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Transitive regret
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Preferences may arise from regret, i.e., from comparisons with alternatives for-
gone by the decision maker. We ask whether regret-based behavior is consistent
with nonexpected utility theories of transitive choice and show that the answer
is no. If choices are governed by ex ante regret and rejoicing, then nonexpected
utility preferences must be intransitive.
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1. Introduction

Standard models of choice assume that decision makers act as if they maximize a prefer-
ence relation over sets of options and these preferences are assumed to be independent
of the environment. There are, however, good reasons to challenge this assumption.
Preferences may depend on the decision maker’s holding (reference point), on other
people’s holdings (envy), or on the choice set itself.

One such model is regret theory (Bell 1982 and Loomes and Sugden 1982). Accord-
ing to this theory the decision maker anticipates his future feelings about the choice he
is about to make and acts according to these feelings. This approach is natural when
the decision maker has to choose between two (or more) random variables. Once the
uncertainty is resolved, he will know what outcome he received, but also what outcome
he could have received had he chosen an alternative option. This comparison may lead
to rejoicing—if his actual outcome is better than the alternative—or regret.

Formally, let X and Y be two random variables with money outcomes. Let ψ(x�y)
measure the regret or rejoicing a person feels when observing that he won x while the
alternative choice would have landed him y. ChoosingX over Y thus leads, ex ante, to a
lottery�(X�Y)where the outcomes are ψ(x�y). Choice is based on regret and rejoicing
if there is a functional V over regret/rejoice lotteries such thatX is chosen over Y if and
only if V (�(X�Y)) > 0.
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The question we ask is simple: What functionals V and regret/rejoice functions ψ
are consistent with transitive choice? That is, when is it true that if V (�(X�Y)) > 0 and
V (�(Y�Z)) > 0, then V (�(X�Z)) > 0 as well? If regret is separable across events, that
is, if V (�(X�Y))= ∑

i Vi(ψ(xi� yi)� si), then the possibility of having a violation of tran-
sitivity is well known (see Bell 1982, Loomes and Sugden 1982, and Fishburn 1989). In
fact, in that case, violations of transitivity must be observed unlessψ(x�y)= u(x)−u(y),
which means that the original preferences are expected utility.1 The main result of our
paper is that regret-based transitive choice implies expected utility and this conclusion
does not depend on V being linear in probabilities or even separable across states.

To see why this result is not obvious, consider the following intuition. For equiprob-
able partition S1� � � � � Sn, transitivity implies that for any vector of outcomes (x1� � � � � xn)

and any permutation π of {1� � � � � n},

(x1� S1; � � � ;xn�Sn)∼ (xπ(1)� S1; � � � ;xπ(n)� Sn)

(see Proposition 1 below). Separability of V implies that the regret evaluation of
(xi�xπ(i)) in event Si does not depend on what happens in event Sj , j �= i. Therefore, any
regret pair (x� y) can be evaluated through a lottery and its permutation as above. With-
out separability this cannot be done, as the evaluation of the regret pair (x� y) depends
on the rest of the lottery.

One can read the result of the paper in two different ways. It offers a necessary and
sufficient condition for a functional to be expected utility without making any references
to mixture spaces (see Kreps 1988 for summary of terms and basic results). But the real
contribution is the impossibility result that shows that regret is inherently intransitive. If
so, then one must either conclude that (i) regret, despite its clear psychological appeal,
cannot be used in standard economic models; (ii) models of regret that are richer than
in Bell (1982) and Loomes and Sugden (1982) are necessary—for example, as is done
in Sarver (2008) or by defining regret with respect to foregone distributions rather than
foregone outcomes (see Machina 1987 and Starmer 2000 for some steps in this direc-
tion); (iii) models of intransitive preferences must be incorporated into economics as in
Fishburn and LaValle (1988), Loomes and Sugden (1987), or Hayashi (2008).2

The paper is organized as follows. The model and the main result are presented in
the next section. Section 3 offers an outline of the proof, while the details of the proof
appear in the Appendix.

2. The model and main result

Let L be the set of real finite-valued random variables over (S���P) with S = [0�1], �
being the standard Borel σ algebra on S, P = μ being the Lebesgue measure, and the
set of outcomes being the bounded interval [¯x� x̄]. The decision maker has a preference
relation � over L. In the sequel, we denote events by Si and Ti.

1For this observation, see Sugden (2004, p. 739). We offer a formal proof of this claim in Lemma 7 below
as we are not aware of one in the literature.

2See also Starmer (2000) for further references.
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Definition 1. The continuous function ψ : [¯x� x̄] × [¯x� x̄] → � is a regret function if for
all x, ψ(x�x)= 0, ψ(x�y) is strictly increasing in x and strictly decreasing in y.

If in some event X yields x and Y yields y, then ψ(x�y) is a measure of the decision
maker’s ex post feelings (of regret if x < y or rejoicing if x > y) about the choice of X
over Y . This leads to the next definition.

Definition 2. Let X�Y ∈ L, where X = (x1� S1; � � � ;xn�Sn) and Y = (y1� S1; � � � ; yn�Sn).
The regret lottery evaluating the choice ofX over Y is

�(X�Y)= (ψ(x1� y1)�p1; � � � ;ψ(xn� yn)�pn)�

where pi = P(Si), i = 1� � � � � n. Denote the set of regret lotteries by R = {�(X�Y) :
X�Y ∈ L}.

For brevity we refer to ψ and � as regret function and regret lottery, respectively,
even though they encompass both regret and rejoicing.

Definition 3. The preference relation � is regret based if there is a regret function ψ
and a continuous functional V that is defined over regret lotteries such that for any
X�Y ∈ L,

X � Y if and only if V (�(X�Y))≥ 0�

The main result of this paper is the following.

Theorem 1. Let � be a complete, transitive, continuous, and monotonic preference re-
lation over the set L of random variables. The relation � is regret based if and only if it is
expected utility.

This theorem implies, in particular, the known result that the regret models of Bell
(1982), Loomes and Sugden (1982), and Sugden (1993) are intransitive.3 We take this
result a step further and show that this intransitivity is not caused by separability across
events, but is the result of regret itself.4

Recently, Sarver (2008) presented a nonexpected utility model of regret that is transi-
tive, but it departs from the standard regret model of Bell (1982) and Loomes and Sugden
(1982). In Sarver’s model, the decision maker chooses between menus of lotteries and
a lottery from the selected menu. At the time these two choices are made, the decision
maker is uncertain about the utility of different outcomes. Later, after uncertainty is

3An important exception is the case where the choice set consists of statistically independent random
variables, and for the two lotteries (x1�p1; � � � ;xn�pn) and (y1� q1; � � � ; ym�qm), the probability of the regret
ψ(xi� yj) is piqj (see Machina 1987, pp. 138–140 and Starmer 2000, pp. 355–356). For example, Hong (1983)
weighted utility theory is consistent with this form of regret.

4Gul’s (1991) model of disappointment is transitive and nonexpected utility. The comparison in this
model is between the outcome of a lottery and the lottery itself, rather than between possible outcomes of
a pair of lotteries.
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resolved, the decision maker may experience ex post regret if the selected lottery turns
out to be inferior to another lottery that is also in the menu he selected. This induces
a transitive, nonexpected utility preference relation over menus of lotteries in the initial
period. However, this is not inconsistent with Theorem 1. First, if menus are single-
tons, then Sarver’s model reduces to expected utility. Second, the source of uncertainty
is different. In our model, the decision maker does not know which state of nature will
hold and, therefore, he does not know what outcome he will receive. In Sarver’s model,
the decision maker does not know his future preferences and regret may emerge from
realizing that given his (now) known preferences, he chose the wrong option.

Theorem 1 is proved as follows. It is well known that expected utility is regret based
(withψ(x�y)= u(x)−u(y) and V (�(X�Y))= ∑

i piψ(xi� yi)). That any transitive regret-
based preferences must be expected utility is proved in a sequence of steps summarized
below.

Step 1. Preferences satisfy the equivalence condition (Loomes and Sugden 1982,
p. 818). That is, if X and Y have the same distribution, then X ∼ Y (Section 3.1,
Proposition 1).

Step 2. The indifference curve of V through zero, {R :V (R)= 0}, is linear in probabili-
ties (Section 3.3, Lemmas 3–5).

Step 3. There exists V as in Definition 3 that is linear in probabilities for all regret lot-
teries R (Section 3.4, Lemma 6).

Step 4. The preference relation � is expected utility (Section 3.4, Lemma 7).

3. Proof of the theorem

3.1 Probabilistic equivalence

When preferences are regret based, the decision maker cares about what events will hap-
pen as this will tell him what are the alternative outcomes he could have received had
he chosen differently. When the decision maker learns that the number 4 on a die yields
$100 underX and $150 underY , the fact that these two outcomes are linked to the same
state of the world is important, but the state itself is not. Consequently, only the prob-
abilities of the underlying states are relevant for regret between X and Y . As long as
the probability of the number 1 is the same as that of 4, it makes no difference whether
the regret ψ(100�150) is obtained when the number is 1 or 4. This is why regret lotteries
are evaluated with respect to their probabilities and not with respect to the generating
events.

Proposition 1 shows that this observation, together with transitivity, has a signifi-
cant implication to the evaluation of random variables. To see this, consider a box with
n balls, numbered 1� � � � � n. Draw one ball at random, and let X = (x1� S1; � � � ;xn�Sn),
where Si is the event “ball i is drawn.” Let π : {1� � � � � n} → {1� � � � � n} be a permutation
of the n numbers and let π(X) ≡ (xπ(1)� S1; � � � ;xπ(n)� Sn). If X 
 π(X), then according
to the discussion in the last paragraph, it should also be the case that π(X) 
 π2(X),
π2(X)
 π3(X), � � � , πn!−1(X)
 πn!(X). By transitivity, we obtain that X 
 πn!(X)=X ,
a contradiction.



Theoretical Economics 6 (2011) Transitive regret 99

ForX ∈ L, let FX be the distribution ofX , that is, FX(x)= P(X ≤ x).

Proposition 1 (Probabilistic equivalence). Let � be a continuous and transitive regret-
based preference relation over L. For any two random variables X�Y ∈ L, if FX = FY ,
thenX ∼ Y .

Loomes and Sugden (1987) and Fishburn and LaValle (1988) use cycles as above to
justify violations of transitivity. In Fishburn and LaValle (1988), a fair die is rolled and
payments are made according to the number shown. Consider the random variablesX1

andX2 = π(X1) given by

S1 S2 S3 S4 S5 S6

X1 $1,000 $500 $600 $700 $800 $900
X2 $900 $1,000 $500 $600 $700 $800

As in five of six casesX1 yields $100 more thanX2, Fishburn and LaValle suggest that
preferring X1 to X2 is natural. But of course, using such a permutation five more times
leads to a nontransitive cycle.

The converse of Proposition 1 is not true. As is demonstrated by the follow-
ing example, there are nontransitive regret-based preferences that satisfy probabilistic
equivalence.

Example 1. For two random variables X and Y , find comonotonic X ′ and Y ′ with
the same distributions as X and Y . Formally, for X = (x1� S1; � � � ;xn�Sn) and Y =
(y1�T1; � � � ;Ym�Tm), find X ′ = (x′

1�E1; � � � ;x′
	�E	) and Y ′ = (y ′

1�E1; � � � ; y ′
	�E	) such that

x′
1 ≤ · · · ≤ x′

	, y
′
1 ≤ · · · ≤ y ′

	, FX = FX ′ , and FY = FY ′ . Observe that X ′ and Y ′ depend
on both X and Y . Define now X � Y if and only if V (X ′�Y ′) ≥ 0, where V (X ′�Y ′) =∑

P(Ei)(x′
i− y ′

i)
3. In other words, � is regret based with respect to the probability distri-

bution functions. As such, it satisfies probabilistic equivalence.
Let P(E1)= P(E2)= P(E3)= 1

3 . The random variablesX , Y , Z are given by

E1 E2 E3

X 8 19 30
Y 9 20 28
Z 10 18 29

Clearly V (X�Y)= V (Y�Z)= V (Z�X)= 6, henceX 
 Y , Y 
Z, but Z 
X . ♦

3.2 Preliminary results

We assume that outcomes are in a finite interval [¯x� x̄]. Let ¯r = ψ(¯x� x̄) and r̄ = ψ(x̄� ¯x).By the continuity of the regret functional, −∞< ¯r < 0< r̄ <∞. As ψ(x�y) is continuous,
increasing in x, and decreasing in y, it follows that the set of regret lotteries R defined in
Definition 2 is the set of finite-valued lotteries with outcomes in the interval [¯r� r̄]. The
following monotonicity properties of V are inherited from the monotonicity of �.
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Lemma 1. Let R and R′ be two distinct regret lotteries such that R dominates R′ by first-
order stochastic dominance (FOSD).

(i) If V (R)= 0, then V (R′) < 0.

(ii) If V (R′)= 0, then V (R) > 0.

The next lemma permits a selection of regret lotteries that are skew symmetric in
regret and rejoicing.

Lemma 2. (i) If ψ(x�y)=ψ(x′� y ′), then ψ(y�x)=ψ(y ′�x′).

(ii) The equality ψ(x�y)= −ψ(y�x) is without loss of generality.

We will assume throughout that ψ(x�y)= −ψ(y�x) and that�(X�Y)= −�(Y�X)≡
(−ψ(y1�x1)�p1; � � � ;−ψ(yn�xn)�pn). Moreover, ¯r = −r̄.

3.3 The indifference curve through zero is linear

A regret lottery R is generated by a permutation if there exists a random variable X =
(x1� S1; � � � ;xn�Sn), P(Si) = 1/n, and a permutation π of X such that �(X�π(X)) = R.
By Proposition 1, if R is generated by a permutation, then V (R) = 0. The next lemma
shows that the subset of {R :V (R)= 0} that is generated by permutations is convex.

Lemma 3. If R and R′ are generated by permutations, then so is 1
2R+ 1

2R
′.

As R and R′ are generated by permutations, we have V (R) = V (R′) = 0 and, by
Lemma 3, V ( 1

2R + 1
2R

′) = 0. As is shown by the next example, one cannot guarantee
that every regret lottery R = (r1�1/n; � � � ; rn�1/n) such that V (R) = 0 is generated by a
permutation.

Example 2. Consider an expected value maximizer whose choice set consists of ran-
dom variables with prizes in the interval [−3�3]. This individual’s regret function is
ψ(x�y)= x− y and he is indifferent betweenX and Y defined below, where P(Si)= 0�2:

X = (3� S1;3� S2;−1� S3;−1� S4;−1� S5)

Y = (−3� S1;−3� S2;3� S3;3� S4;3� S5)�

AsX ∼ Y , V (�(X�Y))= V (6�0�2;6�0�2;−4�0�2;−4�0�2;−4�0�2)= 0. But there does not
exist a random variable Ẑ with outcomes in the interval [−3�3] and a permutation π
such that �(X�Y)=�(Ẑ�π(Ẑ)). To see why, observe that the rejoicing 6 must be gen-
erated by the outcomes −3 and 3. From outcome 3, only regret is possible, and as the
only regret level is −4, the outcome 3 must be paired with −1. From outcome −1, one
cannot generate rejoicing 6 or have regret −4.5 ♦

5If, instead, we had assumed that the set of outcomes was (−∞�∞), then any R = (r1�1/n; � � � ; rn�1/n)
such that V (R)= 0 would be generated by a permutation, leading to a simpler proof of Theorem 1.
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The problem is that the outcomes inX and Y are far apart. However, as is shown by
the next example, one can find in Example 2 a random variable Z whose outcomes are
sufficiently close to bothX and Y such thatX ∼Z ∼ Y , and the regret lotteries�(X�Z)
and�(Z�Y) are generated by permutations.

Example 3. Using the notation of Example 2, letZ = (0� S1;0� S2;1� S3;1� S4;1� S5). Thus

�(X�Z)=�(Z�Y)= (3�0�2;3�0�2;−2�0�2;−2�0�2;−2�0�2)�

Define

Ẑ = (3� S1;0� S2;−3� S3;−1� S4;1� S5)

π(Ẑ) = (0� S1;−3� S2;−1� S3;1� S4;3� S5)�

Then�(Ẑ�π(Ẑ))=�(X�Z)=�(Z�Y). ♦

This idea is formalized below.

Lemma 4. Let X ∼ Y , where X = (x1� S1; � � � ;xn�Sn), Y = (y1� S1; � � � ; yn�Sn), and
P(Si) = 1/n. Then there is a sequence X = Z1 ∼ Z2 ∼ · · · ∼ Zk = Y such that for
every 	 = 1� � � � �k − 1, there is a regret lottery Ẑ	 and a permutation π	 so that
�(Z	�Z	+1)=�(Ẑ	�π	(Ẑ	)).

Thus, even if a regret lottery R= (r1�1/n; � � � ; rn�1/n) with V (R)= 0 is not generated
by a permutation, one can find a sequence of random variables Z1 ∼ · · · ∼Zk such that
each �(Z	�Z	+1) is generated by a permutation and R = �(Z1�Zk). This is used to
prove that the set {R :V (R)= 0} is convex.

Lemma 5. If V (R)= V (R′)= 0, then V ( 1
2R+ 1

2R
′)= 0.

3.4 V is linear in probabilities and � is expected utility

The following lemma establishes that all indifference curves of V are linear.

Lemma 6. (i) There is a function v : [−r̄� r̄] → � such that V (R) � 0 if and only if
E[v(R)] � 0.

(ii) Moreover, v is strictly increasing with v(0)= 0 and v(ψ(x� y))= −v(ψ(y�x)) for all
x, y.

We now use the function v to create a function u on outcomes that will turn out to
be the von Neuman–Morgenstern utility claimed by Theorem 1.

Lemma 7. There exists an increasing function u : [¯x� x̄] → � such that

v(ψ(x� y))= u(x)− u(y)�
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From the last two lemmas, we have for X = (x1� S1; � � � ;xn�Sn) and Y = (y1� S1; � � � ;
yn�Sn), where P(Si)= pi,

X � Y ⇐⇒ V (�(X�Y))≥ 0

⇐⇒
∑
i

piv(ψ(xi� yi))≥ 0

⇐⇒
∑
i

pi[u(xi)− u(yi)] ≥ 0

⇐⇒ E[u(X)] ≥ E[u(Y)]�

which is the claim of the theorem.

Appendix

Proof of Proposition 1. Let X = (x1� S1; � � � ;xn�Sn) and Y = (y1� S
′
1; � � � ; yn�S′

n) be
such that FX = FY .

Case 1. Si = S′
i and P(Si) = 1/n, i = 1� � � � � n. Then there is a permutation π̂ such that

Y = π̂(X). Obviously, �(X� π̂(X)) =�(π̂i(X)� π̂i+1(X)). Hence, as there exists m ≤ n!
such that π̂m(X) = X , it follows by transitivity that for all i, X ∼ π̂i(X). In particular,
X ∼ Y .

Case 2. For all i, j, P(Si ∩ S′
j) is a rational number. Let N be a common denominator

of all these fractions. Random variables X and Y can now be written as in Case 1 with
equiprobable events T1� � � � �TN .

Case 3. There exist i and j, such that P(Si ∩ S′
j) is irrational. Any random variable

Z = (z1�T1; � � � ;zn�Tn) is the limit of Zk = (zk1 �T
k
1 ; � � � ;zk

2k
�Tk

2k
), where for all k and 	,

P(zk	 )= 2−k. This case follows by continuity from Case 2. �

Proof of Lemma 1. Let R and R′ be two regret lotteries. As usual, R dominates R′ by
FOSD if and only if there is a list of probabilities p1� � � � �pn adding up to 1 such that
R= (r1�p1; � � � ; rn�pn) and R′ = (r′1�p1; � � � ; r′n�pn), and for all i, ri ≥ r ′i .

From the continuity ofψ, we know that for every r ∈ [¯r� r̄] there exist x� y ∈ [¯x� x̄] such
that r =ψ(x�y). Hence there areX�Y ∈ L such that�(X�Y)=R. By the continuity and
monotonicity of ψ, we can findX ′ and Y ′ such that x′

i ≤ xi, y ′
i ≥ yi, ψ(x′

i� y
′
i)= r ′i for each

i, and �(X ′�Y ′)= R′. Either X strictly dominates X ′ by FOSD or Y ′ strictly dominates
Y by FOSD (or both). Monotonicity of � implies that X �X ′ and Y ′ � Y with at least
one of these preferences being strict.

(i) If V (R) = 0, then X ∼ Y . By transitivity, X ′ ≺ Y ′ and hence V (R′) =
V (�(X ′�Y ′)) < 0.
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(ii) If V (R′) = 0, then X ′ ∼ Y ′. By transitivity, X 
 Y and, therefore, V (R) =
V (�(X�Y)) > 0. �

Proof of Lemma 2. (i) Let S1 and S2 be two disjoint events, where P(S1) = P(S2) =
0�5. Define the lotteries X = (x�S1; y�S2), Y = (y�S1;x�S2), X ′ = (x′� S1; y ′� S2), and
Y ′ = (y ′� S1;x′� S2). Let r =ψ(x�y)=ψ(x′� y ′). Then

�(X�Y) = (r�0�5;ψ(y�x)�0�5)

�(X ′�Y ′) = (r�0�5;ψ(y ′�x′)�0�5)�

By Proposition 1, X ∼ Y and X ′ ∼ Y ′; thus, we have V (�(X�Y)) = V (�(X ′�Y ′)) = 0.
But if ψ(y�x) �= ψ(y ′�x′), then �(X�Y) either dominates or is dominated by �(X ′�Y ′),
contradicting Lemma 1.

(ii) Recall that ψ(x�x)= 0. Let f : [¯r� r̄] → [−r̄� r̄] be defined as

f (r)=
{−ψ(y�x) if r < 0 and x < y is such that ψ(x�y)= r
r if r ≥ 0.

By the first part of this lemma, the value of f (r) for r < 0 does not depend on the choice
of x� y in the above definition; hence f is well defined. Monotonicity of ψ implies that f
is strictly increasing. We can, therefore, define

V ∗(r1�p1; � � � ; rn�pn)= V (f−1(r1)�p1; � � � ; f−1(rn)�pn)�

Let

ψ∗(x� y)=
{
ψ(x�y) if x≥ y
f (ψ(x� y)) if x < y.

Now

X � Y ⇐⇒ V (�(X�Y))≥ V (�(Y�X))
⇐⇒ V ∗(�∗(X�Y))≥ V ∗(�∗(Y�X))�

where�∗(X�Y) is obtained from�(X�Y) by replacing ψ(x�y) with ψ∗(x� y). �

Proof of Lemma 3. In the sequel, random variables Q with m (not necessarily dis-
tinct) outcomes are of the form (q1� S

m
1 ; � � � ;qm�Smm) for some canonical partition where

P(Smi )= 1/m, i= 1� � � � �m. ForQ andQ′ withm outcomes each, let

〈Q�Q′〉 = (q1� S
2m
1 ; � � � ;qm�S2m

m ;q′
1� S

2m
m+1; � � � ;q′

m�S
2m
2m)�

where P(S2m
i )= 1/(2m).

Let R and R′ be generated by permutations π of X = (x1� S1; � � � ;xn�Sn) and π ′ of
Y = (y1� S

′
1; � � � ; yn�S′

n), respectively, where P(Si) = P(S′
i) = 1/n, i = 1� � � � � n. That is,

R=�(X�π(X)) and R′ =�(Y�π ′(Y)). (The assumption that X and Y are of the same
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length is without loss of generality.) Define Z = 〈X�Y 〉 and π∗ : {1� � � � �2n} → {1� � � � �2n}
by

π∗(i)=
{
π(i) if i≤ n
π ′(i− n)+ n if i > n

to obtain�(Z�π∗(Z))=�(〈X�Y 〉�π∗〈X�Y 〉)= 1
2R+ 1

2R
′. �

Proof of Lemma 4. All random variables in this proof have n outcomes on the
equiprobable events S1� � � � � Sn. For Z = (z1� S1; � � � ;zn�Sn) and Z′ = (z′

1� S1; � � � ;z′
n�Sn),

define ‖Z −Z′‖ = maxi |zi − z′
i|.

The proof follows from Claims 1 and 2.

Claim 1. Let X ∼ Y . For any δ > 0, there exist Z1� � � � �Zk such that X = Z1 ∼ · · · ∼
Zk = Y and ‖Z	−1 −Z	‖ ≤ δ, 	= 2� � � � �k.

Proof. We construct the sequence Z1� � � � inductively. Suppose thatX �= Y and that we
have already definedX =Z1 ∼ · · · ∼Z	 such that ‖Zi−1 −Zi‖ ≤ δ, i= 2� � � � � 	. If Z	 = Y ,
we are through. Otherwise, define L	+ = {i :z	i > yi} and L	− = {i :z	i < yi}. As Z	 ∼ Y and
Z	 �= Y , both L	+ and L	− are nonempty. Let

δ	+ = min
i∈L	+

{z	i − yi}

δ	− = min
i∈L	−

{yi − z	i }�

Define f	(θ) such that Z	 ∼Z	+1(θ)≡ (z	+1
1 (θ)�S1; � � � ;z	+1

n (θ)�Sn), where

z	+1
i (θ)=

⎧⎪⎨
⎪⎩
z	i − θ if i ∈L	+
z	i + f	(θ) if i ∈L1−
z	i otherwise.

By continuity and monotonicity of �, f	(θ) is well defined (for small θ), continuous, and
increasing. Its inverse exists and is continuous. Define θ	 = min{δ�δ	+� f−1

	 (δ	−)} and let
Z	+1 =Z	+1(θ

	). Note that Z1� � � � �Z	+1 satisfy the hypothesis of the claim.
If θ	 = δ, then ‖Z	+1 − Y‖ ≤ ‖Z	 − Y‖ − δ. If θ	 = δ	+, then |L	+1+ | ≤ |L	+| − 1. If

θ	 = f−1
	 (δ	−), then |L	+1− | ≤ |L	−| − 1. Thus, this process terminates in a finite number of

steps with Zk = Y . �

Claim 2. There exists εn > 0 such that if for all i, |ri|< εn, then there exist a random vari-
able Ẑ and a permutation π such that R= (r1�1/n; � � � ; rn�1/n) satisfies R=�(Ẑ�π(Ẑ)).

Proof. The domain of outcomes is [¯x� x̄]. Let

ẑ1 = x̄+ ¯x
2

δn = x̄− ¯x
2n

= ẑ1 − ¯x
n

= x̄− ẑ1

n
> 0�
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Thus, ẑ1 + nδn = x̄ and ẑ1 − nδn = ¯x.
The function ψ is continuous on the compact segment [¯x� x̄]; therefore, for any

δn > 0, there exists εn > 0 such that |ψ(x�y)|< εn implies |x−y|< δn. Thus, with |ri|< εn
we can construct Ẑ such that

S1 S2 S3 S4 · · · Sn−1 Sn

Ẑ ẑ1 ẑ2 ẑ3 ẑ4 · · · ẑn−1 ẑn
π(Ẑ) ẑ2 ẑ3 ẑ4 ẑ5 · · · ẑn ẑ1

�(Ẑ�π(Ẑ)) r1 r2 r3 r4 · · · rn−1 ψ(ẑn� ẑ1)

Outcome ẑ1 is chosen to be the midpoint between ¯x and x̄, and each ẑ	+1 is cho-
sen so that ψ(ẑ	� ẑ	+1)= r	, 	= 1�2� � � � � n− 1. As |r	|< εn, we have |ẑ	 − ẑ	+1|< δn and
each ẑ	 ∈ [¯x� x̄]. As V (R) = V (�(Ẑ�π(Ẑ))) = 0, it must be that ψ(ẑn� ẑ1) = rn. Other-
wise, R either dominates or is dominated by�(Ẑ�π(Ẑ)), contradicting Lemma 1. Thus,
R=�(Ẑ�π(Ẑ)). �

This completes the proof of Lemma 4. �

Proof of Lemma 5. For R = (r1�1/n; � � � ; rn�1/n) and R′ = (r′1�1/n; � � � ; r′n�1/n) such
that ψ(R) = ψ(R′) = 0, let X , Y , X ′, Y ′ be such that �(X�Y) = R and �(X ′�Y ′) = R′.
By Lemma 4, there exist sequences X = Z1 ∼ · · · ∼ Zk = Y and X ′ = Z′

1 ∼ · · · ∼ Z′
k = Y ′

such that for all 	 = 1� � � � �k − 1 there exist Ẑ	�π	� Ẑ′
	�π

′
	 satisfying �(Ẑ	�π	(Ẑ	)) =

�(Z	�Z	+1) and �(Ẑ′
	�π

′
	(Ẑ

′
	)) = �(Z′

	�Z
′
	+1).

6 Thus, for each 	 = 1�2� � � � �k − 1, the
pair of regret lotteries�(Z	�Z	+1) and�(Z′

	�Z
′
	+1) satisfies the hypothesis of Lemma 3.

Therefore,

V
(

1
2�(Z	�Z	+1)+ 1

2�(Z
′
	�Z

′
	+1)

)
= 0�

Note that 1
2�(Z	�Z	+1) + 1

2�(Z
′
	�Z

′
	+1) = �(〈Z	�Z′

	〉� 〈Z	+1�Z
′
	+1〉), where 〈·� ·〉 is de-

fined in the proof of Lemma 3. Consequently,

〈X�X ′〉 = 〈Z1�Z
′
1〉 ∼ · · · ∼ 〈Zk�Z′

k〉 = 〈Y�Y ′〉�

Hence

V
(
�(〈X�X ′〉� 〈Y�Y ′〉)) = 0�

but

�(〈X�X ′〉� 〈Y�Y ′〉)= 1
2R+ 1

2R
′

and we obtain V ( 1
2R+ 1

2R
′)= 0.

As each X ∈ L is the limit of a sequence {Xk}, where for each k, Xk = (xk1 �1/nk; � � � ;
xknk�1/nk), the lemma now follows by continuity for all R and R′ such that V (R) =
V (R′)= 0. �

6We use the same k in both sequences without loss of generality, as the sequences may become station-
ary from a certain point on.
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Proof of Lemma 6. Recall that V (δr̄) > 0 > V (δ−r̄ ), where δt is the constant lottery
yielding t.

(i) For a regret lottery R such that V (R) > 0, let α(R) be defined by V (α(R)R +
(1 − α(R))δ−r̄ ) = 0, and for R such that V (R) < 0, let α(R) be defined by V (α(R)R +
(1 − α(R))δr̄) = 0. By Lemma 1 and the continuity of V , α(R) is well defined and
α(R) < 1. Let α∗ satisfy V (α∗δr̄ + (1 − α∗)δ−r̄ )= 0.

We show first that α is a continuous function. Let Rk → R0 and suppose that
α(Rk)→ α′.7 Suppose without loss of generality that for all k, V (Rk) ≥ 0. By the conti-
nuity of V ,

V (α′R0 + (1 − α′)δ−r̄ )= lim
k
V

(
α(Rk)Rk + (1 − α(Rk))δ−r̄

) = 0�

hence α′ = α(R0).
Define now

U(R)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α∗

α(R)
− α∗ if V (R) > 0

0 if V (R)= 0

1 − α∗ − 1 − α∗

α(R)
if V (R) < 0.

For R such that V (R) �= 0, α(R) < 1; hence U(R) � 0 if and only if V (R) � 0. The
continuity of α(·) implies that U(R) is continuous. We show next that U is linear. That
is, for all R and R′, U( 1

2R+ 1
2R

′)= 1
2U(R)+ 1

2U(R
′).

By Lemma 5 and the continuity of V we have the following conclusion.

Conclusion 1. If V (R)= V (R′)= 0, then for all α ∈ [0�1], V (αR+ (1 − α)R′)= 0.

For arbitrary regret lotteries R and R′, consider the three dimensional simplex � of
lotteries over R, R′, δr̄ , δ−r̄ . Take a linear transformation K of � such that K(δ−r̄ ) =
(0�0�−1), K(δr̄) = (0�0� (1 − α∗/α∗)), K(R) = (x∗� y∗� z∗), K(R′) = (x′� y ′� z′), and, by
Conclusion 1, V (x� y� z)= 0 if and only if z = 0. It follows that for z > 0, α(x� y� z) solves

αz− (1 − α)= 0 �⇒ α(x� y� z)= 1
z+ 1

and for z < 0, α(x� y� z) solves

αz+ (1 − α)1 − α∗

α∗ = 0 �⇒ α(x� y� z)= 1 − α∗

1 − α∗ − α∗z
�

In both cases, U(x� y� z)= α∗z.
Define now a preference relation �∗ on regret lotteries by R �∗ R′ if and only if

U(R) ≥ U(R′). Since U is continuous, so is �∗, and since U is linear, �∗ satisfies the
independence axiom. Therefore, there is a function v such that U(R) � 0 if and only if
E[v(R)] � 0. The lemma follows since U(R)� 0 if and only if V (R)� 0.

7If α(Rk) does not have a limit, then we take a subsequence that has a limit.
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(ii) Suppose that v(·) is not strictly increasing. Then there exists r1 < r2 such that
v(r1)≥ v(r2). Take R= (r1�p1; r2�p2; � � � ; rn�pn) such that V (R)= 0. The continuity of V
implies that such an R exists. Construct R′ = (r1�p1 − ε; r2�p2 + ε; � � � ; rn�pn). Clearly
R′ dominates R by FOSD, but 0 = V (R) ≥ V (R′), contradicting Lemma 1. The fact that
v(0)= 0 follows from V (0�1)= 0.

Finally, let S1 and S2 be two disjoint events where P(S1) = P(S2) = 0�5. Define
X = (x�S1; y�S2) and Y ≡ (y�S1;x�S2). By Proposition 1, X ∼ Y . Thus v(ψ(x� y)) =
−v(ψ(y�x)). �

Proof of Lemma 7. The following claim follows from a theorem in Aczèl (1966) and is
mentioned, without an explicit proof, in Sugden (2004, p. 739).

Claim 3. If G(x�y) + G(y�z) = G(x�z) for all x < y < z, then there exists a function
g :� → � such thatG(x�y)= g(x)− g(y).

Proof. Define

H(x�y)=

⎧⎪⎨
⎪⎩
G(x�y) if x < y

0 if x= y
−G(y�x) if x > y.

It may be verified that for all x, y, z,

H(x�y)+H(y�z)=H(x�z)�

Therefore, Aczèl (1966, Theorem 1, p. 223) implies that there exists g :� → � such that
H(x�y)= g(x)− g(y). �

Select x1 < x2 < x3 andp�q > 0,p �= q,p+q < 1
3 . Define lotteriesX andY as follows:

S1 S4 S7 S2 S5 S8 S3 S6 S9

P(Si) p p p q q q 1
3 −p− q 1

3 −p− q 1
3 −p− q

X x1 x2 x3 x1 x2 x3 x1 x2 x3

Y x3 x1 x2 x2 x3 x1 x1 x2 x3

Proposition 1 implies X ∼ Y , as each of these lotteries gives x1, x2, and x3 with
probability 1

3 each. Thus, V (�(X�Y)) = 0 and, by Lemma 6, E[v(�(X�Y))] = 0. As
v(ψ(x� y))= −v(ψ(y�x)) and v(ψ(x�x))= 0 (see Lemma 6), it follows that

[q−p]v(ψ(x1�x2))+ [q−p]v(ψ(x2�x3))+ [p− q]v(ψ(x1�x3))= 0�

Since p �= q, we obtain for all x1 < x2 < x3, v(ψ(x1�x2)) + v(ψ(x2�x3)) = v(ψ(x1�x3)).
By Claim 3, there exists a function u :� → � such that v(ψ(x1�x2)) = u(x1) − u(x2).
Monotonicity of u follows from the monotonicity of �. �
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