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Competitive markets with externalities
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This paper presents a general model of a competitive market with consumption
externalities, and establishes the existence of equilibrium in the model, under as-
sumptions comparable to those in classical models. The model allows production
and indivisible goods. Examples illustrate the generality and applicability of the
results.
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1. INTRODUCTION

The classical model of competitive markets assumes that agents care only about their
own consumption. However, the consumption of others may matter to me, because I
am altruistic or spiteful, because I am a slave to fashion or a radical non-conformist—
or because the consumption of others impinges on my own: my neighbors’ use of coal
to heat their houses pollutes the air I breathe; their use of household security services
makes mine safer. For environments with a finite number of agents, it has been known
for a long time that consumption externalities can be accommodated in a consistent
market model. (See Shafer and Sonnenschein 1975 for the first proof and Laffont 1977
for discussion and applications.) However such models are not entirely satisfactory be-
cause they require individual preferences to be convex and exclude indivisible goods.
(As Starrett 1972 argues, requiring individual preferences to be convex is especially prob-
lematical in the presence of consumption externalities.) Moreover, the price-taking as-
sumptions inherent in the notion of competitive equilibrium are incompatible with the
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presence of agents who have market power—as all agents typically do when the total
number of agents is finite.

Absent externalities, the work of Aumann (1964, 1966) and subsequent authors has
shown that non-convex preferences, indivisible goods, and infinitesimal agents who
have no market power are easily accommodated in a model with a continuum of agents.
However, a satisfactory model that also incorporates consumption externalities has
proved surprisingly elusive. This paper provides such a model.

The key to our approach is that we abandon Aumann’s descriptions of the econ-
omy and of equilibrium in terms of maps from agent names to agent characteristics
and consumptions, and instead use the descriptions (introduced by Hart et al. 1974) of
the economy and of equilibrium in terms of probability distributions on agent charac-
teristics and on agent characteristics and choices. In other words, our description is
distributional rather than individualistic. This choice is born of necessity: as we show
by examples, if we were to insist on an individualistic description of equilibrium then
we would quickly be confronted with simple economies that admit no equilibrium at
all. By contrast, our distributional approach, although perhaps less familiar than the
individualistic approach, leads to a clean and elegant framework, easily accommodates
both production and indivisible goods, and satisfies the basic consistency requirement
that equilibrium exist.

A simple example, elaborated in Section 2, may help to orient the reader. Consider a
large number of individuals who live on the bank of a long river. Each individual trades
and consumes goods, but the waste products of that consumption create harmful pol-
lution for everyone downstream. As we show, if we wish to guarantee that such an econ-
omy admits an equilibrium we must accept the possibility that two individuals who live
in the same location, have the same preferences, are entitled to the same endowment,
and experience the same externality, still choose different consumption bundles.

Previous papers on continuum economies with externalities all take Aumann’s in-
dividualistic approach, and treat only exchange economies with divisible goods. Ham-
mond et al. (1989) show that equilibrium allocations coincide with the f-core (a variation
of the usual core in which improving coalitions are required to be finite). However, as our
examples show, in their model, equilibrium may not exist and the f-core may be empty.
Noguchi (2005) and Cornet and Topuzu (2005) prove that equilibrium exists if individ-
ual preferences are convex in own consumption and weakly continuous in others’ con-
sumptions. As we have noted, requiring that individual preferences be convex vitiates
an important reason for treating continuum economies, and certainly excludes indivis-
ibilities. As we discuss later, in the individualistic framework the requirement of weak
continuity restricts the externalities agents experience to be linear in the consumption
of others. Our examples in Section 5 show that, absent any of these assumptions, indi-
vidualistic equilibrium need not exist. Balder (2003) demonstrates that equilibrium ex-
ists if the externality enters into the preferences of each individual in the same way. This
requirement would seem to exclude all local externalities, all externalities that diminish
with distance, and all externalities that have any directional aspect—indeed, most ex-
ternalities that arise in practice. By contrast, our results allow for indivisible goods, for
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individual preferences that are not convex, and for general externalities that each agent
experiences in a unique way.

Following this Introduction, we begin with an informal elaboration of the orienting
example mentioned above. The detailed description of the model is in Section 3 and the
existence theorem is in Section 4. Section 5 presents a number of illustrative examples.
Proofs are collected in Appendix A. Appendix B sketches an alternative model, in which
the consumption of others enters individual preferences as a parameter.

2. AN ORIENTING EXAMPLE

To orient the reader, we begin by describing, in the familiar individualistic framework,
a simple economy that has no individualistic equilibrium. Our description is a bit
informal.

EXAMPLE 1. We consider a large number of agents living on the banks of a long river. We
identify locations with the interval T = [0, 1], and assume the population is uniformly
distributed along the river, so the population measure τ is Lebesgue measure.

There are two commodities, each perfectly divisible. Each agent is endowed with
one unit of each good: e (t ) ≡ (1, 1). Agents derive utility from their own consumption,
but suffer a pollution externality from the consumption of others who live upstream
from them. If we choose directions so that upstream from s means to the left of s , and
write f (t ) = ( f 1(t ), f 2(t )) for the consumption of an agent located at t , then the external-
ity experienced by an agent located at s is

η(s , f ) =

∫ s

0

f (t )dt .

Note that η is two-dimensional; write η = (η1,η2) for the components of η. The utility
of an agent located at s who consumes the bundle (x1,x2) when the consumption of all
agents is described by f is

u s (x1,x2, f ) = [2−η1(s , f )]x 2
1 +[2−η2(s , f )]x 2

2 .

Note that η1(s , f ) ≤ 1 for each i and that the exponents of x1,x2 are greater than 1, so
utility is strictly increasing and convex in own consumption. In particular, individual
preferences are not convex.

In the individualistic framework, an equilibrium consists of prices p1, p2 (without
loss, normalize so that p1+p2 = 1) and a consumption allocation f = ( f 1, f 2) : T → R2

+
so that almost every agent optimizes in his/her budget set and the market clears. We
claim that no such equilibrium exists.

To see this, note first that each agent’s wealth is p1 · 1+p2 · 1 = 1. Because the total
supply of each good is 1, ηi ≤ 1 for each i , so utility functions display increasing returns
to scale in consumption of each good, and the optimal choice for an agent located at s is
always either (1/p1, 0) or (0, 1/p2). (Of course the agent may be indifferent between the
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two choices.) An agent located at s strictly prefers (1/p1, 0) if and only if

2−η1(s , f )
p1

>
2−η2(s , f )

p2
.

Similarly, an agent located at s strictly prefers (0, 1/p2) if and only if

2−η1(s , f )
p1

<
2−η2(s , f )

p2
.

Set

G1 =
�

s ∈ [0, 1] :
2−η1(s , f )

p1
>

2−η2(s , f )
p2

�

G2 =
�

s ∈ [0, 1] :
2−η1(s , f )

p1
<

2−η2(s , f )
p2

�

I =
�

s ∈ [0, 1] :
2−η1(s , f )

p1
=

2−η2(s , f )
p2

�

.

These sets are disjoint and their union is [0, 1]. Because Lebesgue measure τ is non-
atomic, both functions η1, η2 are continuous, so both sets G1, G2 are open (possibly
empty).

If G1 6= ; then G1 is the union of a countable collection of disjoint intervals, say G1 =
⋃

J j . Let J = J j be any one of these intervals, and let a be the left-hand endpoint of J . If
a /∈ J , then continuity guarantees that

2−η1(s , f )
p1

=
2−η2(s , f )

p2
.

At each s ∈G1 the unique optimal choice of an agent located at s is to choose (1/p1, 0),
so 2−η1(s , f ) is strictly decreasing on J and 2−η2(s , f ) is constant on J . Since these
functions are equal at the left-hand endpoint of J we must have

2−η1(s , f )
p1

<
2−η2(s , f )

p2

at every point of J . Since this contradicts the definition of J , we conclude that a ∈ J .
Since G1 is open, this can only be the case if a = 0. Since J is arbitrary, we conclude that
either G1 = ; or G1 itself is an interval and 0∈G1.

We can apply the same reasoning to G2 to conclude that either G2 = ; or G2 itself is
an interval and 0∈G1.

Because G1, G2 are disjoint, it follows that at least one of them must be empty; with-
out loss of generality, say G2 = ;. If G1 6= ;, let b be the right-hand endpoint of G1. As we
have noted above, at each s ∈G1 the unique optimal choice of an agent located at s is to
choose (1/p1, 0). Hence if b = 1 then agents located at every point of [0, 1) choose only
good 1, and the market for good 2 cannot clear. Hence b < 1. Because G1∪G2∪ I = [0, 1],
we conclude that I = [b , 1]. Of course, if G1 =G2 = ; then I = [0, 1], so in either case we
conclude that I = [b , 1] for some b < 1.
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In particular, 1∈ I so
2−η1(1, f )

p1
=

2−η2(1, f )
p2

.

Market clearing implies η1(1, f ) = η2(2, f ) = 1 so p1 = p2 = 1
2 . Since η1(0, f ) = η2(0, f ) =

0, it follows that
2−η1(0, f )

p1
=

2−η2(0, f )
p2

.

Hence 0 ∈ I so G1 = ; and I = [0, 1]. Keeping in mind that p1 = p2 we conclude that
η1(s , f ) =η2(s , f ) for all s ∈ [0, 1] and hence that

0=η1(s , f )−η2(s , f ) =

∫ s

0

[ f 1(t )− f 2(t )]dt

for every s ∈ [0, 1]. Hence f 1(t ) = f 2(t ) for almost all t ∈ [0, 1]. However, as we have
already noted, all agents choose either good 1 or good 2, so this is impossible. We have
reached a contradiction, so we conclude that no individualistic equilibrium exists. How-
ever, we shall see in Section 5 that there is a distributional equilibrium. ◊

Non-convexity of preferences plays a crucial role in the above example. However, as
we have argued in the Introduction, requiring preferences to be convex is problematical
in a continuum economy, especially when there are externalities. Moreover, as Exam-
ple 3 in Section 5 demonstrates, when the externality is non-linear in the consumption
of others, even the requirement of convexity of preferences is not adequate to guarantee
an individualistic equilibrium.

3. ECONOMIES WITH EXTERNALITIES

We consider economies with L ≥ 1 divisible goods and M ≥ 0 indivisible goods; indi-
visible goods are available only in integer quantities. (We allow M = 0—no indivisible
goods—but we insist that L ≥ 1, so there is at least one divisible good.) The commod-
ity space and price space are both RL ×RM = RL+M . (Indivisibility enters into the de-
scription of consumption sets of individual agents but not into the description of the
commodity or price space.) It is convenient to normalize prices to sum to 1; write

∆=
n

p ∈RL+M :
∑

p i = 1, p ≥ 0
o

∆=
n

p ∈RL+M :
∑

p i = 1, p � 0
o

for the simplex of normalized, positive prices and the simplex of normalized, strictly
positive prices, respectively.

We follow McKenzie (1959) in describing the production sector as a closed convex
cone Y ⊂ RL+M . As usual, we assume Y ∩ (−Y ) = {0} (irreversibility), −RL+M

+ ⊂ Y (free
disposal in production), and Y ∩RL+M = {0} (no free production). Note that Y =−RL+M

+
for an exchange economy with no production.

For simplicity, we assume that individual consumption is constrained only to be
non-negative and to respect the indivisibility requirement for the last M goods. If we
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write Z for the space of integers and Z+ for the space of non-negative integers, then
individual consumption sets are X =RL

+×ZM
+ .

We allow agent preferences to depend on the consumption of others. Because we
describe the economy in distributional terms, the most obvious way to describe the
consumption of others is as a distribution on the space of consumer characteristics and
consumptions. However, if consumer characteristics include preferences, this approach
is circular. To avoid this circularity, we follow the approach suggested by Mas-Colell
(1984): we take as given an abstract space of observable characteristics and describe
the consumption of others by a distribution on the product of the space of observable
characteristics with the space of consumptions. Formally, we take as given a complete
separable metric space T and a probability measure τ on T . We view T as the space of
observable characteristics of agents and τ as the distribution of observable characteristics
in the actual economy; we refer to (T,τ) as the observable population characteristics.

Because we assume consumptions are non-negative, we summarize the observable
consumption of society as a distribution (probability measure) on T × X ; Prob(T × X )
is the space of all such distributions. It is conceivable that agents care about all pos-
sible distributions of consumptions of others, but it is necessary for our purposes only
that agents care about those distributions that involve a finite amount of total resources,
shared among the actual population. To identify the relevant distributions, we say that
σ ∈ Prob(T ×X ) is integrable if

∫

|x |dσ <∞. Write D for the set of integrable distribu-
tions,D (τ) for the subset of integrable distributionsσ for which the marginal ofσ on T
is τ, and

Dn (τ) =

¨

σ ∈D (τ) :
∫

|x |dσ≤ n

«

.

EachDn (τ) is a weakly compact subset of Prob(T ×X ). Note thatD (τ) =
⋃

Dn (τ). For a
given economy, we need to consider only distributions in some fixed Dn (τ), so we give
D (τ) =
⋃

Dn (τ) the direct limit topology: F ⊂ D (τ) is closed if and only if F ∩Dn (τ) is
closed for each n .

The description of preferences over pairs of own consumption and consumption of
others is straightforward and familiar. A preference relation with externalities, or just a
preference relation, is a subset ρ ⊂X ×D (τ)×X ×D (τ). We usually write (x ,σ)ρ (x ′,σ′)
rather than (x ,σ,x ′,σ′) ∈ ρ. We restrict attention throughout to preference relations ρ
that are irreflexive, transitive, negatively transitive, strictly monotone in own consump-
tion (i.e., (x ,σ) ρ (x ′,σ) whenever x > x ′) and continuous (i.e., open). Write P for the
space of such preference relations. If ρ is a preference relation we write

B (ρ) = {(x ,σ,x ′,σ′)∈X ×D (τ)×X ×D (τ) : (x ,σ)ρ (x ′,σ′)}

for the better-than set andB (ρ)c for its complement, the not-better-than set. We topol-
ogizeP by closed convergence of not-better-than sets restricted to compact sets of con-
sumption distributions. That is, ρα→ρ exactly if for each compact K ⊂D (τ)we have

B (ρα)c ∩K →B (ρ)c ∩K
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in the topology of closed convergence of subsets of X × K × X × K . (Since the latter
space is locally compact, closed convergence has its usual meaning.) The proof of the
following useful proposition is in Appendix A.

PROPOSITION 1. P is a complete, separable metric space.

Agents are described by an observable characteristic, a preference relation, and an
endowment, so the space of agent characteristics is

C = T ×P ×X .

In view of Proposition 1,C is a complete, separable metric space.
An economy with preference externalities or just an economy for short, is a tuple E =

〈T,τ, Y ,λ〉 consisting of population characteristics (T,τ), a production sector Y , and a
probability measure λ on T ×P ×X whose marginal on T is τ and that has the property
that aggregate endowment is finite:

∫

|e |dλ<∞. There is no loss in assuming that e 6= 0
for λ-almost all (t ,ρ, e ), because agents with 0 endowment necessarily consume 0 at
equilibrium.

In the presence of indivisible goods, we need an assumption to guarantee that in-
dividual demand is well-behaved in prices. Say endowments are desirable if λ-almost
all (t ,ρ, e ) ∈ C have the property that (e ,σ) ρ ((0,xM ),σ) for every σ ∈ D (τ) and every
xM ∈ ZM

+ . That is, for every fixed distribution of social consumption, the endowment is
strictly preferred to any bundle that contains no divisible goods. Note that this property
is automatically satisfied if all goods are divisible and almost all agents have non-zero
endowment.

An equilibrium for the economy E = 〈T,τ, Y ,λ〉 consists of a price p ∈ ∆, an aggre-
gate production vector y ∈ Y , and a probability measure µ on T ×P ×X ×X such that

(a) the marginal µ123 of µ on T ×P ×X equals λ

(b) almost all agents choose in their budget set

µ{(t ,ρ, e ,x ) : p ·x > p · e }= 0

(c) production profit is maximized

p · y = sup{p · y ′ : y ′ ∈ Y }

(d) markets clear
∫

x dµ= y +

∫

e dλ

(e) almost all agents optimize given prices p and the distribution of consumption µ14

(the marginal of µ on the first and fourth factors):

µ{(t ,ρ, e ,x ) : there exists x ′ ∈X , (x ′,µ14)ρ (x ,µ14), p ·x ′ ≤ p · e }= 0.

(Note that (a) and (d) together imply that the marginal µ14 ∈D (τ).)
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3.1 Individualistic representations

The descriptions above are entirely in distributional terms, but a description in individ-
ualistic terms is sometimes possible. We say that the economy E = 〈T,τ, Y ,λ〉 admits an
individualistic representation if there is a measurable function ϕ : T →P ×X such that

λ= (idT ,ϕ)∗(τ)

where idT is the identity map on T and (idT ,ϕ)∗(τ) is the direct image measure. If E
admits an individualistic representation then the equilibrium p , y ,µ admits an individ-
ualistic representation if in addition there is a measurable function f : T →X such that

µ= (idT ,ϕ, f )∗(τ).

Informally—but entirely correctly—E admits an individualistic representation exactly
when almost all agents having the same observable characteristic have the same en-
dowment and preferences, and an equilibrium p , y ,µ admits an individualistic repre-
sentation if and only if all agents having the same observable characteristic choose the
same consumption bundle.

As we show in Section 5, there are economies that admit an individualistic represen-
tation for which no equilibrium admits an individualistic representation.

3.2 Economies with finite support

We should offer a caveat about interpretation. An economy E = 〈T,τ, Y ,λ〉 for which τ
and λ have finite support should not be interpreted as an economy with a finite number
of agents, but rather as an economy with a finite number of types of agents. Theorems 1
and 2 of Section 4 are able to guarantee existence of equilibria for such economies only
because our notion of equilibrium does not require agents having the same character-
istics to choose the same consumption bundles.

4. EXISTENCE OF EQUILIBRIUM

For an economy E = 〈T,τ, Y ,λ〉, we say that all goods are available in the aggregate if

�

Y +

∫

e dλ

�

∩RL+M
++ 6= ;.

That is, all goods are either represented in the endowment or can be produced.
Our main result guarantees existence of equilibrium.

THEOREM 1. Every economy E = 〈T,τ, Y ,λ〉 for which endowments are desirable and all
goods are available in the aggregate admits an equilibrium.

As Example 3 shows, convexity of preferences is not enough to guarantee the exis-
tence of an equilibrium with an individualistic representation, but strict convexity will
do.
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THEOREM 2. If E = 〈T,τ, Y ,λ〉 is an economy that admits an individualistic representa-
tion, M = 0 (so there are no indivisible goods), and λ-almost all agents have preferences
that are strictly convex in own consumption, then every equilibrium for E admits an in-
dividualistic representation.

5. EXAMPLES

In this section, we give a number of examples to illustrate the power and usefulness of
our approach and to contrast our results with the results of Noguchi (2005), Cornet and
Topuzu (2005), and Balder (2003). For ease of exposition, we do not stray far from the
setting we have already discussed; the particular functional forms are chosen for ease of
calculation, rather than for economic realism.

We begin by completing the discussion of Example 1.

EXAMPLE 1 CONTINUED. We begin by giving a distributional description of the economy.
As before, all agents are endowed with one unit of each good: e = (1, 1). If σ ∈ D (τ) is
the distribution of consumption, an agent located at s ∈ [0, 1] who consumes (x1,x2)
experiences the externality

η(s ,σ) =

∫

T×R2
+

x dσ

and enjoys utility

u s (x2,x2,σ) = [2−η1(s ,σ)]x 2
1 +[2−η2(s ,σ)]x 2

2 .

Hence λ is the image of τ under the map s 7→ (s , u s , e ).
The argument of Section 2 shows that, at equilibrium, we must have p1 = p2 = 1

2 and
η1(s ,σ) = η2(s ,σ) for all s ∈ [0, 1]. This condition characterizes a unique equilibrium
distribution; to describe it, define maps g 1, g 2 : T → T ×P ×R2

+×R2
+ by

g 1(s ) = (s , u s , (1, 1), (2, 0))

g 2(s ) = (s , u s , (1, 1), (0, 2)).

The unique equilibrium distribution is

µ= 1
2 g 1
∗ (τ)+

1
2 g 2
∗ (τ).

The interpretation is simple: in every measurable set of locations, half of the agents
choose (2, 0) and half of the agents choose (0, 2). Informally: half of the agents at each
location choose (2, 0) and half of the agents choose (0, 2). Even more informally: “every
other agent” chooses (2, 0) and “every other agent” chooses (0, 2). There is no measur-
able function with this property; there is, as Mas-Colell (1984) writes, “a measurability
problem.”1 ◊

This example relies on non-convex preferences; as the following example shows,
problems for individualistic representations can arise also from indivisible goods.

1The same point is made in Gretsky et al. (1992), and may also be familiar from the literature on the law
of large numbers with a continuum of random variables (Feldman and Gilles 1985, Judd 1985).
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EXAMPLE 2. Again, we consider a large number of agents living along a river. We con-
tinue to identify locations (the observable characteristic) with the interval T = [0, 1] and
assume the population is uniformly distributed along the river, so τ is Lebesgue mea-
sure. There are two goods: good 1 is divisible and good 2 (speedboats) is indivisible, so
individual consumption sets are X = R+×Z+; write x = (x1,x2) for a typical consump-
tion bundle.

Speedboats are produced by a constant returns to scale technology: 1 unit of the
consumption good produces 1 speedboat, so the production cone is

Y = {(y1, y2) : y2 ≤−y1}.

Agents are each endowed with 2 units of the consumption good but no speedboats.
Agents care about the consumption good and about speedboats, but utility from

speedboats is subject to a congestion externality. Ifσ ∈D (τ) is the distribution of social
consumption, the congestion externality experienced by an agent located at s ∈ (0, 1] is

η(s ,σ) =
1

s

∫

T×X

1[0,s ](t )x2 dσ(t ,x1,x2).

(We leave η(0,σ) undefined.) Note that, so long as all speedboat consumptions are
bounded by 2 (which they are at any individually rational consumption distribution)
the externality experienced by s is just the average of speedboat consumption upstream
from s . The utility obtained by an agent located at s who consumes x1 units of the divis-
ible good and x2 speedboats is

u s (x1,x2;σ) = (x1)1/2
�

1+2[x2−η(s ,σ)]+
�1/2 .

Note that the externality matters only when speedboat consumption is strictly positive.2

To solve for equilibrium p , y ,µ normalize so that p1 = 1. Profit maximization entails
that p2 ≤ 1 (else potential profit would be infinite). If no speedboats are produced then
the equilibrium must be autarkic: every agent consumes his/her endowment (2, 0) and
obtains utility 21/2. However, if no speedboats are produced then no agent experiences a
congestion externality, and each agent prefers to consume (1, 1) and obtain utility 31/2 >

21/2. Hence speedboats must be produced at equilibrium, and now profit maximization
entails that in fact p2 = 1.

To solve for µ, write σ = µ14 for the marginal of µ on observable characteristics
and speedboat consumption. Because τ is non-atomic, η(t ,σ) is a continuous func-
tion of t ; we claim that η(t ,σ) ≡ 1

2 for every t ∈ (0, 1]. To see this, consider the open
set {s : E (s ,σ)< 1

2}. If this is not empty it is the countable union of disjoint intervals; let
I be any one of these intervals, and let a be the left-hand endpoint of I . Check that if
η(s ,σ)< 1

2 then the unique optimal choice for an agent located at s is to consume (1, 1).
Thus, if a = 0 then η(s ,σ)≡ 1 for every s ∈ I , which certainly contradicts the definition
of I . Hence a 6= 0, and a /∈ I (because I is open). Continuity therefore guarantees that

2This utility function is not strictly increasing in x2, but it is so in the relevant range.
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η(a ,σ) = 1
2 , so that η(s ,σ) is a strictly increasing function of I ; in particular, η(s ,σ)> 1

2
for each s ∈ I , which again contradicts the definition of I . Since we have reached a con-
tradiction whether or not a = 0, we conclude that {s : E (s ,σ)< 1

2} is empty. Similarly, we
see that {s : E (s ,σ)> 1

2} is empty, so E (s ,σ)≡ 1
2 for every s ∈ (0, 1].

It follows immediately that equilibrium production is y = (− 1
2 ,+ 1

2 ).
If equilibrium had an individualistic representation then there would be a function

f = ( f 1, f 2) : T →R+×Z+ for which

1

s

∫ s

0

f 2(t )dτ(t ) = 1
2

for each s —but no such integer-valued function exists.
To define the unique equilibrium consumption distribution, define g 1, g 2 : T → T ×

P ×X ×X by

g 1(s ) = (s , u s , (2, 0), (2, 0))

g 2(s ) = (s , u s , (2, 0), (1, 1)).

The unique equilibrium distribution is

µ= 1
2 g 1
∗ (τ)+

1
2 g 2
∗ (τ).

That is: at every location half of the agents consume their endowments and half of the
agents use one unit of consumption to produce one speedboat. ◊

Examples 1 and 2 provide useful comparisons with Balder (2003), Noguchi (2005)
and Cornet and Topuzu (2005). Balder assumes that the externality enters into each
agent’s utility function in the same way. This would only be the case if pollution (in
Example 1) and congestion (in Example 2) had the same negative effects upstream as
downstream. More generally, this assumption would obtain only for externalities that
are purely global—but few, if any, externalities would seem to have this property. (Even
a negative externality as wide-spread as global warming affects different regions of the
earth in different ways.)

Noguchi (2005) and Cornet and Topuzu (2005) assume that individual preferences
are convex. As we have discussed, this assumption is problematic in a continuum econ-
omy, and especially so in the presence of externalities. As Examples 1 and 2 demon-
strate, if preferences are non-convex or some goods are indivisible, an individualistic
equilibrium may not exist—but our distributional framework handles non-convex pref-
erences and indivisible goods smoothly.

A more subtle point concerns the nature of the externality. Noguchi (2005) and Cor-
net and Topuzu (2005) assume that the externality experienced by each agent is contin-
uous with respect to the topology of weak convergence of consumption allocations. If,
as in Examples 1 and 2, the externality experienced by an agent is of the form

η( f ) =

∫

T

E ( f (t ))dt ,
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weak continuity in f obtains only if E is linear (more precisely, affine) on the relevant
range. This is evidently a strong assumption. In our framework, the corresponding ex-
ternality is

η(σ) =

∫

T×X

E (t ,x )dσ(t ,x )

and our requirement that preferences be continuous with respect to the topology of
weak convergence of distributions is satisfied if E is measurable, bounded (or just uni-
formly integrable on the relevant range of distributions inD (τ)), and continuous in x . As
the following simple example demonstrates, non-linear externalities are a problem for
the individualistic approach but are handled smoothly in our distributional approach.

EXAMPLE 3. Again, T = [0, 1] and τ is Lebesgue measure. There are two goods, both
divisible. When the distribution of consumption is σ ∈ Prob(T ×R2

+), an agent located
at s ∈ T who chooses the bundle (x1,x2) experiences the externality

η(s ,σ) =

∫

T×R2
+

1[0,s ](t )(x1x2+x1−x2)dσ(t ,x1,x2)

and enjoys the utility

u s (x1,x2;σ) = x1+(1+η(s ,σ))x2.

All agents are endowed with one unit of each good: e = (1, 1). There is no production:
Y =−R2

+.
To solve for equilibrium p ,µ we follow a by-now-familiar strategy. Consider the dis-

joint open sets

W1 =
�

t ∈ T :
1

p1
>

1+η(t ,σ)
p2

�

W2 =
�

t ∈ T :
1

p1
<

1+η(t ,σ)
p2

�

.

If s ∈W1 then every agent located at s strictly prefers to consume only good 1, so η(·,σ)
is strictly increasing on every subinterval of W1. If s ∈W2 then every agent located at s
strictly prefers to consume only good 2, so η(·,σ) is strictly increasing on every subin-
terval of W2. Arguing just as in the previous two examples, this quickly leads to a contra-
diction unless W1 =W2 = ;.

We conclude that
1

p1
=

1+η(s ,σ)
p2

for every s ∈ T . In particular, η(·,σ) is constant. Since η(0,σ) = 0 it follows that η(·,σ)≡
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0. Since total endowments are (1, 1)we have

0=η(1,σ) =

∫

T×R2
+

1(x1x2+x1−x2)dσ(t ,x1,x2)

=

∫

T×R2
+

(x1x2)dσ(t ,x1,x2)+

∫

T×R2
+

(x1−x2)dσ(t ,x1,x2)

=

∫

T×R2
+

(x1x2)dσ(t ,x1,x2).

Because consumption is non-negative, this implies x1x2 = 0 almost everywhere with
respect toσ: no agent consumes both goods. Given that endowments are (1, 1) it follows
that the unique equilibrium price is p1 = p2 = 1

2 and the unique equilibrium distribution
is

µ= 1
2 g 1
∗ (τ)+

1
2 g 2
∗ (τ)

where g 1, g 2 : T → T ×P ×X ×X are defined by

g 1(s ) = (s , u s , (1, 1), (2, 0))

g 2(s ) = (s , u s , (1, 1), (0, 2)).

Informally: at each location, half the agents choose (2, 0) and half the agents choose
(0, 2). As before, this equilibrium does not admit an individualistic representation. ◊

We conclude with an example that illustrates that our distributional framework, al-
though perhaps less familiar than the individualistic framework, is just as useful.

EXAMPLE 4. It is natural to conjecture that negative externalities lead to sub-optimal
equilibria; we verify that conjecture in a particular setting. (It is sometimes said that
negative externalities invariably lead to sub-optimal equilibria; as we shall see, this is
not so.)

We consider a more general environment than above. Let T ⊂ R2 be a compact
set, and let τ be a probability measure on T with full support. We identify T as a set
of locations (a city or neighborhood) and τ as the (relative) population density. (The
assumption of full support means there are no unpopulated areas.)

For notational simplicity, assume that there are only two goods, both divisible, that
all agents are endowed with one unit of the first good but that the second good must
be produced.3 One unit of the second good can be produced from one unit of the first
good, so the production cone is:

Y = {(y1, y2) : y1 ≤ 0, y2 ≤−y1}.

If the distribution of consumption isσ ∈ Prob(T ×R2
+), an agent located at s ∈ T experi-

ences the externality

η(s ,σ) =

∫

T×R2
+

E (s , t ,x )dσ(t ,x ).

3More general specifications would add only notational complication.
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If the agent consumes consumes the bundle (x1,x2) she enjoys utility

u s (x1,x2,σ) =U (s ,x1,x2,η(s ,σ)).

For simplicity, assume E is real-valued. To guarantee that preferences satisfy the re-
quirements of Theorem 1 and hence that an equilibrium exist, it suffices to assume that
E is measurable, uniformly integrable on eachDn (τ) (boundedness would be enough),
and continuous in x , and that U is measurable, continuous in x1, x2, η, and strictly in-
creasing in x1, x2.

Assume the derivatives of E and U obey

∂ E

∂ x1
= 0,

∂ E

∂ x2
> 0,

∂U

∂ x i
> 0 for i = 1, 2

∂U

∂ η
(s ,x1,x2,η)< 0 if x2 > 0.

That is: only good 2 causes pollution, pollution at location s from consumption at lo-
cation t is strictly increasing in consumption of good 2, utility is strictly increasing in
consumption and strictly decreasing in experienced pollution.

These assumptions do not guarantee that equilibrium is inefficient. For example,
suppose there are only two locations, so T = {s1, s2}, and that half the population lives
at each location. Consumption of x2 at any location creates an equal externality at every
location

η(s ,σ) =

∫

T×R2
+

x2 dσ.

Utility functions for agents who live at s1 are

u 1(x1,x2,η) = x1+(3−η)x2

while utility functions for agents who live at s2 are

u 2(x1,x2,η) = x1+(1−η)x2.

One equilibrium for this economy can be described in the following way: prices are
p1 = p2 = 1

2 ; agents who live at s1 consume (0, 1) and agents who live at s2 consume
(1, 0). This equilibrium is efficient. The point is one made by Starrett (1972): agents at s2

escape the negative effects of pollution by not consuming the second good at all.
However, these assumptions do guarantee that any equilibrium in which some

agents consume both goods must be inefficient; in any such equilibrium, good 2 is over-
produced.4 To see this, let p , y ,µ be an equilibrium in which some agents consume both
goods, and let σ be the marginal of µ on T ×R2

+ (the distribution of locations and con-
sumption). Because good 2 is produced, profit maximization entails that prices of goods
1, 2 must be equal: p1 = p2. Let

B1 = {(s , u s , e ,x ) : x1 > 0,x2 > 0}.
4We could guarantee that some agents consume both goods by requiring that marginal utilities of con-

sumption at 0 be infinite.
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By assumption, µ(B1) > 0. For (s , u s , e ,x ) ∈ B1 and ε > 0 small, set x ε = (x1+ ε,x2− ε).
Our differentiability assumptions imply that

lim
ε→0

�

�

�

�

u s (x ε ,σ)−u s (x ,σ)
ε

�

�

�

�

= 0 (1)

lim
ε→0

�

E (s , t ,x ε)−E (s , t ,x )
ε

�

> 0. (2)

A straightforward measure-theoretic argument shows that there is a subset B2 ⊂ B1

such that for (s , u s , e ,x ), (t , u t , e ,x ) ∈ B2 convergence of the limits in (1) and (2) is uni-
form, the limit in (2) is bounded away from 0, and consumption of good 2 is bounded
away from 0. Write B c

2 for the complement of B2, define h : B2 → B2 by h(s , u s , e ,x ) =
(s , u s , e ,x ε), and set

µ̂=µ|B c
2
+h∗(µ|B2 )

Thus µ and µ̂ differ only in that agents who were initially in B2 consume slightly more
of good 1 and slightly less of good 2. If ε is small enough, these agents are better off
because the loss in shifting own consumption x to x ε (which is of order less than ε) is
more than offset by the reduction in the externality (which is of order ε). In particular, µ
is not Pareto optimal. ◊

APPENDIX

A. PROOFS

We first isolate a useful lemma, then verify Proposition 1.

LEMMA. Every compact subset of D (τ) is contained in some Dn (τ).

PROOF. Suppose this is not true, so that there is a compact set K ⊂D (τ) and for each n
there is a measure σn ∈ K ,σn /∈ Dn (τ); there is no loss assuming that σn ’s are distinct.
If E is any subset of S = {σn : n = 1, . . .} then for each m ,

E ∩Dm (τ)⊂S ∩Dm (τ)⊂ {σn : n = 1, . . . , m −1}

so E ∩Dm (τ) is finite, hence closed. By definition of the direct limit topology, therefore,
E is a closed subset of D (τ). Because E is arbitrary, this means that every subset of
S is closed; i.e., S is a discrete set. On the other hand, compactness of K implies that
{σn : n = 1, . . .} is compact. This is a contradiction, so we conclude that every compact
subset ofD (τ) is contained in someDn (τ), as asserted. �

PROOF OF PROPOSITION 1. Let P0 be the space of preference relations that are open,
irreflexive, transitive and negatively transitive in own consumption (but not necessarily
monotone). We first define a complete metric on P0. To this end, fix, for each n , a
complete metric d n on the space C n of closed subsets of X ×Dn (τ)× X ×Dn (τ). For
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ρ ∈ P , recall that B (ρ) is the better-than set and that the complement B (ρ)c is the
non-better-than set. Set

W n
ρ = B (ρ)c ∩
�

X ×Dn (τ)×X ×Dn (τ)
�

and define

dP (ρ,ρ′) =
∞
∑

n=1

2−n
d n (W n

ρ , W n
ρ′ )

1+d n (W n
ρ , W n

ρ′ )
.

It is straightforward to check that dP is a complete metric on P0. That P0 is separable
follows immediately from the fact that it is a subspace of the product

∏

n C n . That this
metric defines the given topology ofP ⊂P0 follows immediately from the definitions.

Now choose countable dense sets A ⊂ (X \ {0}), D ⊂D (τ). Note that

P =
⋂

a∈A,σ∈D

�

ρ ∈P0 : (x +a ,σ)ρ (x ,σ)
	

.

Each of the sets inside the intersection is open, soP is a countable intersection of open
sets in a complete metric space. Hence the topology of P is defined by a complete
metric. �

With these preliminaries in hand we turn to the proof of Theorem 1.5

PROOF OF THEOREM 1. The proof proceeds along familiar lines. We construct auxiliary
economies En , use a fixed point argument to find equilibria 〈pn , yn ,µn 〉 for these aux-
iliary economies, find a convergence subsequence 〈pn , yn ,µn 〉 → 〈p ∗, y ∗,µ∗〉, and show
that the limit is an equilibrium for E .

Step 1. Because P , and hence C , are complete separable metric spaces, every mea-
sure on C is tight. (See Billingsley 1968.) Use tightness of λ to construct an increasing
sequence H1, H2, . . . of compact subsets of T×R×X such that, for each i ,λ(Hi )≥ 1−2−i .
Because Hi is compact, |e | is bounded on Hi .

Step 2. We construct the auxiliary economies En . For each index n , let

Yn =
�

y ∈RL+M : dist(y , Y )≤
|y |
n

�

.

Note that Yn is a closed convex cone and−RL+M
+ ⊂ Y ⊂ Yn . If n 0 is sufficiently large, then

Yn 0∩RL+M
+ = {0} and so Yn ∩RL+M

+ = {0} for n ≥ n 0. In what follows, we restrict attention
to such n . Write

Y ◦n = {p ∈R
L+M : p · y ≤ 0 for all y ∈ Yn}

for the polar cone, and set
∆n =∆∩Y ◦n =∆∩Y ◦n .

Note that if p ∈∆n then p i ≥ 1/n for each i . Set En = 〈T,τ, Yn ,λ〉.
5An alternative proof could be given along the lines of Balder (2005).
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Step 3. Fix n . We construct compact convex spaces of prices and consumption distri-
butions, and a correspondence on the space of prices and consumption distributions.

Set

Kn = {(t ,ρ, e ,x )∈C ×X : |x | ≤ Ln |e |}
Kn = {µ∈ Prob(C ×X ) :µC =τ, and µ(Kn ) = 1}

where µC is the marginal of µ on C . It is evident thatKn is a closed subset of Prob(C ×
X ), and tightness of λ entails thatKn is tight, soKn is weakly compact. (See Billingsley
1968.) To see thatKn is non-empty, write

proj :C ×X →C

for the projection. For B ⊂C ×X a Borel set, write

B0 = B ∩ (C ×{0}) .

Define the probability measure µ by µ(B ) = λ
�

proj(B0)
�

; note that µ ∈ Kn , so Kn is
non-empty.

We define a correspondence Φn on∆n ×Kn as the product of correspondences

φn :∆n ×Kn →Kn

ψn :∆n ×Kn →∆n .

Given (t ,ρ, e ) ∈ T ×P ×X = C , p ∈ ∆n and µ ∈ Prob(C ×X ) having the property that
µ14 ∈ D (τ) (recall that µ14 is the marginal of µ on observable characteristics and con-
sumptions), define individual budget and demand sets by:

B (t ,ρ, e ;µ, p ) = {x ∈X : p ·x ≤ p · e }
d (t ,ρ, e ;µ, p ) = {x ∈ B (t ,ρ, e ;µ, p ) : (x ′,µ14)ρ (x ,µ14)⇒ p ·x ′ > p · e }.

Note that if p ∈∆n then

d (t ,ρ, e ;µ, p )⊂ B (t ,ρ, e ;µ, p )⊂ Kn .

Finally, let D(µ, p ) be the set of agents who choose in their demand set:

D(µ, p ) = {(t ,ρ, e ,x ) : x ∈ d (t , R , e ;µ, p )}.

Now define the required correspondences by

φn (p ,µ) = {ν ∈Kn : ν (D(µ, p )) = 1}

ψn (p ,µ) = argmax

¨

q ·
�∫

x dµ−
∫

e dµ

�

: q ∈∆n

«

Φn (p ,µ) =ψn (p ,µ)×φn (p ,µ).
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Step 4. We claim thatφn ,ψn ,Φn are upper-hemi-continuous, and have compact, con-
vex, non-empty values.

It is evident that φn has convex values. To show that it is upper-hemi-continuous,
we first show that the individual demand is closed. To this end, let (t ,ρ, e ) ∈ C , let
x j ∈ d (t ,ρ, e ;µj , p j ) and suppose x j → x ; we must show x ∈ d (t ,ρ, e ;µ, p ). Write
x = (xL ,xM ) where xL ∈ RL

+ and xM ∈ ZM
+ . Because endowments are desirable, xL 6= 0,

else (e ,µ14) ρ (x ,µ14) and x would not be in the demand set. Hence p · (xL , 0) > 0 and
p · ((1−ε)xL ,xM )< p ·x for every ε> 0. It then follows by a familiar continuity argument
that x ∈ d (t ,ρ, e ;µ, p ), as desired

Because ∆n ,Kn are compact, to see that φn is upper-hemi-continuous and has
compact values, it suffices to show that it has closed graph. To this end, let {(p j ,µj )}
be a sequence in ∆n ×Kn converging to (p ,µ); for each j , let ν j ∈ φn (p j ,µj ) and as-
sume ν j → ν ; we must show ν ∈φn (p ,µ). For each i , writeHi =Hi ×X . By definition,
ν j [D(µj , p j )] = 1, so

ν j [D(µj , p j )∩Hi ]≥ 1−2−i .

Convergence of ν j to ν implies that

ν

�

lim sup
j→∞

�

D(µj , p j )∩Hi

�

�

≥ 1−2−i .

On the other hand, it follows from closedness of the individual demand correspondence
that

D(µ, p )∩Hi ⊃ lim sup
j→∞

�

D(µj , p j )∩Hi

�

so that ν [D(µ, p ) ∩Hi ] ≥ 1− 2−i . Since i is arbitrary, it follows that ν [D(µ, p )] = 1 so
ν ∈φn (p ,µ), as desired. Henceφn is upper-hemi-continuous.

To see thatφn has non-empty values, fix (p ,µ). For each (t ,ρ, e ), let f (t ,ρ, e ) be the
unique lexicographically smallest element of d (t ,ρ, e ,µ, p ). It is easily checked that f is
a measurable function, and that the direct image measure f ∗λ belongs toφn (p ,µ).

That ψn is upper-hemi-continuous, and has compact, convex, non-empty values
follows immediately from the usual argument for Berge’s Maximum Theorem.

Finally, Φn is upper-hemi-continuous, and has compact, convex, non-empty values
becauseφn ,ψn enjoy these properties.

Step 5. Because ∆n , Kn are compact and convex and Φn is upper-hemi-continuous
and has compact, convex, non-empty values, Φn has a fixed point (pn ,µn ). Set yn =
∫

x dµn −
∫

e dλ. We claim that 〈pn , yn ,µn 〉 constitutes an equilibrium for the economy
En .

The construction guarantees that almost all agents optimize in their budget sets. By
definition, pn maximizes the value of yn , which is aggregate excess demand at pn ,µn .
Walras’s Law guarantees that the value of excess demand at pn ,µn is 0: pn · yn = 0. If
yn 6∈ Yn there would be a price p ∈ Y ◦n such that p ·yn > 0. However this would contradict
the fact that pn maximizes the value of excess demand. Hence yn ∈ Yn . By construction,
pn ∈ Y ◦n , so pn · y ≤ 0 for every y ∈ Yn ; this is profit maximization. Hence 〈pn , yn ,µn 〉
constitutes an equilibrium for the economy En .
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Step 6. We show that the equilibria 〈pn , yn ,µn 〉 lie in compact sets of prices, production
vectors, and distributions.

Note first that all prices pn lie in∆, which is compact. By construction, yn =
∫

x dµn−
∫

e dλ so y −n ≤
∫

e dλ. Because there is no free production (Yn 0 ∩RL+M
+ = {0}), rates of

transformation are bounded. Hence there is some constant A such that if y ∈ Yn 0 then
the positive and negative parts of y satisfy the inequality |y +| ≤ A |y −|. Thus y −n ≤

∫

e dλ
and

|y +n | ≤ A |y −n | ≤ A

�

�

�

�

∫

e dλ

�

�

�

�

. (3)

Hence, the production vectors yn lie in a bounded subset of RL+M .
To see that the distributions µn lie in a tight (hence relatively compact) set, recall the

sets Hi constructed in Step 1. Fix i . For each k set

Gk = {(t , R , e ,x )∈Hi ×X : |x | ≤ k }
Jk = {(t , R , e ,x )∈Hi ×X : |x |> k }.

For each n
∫

Jk

|x |dµn ≥ k µn (Jk ). (4)

By construction,
∫

x dµn = yn +

∫

e dλ ≤ y +n +

∫

e dλ.

In view of (3), this implies
∫

|x |dµn =

�

�

�

�

∫

x dµn

�

�

�

�

≤ (1+A)

�

�

�

�

∫

e dλ

�

�

�

�

. (5)

Combining (4) and (5) we conclude that

µn (Jk )≤
(1+A)

k

�

�

�

�

∫

e dλ

�

�

�

�

.

Choose k large enough so that the right hand side is smaller than 2−i . Since Gk ∪ Jk =
Hi ×X and µn (Hi ×X ) = λ(Hi )≥ 1− 2−i , it follows that µn (Gk )> 1− 2−i+1. Because Gk

is compact, we conclude that {µn} is a uniformly tight family, hence relatively compact.
We conclude that prices pn , production vectors yn , and consumption distributions µn

lie in compact sets, as asserted.

Step 7. Some subsequence of 〈pn , yn ,µn 〉 converges; say

〈pn , yn ,µn 〉→ 〈p ∗, y ∗,µ∗〉.

By construction, Y =
⋂

Yn . Since pn ∈ ∆ ∩ Y ◦n and yn ∈ Yn for each n , it follows that
p ∗ ∈∆∩Y ◦ and y ∗ ∈ Y . We claim that p ∗ ∈∆ and that 〈p ∗, y ∗,µ∗〉 is an equilibrium for E .

To see that p ∗ ∈∆, suppose not; say p ∗j = 0. We distinguish two cases, and obtain a
contradiction in each case.
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Case 1: p ∗ ·
∫

e dλ= 0. Because p ∗ 6= 0 and all goods are available in the aggregate, there
is some x ∈ RL+M

+ such that p ∗ · x > 0 and
�

x −
∫

e dλ
�

∈ Y . Thus, p ∗ ·
�

x −
∫

e dλ
�

> 0.
Since p ∗ ∈ Y ◦, we have a contradiction.

Case 2: p ∗ ·
∫

e dλ > 0. Then there is some ` such that p ∗` > 0 and
∫

e`dλ > 0. Let
E = {(t ,ρ, e ) : e` > 0}. Because

∫

e`dλ > 0 it follows that λ(E ) > 0. Because λ is regular
and tight, it follows that there is a compact set J ⊂ E such that λ(J )> 0. Define

Z =
�

ν ∈ Prob(C ×X ) : νC =λ,

∫

|x |dν ≤ (1+A)

∫

|e |dλ
�

.

Arguing as before shows that Z is weakly closed and uniformly tight, hence weakly
compact.

We claim that as n →∞ aggregate demand is uniformly unbounded on Z : for every
α> 0 there is an integer n 0 such that if n ≥ n 0, (t ,ρ, e )∈ J , ν ∈Z , and z ∈ d (t ,ρ, e ;ζ, pn )
then |z | > α. To see this, suppose not. Then there is some α > 0 such that for every n 0

there is some n > n 0, some (t ,ρ, e ) ∈ J , some ζ ∈Z , and some z n ∈ d (t ,ρ, e ;ζ, pn ) such
that |z n | ≤α. Letting n 0 tend to infinity, passing to limits of subsequences where neces-
sary, and recalling the definition of the topology of P , that J , Z are compact, and that
preference relations are continuous in the distribution of consumption, and arguing as
in Step 4, we find (t ∗,ρ∗, e ∗) ∈ Z , ν∗ ∈ J and z ∗ ∈ d (t ∗,ρ∗, e ∗;ν∗, p ∗) such that |z ∗| ≤ α.
Because p ∗ ·e ∗ > 0, p ∗j = 0 and ρ∗ is strictly monotone, this is absurd. This contradiction
establishes the claim.

Now apply the claim with α = 2
�

�

∫

e dλ
�

�/λ(J ) to conclude that there is an n 0 such
that for every (t ,ρ, e )∈ J , each n ≥ n 0 and every z ∈ d (t ,ρ, e ;ν , pn )we have

|z |> 2

�

�

�

�

∫

e dλ

�

�

�

�

/λ(J ).

If follows in particular that
∫

J

inf{|z | : z ∈ d (t ,ρ, e ;µn , pn )}dλ≥ 2

�

�

�

�

∫

e dλ

�

�

�

�

for each n . However, as we have shown above,
∫

|x |dµn ≤
�

�

�

�

∫

e dλ

�

�

�

�

so we have a contradiction.

Since we obtain contradictions in each case, we conclude that p ∗ ∈∆, as asserted.
Arguing as in Step 4 shows that µ∗[D(µ∗, p ∗)] = 1 and that

∫

x dµ∗ = y ∗ +
∫

e dλ, so
〈p ∗, y ∗,µ∗〉 is an equilibrium for E . The proof is complete. �

PROOF OF THEOREM 2. Let p , y ,µ be an equilibrium. Strict convexity of preferences
guarantees that λ-almost all agents have unique demands at the given price p and dis-
tribution µ. Put differently, for almost all (t ,ρ, e ), the demand set d (t ,ρ, e ,µ, p ) is a sin-
gleton. By assumption, E has an individualistic representation, so there is a measurable
ϕ : T →P ×X such that λ= (idT ,ϕ)∗(τ). Define f : T →X by

f (t ) = d (t ,ϕ(t ),µ, p ).
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It is easily checked that f is measurable and that

µ= (idT ,ϕ, f )∗(τ)

so p , y ,µ admits an individualistic representation, as asserted. �

B. EXTERNALITIES AS A PARAMETER

An alternative formulation of externalities in preferences has the distribution of con-
sumption entering as a parameter. Here we give a brief sketch of this alternative. Com-
modities, consumption sets, production, and the distribution of consumption are all as
in Section 3.

As in Hildenbrand (1974), write P ∗mo for the space of continuous, irreflexive, tran-
sitive, negatively transitive, strictly monotone preference relations on X ; in the topol-
ogy of closed convergence, P ∗mo is a complete separable metric space. We define a
parametrized preference to be a map

R :D (τ)→P ∗mo .

We write x R(σ) y to mean that the consumption bundle x is preferred to the consump-
tion bundle y when σ is the distribution of consumption. The preference relation R is
continuous if the set

{(x , y ,σ)∈X ×X ×D (τ) : x R(σ) y }

is open. The following proposition records that continuity of the preference relation R
is equivalent to continuity of R as a mapping.

PROPOSITION 2. For a parametrized preference relation R the following are equivalent.

(i) R is continuous as a preference relation (in the sense above).

(ii) The mapping R :D (τ)→P ∗mo is continuous.

(iii) For each n the restriction R :Dn (τ)→P ∗mo is continuous.

WriteR for the space of continuous parametrized preference relations, and giveR
the topology of uniform convergence on compact subsets ofD (τ). The following can be
proved by combining the Lemma of Appendix A together with Proposition 2.

PROPOSITION 3. R is a complete, separable metric space.

Agents are characterized by an observable characteristic, a preference relation, and
an endowment, so for this description of preferences, the space of agent characteristics
is

CP = T ×R ×X .

In view of Proposition 3,CP is a complete separable metric space.
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An economy with parametrized preference externalities consists of an observable
population (T,τ), a production sector Y , and a probability measure λ on T ×R × X
whose marginal on T is τ and which has the property that aggregate endowment is fi-
nite:
∫

|e |dλ <∞ for each i . As before, we say endowments are desirable if λ-almost all
(t , R , e )∈CP have the property that e R(σ) (0,xM ) for every xM ∈ZM

+ .
For an economy E = 〈T,τ, Y ,λ〉with parametrized preferences, an equilibrium for E

is a price p ∈∆, a production vector y ∈ Y , and a probability measureµ on T×R×X×X
such that

(a) the marginal of µ on T ×R ×X is λ

(b) almost all agents choose in their budget set:

µ{(t , R , e ,x ) : p ·x > p · e }= 0

(c) production profit is maximized

p · y = sup{p · y ′ : y ′ ∈ Y }

(d) markets clear
∫

x dµ= y +

∫

e dλ

(e) almost all agents optimize given the price p and the distribution of consumption
µ14:

µ{(t , R , e ,x ) : there exists x ′ ∈X , x ′ R(µ14) x , p ·x ′ ≤ p · e }= 0.

(Again, (a) and (d) imply that the marginal µ14 of µ on T × X (the distribution of con-
sumption) belongs toD (τ).)

Existence of equilibrium follows almost exactly as in Theorem 1.

THEOREM 3. Every economy E = 〈T,τ, Y ,λ〉 with parametrized preferences for which en-
dowments are desirable and all goods are available in the aggregate admits an equilib-
rium.

As might be expected, there is a natural link between the two descriptions of
economies. In particular, there is a natural continuous map F :P →R defined by

x F (ρ)(σ) x ′⇔ (x ,σ)ρ (x ′,σ)

for all x , x ′ ∈ X ,σ ∈D (τ). (This map “forgets” comparisons that involve different distri-
butions of social consumption.) The map F induces a map

λ 7→ λ̃ : Prob(T ×P ×X )→ Prob(T ×R ×X )

by defining λ̃= (idT , F, idX )∗(λ), where idT is the identity on T and idX is the identity on
X . Given an economy with preference externalities E = 〈T,τ, Y ,λ〉, define the economy
with parametrized preferences Ẽ = 〈T,τ, Y , λ̃〉.
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THEOREM 4. If E = 〈T,τ, Y ,λ〉 is an economy with preference externalities, then E and Ẽ
have the same equilibrium prices and production plans.6

PROOF. Given µ∈ Prob(T ×P ×X ×X ), define

µ̃= (idT , F, idX , idX )∗(µ)∈ Prob(T ×R ×X ×X ).

It is straightforward to check that if E is an economy with preference externalities and
p , y ,µ is an equilibrium for E then p , y , µ̃ is an equilibrium for Ẽ .

All that remains is to show that if p , y ,ν is an equilibrium for Ẽ , then we can find an
equilibrium p , y ,µ for E such that ν = µ̃. To this end, use disintegration of measures to
find a measurable map

ξ : T ×R ×X → Prob(X )

such that

ν =

∫

T×R×X

ξ(t , R , e )dλ̃.

Set

µ=

∫

T×P ×X

ξ(t , F (ρ), e )dλ

and check that p , y ,µ is an equilibrium for E and that µ̃= ν . �
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