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Updating preferences with multiple priors
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We propose and axiomatically characterize dynamically consistent update rules
for decision making under ambiguity. These rules apply to the preferences with
multiple priors of Gilboa and Schmeidler (1989), and are the first, for any model of
preferences over acts, to be able to reconcile typical behavior in the face of ambi-
guity (as exemplified by Ellsberg’s paradox) with dynamic consistency for all non-
null events. Updating takes the form of applying Bayes’ rule to subsets of the set
of priors, where the specific subset depends on the preferences, the condition-
ing event, and the choice problem (i.e., a feasible set of acts together with an act
chosen from that set).

KEYWORDS. Updating, dynamic consistency, ambiguity, Ellsberg, Bayesian, con-
sequentialism.
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1. INTRODUCTION

A central question facing any theory of decision making under uncertainty is how pref-
erences are updated to incorporate new information. Since updated preferences govern
future choices, it is important to know how they relate to information contingent choices
made ex ante. Dynamic consistency is the requirement that ex ante contingent choices
are respected by updated preferences. This consistency is implicit in the standard way
of thinking about a dynamic choice problem as equivalent to a single ex ante choice to
which one is committed, and is thus ubiquitous in economic modeling.

Under subjective expected utility, updating preferences by applying Bayes’ rule to
the subjective probability is the standard way to update. Why is this so? Dynamic con-
sistency is the primary justification for Bayesian updating. Not only does Bayesian up-
dating imply dynamic consistency, but, if updating consists of specifying a conditional
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probability measure for each (non-null) event, dynamic consistency implies these con-
ditional measures must be the Bayesian updates.1 Even under the view that Bayesian
updating should be taken as given, this tells us that dynamic consistency comes “for
free” under expected utility.

Since dynamic consistency leads to a well-established theory of updating under ex-
pected utility, it makes sense to ask what it implies for the updating of more general
preferences. We pursue this strategy to update preferences of the max-min expected
utility (MEU) form (Gilboa and Schmeidler 1989). MEU preferences are widely used in
modeling ambiguity averse behavior, as exemplified by the famous Ellsberg (1961) para-
doxes.2 The main contribution of the paper is to provide the first update rules in the am-
biguity literature, MEU or otherwise, that are dynamically consistent while maintaining
the characteristic features of behavior under ambiguity as exemplified by the Ellsberg
paradoxes.

In addition to our main characterization (Section 2.2) and existence (Section 2.3) re-
sults, we explore the delicate interplay between dynamic consistency and updating of
MEU preferences. In Section 3.1, we show that many possible strengthenings of our dy-
namic consistency requirement result in the non-existence of update rules for MEU.3

When discussing related literature in Section 3.3, we show that previous definitions of
dynamic consistency are strong enough to trigger this non-existence. Thus, to the extent
that earlier literature investigated dynamic consistency as a requirement for updating
under ambiguity, the results were negative in that one could update only a narrow sub-
set of MEU preferences (e.g., Epstein and Le Breton 1993) or only on a restricted set of
events (e.g., Epstein and Schneider 2003). The extension to all MEU preferences and all
(non-null) events that we provide is critical to capturing dynamically consistent Ellsberg
behavior.

As Machina (1989) has emphasized, once we move beyond expected utility and pref-
erences are not separable across events, updating in a dynamically consistent way en-
tails respecting these non-separabilities by allowing updated preferences to depend on
more than just the conditioning event. For this reason, we will see that dynamic consis-
tency naturally leads a decision maker (DM) concerned with ambiguity to adopt rules
for updating beliefs that depend on prior choices and/or the feasible set for the prob-
lem. Results in Section 3.2 show the necessity of this dependence and explore ways in
which it can and cannot be limited. It is this characteristic of our update rules that most
sharply distinguishes them from the rules for updating MEU suggested in the literature
(e.g., Gilboa and Schmeidler 1993).

In the remainder of the Introduction, we present a simple example to which we refer
back throughout the paper. We use it to motivate and illustrate our approach and con-
trast it with that of the existing literature on dynamic choice models under ambiguity.

1Although related results appear in the literature (e.g., Ghirardato 2002), we were unable to find one that
says precisely this. We provide such a result in Section 3.2 (Proposition 6).

2For a survey of economic applications see Mukerji and Tallon (2004).
3We also discuss (in Section 3.1.2) a desirable strengthening that does not result in non-existence and

show precisely how it further limits the set of update rules.
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Choice pair 1

{B ,R} Y

Bet on B Bet on R

B R B R

1 0 0 1

0

Choice pair 2

{B ,R} Y

Bet on B Bet on R

B R B R

1 0 0 1

1

FIGURE 1. The two choice pairs in the dynamic three-color Ellsberg problem.

1.1 A motivating example

Consider a version of Ellsberg’s three-color problem. An urn contains 120 balls, 40 of
which are known to be black (B) and 80 of which are somehow divided between red (R)
and yellow (Y), with no further information on the distribution. A ball is to be drawn at
random from the urn, and the DM faces a choice among bets paying off depending on
the color of the drawn ball. Any such bet may be written as a triple (u B , u R , u Y ) ∈ R3

where each ordinate represents the payoff if the respective color is drawn. Typical pref-
erences have (1, 0, 0) � (0, 1, 0) and (0, 1, 1) � (1, 0, 1), reflecting a preference for the less
ambiguous bets. Notice that these preferences entail a preference to bet on black over
red when no bet is made on yellow and a preference to bet on red over black when a bet
is made also on yellow. Now consider a simple dynamic version of this problem. In the
dynamic version, there is an interim information stage, where the DM is told whether
or not the drawn ball was yellow. The DM is allowed to condition her choice of betting
on black or red on this information.4 The two relevant choice problems are depicted in
Figure 1. In each tree, the nodes marked with circles represent the (partial) resolution of
uncertainty about the color of the drawn ball, while the nodes marked with squares are
choice nodes for the DM. In choice pair 1, the choice “Bet on B” leads to the payoff vec-
tor (1, 0, 0) while the choice “Bet on R” leads to payoffs (0, 1, 0). Similarly, in choice pair
2, the choice “Bet on B” leads to the payoff vector (1, 0, 1) while the choice “Bet on R”
leads to payoffs (0, 1, 1). Observe that in choosing between the bets (1, 0, 0) and (0, 1, 0),
the opportunity to condition one’s choice on the new information does not change the
problem in an essential way: if a yellow ball is drawn, either choice gives 0, so it is only
conditional on the event {B , R} that the choice changes payoffs. A similar statement ap-
plies to the choice between (1, 0, 1) and (0, 1, 1). Therefore, preferences should remain
(1, 0, 0)� (0, 1, 0) and (0, 1, 1)� (1, 0, 1) as in the original three-color problem.

4Such dynamic extensions of Ellsberg have been suggested before in the literature. See e.g., Epstein and
Schneider (2003), Section 4.1.
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These preferences are inconsistent with backward induction, which requires the DM
to snip the tree at the node following the event {B , R} and to choose as if this were the
entire problem. But then the choice between (1, 0, 0) and (0, 1, 0) must be the same as
the choice between (1, 0, 1) and (0, 1, 1) since the snipped trees for the two choice pairs
are identical, rendering the Ellsberg choices impossible. It follows that no model of dy-
namic choice under ambiguity implying backward induction can deliver the Ellsberg
preferences in this example.

1.2 Current approaches and the example

The literature offering dynamic models of ambiguity may be roughly divided into two
categories. Both categories of existing models rule out dynamic Ellsberg-type behavior.

First, there are models that rule out this behavior because they imply backward in-
duction. The example illustrates the conflict between backward induction and dynamic
Ellsberg behavior. This critique encompasses a wide variety of dynamic models in the
ambiguity literature, including those of Eichberger et al. (2005), Epstein and Schneider
(2003), Hayashi (2005), Klibanoff et al. (2006), Maccheroni et al. (2006), Sarin and Wakker
(1998), Siniscalchi (2006), and Wang (2003).

The second category consists of models in which behavior is naively inconsistent,
in the sense that an ex ante choice or plan of what to do contingent on the event {B , R}
may differ from what will actually be chosen when and if that event occurs. The existing
literature on updating rules for MEU preferences (or for any other ambiguity prefer-
ence model) falls into this category, in that all of the rules examined, if used to define
conditional preferences, result in inconsistent behavior. This literature includes many
well-known rules, such as full (or generalized) Bayesian updating,5 maximum likelihood
updating,6 and Dempster–Shafer updating.7 Applying any of these rules to the dynamic
Ellsberg problem results in a reversal of ex ante contingent choice in at least one of the
two choice pairs.

For example, applying full Bayesian updating to MEU preferences delivering the
Ellsberg choices ex ante results in a conditional preference for black over red, revers-
ing the ex ante contingent choice in choice pair 2. To make this explicit, consider the
following MEU preferences that deliver the Ellsberg choices ex ante. These preferences
together with the state space and information structure from the dynamic Ellsberg ex-
ample are useful throughout the paper, and are invoked in almost all our examples. For
any MEU preference over payoff vectors in R3, there exists a compact and convex set
of probability measures, C , over the three colors and a utility function, u : R→ R, such

5This rule calls for updating each measure in a set of priors according to Bayes’ rule. See Jaffray (1992,
1994), Fagin and Halpern (1991), Wasserman and Kadane (1990), Walley (1991), Sarin and Wakker (1998),
Pires (2002), Siniscalchi (2001), Wang (2003), and Epstein and Schneider (2003) for papers suggesting, de-
riving, or characterizing this update rule in various settings.

6This rule says that, of the set of priors, only those measures assigning the highest probability to the
observed event should be updated using Bayes’ rule. The other priors should be discarded. See Gilboa and
Schmeidler (1993).

7See Dempster (1968) and Shafer (1976). Gilboa and Schmeidler (1993) show that Dempster–Shafer
updating is equivalent to maximum likelihood updating for sets of priors that are cores of convex capacities.
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that ∀ f , g ∈R3, f ¥ g ⇐⇒minq∈C
∫

(u ◦ f )d q ≥minq∈C
∫

(u ◦ g )d q . Let u (x ) = x for all

x ∈R, and let C = {( 1
3 ,α, 2

3 −α) | α ∈ [
1
4 , 5

12 ]}, a set of measures symmetric with respect to
the probabilities of red and yellow. Observe that, indeed, (1, 0, 0)� (0, 1, 0) and (0, 1, 1)�
(1, 0, 1) according to these preferences. If we apply full Bayesian updating conditional
on the event E = {B , R}, the updated set of measures is CE = {(α, 1−α, 0) | α ∈ [ 4

9 , 4
7 ]}.

According to these updated preferences, “Bet on B” is strictly preferred to “Bet on R”
conditional on learning E = {B , R}, leading (1, 0, 1) to be selected over (0, 1, 1) in choice
problem 2, in conflict with the unconditional preferences.

1.3 Our approach

How then may preferences in the dynamic Ellsberg problem that are consistent with the
ex ante Ellsberg choices be modeled? Our approach is to look for update rules for MEU
preferences that, unlike those in the existing literature, are dynamically consistent and
so do not suffer from naive reversals. Key to the analysis is formulating a definition of
dynamic consistency that sticks as narrowly as possible to the notion, mentioned above,
that ex ante optimal contingent choices should be respected when a planned-for con-
tingency arises. With such a definition, we show that not only do such rules exist, but
they have nice characterizations—they apply Bayes’ rule to some of the probability mea-
sures used in representing the DM’s unconditional preferences. The rules are shown to
necessarily have the feature that the updated preferences vary with the choice prob-
lem encountered: past choices and/or the choice sets from which they were selected
matter in determining which measures are updated. This approach is in the spirit of
McClennen (1990) and Machina (1989), who recognize that consistency in choices may
be achieved through having later choices be influenced by earlier ones.

When applied to the dynamic Ellsberg problem, all of the dynamically consistent
rules we derive deliver the Ellsberg choices. To give a preview of how this works, consider
again the MEU preferences with u (x ) = x for all x ∈R, and C = {( 1

3 ,α, 2
3 −α) |α∈ [

1
4 , 5

12 ]}.
Dynamically consistent updating in the dynamic Ellsberg problem corresponds to up-
dating the set of measures to be (any closed, convex subset of) C 1

E = {(α, 1−α, 0) | α ∈
[ 1

2 , 4
7 ]} in choice problem 1 and (any closed, convex subset of) C 2

E = {(α, 1−α, 0) | α ∈
[ 4

9 , 1
2 ]} in choice problem 2. The alert reader might notice that one consistent update

rule for this problem simply sets CE = {( 1
2 , 1

2 , 0)} for both choice problems, and thus
might be puzzled by our claim that consistency requires updated preferences to vary
with the choice problem. This claim can be illustrated by making a small modification
to the feasible sets of acts in the problems above. Specifically, in addition to the “Bet
on B” and “Bet on R” options, suppose that a third option (called “Hedge”) is available
in each choice problem and yields payoffs ( 19

36 , 19
36 , 0) in choice problem 1 and ( 19

36 , 19
36 , 1)

in choice problem 2. One may check that the unconditionally optimal choices do not
change. But now, to maintain those choices after updating, one must have (any closed,
convex subset of) C 1

E = {(α, 1−α, 0) | α ∈ [ 19
36 , 4

7 ]} in choice problem 1 and (any closed,

convex subset of) C 2
E = {(α, 1−α, 0) | α ∈ [ 4

9 , 17
36 ]} in choice problem 2. These updated

sets of measures no longer have a non-empty intersection. This illustrates how dynamic
consistency may force the measures that get updated to vary with the choice problem.
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2. CHARACTERIZING UPDATE RULES

Section 2.1 sets out the formal framework, notation and some preliminary definitions.
Section 2.2 defines dynamic consistency and characterizes dynamically consistent up-
date rules for MEU preferences. Section 2.3 proves existence of such rules by identifying
the dynamically consistent rule that is ambiguity maximizing in that it comes closest to
updating each measure in the DM’s set of measures.

2.1 Framework and preliminaries

Consider an Anscombe and Aumann (1963) framework, where X is the set of all simple
(i.e., finite-support) lotteries over a set of consequences Z , S is a set of states of nature
endowed with an algebra Σ of events, and A is the set of all acts, i.e. Σ-measurable
bounded functions f : S → X . Abusing notation in the standard way, z ∈ Z is used also
to denote the degenerate lottery δz ∈ X assigning probability 1 to the prize z , and x ∈ X
is used also to denote the constant act for which ∀s ∈ S, f (s ) = x . Let P W be the set
of all weak orders onA . Let P MEU ⊆ P W denote the set of non-degenerate max-min
EU preference relations overA (Gilboa and Schmeidler 1989). For any preference ¥ ∈
P MEU, there exists a compact and convex set of (finitely-additive) probability measures,
C , and a von Neumann–Morgenstern expected utility function, u : X → R, such that
∀ f , g ∈A , f ¥ g ⇐⇒minq∈C

∫

(u ◦ f )d q ≥minq∈C
∫

(u ◦ g )d q . If ¥ is non-degenerate,
C is unique and u is unique (among vN–M expected utility functions) up to positive
affine transformations. As usual, s and � denote the symmetric and asymmetric parts
of ¥. For E ∈ Σ and f , h ∈ A , we use f E h to denote the act equal to f on E and h on
E c (the complement of E in S). Similarly, if a and b are real Σ-measurable bounded
functions, we use a E b to denote the function equal to a on E and b on E c . Let N (¥)
denote the set of events E ∈ Σ for which ∀q ∈ C , q (E ) > 0. Throughout the paper we
limit attention to updating on events that are non-null in this strong sense.8 For E ∈ Σ,
let ∆(E ) denote the set of all finitely-additive probability measures on Σ giving weight
0 to E c . For any q ∈ ∆(S) with q (E ) > 0, we denote by qE ∈ ∆(E ) the measure obtained
through Bayesian conditioning of q on E .

Let B denote the set of all non-empty subsets of acts B ⊆ A such that B is con-
vex (with respect to the usual Anscombe–Aumann mixtures) and compact (according
to the norm taking the supremum over states and Euclidean distance on lotteries in X ).
Elements ofB are considered feasible sets and their convexity can be justified, for ex-
ample, by randomization over acts. Compactness is needed to ensure the existence of
optimal acts.

8In common with standard Bayesian updating of subjective probabilities, we have nothing to say about
updating on events that are obviously null in that q (E ) = 0 for all q ∈ C . It can be shown that some of
our main characterization results may be modified to apply to events lying in between, for which there are
some q ∈C with q (E )> 0. However, the set of events cannot be expanded too much in this direction with-
out running into problems with existence of dynamically consistent update rules. Epstein and Marinacci
(forthcoming) axiomatize the restriction of MEU to the case where no such in-between events exist, and so
provide one rationale for ignoring these events.
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Assume a preference ¥ ∈ P MEU, an event E ∈ N (¥), and an act g ∈A chosen ac-
cording to ¥ from a feasible set B ∈ B before the realization of E (i.e., g ¥ f for all
f ∈ B). Denote by T the set of all such quadruples (¥, E , g , B ). An update rule is a
function U : T → P W , producing a conditional preference denoted by ¥E ,g ,B . Such a
conditional preference is viewed as governing choice upon the realization of the condi-
tioning event E .

Finally, it is useful to define two families of update rules that play a prominent role
in the paper. The first consists of the update rules that work by changing the set of
measures from the original C to a set CE ,g ,B concentrated on the conditioning event E :

DEFINITION 1. Let U denote the set of all update rules producing MEU conditional
preferences ¥E ,g ,B representable using the same (up to normalization) vN–M utility
function u as¥ and non-empty, closed, and convex sets of conditional measures CE ,g ,B

containing only measures in∆(E ).

The second family is the subset ofU satisfying the added restriction that CE ,g ,B con-
tains only Bayesian updates of some measures in C :

DEFINITION 2. U Bayes = {U ∈U |CE ,g ,B ⊆ {qE |q ∈C }}.9

The main positive results in the paper restrict attention to rules in U Bayes. Many of
our negative results are stated for the larger family U . We choose to start directly from
these families of rules in the main text so as to focus attention on our more important
results and discussion. The reader should not be misled by this into thinking that our
results lack foundation. In Appendix A, we provide simple preference axioms character-
izing these two families of rules. These axioms may be used to make any of the results
in the main text fully behavioral. We also show that many of our results proved using
the restriction toU Bayes may be easily modified to apply to rules inU . Appendix A also
discusses the observability of conditional preferences. Other results and all proofs not
appearing in the main text are collected in Appendix B.

With these preliminaries out of the way, we turn to our main concern—dynamic
consistency and its implications for updating MEU preferences.

2.2 Dynamically consistent update rules

In this section, we define dynamic consistency and describe and characterize all dynam-
ically consistent update rules for MEU preferences that work by applying Bayes’ rule to
some of the measures in the representing set of measures, C . In other words, we charac-
terize the dynamically consistent rules inU Bayes. Recall from the Introduction that full
Bayesian updating, for instance, violates dynamic consistency.

What exactly do we mean by dynamic consistency? We mean that optimal contin-
gent plans should be respected when a planned-for contingency arises. Formally, our

9The proper quantifier modifying CE ,g ,B ⊆ {qE | q ∈C } is “for each (¥, E , g , B ) ∈T .” Furthermore, CE ,g ,B

is required to be non-empty, closed, and convex. For brevity and to ease notation, we omit these qualifiers
here and in all subsequent definitions of update rules and families of update rules.
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axiom requires that, for each feasible set of acts, B , if act g is chosen from B uncondi-
tionally, the update rule leads it to remain optimal conditionally.

AXIOM DC (Dynamic Consistency). For any (¥, E , g , B ) ∈ T , if f ∈ B with f = g on E c ,
then g ¥E ,g ,B f .

Observe that conditional optimality of g is checked against all feasible acts f such
that f = g on E c . Why check conditional optimality only against these acts? Dynamic
consistency is relevant only ceteris paribus, i.e., when exactly the same consequences
occur on E c . To make clear why this is reasonable, consider an environment where the
DM has a fixed budget to allocate across bets on various events. It would be nonsensical
(and would violate payoff dominance on the realized event) to require that the ex ante
optimal allocation of bets remain better than placing all of one’s bets on the realized
event. This justifies the restriction of the conditional comparisons to acts that could
feasibly agree on E c .10

As identifying an appropriate definition of dynamic consistency is a crucial compo-
nent to our analysis, Section 3.1 contains extensive further discussion. We investigate
there a number of directions in which DC might be strengthened. We show that many of
these strengthenings lead to the non-existence of dynamically consistent update rules
in our setting. We also present a strengthening that may be sensible and still admit up-
date rules, and we characterize the resulting rules. The relationship of DC to previous
formalizations of dynamic consistency in the literature is explored in Section 3.3.

Why might dynamic consistency be desirable? Dynamic consistency of one form or
another has often been put forward as a rationality criterion and thus, from a normative
point of view, it is important to identify rules that satisfy some version of this prop-
erty. Moreover, from the normative point of view, optimal acts are the most important
acts on which dynamic consistency should be satisfied because those are the plans that
are chosen. An example of a specific normative argument in favor of dynamic consis-
tency appearing in the literature is the argument, referenced in Section 3.1, that incon-
sistency may lead to dominated choices. Dynamic consistency is needed also to ensure
that information has non-negative value (see e.g., Wakker 1988). This is easy to see in
the dynamic Ellsberg example from the Introduction—if conditional choices differ from
what is desired unconditionally, the DM ex ante strictly prefers to face the problem with-
out the information as to whether E or E c occurred as opposed to the situation in the
Introduction where she is allowed to choose after learning this information. Dynamic
consistency also makes it easier to describe an individual planning ahead and to make
welfare statements in dynamic models. From a more psychological point of view, dy-
namic consistency may be viewed as a rationalization property: dynamically consistent
update rules are those that support earlier choices or plans.

Now we examine the implications of DC for updating. We start by defining a key
subset of the measures in C for each quadruple (¥, E , g , B ).

10A similar justification might also admit a slightly stronger version of the axiom where the qualification
f = g on E c is replaced by u ( f (s )) = u (g (s )) for all s ∈ E c . If this change is made, then all of the results
involving DC continue to hold when the same replacement is made in the statements of these results;
furthermore, the same arguments can be used in the proofs.
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DEFINITION 3. For (¥, E , g , B )∈T , define the measures in C supporting the conditional
optimality of g to be

Q E ,g ,B =

¨

q ∈C
�

�

∫

(u ◦ g )d q ≥
∫

(u ◦ f )d q for all f ∈ B with f = g on E c

«

.

Denote by Q
E ,g ,B
E the set of Bayesian conditionals on E of measures in Q E ,g ,B .

There are two reasons why calling these sets “measures supporting the conditional
optimality of g ” makes sense. The first is obvious: if we consider a conditional expected
utility preference with measure qE ∈Q

E ,g ,B
E , then according to such a preference, g is

conditionally optimal. The second reason is deeper: as we show next, for rules inU Bayes,
the existence of a measure in Q

E ,g ,B
E that is used to evaluate u ◦ g conditionally is equiv-

alent to the conditional optimality of g .
The following result completely characterizes the set of update rules inU Bayes satis-

fying DC:

DEFINITION 4. U DC = {U ∈U Bayes |Q E ,g ,B
E ∩arg minq∈CE ,g ,B

∫

(u ◦ g )d q 6= ;}.

PROPOSITION 1. U DC is the set of all update rules inU Bayes satisfying DC.

PROOF. We present a sketch of the proof here. The complete proof is in Appendix B.
From the geometry of convex optimization, g is conditionally optimal within { f ∈ B
with f = g on E c } exactly when the utility image of that set and the conditional indiffer-
ence curve (in utility space) containing u ◦ g have a supporting hyperplane in common
on E at u ◦ g . The work in the proof is in showing that the condition

Q
E ,g ,B
E ∩arg min

q∈CE ,g ,B

∫

(u ◦ g )d q 6= ;

is equivalent to the existence of such a hyperplane. Intuitively, the measures in Q
E ,g ,B
E

can be identified with (the normals to) hyperplanes containing u ◦ g that support the
utility image of the set { f ∈ B with f = g on E c } on E , while the measures in

arg min
q∈CE ,g ,B

∫

(u ◦ g )d q

are normals to the hyperplanes containing u ◦ g that support the conditional indiffer-
ence curve containing u ◦ g . �

Though the condition Q
E ,g ,B
E ∩ arg minq∈CE ,g ,B

∫

(u ◦ g )d q 6= ; is easy to check for
any given update rule, it is not as helpful for generating dynamically consistent update
rules—to calculate

arg min
q∈CE ,g ,B

∫

(u ◦ g )d q
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one must already have the candidate updated sets of measures CE ,g ,B in hand (whereas

Q
E ,g ,B
E can be calculated directly from the unconditional preferences). For generating

the dynamically consistent rules, the following alternative representation of U DC is
useful.

COROLLARY 1. U DC =

¨

U ∈U Bayes | for some r ∈Q E ,g ,B ,
rE ∈CE ,g ,B ⊆ {qE |q ∈C and

∫

(u ◦ g )d qE ≥
∫

(u ◦ g )d rE }.

«

.

This provides the following algorithm for constructing such update rules. Start with
any r ∈Q E ,g ,B and include its update rE in CE ,g ,B . Further members ofU DC are found
by adding to CE ,g ,B (while preserving convexity) updates of some measures in C satis-
fying
∫

(u ◦ g )d qE ≥
∫

(u ◦ g )d rE . Doing this for each r ∈Q E ,g ,B traces out the entire
U DC .

Recall the dynamic Ellsberg example in the Introduction. In choice pair 1 of that
example, the feasible set B = co{(1, 0, 0), (0, 1, 0)}, g = (1, 0, 0), and Q E ,g ,B = {q ∈ C |
q (Black) ≥ q (Red)}.11 Given C = {( 1

3 ,α, 2
3 − α) | α ∈ [

1
4 , 5

12 ]}, the algorithm indeed de-

livers the result CE ,g ,B = (any closed, convex subset of) {(α, 1− α, 0) | α ∈ [ 1
2 , 4

7 ]} that
was claimed in the Introduction. Similarly, for choice pair 2, B ′ = co{(1, 0, 1), (0, 1, 1)},
g ′ = (0, 1, 1), Q E ,g ′,B ′ = {q ∈ C | q (Red) ≥ q (Black)} and the algorithm delivers the previ-
ously claimed CE ,g ′,B ′ = (any closed, convex subset of) {(α, 1−α, 0) |α∈ [ 4

9 , 1
2 ]}.

If one considers feasible sets that are smooth at g , then the algorithm becomes even
simpler, as going through it with only one r is sufficient. The reason for this is that
smoothness guarantees a unique hyperplane through g supporting the part of the fea-
sible set that agrees with g on E c , so that there is only a single measure in Q

E ,g ,B
E .

COROLLARY 2. If the feasible set B does not have a kink on E at the optimal act g , Q
E ,g ,B
E

is a singleton.

An important question that has not yet been addressed is whether the set of dy-
namically consistent update rules defined above is non-empty. In the next section, we
answer this in the affirmative by examining and proving existence of a specific update
rule, denoted U DCmax, that is shown to be an element ofU DC .

2.3 Existence and ambiguity maximization

To prove existence of update rules satisfying our axioms, we identify and prove exis-
tence of rules that are most conservative among the rules characterized in the previous
section. By conservative we mean maintaining the most ambiguity in the process of up-
dating. Examining such rules is particularly illuminating because they reveal the precise
extent to which dynamic consistency forces the DM to eliminate measures present in
the unconditional set when updating. If, for example, one views full Bayesian updating
(updating all measures in the initial set) as “the right thing to do” then examining these
rules shows how far one must depart from this to maintain consistency. To begin our

11We use co to denote the convex hull operator.



Theoretical Economics 2 (2007) Updating preferences with multiple priors 271

exploration, we first define what it means for one preference to display more ambiguity
than another.

DEFINITION 5. Suppose ¥1, ¥2 ∈P MEU. Say that ¥1 displays more ambiguity than ¥2 if
for all f ∈A and x ∈X , f ¥1 x =⇒ f ¥2 x and f �1 x =⇒ f �2 x .

This definition is essentially the comparative ambiguity aversion of Ghirardato and
Marinacci (2002) (and is also closely related to Epstein 1999) in our setting.12 The way to
understand this is as follows. MEU preferences reflect an aversion to ambiguity, and so
when ambiguity increases, this should be bad news for acts that may be affected by am-
biguity relative to acts, such as constant acts, that are evaluated unambiguously. Thus,
more ambiguity should correspond to general acts falling in the preference order relative
to constant acts. In terms of the representation, the next lemma shows that enlarging the
set of measures leads to a preference displaying more ambiguity.

LEMMA 1. Suppose ¥1, ¥2 ∈ P MEU and u 1 = u 2 = u . C 2 ⊆ C 1 implies ¥1 displays more
ambiguity than ¥2. C 2 ⊂C 1 implies ¥2 does not display more ambiguity than ¥1.

We define an update rule to entail more ambiguity than another if it always produces
an updated preference displaying more ambiguity than the preference updated by the
other rule. This leads to the following notion of an ambiguity-maximizing update rule:

DEFINITION 6. We say that an update rule U is ambiguity maximizing among a set cU of
update rules if for all U ′ ∈ cU , ¥E ,g ,B displays more ambiguity than ¥′E ,g ,B .

We start with an elementary application of this definition to the families of update
rulesU andU Bayes and then proceed to identify the unique ambiguity-maximizing rule
in the smaller family U DC . For U and U Bayes, ambiguity maximization characterizes
well known rules that always exist: conditional max-min utility, defined by CE ,g ,B =
∆(E ), and full Bayesian updating, denoted U F B and defined by CE ,g ,B = {qE | q ∈ C }.
These results follow immediately from Lemma 1 and inspection ofU andU Bayes. Nei-
ther of these ambiguity-maximizing rules are dynamically consistent. After imposing
DC we obtain the following rule that eliminates exactly those measures in C that do not
conditionally evaluate the chosen act g highly enough. Recall that Q

E ,g ,B
E is the set of

conditionals of measures in C supporting the conditional optimality of g as in Defini-
tion 3.

DEFINITION 7. U DCmax is the update rule inU Bayes such that

CE ,g ,B =

(

qE

�

�q ∈C and

∫

(u ◦ g )d qE ≥ min
p∈Q E ,g ,B

E

∫

(u ◦ g )d p

)

.

12It is known that changes in ambiguity and in ambiguity attitude are potentially entangled in MEU mod-
els. Some formal support for the notion that, to the extent one separates them, it is ambiguity rather than
ambiguity attitude that changes across the MEU class is in Ghirardato et al. (2004) and Klibanoff et al.
(2005).
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This rule updates the measures in C that conditionally evaluate g weakly higher
than does at least one measure supporting the conditional optimality of g within { f ∈
B with f = g on E c }. If such measures exist, it should not be surprising that this is the
largest set of measures in C that may be updated while satisfying dynamic consistency.
The next result proves the desired existence (using supporting hyperplane arguments)
and verifies that this rule is indeed the ambiguity-maximizing one inU DC .

PROPOSITION 2. U DCmax exists and is the unique ambiguity maximizing update rule in
U DC .

Recall the dynamic Ellsberg example from the Introduction. The rules in U DC are
presented for this example near the end of Section 2.2; U DCmax corresponds to the largest
set of updated measures among these rules. Thus, for choice pair 1, the updated set
of measures according to U DCmax is {(α, 1−α, 0) | α ∈ [ 1

2 , 4
7 ]}, so that all measures in C

assigning more weight to black than red are updated. Similarly, for choice pair 2, the
updated set is {(α, 1−α, 0) | α ∈ [ 4

9 , 1
2 ]}, the updates of all measures in C assigning more

weight to red than black.
The definition of dynamic consistency, the fact that the rules in U DC characterize

its implications for MEU updating, and the existence of such rules as shown through
the investigation of U DCmax are the main positive results of the paper. These results pro-
vide the first update rules in the ambiguity literature, MEU or otherwise, that permit
consistent dynamic behavior while maintaining the characteristic features of behavior
under ambiguity as exemplified by the Ellsberg example. In the remainder of the pa-
per, we provide important discussion and extensions of these results and our dynamic
consistency definition, and investigate their relation to the existing literature.

3. DISCUSSION AND EXTENSIONS

Our definition of dynamic consistency is a main ingredient in generating our results.
As such, it is important to carefully examine alternative definitions and their impact on
updating. In Section 3.1, we show that many possible strengthenings of dynamic consis-
tency result in non-existence of update rules for MEU. We also discuss a strengthening
that does not result in non-existence and show precisely how it further shapes the set
of update rules. In terms of the update rules themselves, the main novelty is their de-
pendence on the choice problem. In Section 3.2, we explore the necessity of this depen-
dence and ways in which it can and cannot be limited. Related literature is discussed in
Section 3.3.

3.1 Dynamic consistency

We now explore several possible strengthenings of our key dynamic consistency axiom
and derive the implications of each for updating MEU preferences. We begin by describ-
ing three ways of strengthening DC motivated by suggestions in the literature. We then
show the negative result that each eliminates the possibility of consistent update rules
for MEU. We follow this by suggesting a strengthening that is compatible with consistent
updating.
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3.1.1 Stronger consistency and impossibility Recall that DC requires only conditional
optimality of g among the feasible acts agreeing with g on E c . Why not check that
the ordering of all feasible acts agreeing with g on E c is preserved conditionally? The
following axiom does exactly this.

AXIOM DC1. For any (¥, E , g , B ) ∈ T , if f , h ∈ B with f = h = g on E c and f ¥ h then
f ¥E ,g ,B h.

Requirements implying this appear in a number of places in the literature (e.g.,
Machina 1989, Machina and Schmeidler 1992, Epstein and Le Breton 1993, and Ghi-
rardato 2002). Is such a stronger axiom desirable? This is debatable. At least two ar-
guments that might be used to support DC do not seem to extend support to the addi-
tional requirements of DC1. First, the verbal essence of dynamic consistency involves
reversals, which only ever have the opportunity to occur when they involve uncondi-
tionally optimal acts. As Machina (1989) writes (pp. 1636–7) “. . . behavior . . . will be
dynamically inconsistent, in the sense that . . . actual choice upon arriving at the deci-
sion node would differ from . . . planned choice for that node.” Second, many normative
arguments in support of dynamic consistency, such as arguments showing how lack of
consistency may lead to payoff-dominated outcomes (see e.g., Machina 1989, McClen-
nen 1990, Seidenfeld 2004, and Segal 1997), require only the conditional optimality of
g . Most importantly for our purposes, we show below that no update rules in U can
satisfy DC1.

Epstein and Schneider 2003, when discussing differences between recursive mul-
tiple priors and the robust control model of Hansen and Sargent (2001) point out that
the robust control model satisfies a version of dynamic consistency that checks only
optimality of g . Aside from minor differences in the framework, the following is that
condition.

AXIOM DC2. For any (¥, E , g , B ) ∈ T , if f ∈ A with f = g on E c , then g ¥ f implies
g ¥E ,g ,B f .

The only difference from DC is that comparisons with g are not restricted to acts
in the feasible set. Why restrict comparisons of g to feasible acts? Again we point out
that the essence of dynamic consistency involves reversals, which are only relevant if
they involve ex ante feasible acts. Moreover, we show that if we impose DC2, consistent
updating rules are impossible.

Finally, observe that DC allows the possibility that g � f for some f = g on E c while
conditionally g ∼E ,g ,B f . In such a circumstance, it is true that the DM is willing to
continue with the initially chosen act g , but this is only weakly so. Several authors (e.g.,
McClennen 1990 and Segal 1997) suggest that dynamic consistency should rule out such
shifts from unconditional strict preference to conditional indifference. The following
axiom strengthens DC in precisely this way.

AXIOM DC3. For any (¥, E , g , B ) ∈ T , if f ∈ B with f = g on E c , then g ¥E ,g ,B f , and if
g sE ,g ,B f , then g s f .

Unfortunately, this requirement again renders impossible consistent updating for MEU.
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We summarize and prove the three impossibility results in the next proposition. The
proof works by example—for each strengthening of dynamic consistency, a slight varia-
tion on the dynamic Ellsberg example serves to prove non-existence of an update rule.
The examples have the same state space, information structure, and unconditional pref-
erences as the dynamic Ellsberg example. They differ only in the set of feasible acts
available to the DM.

PROPOSITION 3. No update rule inU satisfies DC1, DC2, or DC3.

PROOF. Consider the same state space, information structure, and preferences as in
the dynamic Ellsberg example. So, ¥ are MEU preferences with u (z ) = z and C =
{( 1

3 ,α, 2
3 −α) | α ∈ [

1
4 , 5

12 ]}. The conditioning event is E = {Black, Red}. All update rules in
U yield ¥E ,g ,B that can be represented using the same u as ¥ and using a set of mea-
sures contained in ∆(E ). Thus all acts that give a weakly higher payoff if a black ball is
drawn than if a red ball is drawn should be evaluated using the measure in the updated
set of measures that puts the least weight on black. Denote this measure by (β , 1−β , 0),
where it is understood that β may vary with g and B . The examples show that the con-
sistency axioms each contradict the existence of such a measure. We assume all feasible
acts give a payoff of 1 if a yellow ball is drawn, as in choice pair 2 of the Ellsberg example.
The only thing that differs across the examples is the set of attainable payoffs for black
and red.

DC1: Let the feasible set B = co{all acts of the form (a ,b , 1) such that 4a + 3b ≤ 29
and a ,b ≥ 0}. One may verify that g = (5, 3, 1) is unconditionally optimal within B and
that ( 17

4 , 4, 1), ( 23
4 , 2, 1), ( 27

4 , 0, 1), and (4, 3, 1) are all feasible and give higher payoffs for

black than for red. Suppose β < 4
7 . Then ( 17

4 , 4, 1) �E ,g ,B g in violation of DC. Sup-

pose β > 4
7 . Then ( 23

4 , 2, 1) �E ,g ,B g in violation of DC. Therefore β = 4
7 . But then

( 27
4 , 0, 1)�E ,g ,B (4, 3, 1), contradicting the unconditional preference (4, 3, 1)s ( 27

4 , 0, 1) and
thus violating DC1.

DC2: Let B = {(5, 3, 1)} so that also g = (5, 3, 1). Observe that g s ( 17
4 , 4, 1)s ( 23

4 , 2, 1)s
( 31

4 , 0, 1). Suppose β < 4
7 . Then ( 17

4 , 4, 1) �E ,g ,B g in violation of DC2. Suppose β > 4
7 .

Then ( 23
4 , 2, 1)�E ,g ,B g in violation of DC2. Therefore β = 4

7 . But then ( 31
4 , 0, 1)�E ,g ,B g ,

violating DC2.
DC3: Let B = co{(1, 2, 1), (3, 0, 1)}. One may verify that g = (2, 1, 1) is strictly optimal

within B and that ( 3
2 , 3

2 , 1) ∈ B . Suppose β < 1
2 . Then ( 3

2 , 3
2 , 1)�E ,g ,B g in violation of DC.

Suppose β > 1
2 . Then (3, 0, 1) �E ,g ,B g in violation of DC. Therefore β = 1

2 . But then

( 3
2 , 3

2 , 1)sE ,g ,B g , violating DC3. �

3.1.2 A more robust consistency We now introduce a property that may be used to
strengthen DC while maintaining compatibility with updating. It says that all feasible
acts that are unconditionally optimal and agree with g on E c should remain optimal
conditional on E . Under DC, all that is implied for such acts is that they are condition-
ally no better than g .

AXIOM PFI (Preservation of Feasible Optimal Indifference). For any (¥, E , g , B ) ∈ T , if
f ∈ B with f = g on E c and f s g , then f sE ,g ,B g .
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A motivation for this axiom is the view that dynamic consistency should permit in-
difference to be resolved conditionally differently than it was unconditionally. Just be-
cause an indifference was broken in favor of g unconditionally, why should it necessarily
continue to be broken in favor of g conditional on E ? We hold no strong opinion on this
question, but think it is important to know what imposing such a requirement means
for updating.

The following example illustrates how imposing PFI may matter for updating. Con-
sider again the same state space, information structure, and preferences as in the
dynamic Ellsberg example. So preferences are MEU with u the identity and C =
{( 1

3 ,α, 2
3 −α) | α ∈ [

1
4 , 5

12 ]}. The conditioning event is E = {Black, Red}. Let the feasible

acts be B = co{( 4
7 , 4

7 , 0), (1, 0, 0), (0, 1, 0)}. Observe that ( 4
7 , 4

7 , 0)s (1, 0, 0) and that both are

optimal within B . Suppose the DM picks g = ( 4
7 , 4

7 , 0). One may calculate thatQ E ,g ,B =C ,
and thus, by Proposition 1, DC adds no restrictions to U Bayes, and any convex set of
conditionals of measures in C satisfies DC. However, only CE ,g ,B = {( 4

7 , 3
7 , 0)} also yields

( 4
7 , 4

7 , 0) sE ,g ,B (1, 0, 0) which is required by PFI. This shows how PFI makes dynamic
consistency more robust, in the sense that it does not force commitment to a choice
among various unconditionally optimal payoffs on E (like ( 4

7 , 4
7 ) vs. (1, 0)) until after E

is realized. The “cost” of this robustness is the set of further restrictions on updating il-
lustrated in the example. In general, these restrictions are equivalent to using an update
rule contained in the following set.

DEFINITION 8. U DC∩PFI =
¨

U ∈U Bayes | for some r ∈Q E ,g ,B , rE ∈CE ,g ,B ⊆ {qE |q ∈C and
∫

(u ◦ f )d qE ≥
∫

(u ◦ g )d rE for all f ∈ B with f = g on E c and f s g }.

«

This set of rules differs from the rules inU DC (Definition 4) in only one respect. The
condition
∫

(u ◦ f )d qE ≥
∫

(u ◦ g )d rE for measures qE in the updated set of measures
is required to hold only for f = g in U DC while it is required for all f ∈ B with f = g
on E c and f s g in U DC∩PFI. In other words, measures in the updated set must not
simply value g highly enough, they must also do the same for all feasible acts that are
unconditionally optimal and agree with g on E c . Our next result shows that this fully
characterizes the additional restrictions imposed by PFI.

PROPOSITION 4. U DC∩PFI is the set of all update rules inU Bayes satisfying DC and PFI.

We implied that strengthening dynamic consistency by imposing PFI is compat-
ible with updating. Identifying and proving the existence of the unique ambiguity-
maximizing update rule in U DC∩PFI suffices to back up this claim. As with our earlier
result (Proposition 2) carrying out a similar exercise forU DC , this not only serves as an
existence proof, but also shows the precise extent to which the axioms force the DM to
eliminate measures present in the unconditional set when updating.

To define the ambiguity-maximizing rule in U DC∩PFI, it is useful to define a sub-
set, denoted K E ,g ,B , of Q E ,g ,B , the measures supporting the conditional optimality of
g . Measures in K E ,g ,B are required to satisfy one additional condition beyond those
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determining Q E ,g ,B :
∫

(u ◦ g )d qE =
∫

(u ◦ f )d qE for all f ∈ B with f = g on E c and
f s g . Thus, measures in K E ,g ,B may be thought of as supporting not only the condi-
tional optimality of g , but also the conditional optimality of all unconditionally optimal
acts agreeing with g on E c .

DEFINITION 9. For (¥, E , g , B )∈T ,

K E ,g ,B =

¨

q ∈C |
∫

(u ◦ g )d q ≥
∫

(u ◦ f )d q for all f ∈ B with f = g on E c and
∫

(u ◦ g )d q =
∫

(u ◦ f )d q if, in addition, f s g

«

.

Denote by K
E ,g ,B
E the set of Bayesian conditionals on E of measures in K E ,g ,B .

The next definition specifies an update rule by modifying the requirements for the
updated set of measures, CE ,g ,B , in U DC∩PFI (Definition 8) by replacing ⊆ with = and
requiring the updated measure used to evaluate g , rE , to be an element of

arg min
p∈K

E ,g ,B
E

∫

(u ◦ g )d p .

DEFINITION 10. U DC∩PFImax is the update rule inU Bayes such that

CE ,g ,B =

¨

qE |q ∈C and
∫

(u ◦ f )d qE ≥minp∈K
E ,g ,B
E

∫

(u ◦ g )d p

for all f ∈ B with f = g on E c and f s g

«

.

This update rule exists and is the rule with the largest updated sets of measures sat-
isfying the axioms:

PROPOSITION 5. U DC∩PFImax exists and is the unique ambiguity-maximizing update rule
inU DC∩PFI.

Finally, we note that if we were to strengthen PFI in the ways that DC1, DC2, or DC3
strengthen DC, no update rule in U would satisfy the stronger condition. The formal
statement of the strengthenings and the result is in Appendix B. The proof is omitted as
it is the same as for the impossibility results in Proposition 3.

Collectively, the results in this section have shown that PFI is a way to strengthen
and “robustify” DC while maintaining the ability to update MEU preferences, and that
many directions of strengthening DC and PFI are unsuitable for our purposes.

Although DC and PFI allow for updating to depend on the choice problem through
g and B , the extent to which updating of MEU preferences must depend on these in
order to satisfy DC and PFI has not yet been fully investigated. It is to this question we
now turn.

3.2 Dependence of conditional preference on the past choice and feasible set

The most striking feature of the update rules we have characterized in this paper is that
conditional preferences may vary depending on the choice of g and the feasible set B . In
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contrast, more restrictive definitions of dynamic consistency that rule out such depen-
dence in updating are not uncommon in the literature (see e.g., Ghirardato 2002). It is
well-known that this more restrictive dynamic consistency makes it impossible to cap-
ture non-expected utility behavior under the assumption that the DM cares only about
the acts induced by their strategy (see Ghirardato 2002 among many others). For the
purpose of modeling behavior departing from expected utility, others in the literature
on subjective uncertainty have allowed, as we do, the dependence of conditional prefer-
ences on g (e.g., Machina and Schmeidler 1992, Epstein and Le Breton 1993).13 One may
wonder if it is really necessary for dynamically consistent updating of MEU preferences
to allow dependence of the conditional preference on the feasible set B . To address this
issue, the axiom below formally states what it means not to depend on B .

AXIOM IFS (Independence from Feasible Sets). For every (¥, E , g , B1), (¥, E , g , B2) ∈ T ,
¥E ,g ,B1 =¥E ,g ,B2 .

Are there update rules that satisfy our axioms and do not depend on B? Note that
if one restricts attention to expected utility preferences, the answer is yes, and this
uniquely identifies Bayes’ rule. This is the content of the next proposition, which formal-
izes our claim in the Introduction about the relationship between dynamic consistency
and Bayes’ rule under expected utility.

PROPOSITION 6. Bayes’ rule is the unique update rule in U satisfying DC and IFS when
¥ and ¥E ,g ,B are restricted to be non-degenerate expected utility preferences.

However, once we allow MEU preferences, our next result shows there are no longer any
rules satisfying these conditions. The proof (in Appendix B) works by considering two
examples with the same state space, information structure, and unconditional prefer-
ences as the dynamic Ellsberg example. The examples have a common g and differ only
in the set of feasible acts. There is a kink at g in the unconditional preferences. All up-
date rules in U deliver preferences conditional on E = {Black, Red} that are smooth at
g . If the feasible sets have different slopes at g (permitted by the kink in ¥), different
updates are required to obtain conditional optimality. For one feasible set, updating
measures that put too little weight on black leads to dynamic inconsistency. For the
other feasible set, not updating measures that put too little weight on black leads to
dynamic inconsistency. This shows that no common updating can work across these
feasible sets.

PROPOSITION 7. There does not exist an update rule inU satisfying DC and IFS.

Allowing dependence on the feasible set, over and above dependence on the condi-
tioning event and the unconditionally optimal choice g , is therefore crucial to dynami-
cally consistent updating for MEU preferences. Our next result makes this more precise

13Wakker (1997) presents an updating rule for non-expected utility with objective probabilities that de-
pends on the feasible set beyond g . This is the only other update rule we know of in the literature that
shares this feature with our rules.
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by showing that dependence on only part of the feasible set is needed. Specifically, the
crucial acts are those that agree with g on E c and that are not strictly dominated on E
by other feasible acts agreeing with g on E c . Intuitively, checking that dynamic consis-
tency is satisfied with respect to these undominated acts is sufficient to ensure that it is
satisfied overall. Formally, the feasible acts undominated on E and agreeing with g on
E c are the following:

DEFINITION 11. Given (¥, E , g , B )∈T , the conditionally undominated feasible set is

BUn ,E ,g =

¨

f ∈ B with f = g on E c | for no h ∈ B with h = g on E c ,
h(s )¥ f (s ) for all s ∈ E , with h(s )� f (s ) for some s ∈ E

«

.

What does it mean for updating to depend only on the conditionally undominated
feasible set? It means that if everything else is held fixed, and two feasible sets have the
same conditionally undominated parts, then the two updated preferences must be the
same. This is exactly the content of the next axiom.

AXIOM IDFS (Independence from the Dominated Part of Feasible Sets). For every (¥, E ,
g , B1), (¥, E , g , B2)∈T , if B

Un ,E ,g
1 = B

Un ,E ,g
2 , then ¥E ,g ,B1=¥E ,g ,B2 .

The next proposition shows that this limited independence is compatible with DC
(and PFI), unlike the complete independence required in IFS.

PROPOSITION 8. The rules U DCmax and U DC∩PFImax satisfy IDFS.

Generally speaking, if one wanted to build the whole paper while considering only
the conditionally undominated parts of feasible sets, very little would change. Specifi-
cally, the only change would be that the option to vary update rules with other aspects
of the feasible set would be eliminated. This option is never used to prove dynamic
consistency, existence, ambiguity maximality, or any other important properties of our
rules.

Given that it is necessary to allow conditional preference to depend on the feasible
set, one may wonder if it is also necessary to have further dependence on g . We show
that the answer is no. To do this, we define what it means to be independent of g and
identify the ambiguity-maximizing rule satisfying this condition plus our earlier axioms.

AXIOM ICA (Independence from the Chosen Act). For every (¥, E , g 1, B ), (¥, E , g 2, B ) ∈
T , ¥E ,g 1,B =¥E ,g 2,B .

DEFINITION 12. U DC∩ICAmax is the update rule inU Bayes such that

CE ,B =
⋂

g

¨

qE |q ∈C and
∫

(u ◦ f )d qE ≥minp∈K
E ,g ,B
E

∫

(u ◦ g )d p

for all f ∈ B with f = g on E c and f s g

«

.

Recall that K
E ,g ,B
E is defined in Definition 9 of Section 3.1.2 and notice that the up-

dated set of measures, CE ,B , is the intersection of the updated sets of measures produced
by the rule U DC∩PFImax as g varies.
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PROPOSITION 9. U DC∩ICAmax exists and is the unique ambiguity-maximizing update rule
inU DC∩PFI satisfying ICA.

We note that DC and ICA together imply PFI, thus U DC∩ICAmax is also the unique
ambiguity-maximizing update rule in U DC satisfying ICA. Furthermore U DC∩ICAmax

does not depend on any conditionally dominated feasible acts and so satisfies IDFS as
well. The following example shows that ICA can be restrictive. In the example, while
the other axioms allow a substantial amount of ambiguity after conditioning no matter
which optimal act is chosen as g , adding ICA removes the ambiguity entirely.

EXAMPLE 1. Suppose there are three states. Consider ¥∈P MEU with

C = co{(0.3, 0.2, 0.5), (0.1, 0.7, 0.2), (0.7, 0.2, 0.1)},

Z =R, and u (z ) = z for z ∈Z . When faced with the choice set

B = co{(1, 16.75, 1), (2, 15.25, 1), (8.4, 5.9, 0.9), (7.4, 7.4, 0.9)},

the DM is indifferent among all acts in B and all are evaluated by (0.3, 0.2, 0.5). Suppose
that the conditioning event is E = {1, 2} (i.e., the DM learns that the true state is one
of the first two) and that g = (1, 16.75, 1). According to the update rule U DC∩PFImax, the
updated set of measures is

{q ∈∆(E ) | 0.6≥qE (1)≥ 0.125}.

If, instead, g = (8.4, 5.9, 0.9) then the updated set of measures according to U DC∩PFImax

is

{q ∈∆(E ) | 7
9 ≥qE (1)≥ 0.6}.

From the definition of U DC∩ICAmax, the updated set of measures according to any rule in
U DC satisfying ICA is the singleton set

{(0.6, 0.4, 0)}. ◊

In sum then, consistency forces the selection of measures that get updated by Bayes’
rule to depend on the choice problem through the conditionally undominated part of
the feasible set, but does not require further dependence on g . The rule U DC∩ICAmax is
notable in exhibiting only the required dependence.

3.3 Related literature

Many papers, some of which we mention in the Introduction, have examined update
rules for MEU preferences. Gilboa and Schmeidler (1993) describe, but do not char-
acterize in terms of preferences, a large class of rules for updating sets of priors that
they call classical update rules. This class includes both maximum likelihood and full
Bayesian updating, among others, and turns out to be exactly the set of rules in U Bayes



280 Hanany and Klibanoff Theoretical Economics 2 (2007)

that also are independent of g and B . Thus our axioms characterizing U Bayes (see Ap-
pendix A) plus ICA and IFS provide a preference characterization of the entire set of clas-
sical update rules. Update rules we propose and characterize in this paper, for example
U DCmax and U DC∩PFImax, are distinct from any previously mentioned in the literature. In
particular, all of the previous rules in U proposed for updating MEU preferences also
are independent of the feasible set B . Proposition 7 then implies that these rules must
violate DC.

3.3.1 Dynamic consistency requirements Given the importance of DC to our paper, it
is helpful to compare it to existing definitions of dynamic consistency in the literature.
This comparison shows that our requirements are weak, and beneficially so. In partic-
ular, the existing definitions are too strong to provide a basis for updating MEU prefer-
ences and incorporate more than the idea that optimal contingent plans remain optimal
contingently.

McClennen (1990) provides an excellent and deep analysis of the problem of ratio-
nal dynamic choice and as a key part of this defines dynamic consistency (p. 120) within
a formal framework of decision trees. In our terms, this definition seems closest to the
following: For k ∈ B , k ¥ h for all h ∈ B if and only if for some f ∈ B with f = k on E ,
f ¥E ,g ,B h for all h ∈ B such that f = h on E c . In words, an act k is unconditionally opti-
mal within the feasible set if and only if it agrees on the conditioning event E with an act
f that is conditionally optimal among all feasible acts that agree with f on E c . The ‘only
if’ direction (running from unconditional to conditional preference) is stronger than DC
and PFI together. Specifically, DC and PFI together imply that direction only for those
f such that f = g on E c , where g was chosen unconditionally. The ‘only if’ direction
of McClennen’s condition is what we would get if we were to impose, in addition to DC
and PFI, that conditional preferences depended only on E and B and not on the act g
(i.e., axiom ICA defined in the previous section). More importantly, the ‘if’ direction of
McClennen’s definition is not implied by any combination of our axioms, and seems too
strong a requirement. For example, consider an environment where the DM has a fixed
budget to allocate across bets on various events. Allocating the entire budget to bets on
events within E is clearly conditionally optimal given E , but this in no way implies it is
unconditionally optimal to do so. If we strengthen DC to imply even a weaker version
of this condition (weaker in that we require f = g on E c ), we get an impossibility result
(whose proof is the same as for the part of Proposition 3 relating to DC3).

Machina (1989) discusses dynamic consistency in the context of preferences over
lotteries in decision trees with known probabilities. As reflected in the quote we used in
Section 3.1, Machina’s verbal explanation goes quite well with our definition. However,
when later in the same paper Machina proposes a rule for conditional preferences, his
rule imposes a much stronger consistency property. Machina and Schmeidler (1992)
adopt the subjective analogue of Machina’s rule, and thus provide the appropriate ba-
sis for comparison with our work. They require that if g is the initially chosen act and
the event E occurs, then conditional preferences are defined by f ¥E ,g h if and only if
f E g ¥ hE g . Epstein and Le Breton (1993) show that Machina and Schmeidler’s update
rule together with Savage’s (1954) axioms minus P2 (the sure-thing principle) applied
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to both unconditional and conditional preferences imply preferences must be prob-
abilistically sophisticated and thus incompatible with Ellsberg behavior. This implies
that using Machina and Schmeidler’s update rule to define dynamic consistency leads
to nonexistence in our setting. Our Proposition 3 above shows that even DC1, a weaker
version of Machina and Schmeidler’s condition, is sufficient to generate impossibility in
our problem.

Segal (1997) also discusses dynamic consistency in the context of preferences over
lotteries in decision trees. The weakest dynamic consistency property he states (his ax-
iom 1) says that any conditionally optimal choice must also be part of an uncondition-
ally optimal plan. Since this axiom requires strict unconditional preference for an opti-
mal act to remain strict conditionally, it leads to nonexistence in our setting (this follows
from the part of Proposition 3 relating to DC3). Segal (1997) goes on to propose an even
stronger consistency axiom (his axiom 3) which weakens Machina’s update rule to apply
only to the indifference curve containing the initially chosen lottery. All of the analysis
in Segal (1997) is carried out using an extension of this stronger axiom.

Gul and Lantto (1990) propose an axiom (called dynamic programming solvability)
on preferences over lotteries in two-stage decision trees with known probabilities. They
prove this axiom is equivalent to a consistency condition. The axiom can be under-
stood as saying roughly the following: If one can bike or walk to work and both are
optimal plans contingent on the weather, then it must also be optimal to bike if it is
sunny and walk if it is rainy or to walk if it is sunny and bike if it is rainy. This re-
quires that the optimization contingent on sun is in some sense separable from the
optimization contingent on rain. Translated into acts, dynamic programming solvabil-
ity implies that if the feasible set contains { f , h, f E h, hE f }, and f and h are both un-
conditionally optimal, then f E h and hE f must also be unconditionally optimal. It is
easy to see that this condition is not generally satisfied by MEU preferences. For ex-
ample, suppose there are four states of the world, S = {1, 2, 3, 4}, E = {1, 2}, the set of
measures C = {( 1

2 p , 1
2 (1− p ), 1

2 p , 1
2 (1− p )) | p ∈ [0, 1]}, Z = R, and u (z ) = z . Letting

f = (1, 0, 0, 1) and h = ( 1
2 , 1

2 , 1
2 , 1

2 ) one may check that f and h are both optimal within

B = co{ f , h, f E h, hE f }, yet f E h = (1, 0, 1
2 , 1

2 ) is suboptimal, violating dynamic program-
ming solvability. Thus, this condition leads to nonexistence of an update rule for MEU
preferences. The same conclusion applies to a closely related axiom proposed by Grant
et al. (2000).

Compared to all of this literature, then, DC and PFI are weak requirements, and
strengthening them in the direction of any of these proposals quickly leads to nonexis-
tence of an update rule.

3.3.2 Consequentialism and reduction In addition to dynamic consistency, two other
conditions important to justifications of updating in the decision theory literature are
consequentialism and reduction of compound acts/decision trees. In our setting, con-
sequentialism means that preference conditional on an event E depends only on the
unconditional preference, the event E , and treats E c as a null event.14 Reduction means

14The null event requirement is exactly our axiom NC defined in Appendix A.
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that preferences are defined over acts, and thus the DM is assumed to care only about
the mapping from states to (lotteries over) outcomes induced by his actions. It has
been shown in various contexts that consequentialism, reduction, and some version of
dynamic consistency (together with standard assumptions) imply expected utility and
Bayesian updating (see e.g., Karni and Schmeidler 1991 and Ghirardato 2002). As a re-
sult, at least one of these properties must be relaxed if updated preferences are not to be
of the expected utility form. Our approach maintains reduction but relaxes consequen-
tialism. Two papers on updating multiple priors that relax reduction while maintaining
consequentialism are Wang (2003) and Hayashi (2005).15

Epstein and Schneider (2003) have shown that if dynamic consistency is required
only for a single filtration of events, then a subclass of MEU preferences is compati-
ble with both consequentialism and reduction (and recursion) through the use of full
Bayesian updating. This subclass requires the representing set of measures C to be rect-
angular, meaning it satisfies a type of stochastic independence with respect to events in
the filtration. Formally, this property is defined as follows.

DEFINITION 13. Suppose E , E c ∈N (¥). The set C is rectangular with respect to {E , E c }
if ∀q 1,q 2,q 3 ∈ C , ∃q 4 ∈ C such that ∀F , q 4(F ) = q 3(E )q 1(F ∩ E )/q 1(E ) + q 3(E c )q 2(F ∩
E c )/q 2(E c ).

For these preferences, when conditioning on an event in the filtration, each act is eval-
uated by minimizing separately the conditional expectation on E and on E c and then
minimizing the expectation of these conditional expectations. This leads to the follow-
ing result.

PROPOSITION 10. Any of the ambiguity-maximizing update rules defined above that be-
long toU Bayes coincide with full Bayesian updating for (¥, E , g , B )∈T such that E , E c ∈
N (¥) and C is rectangular with respect to {E , E c }.

This shows that these update rules agree with that of Epstein and Schneider’s recursive
multiple priors model on the domain of that model.16 Thus, when updating on events
with respect to which preferences are rectangular, the ambiguity-maximizing rules iden-
tified by our approach satisfy the same properties (including consequentialism and re-
cursion) as recursive multiple priors. At the same time, our rules are able to allow for
updating on all other non-null events in a manner satisfying desirable axioms includ-
ing DC, while the recursive multiple priors approach rules out and therefore does not
address such events (e.g., the event that the ball drawn is not yellow in the dynamic
Ellsberg example of the Introduction).

15Both of these papers relax reduction in a manner influenced by the seminal work of Kreps and Porteus
(1978), which was done in the context of decision trees with objective probabilities.

16Note that Epstein and Schneider’s framework is not identical to ours in that it places more temporal
structure on the acts and outcomes than we do. For example, their ultimate outcomes are vectors of con-
sumption over time while we have unstructured ultimate outcomes. Thus, literally speaking, with a rectan-
gular set of measures, the two models are identical in their sets of measures and how they are updated, but
not in all the structural details.
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Given dynamic consistency for all non-null events, our focus on relaxing consequen-
tialism rather than reduction has at least three justifications. First and most importantly,
maintaining consequentialism (with or without reduction) rules out the Ellsberg pattern
of choices over acts in the dynamic Ellsberg example of the Introduction. Second, relax-
ing reduction means that uncertainty is treated differently at different decision nodes,
a property that may not be attractive in terms of a pure updating interpretation where
the role of time is not, in and of itself, an important consideration. Third, viewing the
current state of the literature, the only previous theory of updating MEU preferences
while at the same time maintaining dynamic consistency with respect to updating on
all non-null events is in Wang (2003). As mentioned above, Wang’s theory relaxes reduc-
tion. In light of this, one might have thought that relaxing reduction was the only way
to maintain this scope of dynamic consistency. Thus, it makes sense for us to focus on
relaxing consequentialism because there is more to be learned in that direction. Fur-
thermore, there is an important sense in which relaxing reduction breaks completely
the connection between dynamic consistency and the form of updating. In contrast,
our approach of relaxing consequentialism maintains important and interesting links
between the two, as we have shown.

3.3.3 Dynamic inconsistency There are approaches to dynamic decision making that
take dynamic inconsistency of preferences over acts as given. Dynamic behavior is de-
rived by coupling the underlying preferences with an assumption about how the dif-
ferent “selves” deal with the inconsistency. The best known approach here is due to
Strotz (1955–6), and assumes that behavior is sophisticated in the sense that the DM
correctly anticipates her future conditional desires and chooses taking the results of
those future decisions as a constraint. Observe that this is quite a distinct treatment
of dynamic choice from the one put forward here, where conditional preferences agree
with the optimal choices of the unconditional preference. Siniscalchi (2006) investi-
gates the preferences over decision trees that are compatible with the Strotzian type of
backward induction approach. As we pointed out in the Introduction, no such prefer-
ences can deliver behavior in the dynamic modification of Ellsberg’s example that agrees
with the typical preferences in Ellsberg’s original problem (namely, (1, 0, 0)� (0, 1, 0) and
(0, 1, 1)� (1, 0, 1)). For a critique of the sophistication approach based on value of infor-
mation considerations see e.g., Epstein and Le Breton (1993, pp. 11–12). There are exam-
ples in the literature arguing in favor of (Eichberger et al. 2007) and against (Grünwald
and Halpern 2004 and Seidenfeld 2004) such preferences in the context of ambiguity.

Three alternative approaches that, like sophistication, accept that preferences over
acts may be dynamically inconsistent, are McClennen’s (1990) resolute choice, the co-
operative decision processes of Jaffray (1999), and the game-theoretic approach of Peleg
and Yaari (1973). In resolute choice, it is assumed that conditional choices are in agree-
ment with an unconditionally optimal plan, even when those conditional choices may
conflict with some underlying conditional preference. McClennen (1990) does not spec-
ify how this agreement is to be obtained. The resulting behavior is as if the conditional
choices were governed by dynamically consistent underlying conditional preferences
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that depend on earlier choices and the choice problem, such as those in our paper.17 In
this sense, adopting one of our update rules satisfying DC is a way of implementing res-
olute choice for MEU preferences, while also preserving the property that conditional
choices are based solely on conditional preferences. Jaffray (1999) suggests that the in-
consistency between unconditional and conditional preferences might be resolved in a
way that is more of a compromise between the different preferences. He examines a se-
lection criterion that chooses a plan that is “not too bad” in a utility sense according to
any of these preferences and is not dominated in that no feasible plan is better accord-
ing to all the preferences. Peleg and Yaari (1973) propose treating the conflict generated
by dynamic inconsistency as a non-cooperative game between the different “selves” of
the DM and solving for an equilibrium.

Ozdenoren and Peck (forthcoming) use extensive form games of conflict with nature
to illustrate how varying the game the DM thinks she is playing is an alternative mod-
eling strategy for generating variation in conditional choices in Ellsberg-like problems.
Tallon and Vergnaud (2006) show that it may be important in terms of dynamic consis-
tency in the Ellsberg problem whether one updates on information about the color of
the ball drawn or the color composition of the urn.

4. CONCLUSION

We have proposed and characterized novel update rules that apply to MEU preferences
over acts. These preferences are important in analyzing dynamic behavior in the pres-
ence of ambiguity. This paper provides the first theories of ambiguity sensitive prefer-
ences that maintain, in dynamic extensions (as in our introductory example), typical
behavior under ambiguity as exemplified by the classic Ellsberg problem. In particular,
no theories based on recursion or backward induction may deliver this behavior, and
neither can any theory that naively updates in a dynamically inconsistent manner.

The major new feature of the rules we characterize is that they are dynamically con-
sistent when updating on any non-null event, and as a result, depend on the choice
problem. In fact, we have shown that dependence on the feasible set of acts (and not
simply the unconditionally optimal act) is necessary. Nonetheless, all of the rules take
the simple form of applying Bayes’ rule to a subset of measures used in representing
the DM’s unconditional preferences. In addition to deriving the entire set of rules com-
patible with our assumptions, we identify the unique ambiguity-maximizing rules, thus
delimiting the extent to which dynamic consistency and other conditions we examine
force the DM to reduce the set of measures she considers in the face of new information.

The dynamic consistency axioms we use, DC and PFI, are weaker than those ap-
pearing elsewhere, yet effectively capture the fundamental idea that optimal contingent
plans should be respected when a planned-for contingency arises. As we discussed in
Section 3.1, strengthening these axioms in various ways leads to non-existence.

While MEU is a well-known and important class of preferences for modeling be-
havior under ambiguity, it is far from the only such model. In ongoing work, we are

17Though McClennen of course had his own, stronger, notion of dynamic consistency, which we dis-
cussed above.
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investigating the implications of similar axioms for other preference models, such as
the smooth ambiguity model in Klibanoff et al. (2005).

A. APPENDIX: FURTHER PREFERENCE FOUNDATIONS

A.1 A behavioral characterization of applying Bayes’ rule to part of the set of priors

In this appendix, we present four axioms that, collectively, are shown to characterize the
restriction to update rules that work by applying Bayes’ rule to some of the measures in
the representing set of measures, C , i.e., the restriction to rules in U Bayes. Thus, these
axioms, when combined with the dynamic consistency conditions introduced above,
complete the behavioral characterization of the update rules proposed in this paper.

The first axiom requires that since the unconditional preferences that we consider
are MEU, conditional preferences also should satisfy the axioms characterizing MEU
(Gilboa and Schmeidler 1989). There is little reason to imagine different families of pref-
erences at different stages of a decision and good reason to think that properties rea-
sonable for a preference relation are reasonable also for its updates. In particular, the
attractiveness of a given set of axioms characterizing a class of preferences is not usually
thought to depend on whether the preferences at hand are conditional or unconditional
preferences.

AXIOM CL (Closure with respect toP MEU). For any (¥, E , g , B )∈T , ¥E ,g ,B∈P MEU.

The next axiom states that a preference conditional on an event E should not de-
pend on the consequences outside E , a basic requirement on conditional preferences.

AXIOM NC (Null Complement). For any (¥, E , g , B )∈T and f , h ∈A , f sE ,g ,B f E h.

The next axiom requires updating to preserve the ordering of constant acts (acts
yielding the same lottery in each state of the world). In particular this yields a separation
between attitudes towards risk, which are held constant by this unchanged ordering,
and the remainder of the preference, which may be affected by updating.

AXIOM UT (Unchanged Tastes). For any (¥, E , g , B ) ∈ T and x , y ∈ X , x ¥ y ⇔ x ¥E ,g ,B

y .

The straightforward proposition below states that these first three axioms are equiv-
alent to the conditional preferences having an MEU representation using the same u as
the unconditional preferences and all measures in the updated set CE ,g ,B placing zero
weight on E c .

PROPOSITION 11. The set U (Definition 1) is the set of all update rules satisfying CL, NC,
and UT.

Notice that the axioms so far require no connection between the unconditional mea-
sures in C and the conditional measures in CE ,g ,B . Our next axiom generates such a con-
nection. A stronger version of this axiom appears in Jaffray (1994) and is used by Pires
(2002) to characterize full Bayesian updating for MEU.
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AXIOM IIW (Information Improves the Worst-case). For any (¥, E , g , B ) ∈ T , f ∈ A ,
and x ∈X , if f E x s x then f ¥E ,g ,B x .

To understand this axiom, note that minq∈C
∫

(u ◦ f )d qE is the worst-case evalu-
ation of the act f on the event E according to the measures in C . If f E x s x , then
it must be that this worst-case evaluation equals u (x ). Similarly, f ¥E ,g ,B x requires
minq∈CE ,g ,B

∫

(u ◦ f )d q ≥ u (x ). Together these imply

min
q∈CE ,g ,B

∫

(u ◦ f )d q ≥min
q∈C

∫

(u ◦ f )d qE .

Thus, the axiom says that learning that E has occurred may not lower the worst-case
evaluation of any act on E . Why does this make sense? We usually think of information
as reducing ambiguity. If we think of the ex ante ambiguity in the evaluation of an act
f on E as given by the interval [minq∈C

∫

(u ◦ f )d qE , maxq∈C
∫

(u ◦ f )d qE ] and ask that
this ambiguity weakly shrink with updating, in the sense that

�

min
q∈CE ,g ,B

∫

(u ◦ f )d q , max
q∈CE ,g ,B

∫

(u ◦ f )d q

�

⊆
�

min
q∈C

∫

(u ◦ f )d qE , max
q∈C

∫

(u ◦ f )d qE

�

,

then this implies minq∈CE ,g ,B

∫

(u ◦ f )d q ≥minq∈C
∫

(u ◦ f )d qE , which in turn yields IIW.
We now show that, together with the earlier axioms, IIW is equivalent to the updated

sets of measures CE ,g ,B being generated only from Bayesian conditionals of measures in
C . In other words, no new sets of relative weights on E may suddenly appear in the
conditional set of measures.

PROPOSITION 12. U Bayes is the set of all update rules satisfying CL, NC, UT, and IIW.

PROOF. Observe that if f E x s x , then minq∈C
∫

(u ◦ f )d qE = u (x ). If

CE ,g ,B ⊆ {pE | p ∈C }

then

min
q∈CE ,g ,B

∫

(u ◦ f )d q ≥ min
q∈{pE |p∈C }

∫

(u ◦ f )d q =min
q∈C

∫

(u ◦ f )d qE = u (x )

and IIW is satisfied. If CE ,g ,B contains a measure not in {qE | q ∈ C } then by separating
hyperplane arguments there exists a q ∗ ∈CE ,g ,B and an act f such that

∫

(u ◦ f )d q ∗ < min
q∈{pE |p∈C }

∫

(u ◦ f )d q = u (x )

and thus f ≺E ,g ,B x , in violation of IIW. This proves the result. �

This result justifies restricting attention to update rules that apply Bayes’ rule to
some of the measures in C . However, it is worth noting that, with the exception of
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Proposition 10, all of the characterization results in the paper may be easily modified
to ones that hold when IIW is dropped. Specifically, wherever the restriction q ∈ C ap-
pears, replacing this with q ∈ ∆(S) such that q (E ) > 0 and replacing U ∈ U Bayes with
U ∈ U gives analogous results that hold without IIW. We choose to present the results
with IIW rather than without because we find the restriction to measures in C natural
for updating. Furthermore, IIW helps in relating our rules to those in the literature (e.g.,
Proposition 10) and is satisfied by all previously proposed update rules for MEU prefer-
ences. For example, strengthening IIW by replacing f ¥E ,g ,B x with f sE ,g ,B x (and thus
requiring that information leaves the worst-case unchanged) is equivalent to requiring
full Bayesian updating. The lemma below is a slight variation of Pires’ (2002) axiomatic
characterization of full Bayesian updating. Whereas Pires uses an axiom (due to Jaf-
fray 1994) that runs from the conditional to the unconditional, i.e., f sE ,g ,B x implies
f E x s x , ours runs in the other direction, as in IIW.

LEMMA 2. Full Bayesian updating (U FB) is the unique update rule satisfying CL, NC, UT,
and IIW with f ¥E ,g ,B x replaced by f sE ,g ,B x .

PROOF. CL, NC and UT are clearly satisfied by U FB. Observe that f E x s x if and only
if minq∈C
∫

(u ◦ f )d qE = u (x ). Under U FB, f is evaluated conditionally according to

minq∈C
∫

(u ◦ f )d qE , and therefore f E x s x if and only if f sE ,g ,B x . For the other di-
rection, assume CL, NC, UT, and IIW with f ¥E ,g ,B x replaced by f sE ,g ,B x hold. This
implies that each f must be evaluated conditionally as minq∈C

∫

(u ◦ f )d qE . This can
happen only if CE ,g ,B is the set of all conditionals that can be formed from C (see Pires
2002). This is U FB. �

From the Introduction we know that full Bayesian updating is dynamically inconsistent,
and thus the lemma shows that this stronger version of IIW cannot be imposed along
with dynamic consistency.

A.2 Observability of conditional preferences

In any theory including both conditional and unconditional preferences, observability
of these preferences may be an issue. Specifically, observing conditional preference re-
quires, at a minimum, observability of the conditioning event relevant to the DM. In
a theory such as ours, where conditional preference may depend not only on the con-
ditioning event, but also on the unconditionally chosen act, g , and the feasible set, B ,
from which it was chosen, one needs to assume that these features are observable as
well. In the context of the dynamic Ellsberg example, for instance, one needs to ob-
serve the tree within which the choice of betting on black versus red is made to properly
interpret the conditional preference to which this choice belongs.

Unconditional preferences, ¥, can in principle be observed, as usual, by having a
DM make choices among acts and paying her according to the acts she chooses and
the realized states of the world. Having elicited ¥ in this manner, one may then face
the DM with a given feasible set B and observe her choice, g , from this set. Then, to
elicit conditional preference, ¥E ,g ,B , the same problem is presented but now the DM is



288 Hanany and Klibanoff Theoretical Economics 2 (2007)

told that if the state of the world lies in E she will be given an opportunity to revise her
initial choice, and then, assuming the state of the world is in E , asked to make choices
among acts at that point. Notice that eliciting the conditional preference between f and
h where neither is conditionally optimal within B requires offering a different choice set
at E than was specified in B . Just as the preference ¥ does not depend on the choice
set to which it is applied, it seems quite natural (and in the spirit of imposing the same
requirements on conditional preferences as on unconditional) to assume the same for
¥E ,g ,B . In the absence of this assumption, one could only hope to elicit conditionally
optimal choices from B , rather than the whole conditional preference relation.

B. APPENDIX: SOME RESULTS AND SELECTED PROOFS

B.1 Proofs of results from Section 2

We begin with two key lemmata. The first is used in several of the proofs to come and
shows that there is at least one measure in C that both supports the conditional opti-
mality of g and is used to evaluate g unconditionally. The second lemma is used in
proving the first, and relates measures used to evaluate g unconditionally to measures
separating g from acts weakly better than g . The convexity of the feasible set, B , and of
the set of acts weakly better than g is crucial in these arguments.

LEMMA 3. For (¥, E , g , B )∈T , Q E ,g ,B ∩arg minp∈C
∫

(u ◦ g )d p 6= ;.

PROOF. Let I be the set of Σ-measurable, bounded real-valued functions on S. Letv be
a complete, transitive binary relation on I defined by

a vb if and only if min
p∈C

∫

a d p ≥min
p∈C

∫

b d p .

Let m and t be the asymmetric and symmetric parts of v. Consider the convex sets
D1 ≡ {a | a ∈ I with a mu ◦ g } and D2 ≡ {u ◦ f | f ∈ B with f = g on E c }. Unconditional
optimality of g implies D1 ∩D2 = ;. The set D1 is non-empty by inspection and also has
a non-empty interior. The set D2 is non-empty since it contains u ◦ g . By a separating
hyperplane theorem (e.g., Aliprantis and Border 1999, Thm. 5.50, p. 190), there exists a
hyperplane separating D1 and D2. Without loss of generality, such a hyperplane may be
defined by {a ∈ I |

∫

a d r = α} for a finitely additive measure r ∈ ∆(S) and real α such

that
∫

a d r ≥ α ≥
∫

b d r for all a ∈ D1 and b ∈ D2. Since u ◦ g ∈ D2, α ≥
∫

(u ◦ g )d r .

Suppose α>
∫

(u ◦ g )d r . Then by the event-wise continuity of
∫

(·)d r and monotonicity

of v, there exists an a ∈D1 such that
∫

a d r <α, a contradiction. Thus, α=
∫

(u ◦ g )d r .

Therefore,
∫

(u ◦g )d r ≥
∫

b d r for all b ∈D2. The same argument by contradiction shows

a t u ◦ g implies
∫

a d r ≥ α and thus [a t u ◦ g =⇒
∫

a d r ≥
∫

(u ◦ g )d r ] for all a ∈ I .
Now, by the argument in the “only if” direction of the proof of Lemma 4 applied to v,
r ∈ arg minp∈C

∫

(u ◦ g )d p . From the definition of Q E ,g ,B and the fact that
∫

(u ◦ g )d r ≥
∫

b d r for all b ∈D2, r ∈Q E ,g ,B . Thus, r ∈Q E ,g ,B ∩arg minp∈C
∫

(u ◦ g )d p 6= ;. �
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LEMMA 4. Suppose there is no best or worst consequence in Z . Then q ∈∆(S) satisfies [ f s
h =⇒
∫

(u ◦ f )d q ≥
∫

(u ◦h)d q ] for all f ∈A if and only if q ∈ arg minp∈C
∫

(u ◦h)d p .

PROOF. (If) Suppose q ∈ arg minp∈C
∫

(u ◦ h)d p . Then f s h =⇒
∫

(u ◦ f )d q ≥
minp∈C
∫

(u ◦ f )d p =minp∈C
∫

(u ◦h)d p =
∫

(u ◦h)d q .

(Only if) Let q be such that [ f s h =⇒
∫

(u ◦ f )d q ≥
∫

(u ◦h)d q ] for all f ∈A . Let

u (x ) =minp∈C
∫

(u ◦h)d p . Since x s h, u (x )≥
∫

(u ◦h)d q . Suppose u (x )>
∫

(u ◦h)d q .
Consider h ′ ∈A such that h =αh ′+(1−α)x for someα∈ (0, 1). Such an h ′ exists because
the assumption of no best or worst consequence in Z ensures the existence of an open
neighborhood of h (using the norm defined by the supremum over state utility differ-
ences). Observe that h ′ s x s h but

∫

(u ◦h ′)d q <
∫

(u ◦h)d q , contradicting [h ′ s h =⇒
∫

(u ◦h ′)d q ≥
∫

(u ◦h)d q ]. Therefore, u (x ) =
∫

(u ◦h)d q =minp∈C
∫

(u ◦h)d p . It remains

to show that q ∈C . For all f s h,
∫

(u ◦ f )d q ≥
∫

(u ◦h)d q = u (x ) =minp∈C
∫

(u ◦h)d p =
minp∈C
∫

(u ◦ f )d p . Since the C -linearity of MEU preferences implies that all indiffer-

ence curves have the same shape, the same holds for any f ∈ A , i.e.,
∫

(u ◦ f )d q ≥
minp∈C
∫

(u ◦ f )d p . Since C = {q ∈∆(S) |
∫

(u ◦ f )d q ≥minp∈C
∫

(u ◦ f )d p for all f ∈A }
(see, e.g., the proof of the Fundamental lemma in Chateauneuf 1991), we have shown
q ∈C and thus q ∈ arg minp∈C

∫

(u ◦h)d p . �

We can now prove the results stated in Section 2.

PROOF OF PROPOSITION 1. First we show that all rules inU DC satisfy DC. Let q
g
E be an

element of

Q
E ,g ,B
E ∩arg min

q∈CE ,g ,B

∫

(u ◦ g )d q .

Since

min
q∈CE ,g ,B

∫

(u ◦ g )d q =

∫

(u ◦ g )d q
g
E ≥
∫

(u ◦ f )d q
g
E ≥ min

q∈CE ,g ,B

∫

(u ◦ f )d q

for all f ∈ B with f = g on E c , g is conditionally optimal and thus DC holds.
Now we show that no rules in U Bayes that are not in U DC can satisfy DC. Consider

the convex sets D1 ≡ { f | f �E ,g ,B g with f = g on E c } and D2 ≡ { f | f ∈ B with f =
g on E c }. DC is equivalent to D1 ∩D2 = ;. An argument very similar to the one in the
proof of Lemma 3, with ¥E ,g ,B in place of ¥ and the measure r corresponding to the
separating hyperplane in ∆(E ) rather than ∆(S), may be used to show that D1 ∩D2 = ;
(and thus DC) implies

Q
E ,g ,B
E ∩arg min

q∈CE ,g ,B

∫

(u ◦ g )d q 6= ;.

Therefore, any rules inU Bayes satisfying DC must be inU DC . �

PROOF OF COROLLARY 2. By the argument in the proof of Lemma 3, since there is no
kink on E in the feasible set at g , there exists a unique tangent hyperplane to B on
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E at g . Thus, Q
E ,g ,B
E consists of the unique measure qE ∈ ∆(E ) associated with that

hyperplane. �

PROOF OF LEMMA 1. We have f ¥i x ⇐⇒ minp∈C i

∫

(u ◦ f )d p ≥ u (x ). Now, C 2 ⊆
C 1 implies minp∈C 2

∫

(u ◦ f )d p ≥ minp∈C 1

∫

(u ◦ f )d p and thus f ¥1 x implies f ¥2 x
and f �1 x =⇒ f �2 x . Suppose C 2 ⊂ C 1. Then there exist an f and an x such that
minp∈C 2

∫

(u ◦ f )d p ≥ u (x )>minp∈C 1

∫

(u ◦ f )d p and thus f ¥2 x ; f ¥1 x . �

PROOF OF PROPOSITION 2. To show U DCmax exists, it suffices to show that

min
q∈Q E ,g ,B

E

∫

(u ◦ g )d q

always exists, as CE ,g ,B is then non-empty. If Q
E ,g ,B
E is non-empty and (weak∗-)compact

then minq∈Q E ,g ,B
E

∫

(u ◦ g )d q exists.

That Q E ,g ,B (and thus Q
E ,g ,B
E ) is non-empty follows from Lemma 3. We now show

that Q
E ,g ,B
E is compact. Let

M E =

¨

qE ∈∆(E )
�

�

∫

(u ◦ g )d qE ≥
∫

(u ◦ f )d qE for all f ∈ B with f = g on E c

«

.

By inspection M E is closed as weak∗-convergence ensures convergence of
∫

(u ◦g )d qE−
∫

(u ◦ f )d qE and the set of all conditionals on E is closed. We have Q
E ,g ,B
E = {qE | q ∈

C } ∩M E , the intersection of two closed sets, and so this set is closed. It is bounded
because it is a set of measures. Thus it is compact. So, minq∈Q E ,g ,B

E

∫

(u ◦ g )d q exists and

thus so does U DCmax.
Since

; 6= arg min
q∈Q E ,g ,B

E

∫

(u ◦ g )d q ⊆ arg min
q∈CE ,g ,B

∫

(u ◦ g )d q ,

U DCmax ∈U DC . Since

Q
E ,g ,B
E ∩arg min

q∈CE ,g ,B

∫

(u ◦ g )d q 6= ;

implies that only q ∈C such that

∫

(u ◦ g )d qE ≥ min
q∈Q E ,g ,B

E

∫

(u ◦ g )d q

may have their conditionals included in any ĈE ,g ,B associated with rules in U DC ,
Lemma 1 implies U DCmax is the unique ambiguity-maximizing rule inU DC . �
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B.2 Proofs and results from Section 3

PROOF OF PROPOSITION 4. By inspection, U DC∩PFI ⊆ U DC and so these rules satisfy
DC. We now show they satisfy PFI. Fix f ∈ B with f = g on E c and f s g . Since r ∈
Q E ,g ,B ,
∫

(u ◦ f )d rE ≤
∫

(u ◦ g )d rE . By the definition of U DC∩PFI (Definition 8),
∫

(u ◦
f )d rE ≥
∫

(u ◦ g )d rE . Thus,
∫

(u ◦ f )d rE =
∫

(u ◦ g )d rE and
∫

(u ◦ f )d rE = min
p∈CE ,g ,B

∫

(u ◦ f )d p .

Setting f = g in the definition of CE ,g ,B gives
∫

(u ◦ g )d rE = min
p∈CE ,g ,B

∫

(u ◦ g )d p .

Therefore, f sE ,g ,B g for all f ∈ B with f = g on E c and f s g and PFI is satisfied.
Consider an update rule U ∈ U Bayes satisfying the axioms, with associated sets of

measures C U
E ,g ,B . Since U satisfies DC, Corollary 1 implies that there exists an r ∈Q E ,g ,B

such that rE ∈C U
E ,g ,B ⊆ {qE | q ∈C and

∫

(u ◦ g )d qE ≥
∫

(u ◦ g )d rE }. For any f ∈ B with
f = g on E c and f s g , PFI implies

min
p∈C U

E ,g ,B

∫

(u ◦ f )d p = min
p∈C U

E ,g ,B

∫

(u ◦ g )d p .

Therefore, it implies also that for any qE ∈C U
E ,g ,B ,

∫

(u ◦ f )d qE ≥ min
p∈C U

E ,g ,B

∫

(u ◦ g )d p

for all f ∈ B with f = g on E c and f s g . This shows that CE ,g ,B has the form stated in
U DC∩PFI. �

LEMMA 5. For (¥, E , g , B )∈T , Q E ,g ,B ∩arg minp∈C
∫

(u ◦ g )d p ⊆ K E ,g ,B ⊆Q E ,g ,B .

PROOF. Suppose q ∈Q E ,g ,B ∩arg minp∈C
∫

(u ◦ g )d p . Consider any f ∈ B with f = g on

E c . By definition, q ∈Q E ,g ,B implies
∫

(u ◦g )d q ≥
∫

(u ◦ f )d q . If f s g , then
∫

(u ◦ f )d q ≥
minp∈C
∫

(u ◦ f )d p =minp∈C
∫

(u ◦g )d p =
∫

(u ◦g )d q and so
∫

(u ◦g )d q =
∫

(u ◦ f )d q .
Therefore, q ∈ K E ,g ,B . Since the definition of K E ,g ,B includes more restrictions than that
of Q E ,g ,B , K E ,g ,B ⊆Q E ,g ,B . �

PROOF OF PROPOSITION 5. First we show that U DC∩PFImax exists and U DC∩PFImax ∈
U DC∩PFI. Then we show it is uniquely ambiguity maximizing within U DC∩PFI. We be-
gin proving existence by noting that Lemmata 3 and 5 imply K E ,g ,B (and thus K

E ,g ,B
E ) is

non-empty. Since

K
E ,g ,B
E =Q

E ,g ,B
E ∩
¨

qE ∈∆(E )
�

�

∫

(u ◦ f )d qE =

∫

(u ◦ g )d qE for all f ∈ B with f = g on E c and f s g

«
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and Q
E ,g ,B
E is shown to be closed in the proof of Proposition 2, K

E ,g ,B
E is the intersection

of two closed sets, and so is closed. It is bounded because it is a set of measures. Thus it
is compact. So,

min
q∈K

E ,g ,B
E

∫

(u ◦ g )d q

exists. By Lemma 5, K E ,g ,B ⊆Q E ,g ,B and so

arg min
p∈K

E ,g ,B
E

∫

(u ◦ g )d p ⊆Q
E ,g ,B
E .

By inspection of U DC∩PFImax,

arg min
p∈K

E ,g ,B
E

∫

(u ◦ g )d p ⊆CE ,g ,B .

Thus, taking

rE ∈ arg min
p∈K

E ,g ,B
E

∫

(u ◦ g )d p

and an associated unconditional r ∈ K E ,g ,B , we see that CE ,g ,B is non-empty and
U DC∩PFImax ∈ U DC∩PFI. Given rE , it is obvious that any ĈE ,g ,B associated with an up-
date rule inU DC∩PFI is made largest by replacing ⊆with = in the definition ofU DC∩PFI.
It remains to show only that such a choice of rE leads to the smallest value of

min
p∈ĈE ,g ,B

∫

(u ◦ g )d p

for rules inU DC∩PFI. Suppose there exists a r̂ ∈Q E ,g ,B such that
∫

(u ◦ g )d r̂E < min
p∈K

E ,g ,B
E

∫

(u ◦ g )d p .

Without loss of generality, assume

min
p∈ĈE ,g ,B

∫

(u ◦ g )d p =

∫

(u ◦ g )d r̂E .

If and only if such an r̂E ∈ ĈE ,g ,B is there a rule in U DC∩PFI displaying more ambiguity
than U DC∩PFImax. However, if r̂E ∈ ĈE ,g ,B , then

∫

(u ◦ f )d r̂E ≥
∫

(u ◦ g )d r̂E = min
p∈ĈE ,g ,B

∫

(u ◦ g )d p

for all f ∈ B with f = g on E c and f s g . This, together with r̂ ∈Q E ,g ,B , implies r̂ ∈
K E ,g ,B , a contradiction. This shows CE ,g ,B is the maximal set of measures among all sets
associated with rules inU DC∩PFI, and so, by Lemma 1, U DC∩PFImax is uniquely ambiguity
maximizing. �
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AXIOM PFI1. For any (¥, E , g , B ) ∈ T , if f , h ∈ B with f = h = g on E c and f s h, then
f sE ,g ,B h.

AXIOM PFI2. For any (¥, E , g , B ) ∈ T , if f ∈ A with f = g on E c and f s g , then
f sE ,g ,B g .

AXIOM PFI3. For any (¥, E , g , B ) ∈ T , if f ∈ B with f = g on E c , f s g if and only if
f sE ,g ,B g .

PROPOSITION 13. No update rule inU satisfies PFI1, PFI2, or PFI3.

PROOF. Identical to the proof of Proposition 3 with PFIn replacing DCn , n =1, 2, 3. �

PROOF OF PROPOSITION 6. Applying Bayes’ rule to the DM’s subjective probability, p ,
satisfies the axioms. We prove it does so uniquely. By Proposition 1 and the argument
in Appendix A describing how to modify our characterization results when IIW is not
imposed, DC requires the updated probability, pE ,g ,B , to belong to Q̃

E ,g ,B
E where

Q̃
E ,g ,B
E ≡
¨

qE

�

�q ∈∆(S),q (E )> 0,

∫

(u ◦ g )d q ≥
∫

(u ◦ f )d q for all f ∈ B with f = g on E c

«

.

By inspection, the Bayesian update, pE , is in Q̃
E ,g ,B
E . By IFS, without loss of generality

we can assume the feasible set is smooth at g . This implies Q̃
E ,g ,B
E is a singleton by

arguments as in the proof of Corollary 2. Thus pE ,g ,B = pE and updating is Bayesian. �

PROOF OF PROPOSITION 7. Consider the same state space, information structure, and
preferences as in the dynamic Ellsberg example. So,¥ are MEU preferences with u (z ) =
z and C ={( 1

3 ,α, 2
3 −α) |α∈ [

1
4 , 5

12 ]}. The conditioning event is E = {Black, Red}.
For any update rule in U , ¥E ,g ,B can be represented using the same u and using

a set of measures contained in ∆(E ). Thus all acts that give a weakly higher payoff if a
black ball is drawn than if a red ball is drawn should be evaluated using the measure in
the updated set of measures that puts the least weight on black. Denote this measure by
(β , 1−β , 0). IFS implies that, fixing g , β is the same for all B . We show that the existence
of such a β contradicts DC.

Fix feasible sets B1 = co{( 3
2 , 3

2 , 1), (3, 0, 1)} and B2 = co{( 14
9 , 14

9 , 1), ( 22
9 , 4

9 , 1)}. One may
verify that g = (2, 1, 1) is the unique unconditionally optimal choice in B1 and in B2.
Note that β < 5

9 implies ( 14
9 , 14

9 , 1) �E ,g ,B2 g and β > 1
2 implies (3, 0, 1) �E ,g ,B1 g , both

violations of DC. Therefore no update rule satisfying the axioms exists. �

PROOF OF PROPOSITION 8. To see that IDFS is satisfied for U DCmax, recall that the only
place the feasible set B enters the definition of the rule (Definition 7) is through the
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set Q E ,g ,B (Definition 3), the measures in C supporting the conditional optimality of g .
Only acts agreeing with g on E c matter in determining Q E ,g ,B , and adding or removing
acts dominated on E among these does not affect which measures make g conditionally
optimal. For U DC∩PFImax, the set K

E ,g ,B
E (Definition 9) is similarly unaffected, as is the set

of feasible acts such that f s g and f = g on E c . �

The proof of Proposition 9 makes use of the following lemma.

LEMMA 6. Fix any (¥, E , B ). There exists a v ∈C such that, for all acts f with (¥, E , f , B )∈
T , v ∈ arg minp∈C

∫

(u ◦ f )d p .

PROOF. Let (¥, E , g , B ) ∈T . By an argument similar to the proof of Lemma 3, there ex-
ists v ∈ arg minp∈C

∫

(u ◦g )d p such that
∫

(u ◦g )d v ≥
∫

(u ◦ f )d v for all f ∈ B . Therefore,

f s g implies
∫

(u ◦ g )d v =
∫

(u ◦ f )d v =minp∈C
∫

(u ◦ f )d p . �

PROOF OF PROPOSITION 9. Consider v ∈C as identified in Lemma 6. From the proof of
that lemma and the definition of K

E ,g ,B
E , it follows that vE ∈CE ,B . Therefore CE ,B is non-

empty. It is closed and convex since it is the intersection of closed convex sets. Thus
U DC∩ICAmax exists. We have U DC∩ICAmax ∈ U DC∩PFI because for each g , v ∈ K E ,g ,B ⊆
Q E ,g ,B and CE ,B ⊆ {qE | q ∈ C and

∫

(u ◦ f )d qE ≥
∫

(u ◦ g )d vE for all f ∈ B with f = g
on E c and f s g }. Now, suppose that for some E and B a rule in U DC∩PFI uses a set
ĈE ,B , independent of g , that contains measures not in CE ,B . Then, by the definition
of CE ,B , there is some q̂ ∈ ĈE ,B and some g such that q̂ /∈ C U DC∩PFImax

E ,g ,B . But this implies
that DC or PFI would be violated, because U DC∩PFImax is the ambiguity-maximizing rule
in U DC∩PFI. This proves that U DC∩ICAmax is the unique ambiguity-maximizing rule in
U DC∩PFI satisfying ICA. �

PROOF OF PROPOSITION 10. For E , E c ∈ N (¥), rectangularity with respect to {E , E c }
implies that if f = h on E c then

min
p∈C

∫

(u ◦h)d p ≥min
p∈C

∫

(u ◦ f )d p

if and only if

min
p∈{qE |q∈C }

∫

(u ◦h)d p ≥ min
p∈{qE |q∈C }

∫

(u ◦ f )d p .

Therefore U FB satisfies both DC and PFI under rectangularity. This together with the
fact that U FB is the unique ambiguity-maximizing rule inU Bayes proves the result. �
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