we have |{m ∈Z+ : wm > z m }| ≤ k ,
that is, (z, w) ∈ T (k ). It follows that V (w)≥ V (z) by the induction hypothesis. But, by the
monotonicity of V , V (y)≥V (w), so we have V (y)≥V (x), as sought. �

For any intertemporal utility function U ∈ U, x ∈ X , and s , t ∈ Z+ with s < t , we
define χU

s ,t ,x :R+→R+ by

χU
s ,t ,x(b ) := sup{a ≥ 0 : U (xs +a , x−s )≤U (x t +b , x−t )}.

Since U is cube-continuous, for any b ≥ 0 we have χU
s ,t ,x(b ) < ∞ if and only if

U (xs +a , x−s ) =U (x t +b , x−t ).

LEMMA 4. For any U , V ∈U, we have U V if and only if

χU
s ,t ,x ≥χ

V
s ,t ,x for all x∈X and s , t ∈Z+ with s < t . (21)

PROOF. Let U  V , fix any x ∈ X and s , t ∈ Z+ with s < t , and pick an arbitrary b ≥ 0.
Suppose first that χV

s ,t ,x(b ) =∞. This means that V (xs + a , x−s ) ≤ V (x t +b , x−t ) for all
a ≥ 0. Since U  V , this is possible only if U (xs +a , x−s )≤U (x t +b , x−t ) for all a ≥ 0 as
well, so it follows that χU

s ,t ,x(b ) =∞. Assume then that χV
s ,t ,x(b )<∞. There is nothing to

prove if χU
s ,t ,x(b ) =∞, so suppose χU

s ,t ,x(b ) is finite. Then U V implies

V (xs +χU
s ,t ,x(b ), x−s )≥V (x) =V (xs +χV

s ,t ,x(b ), x−s ).

Since V is increasing, we have χU
s ,t ,x(b )≥χV

s ,t ,x(b ) as sought.
Conversely, assume that (21) holds, take any x∈X and s , t ∈Z+ with s < t , and pick

any a ,b ≥ 0 such that U (xs + a , x−s ) ≥U (x t +b , x−t ). In this case χU
s ,t ,x(b ) and χV

s ,t ,x(b )
are finite, and we have

U (xs +a , x−s )≥U (x t +b , x−t ) =U (xs +χU
s ,t ,x(b ), x−s ).

It follows that a ≥χU
s ,t ,x(b )≥χV

s ,t ,x(b ) by monotonicity of U and (21). So, V (xs +a , x−s )≥
V (xs+χV

s ,t ,x(b ), x−s ) =V (x). (If U (xs+a , x−s )>U (x t+b , x−t ), then a >χU
s ,t ,x(b )≥χV

s ,t ,x(b ),
and hence V (xs +a , x−s )>V (xs +χV

s ,t ,x(b ), x−s ) =V (x).) �

LEMMA 5. For any Un ,U ∈U, n = 1, 2, . . ., if Un →U uniformly, then

χUn
s ,t ,x→χU

s ,t ,x for all x∈X and s , t ∈Z+ with s < t .
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PROOF. Fix any x ∈ X and s , t ∈ Z+ with s < t . For each n ∈ N we define the real
functions f n and f on R+ by

f n (a ) :=Un (xs +a , x−s ) and f (a ) :=U (xs +a , x−s ).

Since each Un and U are cube-continuous, each f n |[0,σ] and f |[0,σ] are continuous for
eachσ> 0, which means that each f n and f are continuous real maps on R+.

Finally, pick an arbitrary b ≥ 0. In what follows, let y := (x t +b , x−t ) and cn :=χUn
s ,t ,x(b )

for each n . Assume first that χU
s ,t ,x(b )<∞ (i.e. U (y) = f (χU

s ,t ,x(b ))). We claim that in this
case there must exist N ∈N such that cn <∞ for all n ≥N . If there does not exist such an
N , then cn =∞ for infinitely many n . Without loss of generality, suppose this is the case
for all n . Then, lima→∞ f n (a ) = sup f n (R+)≤Un (y). Since Un (y)→U (y) = f (χU

s ,t ,x(b )), it
follows that

lim
n→∞

lim
a→∞

f n (a )≤ f (χU
s ,t ,x(b )).

Yet, since f n → f uniformly and f is strictly increasing,

lim
n→∞

lim
a→∞

f n (a ) = lim
a→∞

lim
n→∞

f n (a ) = lim
a→∞

f (a )> f (χU
s ,t ,x(b )),

a contradiction.
Without loss of generality, we take N = 1, that is, cn <∞ for all n . Then, f n (cn ) =

Un (y) → U (y) so, for an arbitrarily fixed ε > 0, there exists N1 ∈ N such that | f n (cn )−
U (y)| < ε/2 for all n ≥ N1. Moreover, since Un →U uniformly, there exists N2 ∈ N such
that | f (a )− f n (a )|< ε/2 for all a ≥ 0 and n ≥N2. Therefore,

| f (cn )−U (y)| ≤ | f (cn )− f n (cn )|+ | f n (cn )−U (y)|< ε

for all n ≥max{N1, N2}. Since ε > 0 is arbitrary here, we conclude that f (cn )→U (y) =
f (χU

s ,t ,x(b )). Since f is continuous and strictly increasing, this is possible only if cn →
χU

s ,t ,x(b ).
It remains to analyze the case χU

s ,t ,x(b ) = ∞. If cn = ∞ for all but finitely many n ,
there is nothing to prove here, so we assume, without loss of generality, that cn <∞ for
each n . As shown in the previous paragraph, we have f (cn ) → U (y) in this case. But
χU

s ,t ,x(b ) =∞ implies that sup f (R+)≤U (y). So, since f is increasing, (cn )must have an
increasing subsequence, which we again denote by (cn ). Clearly, if cn → c ∗ for some real
number c ∗, then

f (c ∗) = f ( lim
n→∞

cn ) = lim
n→∞

f (cn ) = sup f (R+),

which is impossible since f is strictly increasing. It follows that cn →∞, and the proof is
complete. �

PROOF OF PROPOSITION 1. The first claim in Proposition 1 follows readily from the def-
initions. The second claim is an immediate consequence of Lemmas 4 and 5. �
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PROOF OF THEOREM 2. Let U and V stand for the intertemporal utility functions that
correspond to (u ,α) and (v,β ), respectively. Given any x ∈ X and s , t ∈ Z+ with s < t ,
u (∞) =∞ guarantees that

α(s )u (xs +χU
s ,t ,x(b ))+α(t )u (x t ) =α(s )u (xs )+α(t )u (x t +b ),

whence

χU
s ,t ,x(b ) = u−1(u (xs )+

α(t )
α(s )

(u (x t +b )−u (x t )))−xs , b ≥ 0. (22)

Similarly,

χV
s ,t ,x(b ) = v−1(v (xs )+

β (t )
β (s )

(v (x t +b )−v (x t )))−xs , b ≥ 0. (23)

By Lemma 4, (22), and (23), (u ,α) (v,β ) if and only if

u−1(u (xs )+
α(t )
α(s )

(u (x t +b )−u (x t )))≥ v−1(v (xs )+
β (t )
β (s )

(v (x t +b )−v (x t )))

for all x ∈ X , s , t ∈ Z+ with s < t and b ≥ 0. Thus, letting h := v ◦ u−1, we find that
(u ,α) (v,β ) if and only if

h(u (xs )+
α(t )
α(s )

(u (x t +b )−u (x t )))≥ v (xs )+
β (t )
β (s )

(v (x t +b )−v (x t ))

for all x ∈ X , s , t ∈ Z+ with s < t and b ≥ 0. Making the change of variables x := u (xs ),
y := u (x t +b )−u (x t ), and z := u (x t ), we conclude that (u ,α) (v,β ) if and only if

h

�

x +
α(t )
α(s )

y

�

≥ h(x )+
β (t )
β (s )

(h(y + z )−h(z ))

for all s , t ∈Z+ with s < t and x , y , z ≥ 0, as we sought.
Now suppose that u and v belong toV , and take any s , t ∈Z+ with s < t . If (b) holds,

then we have

h
�

x + α(t )α(s )y
�

−h(x )
α(t )
α(s )y

≥
�

β (t )/β (s )
α(t )/α(s )

�

h(y + z )−h(z )
y

for all x , y , z ≥ 0.

Since u is differentiable, so is u−1, and hence h = v ◦u−1 is differentiable. Consequently,
letting y → 0 in the statement above, we find

h ′(x )≥
�

β (t )/β (s )
α(t )/α(s )

�

h ′(z ) for all x , z ≥ 0.

Conversely, assume that (c) holds, and fix any x , y , z ≥ 0. Since h is differentiable, the
Mean Value Theorem implies that there exist c ∈ [x ,x + α(t )α(s )y ] and d ∈ [y , y + z ] such
that

h

�

x +
α(t )
α(s )

y

�

−h(x ) = h ′(c )
α(t )
α(s )

y and h(y + z )−h(z ) = h ′(d )y .
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Moreover, by (c), we have h ′(c )≥ β (t )/β (s )α(t )/α(s ) h ′(d ). Combining these observations,

h

�

x +
α(t )
α(s )

y

�

−h(x ) = h ′(c )
α(t )
α(s )

y ≥
β (t )
β (s )

h ′(d )y =
β (t )
β (s )

(h(y + z )−h(z ))

as we sought.
Finally, the equivalence of (c) and (d) follows from the Inverse Function Theorem

and the fact that h = v ◦u−1. �

PROOF OF COROLLARY 1. This is a special case of Corollary 4. �

PROOF OF COROLLARY 2. The first claim follows immediately from Theorem 2 upon set-
ting h in part (b) to be the identity function onR+. The second claim is a special case of
the final assertion of Corollary 4. �

PROOF OF COROLLARY 3. The corollary follows immediately from Theorem 2. �

7.3 Proofs for Section 4

For any (u ,δ) ∈ Usep, ω ≥ 0, and s , t ∈ Z+ with s < t , define η(u ,δ)
s ,t ,ω : R+ → R+ and

ς
(u ,δ)
s ,t ,ω : [0,ω]→ [0,ω] by

δ(s )u
�

ω+η(u ,δ)
s ,t ,ω (b )
�

+δ(t )u (ω) =δ(s )u (ω)+δ(t )u (ω+b )

and
δ(s )u
�

ω−ς(u ,δ)
s ,t ,ω (b )
�

+δ(t )u (ω) =δ(s )u (ω)+δ(t )u (ω−b ),

respectively. Since 0<δ< 1 and u (∞) =∞, both of these functions are well-defined.

PROOF OF THEOREM 3. It is easy to verify that (v,β ) is more impatient than (u ,α) if and
only if

η
(u ,α)
s ,t ,ω ≥η

(v,β )
s ,t ,ω for allω≥ 0 and s , t ∈Z+ with s < t (24)

and

ς
(u ,α)
s ,t ,ω ≥ ς

(v,β )
s ,t ,ω for allω≥ 0 and s , t ∈Z+ with s < t . (25)

Moreover, (24) holds if and only if

u−1
�

u (ω)+
α(t )
α(s )

(u (ω+b )−u (ω))
�

≥ v−1
�

v (ω)+
β (t )
β (s )

(v (ω+b )−v (ω))
�

for allω≥ 0, s , t ∈ Z+ with s < t , and b ≥ 0. Thus, letting h := v ◦u−1, we find that (24)
holds if and only if

h

�

u (ω)+
α(t )
α(s )

(u (ω+b )−u (ω))
�

≥ v (ω)+
β (t )
β (s )

(v (ω+b )−v (ω))
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for all ω ≥ 0, s , t ∈ Z+ with s < t , and b ≥ 0. Making the change of variables x := u (ω)
and y := u (ω+b ), we have that (24) holds if and only if

h

�

x +
α(t )
α(s )

(y −x )
�

≥ h(x )+
β (t )
β (s )

(h(y )−h(x ))

for all s , t ∈ Z+ with s < t and 0 ≤ x ≤ y . One can similarly show that (25) holds if and
only if (11) holds for all s , t ∈Z+ with s < t and 0≤ x ≤ y . �

LEMMA 6. Let 0<λ< 1. If f :R+→R+ is continuous and

(1−λ) f (x )+λ f (y )≤ f ((1−λ)x +λy ) for all 0≤ x ≤ y , (26)

then f is concave.

PROOF. We first prove an auxiliary fact. Let A0 := {0, 1} and

Am := {(1−λ)a +λb : a ,b ∈ Am−1 and a ≤b},

m = 1, 2, . . .. We claim that A∞ := A0 ∪A1 ∪ . . . is dense in [0, 1].
We consider only the case 1

2 ≤ λ < 1, the argument for the remaining case being
analogous. Suppose that cl (A∞) 6= [0, 1], that is, there exists γ ∈ (0, 1) \ cl (A∞). Since
(0, 1) \ cl (A∞) is an open set, we have

a := sup([0,γ]∩ cl (A∞))<γ and b := inf([γ, 1]∩ cl (A∞))>γ.

(Obviously, a ,b ∈ cl (A∞) and A∞ ∩ (a ,b ) = ∅.) Define θ := (1−λ)(b − a ) > 0. Clearly,
there exist a ′,b ′ ∈ A∞ such that

a −θ < a ′ ≤ a <b ≤b ′ <b +θ .

By definition of A∞, we have (1−λ)a ′+λb ′ ∈ A∞. However, since (1−λ)a +λb =b −θ ,
we have

(1−λ)a ′+λb ′ < (1−λ)a +λ(b +θ ) =b −θ +λθ =b − (1−λ)θ <b

and since 1
2 ≤λ< 1,

(1−λ)a ′+λb ′ > (1−λ)(a −θ )+λb

= a −θ +λ(b − (a −θ ))
≥ a −θ +(1−λ)(b − (a −θ ))
= a −θ +θ +(1−θ )θ
> a .

Thus, (1−λ)a ′+λb ′ ∈ A∞ ∩ (a ,b ), a contradiction.
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Lemma 6 is now easily proved. Note first that one can easily show inductively that
(26) holds if and only if

(1−µ) f (x )+µ f (y )≤ f ((1−µ)x +µy ) for all 0≤ x ≤ y and µ∈ A∞.

Since f is continuous and cl (A∞) = [0, 1], it follows that (26) holds if and only if

(1−µ) f (x )+µ f (y )≤ f ((1−µ)x +µy ) for all 0≤ x ≤ y and 0≤µ≤ 1.

That is, f is concave. �

PROOF OF COROLLARY 4. Suppose that (v,β ) is more impatient than (u ,α), but
α(t )/α(s ) < β (t )/β (s ) for some s , t ∈ Z+ with s < t . Let h := v ◦ u−1, α := α(t )/α(s )
and β :=β (t )/β (s ). Since h is strictly increasing, α<β implies

h((1−α)x +αy )≤ h((1−β )x +βy ) for all 0≤ x ≤ y .

Combining this with (10) yields

(1−β )h(x )+βh(y )≤ h((1−β )x +βy ) for all 0≤ x ≤ y .

Thus, by Lemma 6, h is a concave function. But, for any fixed 0≤ x < y , (11) and α < β
entail that

h((1−α)y +αx )≤ (1−β )h(y )+βh(x )< (1−α)h(y )+αh(x ),

which contradicts the concavity of h.
The second assertion of Corollary 4 follows from Theorem 3 (with h being the iden-

tity function) and Corollary 2. On the other hand, the “if” part of the final assertion of
Corollary 4 is trivial. To prove its “only if” part, let (v,α) be more impatient than (u ,α),
h := v ◦u−1, and set α := α(1). By (10) and (11), and Lemma 6, both h and −h must be
concave functions, so that h is affine. Since, h(0) = 0, h is, in fact, a strictly increasing
linear function. �

PROOF OF COROLLARY 5. The “only if” part of the first assertion here is immediate from
Theorem 3. To prove its “if” part, assume that (12) holds for all 0≤ x ≤ y , and suppose,
as the induction hypothesis,

(1−β r )h(x )+β r h(y )≤ h((1−αr )x +αr y ) for all 0≤ x ≤ y ,

where r is an arbitrary positive integer. Then, for any 0≤ x ≤ y , we have

(1−β r+1)h(x )+β r+1h(y ) = (1−β r )h(x )+β r ((1−β )h(x )+βh(y ))

≤ (1−β r )h(x )+β r h((1−α)x +αy )

≤ h((1−αr )x +αr ((1−α)x +αy ))

= h((1−αr+1)x +αr+1y ).
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It follows that h((1−αt−s )x +αt−s y ) ≥ (1−β t−s )h(x ) +β t−s h(y ); that is, (10) holds for
all s , t ∈Z+ with s < t and y ≥ x ≥ 0. Since one can similarly show (using this time (13))
that (11) also holds for all s , t ∈ Z+ with s < t and 0 ≤ x ≤ y , the claim follows from
Theorem 3.

To prove the second assertion of Corollary 5, assume that (14) holds for all 0< x < y .
Consider first the case β/α≤ (1−α)/(1−β ), so that

β

α
h ′(y )≤ h ′(x )≤

α

β
h ′(y ) for all 0≤ x ≤ y . (27)

Observe that if h ′(x ) < (β/α)h ′(y ) for some x , y ≥ 0, then we must have x > y ≥ 0 and
(α/β )h ′(x ) < h ′(y ), which contradicts (27). Thus h ′(x ) ≥ (β/α)h ′(y ) for all x , y ≥ 0, that
is, (6) holds, so by Corollary 3, (v,β )  (u ,α). Hence, in particular, (v,β ) is more impa-
tient than (u ,α).

Finally, consider the case β/α> (1−α)/(1−β ), so that (14) becomes

1−α
1−β

h ′(y )≤ h ′(x )≤
1−β
1−α

h ′(y ) for all 0≤ x ≤ y . (28)

Fix any y ≥ x ≥ 0 arbitrarily. Let z := (1−α)x +αy and define G : R+ → R+ by G (ω) :=
ω/(1−α)− (α/(1−α))y . Notice that G (y ) = y , G (z ) = x , G (ω)≤ω for allω ∈ [0, y ], and
that h ′(G (ω)) = (1−α)(d /dω)h(G (ω)) for allω. By (28),

∫ y

z

(1−α)h ′(ω)dω≤
∫ y

z

(1−β )h ′(G (ω))dω= (1−β )
∫ y

z

(1−α)
d

dω
h(G (ω))dω,

so by the Fundamental Theorem of Calculus, we have h(y )−h(z )≤ (1−β )(h(y )−h(x )),
which is equivalent to (12).

Now let w := (1−α)y +αx and define H : R+ → R+ by H (ω) :=ω/(1−α)− (α/(1−
α))x . Notice that H (x ) = x , H (w ) = y , H (ω) ≥ω for all ω ∈ [x ,∞), and that h ′(H (ω)) =
(1−α)(d /dω)h(H (ω)) for allω. Then, by (28),

∫ w

x

(1−α)h ′(ω)dω≤
∫ w

x

(1−β )h ′(H (ω))dω= (1−β )
∫ w

x

(1−α)
d

dω
h(H (ω))dω,

so by the Fundamental Theorem of Calculus, we have h(w )−h(x )≤ (1−β )(h(y )−h(x )),
which is equivalent to (13).

We have proved that (28) implies (12) and (13) for all 0 ≤ x ≤ y . By the first part of
Corollary 5, (28) implies that (v,β ) is more impatient than (u ,α). �

The proof of Theorem 4 is analogous to those of Theorems 2 and 3 and is thus omitted.

PROOF OF COROLLARY 6. The first assertion is immediate from Theorem 4. To see the
second, let h :R+→R+ be any differentiable function with h(0) = 0. Observe that −h is
star-shaped if and only if (d /d t )(h(t )/t )≤ 0 for all t > 0, or equivalently, h ′(t )t ≤ h(t ) for
all t > 0. But, given any u , v ∈V , the first assertion of Corollary 6 says that (u ,δ)0 (v,δ)
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for all δ ∈ D if and only if −(v ◦u−1) is star-shaped. Therefore, by the Inverse Function
Theorem, (u ,δ)0 (v,δ) for all δ ∈D if and only if

v ′(u−1(a ))a
u ′(u−1(a ))

≤ v (u−1(a )) for all a > 0.

Since u−1(R++) =R++, the latter statement is equivalent to (18). �
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