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A non-differentiable approach to revenue equivalence
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We give a sufficient condition on the type space for revenue equivalence when
the set of social alternatives consists of probability distributions over a finite set.
Types are identified with real-valued functions that assign valuations to elements
of this finite set, and the type space is equipped with the Euclidean topology. Our
sufficient condition is stronger than connectedness but weaker than smooth arc-
wise connectedness. Our result generalizes all existing revenue equivalence theo-
rems when the set of social alternatives consists of probability distributions over
a finite set. When the set of social alternatives is finite, we provide a necessary
and sufficient condition. This condition is similar to, but slightly weaker than,
connectedness.
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1. I

Revenue equivalence has long intrigued economists. In certain settings, a broad range
of mechanisms, including first- and second-price auctions, collect exactly the same ex-
pected revenue. This fact has led economists to try to delineate the conditions under
which revenue equivalence holds.

In a number of recent papers, several authors provide sufficient conditions for rev-
enue equivalence (see, for example, Krishna and Maenner 2001, Milgrom and Segal
2002 and Ely 2001).1 One common feature of these sufficient conditions is that they
are stated with reference to some topological and linear structures on the agents’ type
spaces, which are not defined in terms of the basic primitives of the mechanism design
problem. This feature is undesirable because revenue equivalence is stated in terms of
the basic primitives of the mechanism design problem. If a social choice function sat-
isfies revenue equivalence, it does so regardless of whether the agents’ type spaces are
equipped with any extra structure, and regardless of the nature of any such structure.
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In this paper, we look for sufficient (and sometimes necessary) conditions that can
be stated without referring to any extra topological or linear structures. We take as prim-
itives only arbitrary sets of types for the agents, an arbitrary set of social alternatives,
and valuation functions that assign numbers to each type–alternative pair. Types can be
identified with real-valued functions that assign valuations to social alternatives. Our
main result, Theorem 1, is a sufficient condition when the set of social alternatives con-
sists of probability distributions over a finite set; this condition is weaker than smooth
arcwise connectedness, but stronger than connectedness. The result generalizes all ex-
isting revenue equivalence theorems when the set of social alternatives consists of prob-
ability distributions over a finite set. Moreover, our proof is elementary, in the sense that
it does not refer to the concepts of differentiation or to any envelope theorem. However,
we offer no insight for general sets of social alternatives.

When the set of social alternatives is finite, we provide a necessary and sufficient
condition in Theorem 4; this condition is close to, but weaker than connectedness of the
type space in the Euclidean topology on real-valued functions. It seems to be of interest
because, although it has long been folk wisdom that (some definition of) connected-
ness is intimately related to revenue equivalence, it clarifies the exact relation between
the two. We also give a (similar) sufficient condition, which is also weaker than connect-
edness, when the set of social alternatives has cardinality lower than continuum.

Although our motivation is rather theoretical, we demonstrate that our results are
relevant for some applications. We see two ways in which our results may be applied.
Firstly, they seem useful in models with a mixed continuous–discrete type space;2 we
exhibit such an application in Example 1. Secondly, the existing sufficient conditions
for revenue equivalence impose some assumptions that may be violated in some appli-
cations (e.g., the convexity assumed by Krishna and Maenner). Authors studying more
general classes of mechanism design problems may prefer not to impose them (e.g., the
absolute continuity assumed in Milgrom and Segal is not very elegant and, typically, has
to be imposed only for revenue equivalence), and our results provide an alternative for
these authors.

2. S

There is only one agent, except in Section 5.4, in which we comment on the case of more
agents. Many applications (including auctions) require more agents. The results for the
many-agent case follow fairly easily from the results for the one-agent case. Let S denote
the type space and let A denote the set of social pure alternatives. Let∆A denote the set
of all probability distributions over the set A with finite support. Let F be an arbitrary
subset of ∆A. The agent has a type-dependent and quasi-linear utility function of the
form

v (s , a )− t ,

2Mixed type spaces seem to be of interest as some variables are typically modeled as continuous (e.g.
consumption, wealth, and input prices), whereas others naturally are, or are modeled as, discrete (e.g.
cohort, or ability). We thank a referee for this (and several other) arguments regarding applications.
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where s is the agent’s type, a is the implemented social alternative, and t is a (possibly
negative) monetary transfer made by the agent. She is an expected utility maximizer.
For simplicity, we denote by v (s ,α) the expected value of the function v (s , a ) when the
social alternative is implemented according to the probability distribution α ∈∆A. The
triple (S, F, v ) defines a mechanism design problem. We thus regard the triple as the
primitive of the problem.

A social choice function (SCF) is a mapping f : S→ F and a transfer rule is a mapping
t : S→ R . This formulation includes the special case of F = A, which rules out random-
ization. In Section 3 we assume that F = ∆A and the set A is finite, and in Section 5.4,
we assume that F = A and the cardinality of A is lower than continuum.3 A mecha-
nism is a pair ( f , t ), where f is an SCF and t is a transfer rule. A mechanism is incentive
compatible if for any types s , s ′ ∈S,

v (s , f (s ))− t (s )≥ v (s , f (s ′))− t (s ′).

An SCF f is incentive compatible if there exists a transfer rule t such that the mechanism
( f , t ) is incentive compatible.

An incentive compatible SCF f satisfies the revenue equivalence property if for any
two incentive compatible mechanisms ( f , t ) and ( f , t ′) there exists a constant c ∈R such
that

∀s∈S t ′(s ) = t (s )+ c .

We now define a topology on the type space. We assume that there exist no types s
and s ′ such that v (s , a ) = v (s ′, a ) for every a ∈ A. We can make this assumption without
loss of generality, as for every type space S there exists a subspace S′ ⊂ S such that for
every s ∈S there exists exactly one s ′ ∈S′ such that v (s , a ) = v (s ′, a ) for every a ∈ A, and
it is easy to check that for all spaces S and S′, every incentive compatible SCF f : S→ F
satisfies the revenue equivalence property if and only if every incentive compatible SCF
f : S′→ F satisfies the revenue equivalence property.

We consider the sup-norm in the type space S, i.e. the distance between any pair of
types s , s ′ ∈S is given by

dist(s , s ′) = sup
a∈A
|v (s , a )−v (s ′, a )|; (1)

one can easily check that S equipped with this distance is a metric space.4 In other
words, we first identify types with real-valued functions f ∈RA that assign valuations to
social alternatives, and then we equip the function space RA with the sup-norm. We pre-
fer not to identify types explicitly with real-valued functions f ∈ RA , and define instead
the distance between types by formula (1) in order to maintain the notational conven-
tions of standard textbooks. For finite sets A, we could equivalently equip RA with any
other norm, as any two norms on a Euclidean space are equivalent; in Section 3 where

3An alternative formulation of our results is that F from Section 5.4 is an arbitrary subset of ∆A, whose
cardinality is lower than continuum, and F from Section 3 is an arbitrary subset of∆A, where A is finite.

4It is important here that there exist no types s and s ′ such that v (s , a ) = v (s ′, a ) for every a ∈ A, as it
guarantees that dist(s , s ′) = 0 implies s = s ′.
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we study finite sets A, it proves convenient to use the equivalent L 1-norm, in which the
distance between any pair of types s , s ′ ∈S is given by

dist(s , s ′) =
∑

a∈A

|v (s , a )−v (s ′, a )|.

The following example exhibits a mechanism design problem in which the type
space differs from the ones considered in the existing literature on revenue equivalence.

E 1. Consider a principal hiring an agent to perform one of two tasks. The cost
c1 = p of performing task 1 is determined by the market price p , which takes values in
the interval (0, 1). The cost c2 = d ·p of performing task 2 is determined by both the input
price p and the agent’s ability d ∈ {0, 1, 2} (which takes one of three levels).

Suppose that the agent knows both d and p , while the principal does not know ei-
ther. The principal can be thought of choosing between which of the two (possibly un-
related) tasks she should assign the agent to. She can assign the agent to task 1 (in which
case the relevant private information is c1), or to task 2 (in which case the relevant pri-
vate information is c2). A contract can be modeled as a revelation mechanism where the
agent reports a type (d , p ) and the mechanism assigns a task and specifies a wage.

Notice that the valuation of being assigned to task 1 is equal to −c1 =−p , while the
valuation of being assigned to task 2 is equal to −c2 =−d ·p . Thus, we identify the type
space with the set

S =
2
⋃

d=0

{(v1, v2) : v1 ∈ (−1, 0) and v2 = d ·v1 } ⊂R2.

This set is a “fan” consisting of three disjoint segments, and one can easily imagine sim-
ilar applications in which the set S may be topologically quite complicated. ◊

3. H-   

In this section, we assume F =∆A for a finite set A. This case covers a number of impor-
tant applications of mechanism design, including auctions of multiple units of indivis-
ible objects. (This application requires more agents, but, as we show in Section 5.4, the
result for many agents follows fairly easily from the result for the one-agent case.) Our
main result provides a sufficient condition for the type space that guarantees that every
incentive compatible SCF satisfies the revenue equivalence property.

D 1. (i) A metric space S is gridwise connected between points s and s ′ if

∀ε>0 ∃s=s0,...,sn=s ′ ∀i=1,...,n dist(s i , s i−1)< ε.

(ii) If, additionally, there exists a constant M , independent of ε, such that

n
∑

i=1

dist(s i , s i−1)≤M ,

then the set S is boundedly gridwise connected between points s and s ′.
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(iii) A metric space S is gridwise connected (respectively, boundedly gridwise con-
nected) if it is gridwise connected (respectively, boundedly gridwise connected)
between any points s , s ′ ∈S.

Connectedness implies gridwise connectedness, and if the metric space S is com-
pact, the two concepts are equivalent (see Engelking 1989, Chapter 6, Exercise 6.1.D).
Arcwise connectedness (called also, by some authors, pathwise connectedness) does
not imply bounded gridwise connectedness; for example, the graphs of some contin-
uous but nowhere differentiable functions (see, for instance, Billingsley 1982) have the
former but not the latter property. However, smooth arcwise connectedness implies
bounded gridwise connectedness as any pair of points of a smooth arcwise connected
space can be connected by an arc of finite length. On the other hand, bounded gridwise
connectedness does not imply arcwise connectedness, even in the realm of compact
spaces (see Engelking 1989, Chapter 6, Exercise 6.1.G).

Finally, it is immediate to verify that the set S in Example 1 is boundedly gridwise
connected.

T 1. Suppose that F =∆A for a finite set A. If the type space S is boundedly grid-
wise connected, then every incentive compatible SCF f : S→ F satisfies the revenue equiv-
alence property.

To prove this result we need the following notation. For any pair of vectors x , y ∈RA ,
we denote by x ◦ y their inner (or scalar) product. For a SCF f : S → ∆A, every f (s ) is
a vector of probabilities assigned to all alternatives, and so it is an element of RA ; also,
every v (s , ·) is an element of RA . We can therefore consider the product of the vectors
f (s ) and v (s , ·).

L 1. (i) For every incentive compatible SCF f and any types s , s ′ ∈S,

v (s , ·) ◦
�

f (s )− f (s ′)
�

≥ t (s )− t (s ′)≥ v (s ′, ·) ◦
�

f (s )− f (s ′)
�

. (2)

(ii) Suppose that s = s0, . . . , sn = s ′ ∈ S. Let ( f , t ′) and ( f , t ′′) be incentive compatible
mechanisms such that t ′(s ) = t ′′(s ). Then

�

�t ′(s ′)− t ′′(s ′)
�

�≤
n
∑

i=1

[v (s i , ·)−v (s i−1, ·)] ◦
�

f (s i )− f (s i−1)
�

. (3)

P. (i) By incentive compatibility,

v (s , ·) ◦ f (s )− t (s )≥ v (s , ·) ◦ f (s ′)− t (s ′)

and

v (s ′, ·) ◦ f (s ′)− t (s ′)≥ v (s ′, ·) ◦ f (s )− t (s ).

Rearranging, one obtains (2).
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(ii) By (i),

�

�

�

t ′(s i )− t ′′(s i )
�

−
�

t ′(s i−1)− t ′′(s i−1)
�

�

�

=
�

�

�

t ′(s i )− t ′(s i−1)
�

−
�

t ′′(s i )− t ′′(s i−1)
�

�

�

≤ v (s i , ·) ◦
�

f (s i )− f (s i−1)
�

−v (s i−1, ·) ◦
�

f (s i )− f (s i−1)
�

= [v (s i , ·)−v (s i−1, ·)] ◦
�

f (s i )− f (s i−1)
�

.

Thus,

�

�t ′(sn )− t ′′(sn )
�

�≤
�

�

�

t ′(sn )− t ′′(sn )
�

−
�

t ′(sn−1)− t ′′(sn−1)
�

�

�

+
�

�

�

t ′(sn−1)− t ′′(sn−1)
�

−
�

t ′(sn−2)− t ′′(sn−2)
�

�

�+ · · ·

+
�

�

�

t ′(s1)− t ′′(s1)
�

−
�

t ′(s0)− t ′′(s0)
�

�

�+
�

�t ′(s0)− t ′′(s0)
�

�

≤
n
∑

i=1

[v (s i , ·)−v (s i−1, ·)] ◦
�

f (s i )− f (s i−1)
�

+
�

�t ′(s0)− t ′′(s0)
�

� .

This yields (3) for s = s0 and s ′ = sn . �

P  T . Suppose that ( f , t ′) and ( f , t ′′) are incentive compatible. Take a
pair of points s , s ′ ∈ S. We show that t ′(s ) = t ′′(s ) implies t ′(s ′) = t ′′(s ′). That is, if two
transfer rules coincide at one point, they coincide at every other point. This obviously
implies that any two t and t ′ transfer rules differ by a constant, because if ( f , t ) is incen-
tive compatible, then so is ( f , t ′′) for t ′′ given by

∀s ′∈S t ′′(s ′) = t (s ′)+
�

t ′(s )− t (s )
�

for a fixed s ∈ S. Thus, t ′(s ′) = t ′′(s ′), and so t ′(s ′) = t (s ′) + c where c = [t ′(s )− t (s )], for
every s ′ ∈S.

The proof applies the following idea: By assumption, there exists a sequence of
points s = s0, . . . , sn = s ′ with the property that each s i is within the distance ε of its
predecessor. If the number of points in this sequence were bounded by a number inde-
pendent of ε, Theorem 1 would follow immediately from (3); indeed, each coordinate of
the term [s i − s i−1] can be made as small as we wish, and each coordinate of the term
�

f (s i )− f (s i−1)
�

is bounded by 1. However, the number of points in the sequence s = s0,
. . . , sn = s ′ is typically not bounded by a number independent of ε. We therefore pick a
subsequence from the sequence s = s0, . . . , sn = s ′ whose number of points is bounded
by a number that depends only on the number of alternatives in A. By picking such a
subsequence, we typically lose the property that each s i is within the distance ε of s i−1.
However, we can pick our subsequence in such a way that whenever s i is not within the
distance ε of s i−1, f (s i ) is as close as we wish to f (s i−1).

More precisely, pick any number k = 1, 2, . . .. We show that

�

�t ′(s ′)− t ′′(s ′)
�

�≤
M +1

k
, (4)
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and so (as k can be arbitrary large)

t ′(s ) = t ′′(s ) =⇒ t ′(s ′) = t ′′(s ′).

To show (4) take s = s0, . . . , sn = s ′ ∈ S satisfying Definition 1 (i) for ε = 1/k m+1

where m denotes the number of elements of A. Represent the simplex ∆A ⊂ [0, 1]m as
the union of k m cubes Pi such that any two probability vectors p , q ∈ Pi differ at most by
1/k on each coordinate, i.e. if p = (p 1, . . . , p m ) and q = (q 1, . . . ,q m ), then

�

�p j −q j
�

�≤ 1/k
for every j = 1, . . . , m .

We now pick a sequence s FIRST
0 , s LAST

0 , . . . , s FIRST
N , s LAST

N consisting of the elements
of the sequence s0, . . . , sn as follows. Take s FIRST

0 = s0, and then take any Pi 0 such that
f (s FIRST

0 ) ∈ Pi 0 ; let s LAST
0 be the last element of s0, . . . , sn with the property that f (s LAST

0 ) ∈
Pi 0 . Next, take as s FIRST

1 the successor of s LAST
0 in the sequence s0, . . . , sn , and take any

Pi 1 such that f (s FIRST
1 ) ∈ Pi 1 ; as in the first step, let s LAST

1 be the last element of s0, . . . , sn

with the property that f (s LAST
1 )∈ Pi 1 . Continue in this fashion until s FIRST

N , s LAST
N such that

s LAST
N = sn is defined.

If t ′(s ) = t ′′(s ), then, by Lemma 1,

�

�t ′(s ′)− t ′′(s ′)
�

�≤
N
∑

l=0

�

�

�

�

v
�

s LAST
l , ·

�

−v
�

s FIRST
l , ·

��

◦
�

f
�

s LAST
l

�

− f
�

s FIRST
l

��

�

�

�

+
N
∑

l=1

�

�

�

�

v
�

s FIRST
l , ·

�

−v
�

s LAST
l−1 , ·

��

◦
�

f
�

s FIRST
l

�

− f
�

s LAST
l−1

��

�

�

� .

By construction, f
�

s LAST
l

�

and f
�

s FIRST
l

�

differ at most by 1/k on each coordinate, and
so

N
∑

l=0

�

�

�

�

v
�

s LAST
l , ·

�

−v
�

s FIRST
l , ·

��

◦
�

f
�

s LAST
l

�

− f
�

s FIRST
l

��

�

�

�

≤
1

k

N
∑

l=0

m
∑

j=1

�

�

�v j

�

s LAST
l , ·

�

−v j

�

s FIRST
l , ·

�

�

�

�

≤
1

k

n
∑

i=1

m
∑

j=1

�

�v j (s i , ·)−v j (s i−1, ·)
�

�

≤
1

k

n
∑

i=1

dist(s i , s i−1)

≤
M

k
.

Since s LAST
j−1 and s FIRST

j are consecutive elements of the sequence s0, . . . , sn , the distance
between them does not exceed ε. By construction, N does not exceed the number of
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sets Pi . Therefore

N
∑

l=1

�

�

�

�

v
�

s FIRST
l , ·

�

−v
�

s LAST
l−1 , ·

��

◦
�

f
�

s FIRST
l

�

− f
�

s LAST
l−1

��

�

�

�

≤
N
∑

l=1

m
∑

j=1

�

�

�v j

�

s FIRST
l , ·

�

−v j

�

s LAST
l−1 , ·

�

�

�

�

≤ k mε

=
1

k
.

Thus,
�

�t ′(s ′)− t ′′(s ′)
�

�≤
M

k
+

1

k
. �

Recall that a homeomorphism of metric (or topological) spaces is a continuous one-
to-one and onto mapping whose inverse is also continuous. A subset J of a metric space
is called an arc if it is homeomorphic to the unit interval [0, 1], i.e. there exists a homeo-
morphism (parameterization) j : [0, 1]→ J . The length of an arc is defined to be

lim
n→∞

n
∑

i=1

dist(j (x n
i ), j (x n

i−1)), (5)

where 0= x n
0 < · · ·< x n

n = 1 and

max
i=1,...,n

�

�x n
i −x n

i−1

�

�→n→∞ 0,

provided that the limit (5) exists and is independent of the choice of x n
0 , . . . ,x n

n .
An arc is called smooth if there exists a differentiable parameterization j : [0, 1]→ J

whose derivatives are continuous. The length of any smooth arc is well-defined and
finite, but there exist arcs with well-defined and finite length that are not smooth. The-
orem 1 implies immediately the following corollary.

C 1. Suppose that F = ∆A for a finite set A. Every incentive compatible SCF
satisfies the revenue equivalence property whenever the type space S satisfies one of the
following conditions.

(i) Any pair of points s , s ′ ∈S can be connected by an arc of finite length.

(ii) Any pair of points s , s ′ ∈S can be connected by a smooth arc.

Since any pair of points of a connected open set U ⊂ RA can be connected by a
smooth arc, Corollary 1 yields the following result.

C 2. Suppose that F = ∆A for a finite set A, and the type space S ⊂ RA is a
connected open set, or it contains a connected, open, and dense set. Then every incentive
compatible SCF satisfies the revenue equivalence property.

Finally note that in the special case in which A consists of only two elements, con-
nectedness of the type space S is a sufficient condition for revenue equivalence.



Theoretical Economics 2 (2007) Revenue equivalence 477

P 1. Suppose that F =∆A for a two-element set A. If the type space S ⊂ RA is
connected, then every incentive compatible SCF satisfies the revenue equivalence property.

P. Let f : S→∆A be an incentive compatible SCF. Denote by p (s ) the probability
assigned by f (s ) to the first alternative. Let π : S→R be given by

∀s=(s 1,s 2) π(s ) = s 2− s 1.

Take any s , s ′ ∈S. Fix ε > 0. Suppose thatπ(s )≥π(s ′); the opposite case is analogous.
Since S is connected, so is π(S); take s = s0, . . . , sn = s ′ ∈S such that

π(s0)≥π(s1)≥ · · · ≥π(sn ) (6)

and
∀i=1,...,n π(s i )−π(s i−1)< ε.

By Lemma 1 (ii), for any transfer rules t ′ and t ′′ such that ( f , t ′) and ( f , t ′′) are incen-
tive compatible, if t ′(s ) = t ′′(s ) then

�

�t ′(s ′)− t ′′(s ′)
�

�≤
n
∑

i=1

[s i − s i−1] ◦
�

f (s i )− f (s i−1)
�

=
n
∑

i=1

[s i − s i−1] ◦
��

p (s i )−p (s i−1), p (s i−1)−p (s i )
��

=
n
∑

i=1

�

p (s i )−p (s i−1)
�

(π(s i−1)−π(s i )) (7)

By Lemma 1 (i),
[s i − s i−1]

�

f (s i )− f (s i−1)
�

≥ 0.

Thus by (6),
p (s0)≤ p (s1)≤ · · · ≤ p (sn ).

Therefore the expression (7) does not exceed

ε ·
n
∑

i=1

�

p (s i )−p (s i−1)
�

≤ ε
�

p (sn )−p (s0)
�

≤ ε.

Summarizing,
�

�t ′(s ′)− t ′′(s ′)
�

�< ε.

Since this inequality holds for every ε > 0, we obtain that t ′(s ′) = t ′′(s ′). �

Proposition 1 is of particular relevance to auctions with a single indivisible object.
In these auctions, for every typical bidder, there are only two payoff relevant outcomes:
whether she gets the object, or not. We show in Section 5.4 that Proposition 1 for many
agents follows fairly easily from the one-agent case. Hence revenue equivalence is guar-
anteed as long as every bidder’s type space is connected, which is weaker than the as-
sumption of Theorem 1.
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4. C   

The early literature on revenue equivalence is concerned with the uniqueness of Groves
mechanisms. The earliest paper we are aware of is Green and Laffont (1977), which
shows that for an arbitrary set of social alternatives F equipped with a topology, if the
type space S contains all continuous (or all u.s.c.) valuation functions, then all efficient
SCFs satisfy the revenue equivalence property.

Walker (1978) considers a set F that is a subset of an Euclidean space. He shows
that if (i) an efficient SCF f has a convex range, (ii) S contains only concave valuation
functions, and (iii) S is rich enough that for any a , a ′ ∈ A, and for any gradient, we can
find a valuation function in S that has this gradient at a , and is arbitrarily close to linear
between a and a ′, then the efficient SCF f satisfies the revenue equivalence property.
These two results take a form quite different from the results in the rest of the literature,
including ours (e.g. even the set of social alternatives is equipped with a topological or
linear structure that is not defined in terms of the basic primitives of the mechanism
design problem), and hence a direct comparison is difficult.

Holmström (1979) shows that for an arbitrary set F , if S is (piecewise) smoothly con-
nected with respect to an efficient SCF f , then the SCF f satisfies the revenue equiva-
lence property. He calls S smoothly connected with respect to f if, for any s , s ′ ∈ S, there
is an arc J in S, parameterized by j : [0, 1]→ J , such that j (0) = s , j (1) = s ′,

∂ v (j (y ), a )
∂ y

exists for all a and y , and there exists some finite K such that

�

�

�

�

∂ v (j (y ), a )
∂ y

�

�

�

�

≤ K

for all a ∈ f (J ) and y .
Notice that Holmström’s concern is the revenue equivalence property of specific

SCFs, and this explains why his condition is stated in terms of both the type space and
the SCF. A similar feature can be found in several subsequent results as well. For exam-
ple, Williams (1999) shows that for an arbitrary set F , for any incentive compatible SCF
f , if S is a connected open subset of the Euclidean space, and if v (s , f (s ′)) as a function
of (s , s ′) is differentiable at points that satisfy s = s ′, then the SCF f satisfies the revenue
equivalence property.5

The way we pose the revenue equivalence question in this paper is slightly different:
we ask when it is the case that all incentive compatible SCFs satisfy the revenue equiv-
alence property. This way of posing the question is motivated more by the mechanism
design literature. If we require the assumptions of Holmström or Williams to hold for all
incentive compatible SCFs simultaneously, then their results follow from the first part
of our Corollary 2 (assuming, of course, that F =∆A for a finite set A).

5Although Williams states his result only for efficient SCFs, his proof does not rely on efficiency, and
hence we state his result in this more general way.



Theoretical Economics 2 (2007) Revenue equivalence 479

In the mechanism design literature, economists usually find it convenient to work
with a type space where all incentive compatible SCFs satisfy the revenue equivalence
property. In auction settings, Myerson (1981), and subsequently Jehiel et al. (1999), show
that when F = ∆A with A finite, if S is a “rectangular” subset of RA , then all incentive
compatible SCFs satisfy the revenue equivalence property. Their results follow immedi-
ately from our Theorem 1.

Two other papers provide results similar to our Theorem 1. Krishna and Maenner
show the following result (see their Proposition 1).

T 2 (Krishna and Maenner 2001). Suppose that S is an open and convex subset
of Rn , and for every social alternative a , the function v is convex with respect to s . Then
every incentive compatible SCF satisfies the revenue equivalence property.6

This theorem follows from our Theorem 1 when the set of social alternatives is a
subset of ∆A for a finite set A. Indeed, it is easy to see that it suffices to derive their
result from Theorem 1 when S is an open interval. If, however, S is an open interval,
then any convex real-valued function defined on S is continuous; moreover, it satisfies
the Lipschitz condition on every closed interval R ⊂S, i.e.

∀a∈F ∃M>0 ∀s ,s ′∈R |v (s , a )−v (s ′, a )| ≤M · |s − s ′|.

Thus the sufficient condition in Theorem 1 is satisfied when S is an open interval and
the function v is convex with respect to s .

Milgrom and Segal show the following result (see their Corollary 1).

T 3 (Milgrom and Segal 2002). Suppose that S = [0, 1]; suppose further that the
function v is differentiable and absolutely continuous in s for every social alternative a ,
and that

sup
a∈A

�

�

�

�

∂ v

∂ s
(s , a )

�

�

�

�

(8)

is integrable on [0, 1]. Then every incentive compatible SCF satisfies the revenue equiva-
lence property.7

This theorem follows immediately from our Theorem 1 when the set of social alter-
natives is a subset of∆A for a finite set A. To see this, observe that the integrability of the
function given by (8) implies the integrability of (∂ v /∂ s )(s , a ) for every social alternative
a , which in turn implies that any pair of points in S can be connected by an arc of finite
length.8

6Krishna and Maenner do not explicitly assume in their Proposition 1 that S is open, but it is clear from
their proof that they make this assumption. Actually, their result fails when S is not open; an example is
available in a supplementary file on the journal website, http://econtheory.org/supp/277/supplement.pdf.

7Milgrom and Segal allow for other than quasi-linear utility specifications; here, we formulate their the-
orem only for quasi-linear utilities.

8In their footnote 10, Milgrom and Segal point out that the integrability assumption can be somewhat
relaxed for quasi-linear utilities. One can easily show that their weaker assumption is also stronger than
our sufficient condition in Theorem 1.

http://econtheory.org/supp/277/supplement.pdf
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On the other hand, we assume in Theorem 1 that the set of social alternatives is a
subset of∆A for a finite set A; both Krishna and Maenner and Milgrom and Segal do not
make any assumptions on the set of social alternatives. These two papers also prove a
formula for indirect utilities; namely, for a fixed s ′ ∈S, we have

∀s∈S V (s ) =V (s ′)+

∫

∂ v

∂ t
(t , f (t ))d t ,

where the integration takes places over an arc joining s and s ′.

5. C 

5.1 A discussion of the sufficient condition in Theorem 1

The sufficient condition in Theorem 1 is not necessary for the revenue equivalence
property (even in the realm of connected type spaces). Let S1 be the segment {(x , y ) ∈
R2 : x = 0 and −1≤ y ≤ 1}, and S2 be the graph of the function h : (0, 1]→R given by

h(x ) = sin
1

x
;

further let S = S1 ∪S2. It can be shown that S is not boundedly gridwise connected; yet
every incentive compatible SCF f : S→∆A, when F =∆A for a finite set A, satisfies the
revenue equivalence property.

We do not know if there exist connected type spaces S without the revenue equiva-
lence property. It can be shown that if a type space S does not have the revenue equiv-
alence property, then it contains a subspace S′ ⊂ S that is not boundedly gridwise con-
nected between any pair of points s , s ′ ∈ S′; the graphs of continuous but nowhere
differentiable functions (see, for instance, Billingsley 1982), and some straightforward
modifications thereof, are the only examples of connected spaces with this property of
which we are aware.

5.2 Arbitrary sets of alternatives

We know rather little about any sufficient (and “close” to necessary) conditions for rev-
enue equivalence when A is an arbitrary set of social alternatives. On the one hand,
Krishna and Maenner (2001) as well as Milgrom and Segal (2002) provide some suffi-
cient conditions, but their conditions are driven by a particular method of proving the
revenue equivalence theorem, and we have rather little sense if they are close to neces-
sary conditions. On the other hand, Holmström (1979) and Ely (2001) give an example in
which revenue equivalence fails; in their example, S = A = [0, 1], v (s , a ) is a continuous
(and piecewise linear) function, and the type space equipped with the distance given by
formula (1) is boundedly gridwise connected.

5.3 A two-step approach to optimal mechanism design

In the literature on mechanism design, the environment is often deliberately set up so
that all incentive compatible SCFs satisfy the revenue equivalence property. This al-
lows us to decompose the procedure of finding the optimal mechanism into two steps:
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In step 1, we look for the cheapest (from the mechanism designer’s perspective) mech-
anisms implementing incentive compatible SCFs by shifting the transfer rule upwards
until the individual rationality constraints bind. In step 2, we maximize over all incentive
compatible SCFs, taking into account the implementation costs. Revenue equivalence
guarantees that step 1 can be done independently of the principal’s beliefs over the type
space, her risk preferences, etc.; this is so because all transfer rules are linearly ranked.

The following proposition says that the two-step approach does not lose much of its
applicability even when revenue equivalence fails. To state the result we need to define
individual rationality. Let r : S → R be the agent’s state-dependent reservation utility
function. An incentive-compatible mechanism ( f , t ) is individually rational if

∀s∈S v (s , f (s ))− t (s )≥ r (s ).

P 2. For every incentive compatible SCF f , there exists a unique cheapest
(from the mechanism designer’s perspective) individually rational mechanism ( f , t ∗), in
the sense that for any individually rational mechanism ( f , t ), we have t ∗(s ) ≥ t (s ) for
every s ∈S.

P. Let

∀s∈S t ∗(s ) = sup{t (s ) : ( f , t ) is incentive compatible and individually rational}.

If ( f , t ∗)were not incentive compatible, then there would exist s , s ′ ∈S such that

v (s , f (s ))− t ∗(s )< v (s , f (s ′))− t ∗(s ′).

Therefore, by the definition of t ∗, there would exist also an incentive compatible mech-
anism ( f , t ) such that

v (s , f (s ))− t (s )< v (s , f (s ′))− t ∗(s ′),

but, again by the definition of t ∗,

v (s , f (s ′))− t ∗(s ′)≤ v (s , f (s ′))− t (s ′),

which contradicts the incentive compatibility of ( f , t ). �

5.4 Many agents

Throughout this paper we have considered a single agent. Notice, however, that all our
results extend easily to the case of more agents, as follows. Consider n agents; each agent
i learns a signal s i ∈ Si . Agent i has a state-dependent utility function over alternatives
vi : S×A→ R , where S =S1× · · ·×Sn , and a quasi-linear utility with respect to transfers.
Suppose that there is a single common prior probability distribution over types.9 Given
any type s i ∈Si , the expected value of the function vi over the opponents’ signal profiles
s−i ∈ S−i maps A into R , so that each type s i can be identified with an element of the
space RA .

9The assumption of a common prior is obviously restrictive.



482 Chung and Olszewski Theoretical Economics 2 (2007)

Now, given any condition on the single-agent type space that guarantees revenue
equivalence (in the case of a single agent), we obtain a condition for revenue equiva-
lence in the case of many agents by requiring the single-agent condition to be satisfied
for every agent i = 1, . . . , n when we use the expected values of vi to identify types s i with
elements of RA .

This extension of our results does, however, have a limitation, which may not be
immediately apparent. Recall that in the single-agent case we define SCFs and transfer
rules as mappings of the reported type s , and all our results should be read with these
definitions in mind. For multi-agent extensions, these definitions imply that, given
truthful reporting by the other agents, the action expected by player i and her expected
transfer can depend only on the type reported by player i , but not on her actual type.
This condition is immediately satisfied when types are independent, but is typically vi-
olated when types are correlated across agents.

We do not differ here from the existing literature, which (like Milgrom and Segal
2002) restricts attention to the single-agent case, or (like Krishna and Maenner 2001)
treats the many-agent case in a similar manner to the present paper. In particular, our
extension of Theorem 1 to many agents still generalizes the many-agent version of the
theorem from Krishna and Maenner quoted in Section 4 when F =∆A for a finite set A.

A: L-   

Consider now the case when F = A is finite. Our result in this section provides a nec-
essary and sufficient condition on the type space that guarantees that every incentive
compatible SCF satisfies the revenue equivalence property. If the set A is infinite, but
has cardinality lower than continuum, our theorem provides only a sufficient condition.
Recall that a topological space S is connected if it cannot be represented as the union of
two disjoint, non-empty open sets. Our sufficient (and necessary) condition says that S
cannot be represented as the union of two disjoint, non-empty open sets of a particu-
lar form. To state our theorem precisely we need some notation. Given a pair B1, B2 of
disjoint subsets of A and a function r : B1 ∪ B2→R , let, for every ε > 0,

V1(ε) =
⋃

b1∈B1

�

s ∈S :∀b2∈B2 v (s ,b1)−v (s ,b2)> r (b1)− r (b2)+ ε
	

and
V2(ε) =

⋃

b2∈B2

�

s ∈S :∀b1∈B1 v (s ,b1)−v (s ,b2)< r (b1)− r (b2)− ε
	

.

Let also
V1 =

⋃

ε>0

V1(ε) and V2 =
⋃

ε>0

V2(ε).

Notice that, given B1, B2 ⊂ A, r : B1 ∪ B2 → R , and ε > 0, the sets V1(ε) and V2(ε), as
well as V1 and V2, are disjoint. Notice also that the sets V1 and V2 are open. Indeed, if
s ∈ Vi (ε) for some ε > 0, then it is easy to see that

⋃

ε>0 Vi (ε) contains the ball around s
with radius ε/3 in the metric given by (1). If the set A is finite, then also the sets V1(ε) and
V2(ε) are open.
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T 4. (i) Suppose that the set F = A is finite. Then every incentive compatible SCF
satisfies the revenue equivalence property if and only if there exist no disjoint sets
B1, B2  A, a function r : B1 ∪ B2 → R, and ε > 0 such that S ⊂ V1(ε)∪V2(ε) and
V1(ε)∩S 6=∅ 6=V2(ε)∩S.

(ii) Suppose that the set F = A has cardinality lower than the continuum (but need not
be finite). If there exist no disjoint sets B1, B2  A, and a function r : B1 ∪ B2 → R
such that S ⊂ V1 ∪V2 and V1 ∩S 6= ∅ 6= V2 ∩S, then every incentive compatible SCF
satisfies the revenue equivalence property.

P. (i, =⇒): To the contrary suppose there exist B1, B2  A, r : B1 ∪ B2 → R , and
ε > 0 with the properties specified in the theorem. Define an SCF f : S→ A by

f (s ) = arg max
a∈B1∪B2

[v (s , a )− r (a )]; (9)

take any a ∈ B1 ∪ B2 that maximizes [v (s , a )− r (a )] in the case of multiplicity. Define
also a transfer rule t : S→R by

t (s ) = r (a ) if f (s ) = a .

By definition, ( f , t ) is an incentive compatible mechanism.
Now define t ′ : S→R by

t ′(s ) =

(

t (s )+ ε/2 if s ∈V1(ε)

t (s )− ε/2 if s ∈V2(ε).
(10)

Since S ⊂ V1(ε) ∪ V2(ε) and V1(ε) ∩ V2(ε) = ∅, the transfer rule t ′ is well-defined; since
V1(ε) ∩S 6= ∅ 6= V2(ε) ∩S, the difference t − t ′ is not a constant function. It remains to
show that ( f , t ′) is an incentive compatible mechanism, which reduces to showing that
the agent of any type s ∈V1(ε) cannot profitably deviate by reporting a type s ′ ∈V2(ε).

By definition, s ∈V1(ε) implies that

∃b1∈B1 ∀b2∈B2 v (s ,b1)−v (s ,b2)> r (b1)− r (b2)+ ε,

i.e. the agent prefers by at least ε some alternative b1 ∈ B1 and the transfer r (b1) to any
alternative b2 ∈ B2 and the transfer r (b2); in particular, f (s )∈ B1. By a similar argument,
s ′ ∈ V2(ε) implies that f (s ′) ∈ B2. The two arguments together imply that the agent of
any type s ∈ V1 prefers the alternative f (s ) and the transfer t ′(s ) to the alternative f (s ′)
and the transfer t ′(s ′).

(i,⇐=): Suppose that there exist incentive compatible mechanisms ( f , t ) and ( f , t ′)
such that the difference t − t ′ is not a constant function. Let

S(a ) = f −1(a )

for a ∈ A. Notice that t , t ′, and so t −t ′, are constant functions on every S(a ), as for every
s ∈ S(a ) the agent has an incentive to report the element of S(a ) that minimizes t or t ′.
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Thus, t −t ′ takes only a finite number of values, and so there exists a real number (say r )
and ε > 0 such that the values of t − t ′ belong to the union of two intervals, (−∞, r −2ε)
and (r + ε,∞), and each interval contains at least one value.

Denote by B1 the set of all alternatives b1 such that (t − t ′)(s ) ∈ (−∞, r − 2ε) for
s ∈ S(b1), and by B2 the set of all alternatives b2 such that (t − t ′)(s ) ∈ (r + ε,∞) for
s ∈S(b2). Note that B1∪B2 is equal to the range of f , which obviously need not be equal
to the entire A. Define, finally,

∀b1∈B1 r (b1) = t (s )+ ε, where s ∈S(b1)

∀b2∈B2 r (b2) = t (s )− ε, where s ∈S(b2).

Picking B1, B2, r : B1 ∪ B2 → R and ε > 0, we have defined the sets V1(ε) and V2(ε). We
now show that

⋃

b1∈B1

S(b1)⊂V1(ε) and
⋃

b2∈B2

S(b2)⊂V2(ε),

which obviously implies that S ⊂V1(ε)∪V2(ε) and V1(ε)∩S 6=∅ 6=V2(ε)∩S.
Consider s1 ∈S(b1)where b1 ∈ B1. Then, by incentive compatibility,

∀b2∈B2 ∀s2∈S(b2) v (s1,b1)− t ′(s1)≥ v (s1,b2)− t ′(s2),

or
v (s1,b2)−v (s1,b1)≤ t ′(s2)− t ′(s1).

By definition, (t − t ′)(s1)< r −2ε and (t − t ′)(s2)> r +ε, and the three inequalities imply
that

v (s1,b2)−v (s1,b1)< t (s2)− t (s1)−3ε.

Since r (b1) = t (s1) + ε for every s1 ∈ S(b1), and r (b2) = t (s2)− ε for every s2 ∈ S(b2)
where b2 ∈ B2, we obtain

v (s1,b2)−v (s1,b1)< r (b2)− r (b1)− ε,

or
∀b2∈B2 v (s1,b1)− r (b1)> v (s1,b2)− r (b2)+ ε, (11)

which means that s1 ∈V1(ε).
Now consider s2 ∈S(b2)where b2 ∈ B2. Then, by incentive compatibility,

∀b1∈B1 ∀s1∈S(b1) v (s2,b2)− t (s2)≥ v (s2,b1)− t (s1). (12)

The left-hand side of this inequality is equal to

v (s2,b2)− t (s2) = v (s2,b2)− r (b2)− ε

and the right-hand side is equal to

v (s2,b1)− t (s2) = v (s2,b1)− r (b1)+ ε > v (s2,b1)− r (b1).
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Thus, inequality (12) implies that

∀b1∈B1 v (s2,b2)− r (b2)> v (s2,b1)− r (b1)+ ε, (13)

which means that s2 ∈V2(ε).
(ii) Suppose that there exist incentive compatible mechanisms ( f , t ) and ( f , t ′) such

that the difference t − t ′ is not a constant function. Let

S(a ) = f −1(a )

for a ∈ A. By an argument similar to (i,⇐=), there exists a real number (say r ) such that
the values of t − t ′ belong to the union of two intervals, (−∞, r ) and (r,∞), and each of
the two intervals contains at least one value.

Denote by B1 the set of all alternatives b1 such that (t − t ′)(s ) ∈ (−∞, r ) for s ∈S(b1),
and by B2 the set of all alternatives b2 such that (t − t ′)(s )∈ (r,∞) for s ∈S(b2). For every
b1 ∈ B1 take any ε > 0 such that 2ε < r − (t − t ′)(s ) for s ∈S(b1), and define

r (b1) = t (s )+ ε.

Similarly, for every b2 ∈ B2 take any ε > 0 such that ε < (t − t ′)(s )− r for s ∈ S(b2), and
define

r (b2) = t (s )− ε.

By an argument similar to (i,⇐=), if s1 ∈S(b1)where b1 ∈ B1 then (11) holds for ε corre-
sponding to b1; and if s2 ∈S(b2)where b2 ∈ B2 then (13) holds for ε corresponding to b2.
This yields

⋃

b1∈B1

S(b1)⊂V1 and
⋃

b2∈B2

S(b2)⊂V2,

which in turn yields S ⊂V1 ∪V2 and V1 ∩S 6=∅ 6=V2 ∩S. �

R. The sufficient condition in part (ii) is stronger (for infinite sets A) than the
necessary and sufficient condition in part (i), and part (ii) (for infinite A) does not hold
under the weaker condition in (i).

There are several problems with modifying the proof of (i, =⇒) to obtain the con-
verse of (ii). First, formula (9) does not define a SCF as there may be no a ∈ B1 ∪ B2 that
maximizes [v (s , a )− r (a )]. But even if such an a exists for every s , formula (10) does not
typically yield a t ′ such that ( f , t ′) is incentive compatible (no matter what ε we pick),
unless we assume the stronger condition in (i) instead of that in (ii). That formula does
not guarantee that the agent of type s ∈Vi cannot profitably deviate by reporting another
type s ′ that belongs to the same Vi .

We suspect that the necessary and sufficient condition for infinite A has to be much
more complicated than the condition in Theorem 4.

The following argument demonstrates that the necessary and sufficient condition
in Theorem 4 can be easily verified for the mechanism design problem described in
Example 1 (and in practice, for all mechanism design problems with only two social
alternatives).
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E  . The condition in Theorem 4 is violated if there exist disjoint sets
B1, B2  A, a function r : B1∪B2→R , and ε > 0 such that S ⊂V1(ε)∪V2(ε) and V1(ε)∩S 6=
∅ 6= V2(ε) ∩S. Any such sets B1, B2 must be singletons. Therefore, letting B1 = {b1},
B2 = {b2}, and r = r (b1)− r (b2),

V1(ε) = {(v1, v2) : v1−v2 > r + ε}

and
V2(ε) = {(v1, v2) : v1−v2 < r − ε}.

That is, V1(ε) consists of points lying below an ε-neighborhood of some line L whose
slope is 1, and V2(ε) consists of points lying above an ε-neighborhood of the line L. It
remains to observe, which is a simple geometric exercise, that such a line L does not
exist for the set S in Example 1. However, if we slightly modify Example 1 so that the cost
of performing task 2 is c2 = 2d +d ·p , then such a line L exists. ◊

Theorem 4 yields the following corollary.

C 3. Suppose A is a set of cardinality lower than the continuum. If S is a con-
nected subset of RA , then every incentive compatible SCF f : S → A satisfies the revenue
equivalence property.
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