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This paper proposes the solution concept of interim correlated rationalizability,
and shows that all types that have the same hierarchies of beliefs have the same
set of interim-correlated-rationalizable outcomes. This solution concept charac-
terizes common certainty of rationality in the universal type space.
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1. INTRODUCTION

Harsanyi (1967–68) proposes solving games of incomplete information using type
spaces, and Mertens and Zamir (1985) show how to construct a universal type space,
into which all other type spaces (satisfying certain technical regularity assumptions)
can be mapped. However, type spaces may allow for more correlation than is captured
in the belief hierarchies, so identifying types that have identical hierarchies may lead
to a loss of information, and solution concepts can differ when applied to two different
type spaces even if the type spaces are mapped into the same subset of the universal
type space.1 In response, this paper proposes the solution concept of interim correlated
rationalizability.
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We show that the concept is well-defined, that its iterative and fixed-point defini-
tions coincide, and that any two types with the same hierarchy of beliefs have the same
interim-correlated-rationalizable actions, regardless of whether they reside in the same
type space. Thus this is a solution concept that can be characterized by working with
the universal type space.2 We show also that the solution concept has similar properties
to its complete-information counterpart. First, in Claim 1, we note that the process of
iterative elimination of interim strictly dominated strategies yields the same solution.
Second, Proposition 2 shows that interim correlated rationalizability is characterized
by common certainty of rationality.3 Third, we extend a result of Brandenburger and
Dekel (1987). They show that the set of actions that survive iterated deletion of strictly
dominated strategies in a complete information game is equal to the set of actions that
could be played in a subjective correlated equilibrium; Remark 2 reports a straightfor-
ward extension of Brandenburger and Dekel’s observation to games with incomplete
information.

We now sketch the main constructs in the paper. Fix a type space, where players
have beliefs and higher-order beliefs about some payoff-relevant state space Θ. A game
consists of payoff functions mapping from action profiles and Θ to the real line. Our
focus is on the concept of interim correlated rationalizability, but we also define the
concept of interim independent rationalizability; we use comparisons between the two
concepts to help explain and motivate the correlated version. These two solution con-
cepts are incomplete-information analogs of the complete-information concepts of cor-
related rationalizability and independent rationalizability, and reduce to them when Θ
is a singleton. To understand these concepts, recall that all rationalizability notions in-
volve iteratively deleting every action that is not a best reply to some player’s beliefs,
where at each stage of the deletion the beliefs are restricted to assign positive probabil-
ity only to actions that have not yet been deleted. Our definitions of interim rationaliz-
ability iteratively delete actions for all types that are not best replies to some probability
distribution over actions and states that is consistent with the beliefs of each type of
each player about Θ and the other players’ types, and with the restrictions on conjec-
tures about the opponents’ actions that were obtained at earlier stages of the iteration.
We call such probability distributions "forecasts." In the case of interim independent
rationalizability, the allowed forecasts for a player of type t are given by combining (in-
dependent) conjectures of strategy profiles for each opponent’s types, with that type t ’s
beliefs over opponents’ types and over Θ. In the case of interim correlated rationaliz-
ability, the allowed forecasts are generated by combining t ’s beliefs over types and Θ
with any, perhaps correlated, conditional conjectures about which (surviving) actions

2We use the concept of interim correlated rationalizability in our study of topologies on the universal
type space (Dekel et al. 2006). For that purpose, it is important to know that the solution concept depends
only on hierarchies of beliefs (and not on other, “redundant,” elements of the type space), as we establish
here.

3We follow a recent convention in the epistemic foundations of game theory literature of using "cer-
tainty" to mean "belief with probability one." An earlier convention—that we followed in Dekel et al. (2006)
and other earlier work—uses "knowledge" instead to refer belief with probability one. But the convention in
philosophy and other closely related disciplines has been to reserve "knowledge" for true belief. The truth
of players’ beliefs does not play a role in our analysis, so in this paper we switch to the newer convention.
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are played at a given type profile and payoff-relevant state. In this latter definition, a
type’s forecast can allow for correlation among the payoff-relevant state, other players’
types, and other players’ actions.4

Much work in this paper is devoted to establishing that our results hold on general
type spaces. This generality is important for evaluating the claim that all types that map
to the same point in the universal type space have the same set of interim-correlated-
rationalizable outcomes, so that interim correlated rationalizability can be analyzed us-
ing the universal type space.

However, working on general type spaces introduces a number of technical com-
plications, starting with the question of what sorts of type spaces to consider (we use
the non-topological definition of Heifetz and Samet 1998) and proceeding to the ques-
tion of whether the set of best responses is measurable, whether transfinite induction
is required to equate the iterative and fixed-point definitions of rationalizability, and so
on. These issues are important for a general analysis, but they shed little light on either
the motivation for the definition of interim correlated rationalizability or its invariance
property. For this reason we restrict attention to finite type spaces in the first part of the
paper, which allows us to give less technical definitions and statements of some of our
results. We then proceed to the more general analysis.

We now consider an example to illustrate some of these ideas. The example illus-
trates our conclusion that this concept corresponds to common certainty of rationality
and that it depends only on the types (hierarchies of beliefs) and not on other (redun-
dant) aspects of the type space, and that the latter independence is not true for interim
independent rationalizability. It also emphasizes the form of correlation allowed by our
main concept; a more detailed discussion of this correlation appears in Section 3.2.

EXAMPLE 1 (The Effect of Correlation with Nature). Consider the following two-player
game with incomplete information, Γ. Player 1 chooses the row, player 2 chooses the
column, and Nature chooses whether payoffs are given by the left-hand matrix (in state
θ ) or the right-hand matrix (in state θ ′).

θ :

L R

U 1, 0 0, 0

D 3
5 , 0 3

5 , 0

θ ′ :

L R

U 0, 0 1, 0

D 3
5 , 0 3

5 , 0

We assume that each player believes that each state is equally likely, and that this is
common certainty.5 Clearly, either action is rational for player 2, as she is indifferent
between both actions. Now suppose that player 1 believes that with probability 1

2 , the

true state will be θ and player 2 will choose L, and with probability 1
2 , the true state will

4In the complete-information case, independent and correlated rationalizability are equivalent when
there are two players but not necessarily with three or more players. We will see that with incomplete
information, interim independent and correlated rationalizability may differ even in the two-person case,
because of the possible correlation in a player’s forecast of the opponent’s actions and the payoff-relevant
state, conditional on the opponent’s type.

5Formally, this means that the event that each player assigns equal probability to the states is common
certainty, as defined in Section 3.4.
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be θ ′ and player 2 will choose R . This makes U optimal for player 1. As we will see in
Section 3.4, this means that U is consistent with common certainty of rationality.

Action U is also consistent with interim correlated rationalizability. To illustrate this
we consider two type spaces that capture the same assumptions as above about the
players’ higher-order beliefs. In type space T , each player i = 1, 2 has two possible
types, Ti = {t ′i , t ′′i } and beliefs are generated by the following common prior over T1 ×
T2×{θ ,θ ′}:

θ :

t ′2 t ′′2

t ′1
1
6

1
12

t ′′1
1

12
1
6

θ ′ :

t ′2 t ′′2

t ′1
1

12
1
6

t ′′1
1
6

1
12

In cT each player has one possible type, and the beliefs are given by the following com-
mon prior.

θ :
t̂2

t̂1
1
2

θ ′ :
t̂2

t̂1
1
2

Notice that in both type spaces, for every type of both players, there is common certainty
that each player assigns probability 1

2 to the true state being θ . The types in T are re-
dundant in the sense of Mertens and Zamir (1985): there are multiple copies of types
that agree with respect to their beliefs and higher-order beliefs about θ . But these types
nonetheless differ in their conjectures about their opponents and this is potentially im-
portant depending on the choice of solution concept. Redundant types can serve as a
correlating device, and so these types are not truly “redundant” unless the addition of
correlating devices has no effect.

To find the interim-correlated-rationalizable actions of Γwith the above type spaces
we iteratively eliminate actions for each type t i of player i that are not best responses to
some forecast for the player over the triples (t j ,θ , a j ) that puts probability on type action
pairs (t j , a j ) that have not been deleted and that are consistent with type t i ’s beliefs over
(t j ,θ ). In the example, no action is eliminated for any type in either type space by the
argument that we gave above.

Now consider the alternative solution concept of interim independent rationaliz-
ability, where we add the additional requirement that at each round, for an action to
survive, type t i ’s forecast over (t j ,θ , a j )must treat the choice of player j ’s action as in-
dependent of θ , conditional on his type. With this solution concept, action U is not
interim independent rationalizable for type t̂1: there is no conditionally independent
forecast over actions, states, and types that supports play of action U . Thus D is the only
interim-independent-rationalizable action for type t̂1. On the other hand, if type t ′1 con-
jectures that type t ′2 will play action L and type t ′′2 will play action R , then he attaches
probability 1

3 to each of action-state profiles (L,θ ) and (R ,θ ′). This is enough to make
action U a best response. Thus both U and D are interim independent rationalizable for
types t ′1 and t ′′1 . ◊

The example helps see the intuition for why our solution concept depends only on
the types, and not the details of the type space: The concept allows players to have cor-



Theoretical Economics 2 (2007) Interim correlated rationalizability 19

related forecasts over other players’ actions, their types, and the state, so the ability of
“redundant types” to support such correlation is, truly, redundant. In this sense, the
classical universal type space of Mertens and Zamir (1985) is the “right” type space for
our correlated version of interim rationalizability, for which the only part of a player’s
type that matters is his beliefs and higher-order beliefs about θ .

Three papers study closely related issues. Battigalli and Siniscalchi (2003) define
an umbrella notion of “∆-rationalizable” actions in incomplete-information environ-
ments, where ∆ can be varied to capture common-certainty restrictions on players’
forecasts. They show that there is an equivalence between actions surviving an itera-
tive procedure capturing common certainty of ∆ and the set of actions that might be
played in equilibrium on any type space where ∆ is common certainty. Correlated in-
terim rationalizable actions are exactly ∆-rationalizable actions, where “∆” is set equal
to a complete description of the infinite hierarchies of beliefs. With this∆, our Proposi-
tion 2 corresponds to their Proposition 4.3. They do not analyze this particular “∆” and
therefore do not address the issue of the distinction between correlated and indepen-
dent interim rationalizability.6

Forges (1993) examines different ways of defining correlated equilibrium for games
of incomplete information. Her “universal Bayesian approach” (in Section 6) allows a
player’s own actions to depend on the payoff states θ even when the player cannot dis-
tinguish between the states; this is analogous to the correlation in forecasts that we use
in defining our solution concept (we discuss this further in Section 3.2). Thus our ap-
proach is the non-common prior analogue of Forges’ universal Bayesian approach.

A recent paper by Ely and Pęski (2006) also notes that the set of interim indepen-
dent rationalizable outcomes in two-player games depends on more than just the hier-
archy of beliefs over the payoff-relevant states of Nature. In response, they provide an
extended notion of hierarchies of beliefs for two-player games, and show that interim
independent rationalizability in two-player games depends on types only via those ex-
tended hierarchies.

2. SETUP AND SOLUTION CONCEPTS

The primitives of our model are a finite set Θ of states of Nature, a finite set of players,
I , and for each player i ∈ I a finite set of actions A i and a payoff function g i , where
g i : A ×Θ→ [0, 1] and A = (A i )i∈I .7 For the first part of the paper, we restrict attention
to a finite type space T = (Ti ,πi )i∈I , where each Ti is a finite set and each πi maps Ti to
the set ∆(T−i ×Θ) of probability measures on the finite set T−i ×Θ.8 We later relax the
assumption thatT is finite (and we do not repeat the restriction until then); its role here
is to simplify issues regarding measurability and the choice of a sigma field.

6The common-certainty restrictions ∆ in Battigalli and Siniscalchi (2003) are assumed to restrict only
first-order beliefs about Θ, not higher-order beliefs. Thus while our exercise is conceptually a special case
of Battigalli and Siniscalchi (2003), a slightly extended class of restrictions∆ would be required to formally
incorporate it.

7Henceforth we use analogous notation, e.g., Q = (Qc )c∈C for {Qc : c ∈ C }. Also, we use the index j 6= i
for {j ∈ I : j 6= i } and write Q−i for (Q j )j 6=i . Elements of these sets are written as usual as qc ∈Qc , q ∈Q , and
q−i ∈Q−i .

8Throughout the paper, every finite set is given the obvious sigma field.
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Our view of this type space is that it is an exogenously given part of the model. This
could be because the type space corresponds to some actual information structure (but
not necessarily one that is a complete description of the world—just whatever the mod-
eler views as the “pertinent” parts) or is the modeler’s (partial) description of the players’
perception of the environment (the players’ views of the beliefs about beliefs . . . about
Θ). We discuss this further in Section 3.4. In our description of the type space, and in
the beliefs allowed in the solution concept described next, we do not restrict to common
priors. Thus we call πi player i ’s belief.

The main solution concept that we study is that of interim correlated rationalizabil-
ity, or ICR.9 As with correlated rationalizability in complete-information games, ICR is
defined by an iterative deletion procedure. At each round, an action survives for a given
type only if it is a best response to a forecast over T−i×Θ×A−i that (1) puts positive prob-
ability only on type-action pairs of the opponents that have not yet been deleted and (2)
is consistent with that type’s beliefs about T−i ×Θ. Formally, we have RTi ,0(t i ) = A i ,

RTi ,k+1(t i ) =























a i ∈ A i :

there exists ν ∈∆(T−i ×Θ×A−i ) such that
(1) ν [(t−i ,θ , a−i )]> 0⇒ a−i ∈ (RTj ,k (t j ))j 6=i

(2) a i ∈ arg max
a ′i

∑

t−i ,θ ,a−i

g i ((a ′i , a−i ),θ )ν [(t−i ,θ , a−i )]

(3)
∑

a−i

ν [(t−i ,θ , a−i )] =πi (t i )[(t−i ,θ )]























,

and RTi (t i ) =∩∞k=1RTi ,k (t i ).
To better explain ICR we compare it to a related solution concept, interim indepen-

dent rationalizability, or IIR. The latter concept imposes the additional restriction that
type t i ’s forecast supporting an action corresponds to independent conjectures, i.e., that
the conjecture about actions conditional on type and state is a product measure that
does not depend on the state.

Let IIRTi ,0(t i ) = A i ,

IIRTi ,k+1(t i ) =































a i ∈ A i :

there exists ν ∈∆(T−i ×Θ×A−i ) such that
(1) ν [(t−i ,θ , a−i )]> 0⇒ a−i ∈ (IIRTj ,k (t j ))j 6=i

(2) a i ∈ arg max
a ′i

∑

t−i ,θ ,a−i

ν [(t−i ,θ , a−i )]g i ((a ′i , a−i ),θ )

(3) for each j 6= i there existsσj : Tj →∆(A j ) such that

ν [(t−i ,θ , a−i )] =πi (t i )[(t−i ,θ )]
∏

j 6=i

σj (t j )[a j ]































,

and IIRTi (t i )=∩∞k=1 IIRTi ,k (t i ).
Thus ICR and IIR can be seen as polar cases with respect to the amount and kind

of correlation that is allowed. An intermediate concept, which we mention below but
do not define formally, could allow for correlation among players’ actions but not with

9We discuss the sense in which these concepts are interim and how they relate to an ex ante concept in
the concluding remarks.
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Nature, by specifying σ−i : T−i →∆(A−i ) instead of (σj )j 6=i in (3) above in the definition
of IIR.

We want to show that for ICR only the players’ beliefs and higher-order beliefs about
states of Nature—their “Mertens-Zamir types”—matter. For this we need to define, for
each type t i in a finite type space T = (Ti ,πi )i∈I , that type’s beliefs and higher-order
beliefs about Θ. Let

bπ1
i (t i )[θ ] =πi (t i )[{(t−i ,θ ) : t−i ∈ T−i }].

For each k = 2, 3, . . ., let

bπk
i (t i )[((eπ1

j , . . . , eπk−1
j )j 6=i ,θ )] =πi (t i )[{(t−i ,θ ) : ((bπκj (t j ))j 6=i )k−1

κ=1 = ((eπ
κ
j )j 6=i )k−1

κ=1}].

Finally, let

bπ∗i (t i ) = (bπk
i (t i ))∞k=1.

3. PROPERTIES OF THE SOLUTION CONCEPT

3.1 Dependence on types but not on type spaces

PROPOSITION 1. If t i is a type in a finite type space T , t ′i is a type in a finite type space
T ′, and bπ∗i (t i ) = bπ∗i (t

′
i ), then RTi (t i ) =RT

′

i (t
′
i ).

PROOF. We establish by induction for each k that if bπk
i (t i ) = bπk

i (t
′
i ) then RTi ,k (t i ) =

RT
′

i ,k (t
′
i ). Suppose that this holds for k − 1, that bπ∗i (t i ) = bπ∗i (t

′
i ), and that a i ∈ RTi ,k (t i ).

Thus there exists ν ∈∆(T−i ×Θ×A−i ) such that

(1) ν [(t−i ,θ , a−i )]> 0⇒ a−i ∈ (RTj ,k−1(t j ))j 6=i

(2) a i ∈ arg max
a ′i

∑

t−i ,θ ,a−i

g i ((a ′i , a−i ),θ )ν [(t−i ,θ , a−i )]

(3)
∑

a−i

ν [(t−i ,θ , a−i )] =πi (t i )[(t−i ,θ )].

We now construct ν ′ ∈ ∆(T ′−i ×Θ×A−i ) such that the above three conditions hold

when ν ′ and πi (t ′i ) replace ν and πi (t i ), respectively. Let Dk−1
−i = {(bπ

k−1
j (t−i ))j 6=i : t−i ∈

T−i }. For eπk
−i ∈Dk−1

−i , let

γ(eπk
−i ,θ ) =

∑

{(t−i ,a−i ):(bπk−1
j (t j ))j 6=i=eπk−1

−i }

ν [(t−i ,θ , a−i )].

Then for (eπk
−i ,θ ) such that γ(eπk−1

−i ,θ )> 0, set

σi (eπk−1
−i ,θ )[a−i ] =

∑

{t−i :(bπk−1
j (t j ))j 6=i=eπk−1

−i }

ν [(t−i ,θ , a−i )]

γ(eπk
−i ,θ )
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and for all other (eπk−1
−i ,θ ) set

σi (eπk−1
−i ,θ )[a−i ] =

(

1/#(RTj ,k−1(t j ))j 6=i if a−i ∈ (RTj ,k−1(t j ))j 6=i

0 otherwise.

Next, let
ν ′[(t ′−i ,θ , a−i )] =πi (t ′i )[(t

′
−i ,θ )]σi (bπk−1

−i (t
′
−i ),θ )[a−i ],

where bπk−1
−i (t

′
−i )∈Dk−1

−i since bπ∗i (t i ) = bπ∗i (t
′
i ). Then

γ(eπk−1
−i ,θ ) =

∑

{(t−i ,a−i ):(bπk−1
j (t j ))j 6=i=eπk−1

−i }

ν [(t−i ,θ , a−i )]

=πi (t i )[{t−i : (bπk−1
j (t j ))j 6=i = eπk−1

−i }× {θ }]

=πi (t ′i )[{t−i : (bπk−1
j (t j ))j 6=i = eπk−1

−i }× {θ }].

Hence we obtain the following.
∑

t−i

ν ′[(t−i ,θ , a−i )] =
∑

t−i

πi (t ′i )[(t−i ,θ )]σi (bπk
−i (t−i ),θ )[a−i ]

=
∑

eπk−1
−i ∈Dk−1

−i

πi (t ′i )[{t−i : (bπk−1
j (t j ))j 6=i = eπk−1

−i }× {θ }]σi (bπk−1
−i (t−i ),θ )[a−i ]

=
∑

eπk−1
−i ∈Dk−1

−i

γ(eπk−1
−i ,θ )

∑

{t−i :(bπk−1
j (t j ))j 6=i=eπk−1

−i }

ν [(t−i ,θ , a−i )]

γ(eπk−1
−i ,θ )

=
∑

t−i

ν [(t−i ,θ , a−i )].

So ν and ν ′ have the same marginal distributions on A−i ×Θ.
Now we claim

(1) ν ′[(t−i ,θ , a−i )]> 0⇒ a−i ∈ (RTj ,k−1(t j ))j 6=i

(2) a i ∈ arg max
a ′i

∑

t−i ,θ ,a−i

g i ((a ′i , a−i ),θ )ν ′[(t−i , a−i ,θ )]

(3)
∑

a−i

ν ′[(t−i ,θ , a−i )] =πi (t ′i )[(t−i ,θ )].

(1) is true by the inductive hypothesis and the construction, (2) because ν and ν ′ have
the same marginal distributions on A−i ×Θ, and (3) by construction. So a i ∈RTi ,k (t

′
i ). �

The intuition for the proposition is as follows. The first-level rationalizable actions
R1 are those that are best responses to arbitrary conjectures about the opponents; be-
cause conjectures allow correlation with θ the forecast then depends only on first-order
beliefs bπ1

i about Θ. Second-level rationalizability depends on beliefs about Θ and the
opponents’ first-level rationalizable sets; these in turn depend only on the opponents’
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first-order beliefs, so second-level rationalizability is determined by second-order be-
liefs, bπ2

i , and so on.
In the course of the proof we demonstrated the corollary below, which gives an

equivalent definition of RTi ,k+1(t i ). It states that t i ’s forecast ν can be decomposed into
conjecturesσi about opponents’ strategies, and the beliefs πi .

COROLLARY 1.

RTi ,k+1(t i ) =























a i ∈ A i :

there exists ν ∈∆(T−i ×Θ×A−i ) such that
(1) ν [(t−i ,θ , a−i )]> 0⇒ a−i ∈ (RTj ,k (t j ))j 6=i

(2) a i ∈ arg max
a ′i

∑

t−i ,θ ,a−i

g i ((a ′i , a−i ),θ )ν [(t−i ,θ , a−i )]

(3) there existsσi : T−i ×Θ→∆(A−i ) such that
ν [(t−i ,θ , a−i )] =πi (t i )[(t−i ,θ )]σ(t−i ,θ )[a−i ]























.

Note that i ’s conjecture about other players’ actions, σi , allows for j ’s action to be
correlated with other players’ actions, the state, and other players’ types. Contrasting
this with the definition of IIR makes clear where ICR allows additional correlation.

3.2 Discussion

The correlation allowed by ICR can have surprising consequences, as in the next
example.

EXAMPLE 2. There are two states of Nature θ and θ ′, and it is common certainty that
each player assigns probability 1

2 to each state. Thus in the universal type space each
player i = 1, 2 has a single type t ∗i . Each player decides whether to bet (action B) or
not (action N ). If both players chose B , they transfer 3 or −3 from one to the other
depending on the state, and choosing B incurs a cost of 1 regardless of the opponent’s
action. This generates the following payoff functions:

θ :

B N

B 2,−4 −1, 0

N 0,−1 0, 0

θ ′ :

B N

B −4, 2 −1, 0

N 0,−1 0, 0

In this game, it is ICR for each player to choose B . To see this, note that N is a
best response to the forecast that assigns probabilities 1

2 to (t ∗2 ,θ , N ) and 1
2 to (t ∗2 ,θ ′, N )

(which implies that the opponent always plays N ), that B is a best reply for player 1 to
the forecast 1

2 to (t ∗2 ,θ , B ) and 1
2 to (t ∗2 ,θ ′, N ), and symmetrically that B is a best reply for

player 2 to the forecast 1
2 to (t ∗1 ,θ , N ) and 1

2 to (t ∗2 ,θ ′, B ). Thus the ICR set for each player
is {B , N }. Note that the forecast that supports B for player i supposes that the opposing
player j bets exactly when this is good for i and bad for j .

Thus each player expects there to be costly speculative trade (and indeed using the
epistemic set-up of the next section, there is common certainty of trade with probability
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bounded above zero) even though there is a common prior. This possibility relies on
each player believing in correlation between the other player’s actions and the state.10 ◊

To justify the original definition of independent rationalizability in Bernheim (1984)
and Pearce (1984), it is necessary to add additional conditional independence assump-
tions. The question of whether or not to impose the assumptions parallels an older
debate in the complete-information environment. Brandenburger and Dekel (1987)
show that correlated rationalizability (allowing players to have correlated conjectures
over others’ actions) corresponds to common certainty of rationality. To interpret this
correlation, it is important to remember that a player’s conjectures represent his sub-
jective beliefs about the distribution of play; any correlations in these beliefs need not
correspond to “objective correlation” that would be seen by an outside observer. The
correlations we consider in this paper should be interpreted in the same way.

There has been increasing acceptance of using the correlated version of rationaliz-
ability, in part based on the influential argument of Aumann (1987, p. 16):

In games with more than two players, correlation may express the fact that
what 3, say, thinks that 1 will do may depend on what he thinks 2 will do.
This has no connection with any overt or even covert collusion between 1
and 2; they may be acting entirely independently.

Interim correlated rationalizability extends this view, by treating Nature as another
player. If player 1, say, does not know what determines which of his rationalizable ac-
tions player 2 will play, why should this subjective uncertainty be completely indepen-
dent of the uncertainty about the choice of Nature?

One might argue that any correlation—about players or about Nature—should be
made explicit. We take the opposing, “small-worlds,” view that such correlation may
not be an inherent part of the interaction being studied, and hence is best incorporated
into the solution concept and not the model.11

One might also argue in favor of a hybrid solution concept—in between ICR and
IIR—that allows arbitrary correlation in conjectures about other players but insists that
the correlation with Nature is explicitly captured in the type space.12 A difficulty with

10Although there is a common prior over Θ, this observation is not inconsistent with no-trade theorems
because there is not common certainty of the conditional probability of trade in each state θ . This lack of
common certainty is possible because ICR allows beliefs about strategic behavior that are not consistent
with a common prior, and this, as in complete-information games, allows each player to think that he is
“outguessing” the other. Note that if we set the payoff to choosing action B when the opponent chooses
N to be −4 instead of −1, then action B is no longer rationalizable for any common-prior type, although it
remains rationalizable for some non-common-prior types. Thus common-prior and non-common-prior
types can be distinguished in some no-trade games. Dekel et al. (2006) use this observation to show that
finite common-prior types are not dense in the universal type space in the strategic topology that they
define.

11Of course, if one wants to explicitly model and study the effect of different forms of correlation one
needs to use a different solution concept (such as IIR) that does not implicitly allow all such correlation.

12Ely and Pęski (2006) study a definition of interim rationalizability in two-player incomplete-infor-
mation games that is equivalent to our definition of interim independent rationalizability (in two-player
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such hybrid notions is that the resulting solution concept is sensitive to the addition of a
dummy player who any single other player believes is omniscient. That is, the existence
of a player k whom i thinks knows more about the state of Nature than does j , enables i
to believe j ’s actions are correlated with Nature via k . Hence, if one allows for correlation
with opponents but not with Nature then games must completely specify all agents,
even if their actions are not payoff relevant.

EXAMPLE 2 CONTINUED. In the preceding betting game the only IIR action is N . Now
add a third player to the game who chooses an action a 3 ∈ A3 = {B , N }. The payoffs to
players 1 and 2 are unchanged, and unaffected by player 3’s choice, while player 3’s pay-
off is constant. Player 3 has two possible types t3 and t ′3 who know whether the state is
θ or θ ′. IIR requires independence across opponents and Nature, and hence this has no
effect. However, if one allows arbitrary correlations in forecasts about players’ actions
but not with Nature, then the resulting “interim hybrid rationalizability” solution con-
cept (which we have not formally defined) would allow for B (as well as N ), as player 1
could believe that player 2’s play is correlated with player 3’s, and that player 3’s play is
correlated with θ .13 ◊

A recent paper of Brandenburger and Friedenberg (2006) suggests a solution con-
cept intermediate between correlated rationalizability and independent rationalizabil-
ity in complete-information games. They require that players hold conditionally in-
dependent conjectures about their opponents’ play, contingent on their beliefs and
higher-order beliefs about players’ actions, and also that a player’s conjecture about an-
other player’s actions does not change if he learns a third player’s beliefs and higher-
order beliefs about players’ actions. They show that most, but not all, correlated-
rationalizable actions satisfy common certainty of rationality and these restrictions. In-
tuitively, higher-order uncertainty about players’ actions introduces intrinsic correla-
tion into the game environment. One could presumably extend their solution concept
to incomplete information settings to obtain yet another solution concept intermediate
between interim correlated rationalizability and interim independent rationalizability.

3.3 Equivalent formulations

We provide some obvious equivalent definitions that further illustrate the analogies to
the complete-information environment.

3.3.1 Iterated undominance As one might expect from earlier work, iteratively deleting
strategies that are not interim best replies is equivalent to iterated deletion of strictly
interim dominated strategies (where beliefs in both are allowed to be correlated). Let

games). They suggest that, in many-player games, one might want to examine hybrid notions of interim
rationalizability such as the one we criticize here.

13The conclusion about the effect of dummy players also holds in a model where player 3 has a third
possible type t ′′3 and player 2 is certain that player 3 is t ′′3 : what is important is only that player 1 is certain
that player 3 is certain of θ . Unlike the example in the text, this version does not reproduce the entire set of
ICR actions.
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UTi ,0(t i ) = A i ,

UTi ,k+1(t i ) =















































a i ∈ A i :

there does not exist αi ∈∆(A i ) such that
∑

t−i ,θ ,a−i

g i ((a i , a−i ),θ )ν [(t−i ,θ , a−i )]<
∑

a ′i

∑

t−i ,θ ,a−i

αi (a ′i )g i ((a ′i , a−i ),θ )ν [(t−i ,θ , a−i )]

for all ν ∈∆(T−i ×Θ×A−i ) such that
(1) ν [(t−i ,θ , a−i )]> 0⇒ a−i ∈ (UTj ,k (t j ))j 6=i

(2)
∑

a−i

ν [(t−i ,θ , a−i )] =πi (t i )[(t−i ,θ )]















































,

and

UTi (t i ) =∩∞k=1UTi ,k (t i ).

CLAIM 1. RTi (t i ) =UTi (t i ).

3.3.2 Best-reply sets Similarly, there is an obviously equivalent best-reply set (Pearce
1984) definition of ICR. Let STi : Ti → 2A i \∅ be a specification of possible actions for
each type, and ST = (STi )i∈I .14

DEFINITION 1. ST is a best-reply set if for each t i and a i ∈ STi (t i ), there exists σ−i :
T−i ×Θ→∆(A−i ) such that

(1)σ−i (t−i ,θ )[a−i ]> 0⇒ a−i ∈ST−i (t−i )

(2) a i ∈ arg max
a ′i

∑

t−i ,a−i ,θ

πi (t i )[(t−i ,θ )]σ−i (t−i ,θ )[a−i ]g i ((a ′i , a−i ),θ ).

CLAIM 2. (i) If STc for all c in some index set C are best-reply sets then ∪cSTc is a best-
reply set.

(ii) The union of all best-reply sets is equal to ((RTi (t i ))t i∈Ti )i∈I .

Property (i) is immediate. That the union includes RTi follows from the observation
that ((RTi (t i ))t i∈Ti )i∈I is a best-reply set. To see the converse, note that no action in a
best-reply set can be deleted at any stage of the iteration, since at each point in the iter-
ation each such action is a best reply to actions in the best-reply set, and hence remains.

3.3.3 Fixed points of a best-reply correspondence Lastly we provide a fixed-point defi-
nition of RTi . The best-reply correspondence takes as given a feasible subset of actions
for each type of each opponent of i , and, for each type t i of i , determines the set of best
replies.

14We abuse terminology by calling ST a “set” to emphasize the link to the complete information case; it
is a correspondence.
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DEFINITION 2. The correspondence of best replies for all types given subsets of actions
for all types is denoted BRT : ((2A i )ti ∈Ti

)i∈I → ((2A i )ti ∈Ti
)i∈I and is defined as follows. First,

given F = ((Ft i )t i∈Ti )i∈I ∈ ((2A i )ti ∈Ti
)i∈I the best replies for t i are

BRTi (t i , F )

=











a i ∈ A i :

there existsσ−i : T−i ×Θ→∆(A−i ) such that
(1)σ−i (t−i ,θ )[a−i ]> 0⇒ a−i ∈ Ft−i

(2) a i ∈ arg max
a ′i

∑

t−i ,θ ,a−i

g i ((a ′i , a−i ),θ )σ−i (t−i ,θ )[a−i ]πi (t i )[(t−i ,θ )]











.

Next we define15

BRT (F ) = ((BRTi (t i , F ))t i∈Ti )i∈I .

CLAIM 3. The largest fixed point of BRT is ((RTi (t i ))t i∈Ti )i∈I .

This follows from the fact that any fixed point is a best-reply set and the previous
claim regarding best-reply sets.

3.4 Epistemic foundations

To better understand the two solution concepts, ICR and IIR, we relate them to common
certainty of rationality. In order to do this, we introduce a richer language—an “epis-
temic model”—to model the certainty of the players. We are able to provide an epistemic
foundation for the solution concepts in the spirit of the existing epistemic-foundations
literature.16 We note that—at least in our epistemic formulation—additional common-
certainty assumptions are necessary to provide an epistemic foundation for interim in-
dependent rationalizability. We discuss this further at the end of this subsection.

Throughout this section, we fix a type space T = (Ti ,πi )i∈I . We sometimes refer to
this object as a “standard” type space and to elements of Ti as standard types. As dis-
cussed, we view this type space as exogenously given, for example describing the per-
spective of the modeler of the environment, and not necessarily a complete description
(in particular not necessarily including all possible correlation). We then assume only
that this type space (and the game and rationality) is common certainty. That is, we
embed the standard type space in an arbitrary larger space, the epistemic space—which
can be any extension to a more complete description of the players’ perceptions of the
world, specifying at least their actions at any state—and we assume that the (original)
type space is common certainty in this epistemic space. Then we ask what can we say
about play in the game defined by the original type space; i.e., what solution concept—

15We abuse notation and write BR both for the correspondence specifying best replies for a type and for
the correspondence specifying these actions for all types.

16Aumann (1987), Brandenburger and Dekel (1987), Tan and Ribeiro da Costa Werlang (1988), Aumann
and Brandenburger (1995).
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defined on games with the original type space—is characterized by common certainty
of rationality.17

Let E i be a finite set of epistemic types for player i , and let E = (E i )i∈I . An epistemic
model specifies for each i how e i determines

1. beliefs over the types of others and the payoff states,φi : E i →∆(E−i ×Θ)

2. i ’s action, ai : E i → A i

3. i ’s “standard type,” τi : E i → Ti .

Thus an epistemic model consists of (E i ,φi , ai ,τi )i∈I ; its state space is Ω= E ×Θ.
There are some events in which we are particularly interested. For a given epistemic

model, we write Rati for the set of states where player i is “rational”,

Rati = {((e i , e ′−i ),θ
′) : ai (e i )∈ arg max

a i

∑

e−i ,θ

g i ((a i , a−i (e−i )),θ )φi (e i )[(e−i ,θ )]},

and Rat for the set of states where all players are rational,

Rat=∩
i

Rati .

We write Wi for the set of states where player i has the correct beliefs about T−i×Θ given
his type:

Wi = {((e i , e ′−i ),θ
′) :
∑

{e−i :(τj (e j ))j 6=i=t−i }
φi (e i )[(e−i ,θ )] =πi (τi (e i ))[(t−i ,θ )]};

W =
⋂

i
Wi .

The set of states where individual i is certain of the event H ⊆Ω is

C i (H ) = {((e i , e ′−i ),θ
′) :
∑

{(e−i ,θ ):((e i ,e−i ),θ )∈H}
φi (e i )[(e−i ,θ )] = 1},

the set of states where everyone is certain of the event H is

C∗(H ) =
⋂

i
C i (H ),

and the set of states where there is common certainty of H is

CC(H ) =
∞
⋂

n=0
(C∗)n (H ),

where (C∗)0(H ) =H .

17In general it would be reasonable to allow for a larger space of states of Nature Θ′ ⊃ Θ, where Θ′ \Θ
are payoff irrelevant, as Θ is also a partial, “small worlds,” description of the payoff-relevant parameters.
It is easy to see that allowing such an enlargement would not affect our results. The same remark holds
for adding the complete universe of “dummy” players whose actions do not affect the payoffs of the “small
worlds” set I in the game studied. As noted, adding payoff-irrelevant states, dummy players, or just al-
ternative epistemic states as below, does not affect the set of ICR actions but changes which actions are
IIR.
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PROPOSITION 2. Interim Correlated Rationalizability characterizes common certainty of
rationality and of the standard type space. That is,

(i) in any epistemic model, if ((e i , e−i ),θ )∈CC(Rat∩W ), then ai (e i )∈RTi (τi (e i ))

(ii) there is an epistemic model such that if a i ∈RTi (t i ), then there is a state ((e i , e−i ),θ )
such that ((e i , e−i ),θ )∈CC(Rat∩W ), τi (e i ) = t i , and ai (e i ) = a i .

PROOF. (i) Suppose ((e ∗i , e ∗−i ),θ
∗) ∈ CC(Rat). Let E ∗j be the set of epistemic types of

player j where j is certain of CC(Rat). Let

Si (t i ) = {a i : for some e i ∈ E ∗i , ai (e i ) = a i and τi (e i ) = t i }.

Observe that, by construction,

ai (e ∗i )∈Si (τi (e ∗i )).

Now for any a i ∈Si (t i ), pick any e i ∈ E ∗i such that ai (e i ) = a i and τi (e i ) = t i . Let

λa i ,t i
i [(t−i ,θ , a−i )] =

∑

{(e−i ,θ ):τ−i (e−i )=t−i and a−i (e−i )=a−i }
φi (e i )[(e−i ,θ )].

Again by construction,

a i ∈ arg max
a ′i

∑

t−i ,θ ,a−i

λa i ,t i
i [(t−i ,θ , a−i )]g i ((a ′i , a−i ),θ ).

Common certainty of W ensures that
∑

a−i

λa i ,t i
i [(t−i ,θ , a−i )] =πi (t i )[(t−i ,θ )] for all t−i ,θ .

Thus an inductive argument ensures that Si (t i ) ⊆ RTi ,k (t i ) for all k and thus Si (t i ) ⊆
RTi (t i ). So

ai (e ∗i )∈Si (τi (e ∗i ))⊆RTi (τi (e ∗i )).

(ii) We construct an epistemic type space. Let E i = {(t i , a i ) : a i ∈RTi (t i )}. Let

ai (e i ) = ai ((t i , a i )) = a i

τi (e i ) =τi ((t i , a i )) = t i .

Observe that for each a i ∈RTi (t i ), there exists λa i ,t i
i ∈∆(T−i ×Θ×A−i ) such that

(1) λa i ,t i
i [(t−i ,θ , a−i )]> 0⇒ a−i ∈ (RTj (t j ))j 6=i

(2) a i ∈ arg max
a ′i

∑

t−i ,θ ,a−i

λa i ,t i
i [(t−i ,θ , a−i )]g i ((a ′i , a−i ),θ )

(3)
∑

a−i

λa i ,t i
i [(t−i ,θ , a−i )] =πi (t i )[(t−i ,θ )] for all t−i ,θ .
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Let
φi (e i )[(e−i ,θ )] =φi (t i , a i )[((t j , a j )j 6=i ,θ )] =λa i ,t i

i [(t−i ,θ , a−i )].

By construction, Rati = Wi = Ω for all i and thus CC(Rat∩W ) = Ω. Now, also by con-
struction, for any a i ∈ RTi (t i ), there is an epistemic type e i = (t i , a i ) with ((e i , e−i ),θ ) ∈
CC(Rat∩W ) = Ω, τi (e i ) = t i , and ai (e i ) = a i . �

REMARK 1. To see why B is consistent with common certainty of rationality in Example 2
note that each player i can believe that two epistemic types of the opposing player can
correspond to the same standard type but take different actions, and that the epistemic
types are correlated with θ .

REMARK 2. A standard reinterpretation of the result is that if we start with the standard
type space T = (Ti ,πi )i∈I , we can construct a larger type space T ′ = (T ′i ,π′i )i∈I and
belief preserving morphisms ϕi : Ti → T ′i from the original type space to the larger type
space, and a Nash equilibrium on that larger type space, such that for each type t i in
the original type space and each interim-correlated-rationalizable action for that type,
there is a corresponding type t ′i = ϕi (t i ) in the larger space who plays that action in
equilibrium.

REMARK 3. A referee noted that one could give a different interpretation of our epis-
temic analysis: At states in the epistemic type space where there is common certainty
of rationality, every player chooses an interim independent rationalizable action for his
type in that epistemic type space, so there is a sense in which one can interpret the result
as yielding IIR and not ICR. To understand the difference between these two interpre-
tations, consider Aumann’s (1987) characterization of correlated equilibrium. Aumann
essentially assumes a singleton type space (i.e. a complete information game) that is
embedded in an epistemic space, and shows that if there is a common prior on the epis-
temic space, then the distribution of actions corresponds to a correlated equilibrium
distribution on the original game. The approach of the referee corresponds to focus-
ing on the actions that are played on the enlarged game. In two player games, this yields
exactly the Nash equilibria. We follow Aumann in studying the implications of common-
certainty assumptions on any epistemic space in which a certain game (with a degener-
ate type space in Aumann’s case, or a general type space in ours) and rationality of the
players is common certainty.

Finally, we briefly note for comparison an epistemic characterization of interim in-
dependent rationalizability in our language. The set of states where player i has inde-
pendent beliefs, i.e., believes that each other player’s type is a sufficient statistic for his
behavior, is

Yi =



















((e i , e ′−i ),θ
′) :

for each j 6= i , there existsσj : Tj → A j such that
∑

{(e−i ,θ ):τ−i (e−i )=t−i and a−i (e−i )=a−i }
φi (e i )[(e−i ,θ )]

=

�

∑

{(e−i ,θ ):τ−i (e−i )=t−i }
φi (e i )[(e−i ,θ )]

�

∏

j 6=i

σj (t j )[a j ]



















.
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Let Y =∩
i

Yi .

PROPOSITION 3. Independent Interim Rationalizability characterizes common certainty
of rationality, the standard type space and independent beliefs. That is,

(i) in any epistemic model, if ((e i , e−i ),θ )∈CC(Rat∩W ∩Y ), then a∗i (e i )∈ IIR∗i (τi (e i ))

(ii) if a i ∈ IIR∗i (t i ), then there exists an epistemic model and a state ((e i , e−i ),θ ) such
that ((e i , e−i ),θ )∈CC(Rat∩W ∩Y ), τi (e i ) = t i , and a∗i (e i ) = a i .

The proof closely follows the proof of Proposition 2 and hence is not provided. This
result is the incomplete-information analog of Proposition 3.1 in Brandenburger and
Dekel (1987).

This proposition shows that additional assumptions—beyond common certainty of
rationality and the type space—are needed to justify restricting attention to actions that
are interim independent rationalizable on the type space. The additional assumption
of common certainty of independent beliefs makes explicit the key idea underlying the
solution concept: no unexplained correlation in beliefs is allowed.

4. INFINITE TYPE SPACES

4.1 The type spaces

We now extend our analysis to type spaces that are not necessarily finite. To do so, we
base our development on Heifetz and Samet’s (1998) topology-free construction.

The primitives of our model remain a finite set Θ of states of Nature, a finite set I of
players, and a type space T = (Ti ,πi )i∈i . We now assume that each Ti is a measurable
space, set T−i = ×j 6=i Tj , and give T−i ×Θ the product sigma-algebra. For measurable X
we denote by∆(X ) the set of (probability) measures on X .18

Following Heifetz and Samet, we assume that for every measurable space X , the set
∆(X ) of measures on X is endowed with the sigma-algebra generated by

�

{µ :µ(Z )≥ p} : p ∈ [0, 1] and Z a measurable subset of X
	

.

Each ∆(T−i ×Θ) gets the corresponding sigma algebra; we then assume that each πi :
Ti → ∆(T−i ×Θ) is a measurable function. Points t i ∈ Ti are called player i ’s types, and
we say that each type t i of player i has beliefπi (t i ) about the joint distribution of the op-
ponent’s type and the state of Nature. The above setup defines what Heifetz and Samet
call a measurable type space.19

There is a belief-preserving morphism from one measurable type space into another
measurable type space if the former space can be mapped into the latter while preserv-
ing the belief structure. Formally, there is a belief-preserving morphism from (Ti ,πi )

18The measurable structure on player i ’s beliefs is used to model the beliefs of other players about i ’s
type. The set-up here, which is standard, implicitly assumes that any two players i and j have the same
measurable structure on the types of a third player k .

19Heifetz and Samet allow Θ to be a general measurable space. We continue to endow Θ and all other
finite sets with the obviousσ-algebra.
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into (T̃i , π̃i ) if for each i there exists measurable ϕi : Ti → T̃i with

π̃i (ϕi (t i ))[Z ] =πi (t i )[{(t−i ,θ ) : (ϕ−i (t−i ),θ )∈Z }]

for all measurable Z ⊂ T̃−i ×Θ. We call ϕ = (ϕ1, . . . ,ϕn ) the morphism.
A particularly useful type space is a “universal type space” that we describe next.

Let X 0 = Θ, and define X k = X k−1× [∆(X k−1)]I−1, where ∆(X k ) is the set of probability
measures on the algebra described above, and each X k is given the product algebra over
its two components. An element (δ1,δ2, . . .) ∈ (∆(X k ))∞k=0 ¬ H is called a hierarchy (of
beliefs).

For the topology-free model we describe here, Heifetz and Samet (1998) prove the
existence of a universal type space T ∗ = (T ∗i ,π∗i )i∈I that comprises a subset of hierar-
chies, T ∗i ⊂ H , and a measurable belief function, π∗i : T ∗i → ∆(T

∗
−i ×Θ), for all i . Note

that since there is a common uncertainty spaceΘ, the sets T ∗i are copies of the same set
T ∗. Therefore, where no confusion results, we drop the subscript i for notational sim-
plicity. The type space is universal in that there is a unique belief-preserving morphism
of any other measurable type space into this universal type space. Specifically for any
hierarchy t ∗ ∈ T ∗, we write δ∗,k (t ∗) for the k th component of t ∗ and we write T ∗,k for
the (measurable) set of k th-order beliefs for all types in T ∗, T ∗,k ⊆ ∆(Xk−1). Given any
measurable type space, type t i ’s marginal beliefs about Θ are defined pointwise by

bπ1
i (t i )[θ ] =πi (t i )[{(t−i ,θ ) : t−i ∈ T−i }].

For each k = 2, 3, . . . and measurable Z ⊆X k−1, let

bπk
i (t i )[Z ] =πi (t i )[{(t−i ,θ ) : (bπ1

−i (t−i ), . . . , bπk−1
−i (t−i ),θ )∈Z }];

the morphism guarantees that bπk
i : Ti → T ∗,k is measurable for each k . Let bπ∗i (t i ) =

(bπk
i (t i ))∞k=1. Then bπ∗i : Ti → T ∗i is the morphism ϕi discussed above.

We use the topology-free approach because we do not want to restrict ourselves to
a particular topology and it enables us to provide stronger results, as they apply to all
measurable type spaces. However, we rely on the fact that in our context there is a
belief-preserving isomorphism between the universal type space (T ∗i ,π∗i )i∈I discussed
above and the more familiar constructions using topological methods due to Mertens
and Zamir (1985) (see also Brandenburger and Dekel 1993 and Heifetz 1993). These au-
thors construct a universal type space T ∗∗ = (T ∗∗i ,π∗∗i )i∈I with a topology on T ∗∗i under
which π∗∗i : T ∗∗i → ∆(T

∗∗
−i ×Θ) are continuous and under which T ∗∗i are compact. They

show this type space is universal for all continuous type spaces in the sense that for any
type space T = (Ti ,πi )i∈i for which πi is continuous according to a topology on Ti , there
is a continuous belief-preserving morphism into T ∗∗. Mertens et al. (1994, Theorem
1.3) show that in fact T ∗∗ is universal for all measurable type spaces—there is a belief-
preserving morphism of any measurable type space into T ∗∗. Given uniqueness (up to
belief-preserving isomorphisms) of the universal type space constructed by Heifetz and
Samet (1998, Proposition 3.5), there is a belief-preserving isomorphism between T ∗ and
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T ∗∗; we use this equivalence extensively in the proofs below and for notational simplic-
ity write T ∗ for both. Even though the proofs therefore use the continuity properties of
T ∗∗, because of the isomorphism our results do not involve a topology or continuity.

4.2 Interim correlated rationalizability

We now restate some of our earlier definitions and prove for this environment the key
analogous results. In many cases, the only changes the definitions require are easy to
identify: sums need to be replaced by integrals, measurability conditions must be im-
posed, and finite probabilities must be replaced by measures. We describe in detail
those few cases where extra care is required in the notation; for brevity, we do not re-
peat the definitions whose extensions are obvious.

4.2.1 Best replies For any subset of actions for all types, we first define the best replies
when conjectures over opponents’ strategies are restricted to those actions. We write
∫

T−i
f (·)ν (·)[(dt−i ,θ , a−i )] when integrating with respect to t−i only, holding θ and a−i

fixed.

DEFINITION 3. The correspondence of best replies for all types given subsets of actions
for all types is denoted BRT : ((2A i )Ti )i∈I → ((2A i )Ti )i∈I and is defined as follows. First,
given a specification of a subset of actions for each possible type, F = ((Ft j )t j ∈Tj )j∈I , with
Ft j ⊂ A j for all t j and j ∈ I , we define the best replies for t i as

BRTi (t i , F )

=







a i ∈ A i :

there exists a measurableσ−i : T−i ×Θ→∆(A−i ) such that
(1)σ−i (t−i ,θ )[a−i ]> 0⇒ a−i ∈ Ft−i

(2) a i ∈ arg max
a ′i

∑

θ ,a−i

∫

t−i

g i (a ′i , a−i ,θ )σ−i (t−i ,θ )[a−i ]πi (t i )[(dt−i ,θ )]







.

Next we define
BRT (F ) = ((BRTi (t i , F ))t i∈Ti )i∈I .

REMARK 4. Because A i is finite, and expected utility depends only on actions and beliefs,
the set of best responses given some F , BRTi (t i , F ), is non-empty provided there exists
at least one measurable σ−i that satisfies (1). Such σ−i exist whenever F is non-empty
and measurable, and more generally whenever F admits a measurable selection.

Given F as in the previous definition, with non-empty Ft j ⊂ A t j for all t j and j 6= i ,
we write ΨTi (t i , F ) for the set of beliefs on the finite set A−i ×Θ that are consistent with
type t i ’s beliefs and certainty that other players are choosing actions consistent with F−i .
Thus

ΨTi (t i , F ) =







ψi ∈∆(A−i ×Θ) :

ψi [(a−i ,θ )] =
∫

T−i

σ−i (t−i ,θ )[a−i ]πi (t i )[(dt−i ,θ )]

for some measurableσ−i : T−i ×Θ→∆(A−i )
such thatσ−i (t−i ,θ )[a−i ]> 0⇒ a−i ∈ Ft−i







.
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This is the set of distributions over A−i×Θ that is consistent with t i ’s beliefs about T−i×Θ
and certainty that the play of t−i is consistent with F−i , so

BRTi (t i , F ) =







a i ∈ A i :
there existsψi ∈ΨTi (t i , F ) such that

a i ∈ arg max
a ′i

∑

θ ,a−i

ψi [(a−i ,θ )]g i ((a ′i , a−i ),θ )







.

4.2.2 Iterative definitions We now define rationalizability as the result of iterating the
BR map. As in the finite case, let RT0 = ((A i )t i∈Ti )i∈I , RTk =BRT (RTk−1), and RT =∩∞k=1RTk .
The corresponding objects on the universal type space are R∗0 = ((A i )t ∗i ∈T ∗i

)i∈I , R∗k =
BRT

∗ (R∗k−1), and R∗ =∩∞k=1R∗k . Let ΨTi ,k (t i ) =ΨTi (t i , RTk ) and Ψ∗i ,k (t
∗
i ) =Ψ

T ∗
i (t

∗
i , R∗k ).

LEMMA 1. If ϕ is a belief-preserving morphism from (T,π) to (T ∗,π∗) and ϕi (t i ) = t ∗i ,
then for all k , RTi ,k (t i ) = R∗i ,k (t

∗
i ), Ψ

T
i (t i , RT−i ,k ) = Ψ

∗
i (ϕi (t i ), RT

∗

−i ,k ), RTi ,k : Ti → 2A i \ ; is a
measurable function, and {t ∗i ∈ T ∗i : a i ∈R∗i ,k (t

∗
i )} is closed in the weak topology.

PROOF. The proof is by induction on k . Endow the universal type space with the prod-
uct topology, where each level of the beliefs is given the weak topology (as in the usual
topological construction of the universal type space), and suppose the claim has been
shown for all k ′ ≤ k − 1. So suppose that for all i , and t i ∈ Ti , RTi ,k−1(t i ) = R∗i ,k−1(ϕ(t i ))
andΨTi ,k−1(t i ) = Ψ∗i ,k−1(ϕ(t i )), that RTi ,k−1 : Ti → 2A i \; is a measurable function, and that
{t ∗i : a i ∈R∗i ,k−1(t

∗
i )} ⊂ T ∗i is closed.

(Part I) The set {t ∗i : a i ∈ R∗i ,k (t
∗
i )} is closed and therefore measurable. To see this,

consider a sequence (t ∗ni )
∞
n=1 that converges to t ∗i and such that a i ∈ R∗i ,k (t

∗n
i ) for all n .

Then for each t ∗ni there existsψk−1,n
i ∈Ψ∗i ,k−1(t

∗n
i ) such that

a i ∈ arg max
a ′i

∑

θ ,a−i

g i (a ′i , a−i ,θ )ψk−1,n
i [(a−i ,θ )].

Moreover,

ψk−1,n
i [(a−i ,θ )] =

∫

t ∗−i

σ∗n−i (t
∗
−i ,θ )[a−i ]π∗i (t

∗n
i )[(dt ∗−i ,θ )]

for some σ∗n−i : T ∗−i ×Θ→ ∆(A−i ) where σ∗n−i (t
∗
−i ,θ )[a−i ] > 0 implies a−i ∈ R∗−i ,k−1(t

∗
−i ).

Let ν∗n = ν (σ∗n−i ,π∗i (t
∗n
i )), and by the compactness of∆(T ∗−i ×Θ×A−i ) consider a conver-

gent subsequence of ν∗n converging to ν∗∞. Moreover, by compactness we also have a
regular version of conditional probabilities, denoted ν∗∞[· | (t−i ,θ )] ∈∆(A−i ), which, by
regularity is a measurable function on T ∗−i ×Θ. Hence we can define a measurableσ∗∞−i :
T ∗−i×Θ→∆(A−i ) byσ∗∞−i (t

∗
−i ,θ )[a−i ] = ν∗∞[a−i | (t ∗−i ,θ )]. Note that ν∗∞ = ν (πi (t ∗i ),σ

∗∞
−i ).

Defineψi ∈∆(A−i ×Θ) byψi [(a−i ,θ )]≡
∫

T ∗−i
ν∗∞[(dt−i ,θ , a−i )]. Clearly

a i ∈ arg max
a ′i

∑

θ ,a−i

g i (a ′i , a−i ,θ )ψi [a−i ,θ ].

It remains to show thatσ∗∞−i (t−i ,θ )[a−i ]> 0⇒ a−i ∈R∗−i ,k−1.



Theoretical Economics 2 (2007) Interim correlated rationalizability 35

Note first that

ν∗∞[{(t ∗−i ,θ , a−i ) : a−i ∈R∗−i ,k−1(t
∗
−i )}] = 1. (1)

This follows from ν∗n [{(t ∗−i ,θ , a−i ) : a−i ∈R∗−i ,k−1}] = 1 and ν∗n → ν∗∞.
Equation (1) can be written as π∗i (t

∗
i )[N ] = 0, where

N ≡ {(t ∗−i ,θ ) : suppσ∗∞−i (t
∗
−i ,θ ) 6⊂R∗−i ,k−1(t

∗
−i )}.

So changing σ∗∞−i on N has no effect on expected payoffs, and can be done as long as
measurability of σ∗∞−i continues to be satisfied. Fix θ ∈Θ for the remainder of the argu-
ment. For each (of the finitely many) non-empty subsets B−i ⊂ A−i , let B ∗−i ≡ {t

∗
−i ∈ T ∗−i :

R∗−i ,k−1(t
∗
−i ) = B−i } and Bσ−i ≡ {t

∗
−i ∈ T ∗−i : suppσ∗∞−i (t

∗
−i ,θ )⊂ B−i }. Both sets are measur-

able, hence B ∗−i − Bσ−i is measurable, and since π∗i (t
∗
i )[N ] = 0, also π∗i (t

∗
i )[B

∗
−i − Bσ−i ] = 0.

So redefine σ∗∞−i (t
∗
−i ,θ ) on B ∗− Bσ to equal any a−i ∈ B−i . Since {a−i }σ is measurable,

so is {a−i }σ∪ (B ∗−i −Bσ−i ), so after this redefinitionσ∗∞−i is still measurable and B ∗−i −Bσ−i
is empty. Doing this process for all B−i ⊂ A−i we obtain a measurable σ∗∞−i such that
σ∗∞−i (t

∗
−i ,θ )∈R∗−i ,k−1(t

∗
−i ) for every (not only a.e.) t ∗−i .

(Part II) Since ΨTi ,k−1(t i ) = Ψ∗i ,k−1(ϕ(t i )) it is immediate that RTi ,k (t i ) =R∗i ,k (ϕi (t i )).
(Part III) By (Part I), (Part II), and the measurability of ϕi we have that RTi ,k : Ti →

2A i \ ; is measurable.
(Part IVa) We now argue that Ψ∗i ,k (t

∗
i )⊂Ψ

T
i ,k (t i ). By definition

Ψ∗i ,k (t
∗
i ) =







ψ∗i ∈∆(A−i ×Θ) :
ψ∗i [(a−i ,θ )] =
∫

t ∗−i
σ∗−i (t

∗
−i ,θ )[a−i ]π∗i (t

∗
i )[(dt ∗−i ,θ )]

for some measurableσ∗−i : T ∗−i ×Θ→∆(A−i )
such thatσ∗−i (t

∗
−i ,θ )[a−i ]> 0⇒ a−i ∈R∗−i ,k (t

∗
−i )







.

Fix ψ∗i and the σ∗−i in the above expression, and define σ−i : T−i ×Θ → ∆(A−i ) by
σ−i (t−i ,θ ) = σ∗−i (ϕ−i (t−i ),θ ). Since RT−i ,k (t−i ) = R∗−i ,k (ϕ−i (t−i )) and σ∗−i (t

∗
−i ,θ )[a−i ] >

0⇒ a−i ∈R∗−i ,k we haveσ−i (t−i ,θ )[a−i ]> 0⇒ a−i ∈RT−i ,k . So

ψi [(θ , a−i )] =

∫

t−i

σ−i (t−i ,θ )[a−i ]πi (t i )[(dt−i ,θ )]

is in ΨTi (t i , RT−i ,k ).
From the morphism we have

ψ∗i [(θ , a−i )] =

∫

t ∗−i

σ∗−i (t
∗
−i ,θ )[a−i ]π∗i (ϕ(t i ))[(dt ∗−i ,θ )]

=

∫

t−i

σ−i (t−i ,θ )[a−i ]πi (t i )[(dt−i ,θ )].

Thus

Ψ∗i ,k (t
∗
i )⊂Ψ

T
i ,k (t i ).
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(Part IVb) To prove the converse, suppose ψi ∈ ΨTi (t i , RT−i ,k ) and let σ−i be the

associated conjecture so ψi [(θ , a−i )] =
∫

t−i
σ−i (t−i ,θ )[a−i ]πi (t i )[(dt−i ,θ )]. We define

σ∗−i : T ∗−i ×Θ→∆(A−i ) as follows.
First, for every B−i ⊂ A−i let τT−i (B−i ) = {t−i ∈ T−i : B−i = RT−i ,k−1(t−i )} and

τ∗−i (B−i ) = {t−i ∈ T ∗−i : B−i = R∗−i ,k−1(t−i )}. By the induction hypothesis both τT−i (B−i )⊂
T−i and τ∗−i (B−i ) ⊂ T ∗−i are measurable and τT−i (B−i ) = ϕ−1

−i (τ
∗
−i (B−i )), and hence

π∗i (ϕ(t i ))[τ∗−i (B−i )] =πi (t i )[τT−i (B−i )].
We constructσ∗−i (t

∗
−i ,θ )[·]∈∆(A−i ) as follows. Mapσ−i (t−i , ·) intoσ∗−i (t

∗
−i , ·) by tak-

ing all t−i for whom B−i is k −1 rationalizable, denoted τT−i (B−i ), taking the conditional
average of σ−i (t−i , ·) over those t−i , and assigning that average conjecture to those t ∗−i
who have that same k−1 rationalizable set, i.e., toτ∗−i (B−i ). Moreover, eachτ∗−i (B−i ) is a
superset of ϕ(τT−i (B−i )), and these supersets partition T ∗−i . So we can combine all those
averages to get a strategy for all t ∗−i ∈ T ∗−i . There is a slight issue for the case where the
conditional is not well defined because the conditioning event, τT−i (B−i ), has probabil-
ity zero. In that case the strategy is really irrelevant, but as we require it to be measurable
and to map into the k−1 rationalizable set, we add that restriction by having the strategy
assign probability 1 to some k − 1 rationalizable action for all t ∗−i ∈ τ

∗
−i (B−i ) whenever

πi (t i )[τT−i (B−i )] = 0. To do this, for each B−i fix some ā−i (B−i )∈ B−i .
We now formalize this verbal description. Let

σ∗−i (t
∗
−i ,θ )[a−i ] =



















∫

τT−i (B−i )
σ−i (t−i ,θ )[a−i ]π(t i )[(dt−i ,θ )]

π(t i )[τT−i (B−i )]

if t ∗−i ∈τ
∗
−i (B−i ) and

π(t i )[τT−i (B−i )]> 0

1 if t ∗−i ∈τ
∗
−i (B−i ), π(t i )[τT−i (B−i )] = 0 and a−i = ā−i (B−i )

0 if t ∗−i ∈τ
∗
−i (B−i ), π(t i )[τT−i (B−i )] = 0 and a−i 6= ā−i (B−i ).

This is measurable because it is constant on each of the finitely many measurable cells
of {τ∗−i (B−i )}B−i⊂A−i . Moreover, σ∗−i (t

∗
−i ,θ )[a−i ]> 0⇒ a−i ∈ R∗−i ,k−1. So this σ∗−i can be

used to defineψ∗i ∈Ψ
∗
i (t
∗
i , R∗−i ,k ) byψ∗i [θ , a−i ] =

∫

t ∗−i
σ∗−i (t

∗
−i ,θ )[a−i ]π∗i (t

∗
i )[(dt ∗−i ,θ )].

Now

ψ∗i [θ , a−i ] =

∫

t ∗−i

σ∗−i (t
∗
−i ,θ )[a−i ]π∗i (ϕi (t i ))[(dt ∗−i ,θ )]

=
∑

B−i⊂A−i







∫

τT−i (B )
σ−i (t−i ,θ )[a−i ]πi (t i )[(dt−i ,θ )]

πi (t i )[τT−i (B−i )]






π∗i (ϕ(t i ))[τ∗−i (B−i )×{θ }]

=
∑

B−i⊂A−i







∫

τT−i (B )
σ−i (t−i ,θ )[a−i ]πi (t i )[(dt−i ,θ )]

πi (t i )[τT−i (B−i )]






πi (t i )[τT−i (B−i )×{θ }]

=

∫

t−i

σ−i (t−i ,θ )[a−i ]πi (t i )[(dt−i ,θ )] =ψi [θ , a−i ],

where the first equality is by definition, the second by substitution and changing the in-
tegration of a finite valued “step function” to a sum, the third usingπ∗i (ϕ(t i ))[τ∗−i (B−i )] =
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π(t i )[τT−i (B−i )], and the last changing the summation of the “step function” back to an
integral. Thus for anyψ∈ΨTi (t i , RT−i ,k )we have foundψ∗ ⊂Ψ∗i (t

∗
i , R∗−i ,k ). �

COROLLARY 2. RTi (t i ) =RT
′

i (t
′
i ) if bπ∗i (t i ) = bπ∗i (t

′
i ).

4.2.3 Fixed-point definitions Modulo the requirement thatσ−i be measurable, and re-
placing summations with integrals, the definition of best reply sets is as in the finite case.
The properties mentioned there also hold, although the argument is slightly different.

LEMMA 2. (i) If STc for all c in some index set C are best-reply sets then ∪cSTc is a best-
reply set.

(ii) The union of all best-reply sets is the largest fixed point of BRT .

To see property (ii) denote the union of all best-reply sets as S and observe that if
a i ∈BRTi (t i ,S−i ), then adding a i toSi (t i )will continue to constitute a best-reply set.

DEFINITION 4. RTF = ((R
T
i ,F (t i ))t i∈Ti )i∈I ⊂ ((2A i )Ti )i∈I is the largest fixed point of BRT .

In general, the largest fixed point need not coincide with the iterative definition
given above, as reducing the set to the largest fixed point may require transfinite induc-
tion; see Lipman (1994). However, because payoffs depend only on distributions over
the finite sets of actions and states of Nature, we can show that the fixed point definition
is well posed and coincides with the iterative definition.

PROPOSITION 4. RTF equals RT .

PROOF. It is sufficient to prove that RT is a best-reply set. That nothing larger can be
a best-reply set is immediate. For every a i ∈ RTi (t i ) we have that for every k there is a
measurableσk

−i : T−i ×Θ→∆(A−i ) such thatσk
−i (t−i ,θ )[a−i ]> 0⇒ a j ∈RTk ,t j

(t j ) and

a i ∈ arg max
a ′i

∑

θ ,a−i

∫

t−i

g i (a ′i , a−i ,θ )σk
−i (t−i ,θ )[a−i ]π(t i )[(dt−i ,θ )].

We need to prove there exists σ−i : T−i ×Θ→ ∆(A−i ) such that σ−i (t−i ,θ )[a−i ] > 0⇒
a j ∈∩k RTk ,t j

(t j ) and

a i ∈ arg max
a ′i

∑

θ ,a−i

∫

t−i

g i (a ′i , a−i ,θ )σ−i (t−i ,θ )[a−i ]π(t i )[(dt−i ,θ )].

Define σ−i (t−i ,θ ) = limk σ
k
−i (t−i ,θ ). We need only check then that σ−i is measurable.

But
{t i :σ−i (t−i ,θ ) = a−i }=

∞
∪

K=1
∩

k≥K
{t i :σk

−i (t−i ,θ ) = a−i };

since the latter is measurable so is the former. Given two type spaces, T and T ′, on
the set of states of Nature Θ, with t i a type of i in T and t ′i a type of i in T ′, we have
bπ∗i (t
′
i ) = bπ

∗
i (t i )⇒RT

′

i ,F (t
′
i ) =RTi ,F (t i ). �
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5. CONCLUDING REMARKS

REMARK 5. Weinstein and Yildiz (forthcoming) show that the set of types in the universal
type space with a unique ICR action is open and dense in the product topology. Dekel
et al. (2006) define a strategic topology to be one that generates continuity of ICR actions.
In this topology, there are open sets of types with multiple ICR actions and open sets of
types with unique ICR actions.

REMARK 6. Despite the difference between ICR and IIR highlighted above, these con-
cepts are equivalent in some games. While it is beyond the scope of this paper to pro-
vide details, it can be shown that these include games where there are strategic comple-
mentarities, two-person private-value games where each player knows her value, and of
course whenever ICR delivers a unique outcome.

REMARK 7. The ICR and IIR solution concepts are interim concepts in the sense that
a type’s conjecture about the play of opposing players is specified as a function of his
type, so that the conjectures of different types of the same player can be different. Un-
der an “ex ante” approach each player i has a prior determined before learning her own
type, leading to differences with interim concepts that are analogous to the difference
between the ex ante and interim versions of dominance that was pointed out by Fu-
denberg and Tirole (1991). Indeed, if one considers rationalizability notions where a
player’s conjecture σ−i about others’ play is not allowed to depend on his type, then
such ex ante notions analogously differ from the interim notions we define. However
as a referee pointed out, an alternative approach to an ex ante definition of correlated
rationalizability would specify, instead of a belief for each type, νt i ∈ ∆(T−i ×Θ×A), a
prior for each player, µ ∈ ∆(T ×Θ× A). If the prior allows for correlation then νt i are
the conditionals given t i of some prior µ, i.e., µ(· | t i ) = νt i (·), and hence with correla-
tion the ex ante notion does not impose the restriction that beliefs of different types of
the same player coincide, as would be implied in the cases discussed above or with in-
dependence assumptions.20 However, such an ex ante definition would still differ from
ICR because the interim perspective in the latter does serve as a refinement (similar to
extensive-form rationalizability (Pearce 1984)) since zero probability types are required
to optimize under ICR but not under the ex ante solution concepts defined above. For
example, if player 1’s ex ante probability of a given type t ′1 is 0, while player 2 assigns
it positive probability, the ex ante concept would let type t ′1 play an interim dominated
strategy, which could allow player 2 to play an action that would be ruled out by ICR.
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