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A bstract

In this paper the class of fuzzy clan games i1s introduced. The cores of such games have an interesting shape
which inspires to define a class of compensation-sharing rules that are additive and stable on the cone of fuzzy
clan games. Further, the notion of bi-monotonic participation allocation scheme (bi-pamas) 1s introduced and
it turns out that each core element of a fuzzy clan game 1s extendable to a bi-pamas.
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1. Introduction

Cooperative games with fuzzy coalitions are introduced in [1]. Such games are helptul for
approaching sharing problems arising from economic situations, where agents have the possibil-
ity to cooperate with different participation levels, varying from non-cooperation to tull cooperation,
and where the obtained reward depends on the levels of participation. A tuzzy coalition describes
the participation levels to which each player 1s involved in cooperation. Classical cooperative games,
which model situations, where agents are either tully involved or not involved at all in cooperation
with some other agents, can then be seen as a simpliied version of games with fuzzy coalitions.
In the pioneering work of Aubin the focus was on the core of cooperative fuzzy games and on
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the Shapley value. Since 1974, much research has been done in the field of cooperative games with
fuzzy coalitions. For a survey, the reader 1s referred to Nishizaki and Sakawa [10]. As in the classical
cooperative game theory, some classes of games with fuzzy coalitions deserve special attention. The
class of convex fuzzy games is introduced in [2] together with the notion of participation monotonic
scheme (pamas), the existence of which is assured by the convexity of the game. Some additive
and monotonic rules on the convex cone of convex fuzzy games are also considered (Proposition &,
in [2]). In the classical cooperative game theory extensive attention is paid to monotonicity proper-
ties of solution concepts (see [4.8,13,18-20]). Additivity of rules on specific cones of cooperative
TU-games is also an important research topic (see [3.6,12,15]).

In this paper, we introduce a new class of games partly with fuzzy coalitions, namely, the class
of fuzzy clan games (and its subclass of tuzzy big boss games), and focus on the core and bi-
Monotonic allocation schemes and rules. Inspired by Branzei et al. [4] and Voorneveld et al.
[19] who consider the notion of bi-monotonic allocation scheme (bi-mas) for classical total big
boss and total clan games, respectively, we introduce here for fuzzy clan games, the notion of
bi-monotonic participation allocation scheme (bi-pamas). Big boss games and clan games are intro-
duced in classical cooperative game theory by Muto et al. [9] and Potters et al. [11], respectively; see
also [14].

The outline of the rest of the paper is as follows: In Section 2 we briefly recall some notions and
facts from the theory of games with fuzzy coalitions. The notion of fuzzy clan game is introduced
and exemplified in Section 3. Further, in Section 4, the cores of a fuzzy clan game (and a fuzzy big
boss game, respectively) and its restricted games are explicitly described and the geometrical shape
of the core is discussed. Compensation-sharing rules and the notion ot bi-participation monotonic
allocation scheme (bi-pamas) are introduced in Section 5. It turns out that each compensation-sharing
rule is additive, stable and generates for each game a bi-pamas, and each core element of a fuzzy
clan game is bi-pamas extendable. We conclude with some final remarks in Section 6.

2. Preliminaries on games with fuzzy coalitions

et V=15t n} be a finite set of players. A fuzzy coalition on N oisiarveelor 5§ = (81, o, $ )
in [0,1]", where the ith coordinate s; is referred to as the participation level of player 7 in the
fuzzy coalition s. The set of fuzzy coalitions on N is denoted by [0, 11V and also by Z#". A crisp
coalition S €2V corresponds in a canonical way to the fuzzy coalition eS, where e® € F" is the
vector with (¢®), =1 if i€ S, and (%), =0 if ie N\S. The fuzzy coalition ¢” corresponds to the
situation where the players in S fully cooperate (i.e. they have participation level 1) and the players
outside S are not involved in cooperation at all (i.e. they have participation level 0). Instead of el’)
we often write e¢'. The fuzzy coalition 0= (0,.... 0) is called the“empty” fuzzy coalition and the
fuzzy coalition e” =(1,..., 1) is called the “grand” coalition. For 5.7 € Z" we use the notation s <7
iff s;<t for each i €N; we say that s is (weakly) smaller than ¢, or, equivalently, that r 1s larger
than s with respect to participation levels.

A cooperative fuzzy game with player set N is a function v FN 5 R, with v(0)=0, assigning to
each fuzzy coalition a real number telling what such a coalition can achieve in cooperation. The set
of games with fuzzy coalitions on N 1s an infinite dimensional linear space that we denote by EGY.
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The core [1] of a fuzzy game v 1s defined by

Core(v) = {x € R” Z x;i = v(e" ).Z s;x; = v(s) for each s € F"

iEN 1EN

Here ) .., six; is the inner product of s and x, denoted by sx in the following.

For each fuzzy game v we define its corresponding crisp game w:2¥ = R by w(S)=1uv(e’) for
each S €2V,

In [2] the notion of t-restricted game of v 1s introduced, which plays a role, similar to that of a
subgame of a crisp game (see Remark 4 in [2]).

Let € FGV and r€ Z". In what follows for each r€ #Z" we denote the set {ze N|ti>0} by
car(t). The r-restricted mme of v with player set N is the game v, with v,: #Z" — R given by

v(s)=uv(t *xs) for all s€ ZFV, where t xs=(ts),..., 1,5, ) 18 the coordinate-wise product of ¢ and s.
Note that s+ ¢ * s maps Z" in the set of fuzzy coalitions not bigger than . When r=¢’ and
s=e5 we obtain v,r(e5)=0(e>"7). This implies that the restriction of cr(v,r):2¥ =R to 27 is
the subgame of ¢r(v) with player set 7. Moreover, in v,r for each player i € N\T the null-player
property v,r(s + ¢e')=ruv,r(s) holds for all s€.#" and for all ¢ € [0,1 — s;]. For each core element
x € Core(v,) we have x; =0 for each k &€ car(r) (see Remark 5 1n [2]).

By means of restricted games Branzei et al. [2] have extended the notion of population mono-
tonic allocation scheme (pmas) for cooperative crisp games [13] to that of participation monotonic
allocation scheme (pamas) in the context of cooperative fuzzy games. Convexity of the fuzzy game
(and 1ts restricted games) 1s a sufficient condition for the existence of a pamas.

3. The cone of fuzzy clan games

There are various economic situations, where the group of agents involved consists of two sub-
groups with different status: a “clan” whose members can “manage” the situation, and a set of
available agents willing to join the clan. However, the non-clan members are completely dependent
on the collective of clan members, in the sense that, a coalition never can obtain a positive reward 1f
not all clan members are present in the coalition. Such situations are modeled in the classical theory
of cooperative games with transferable utility by means of (total) clan games, where only the full
cooperation and non-cooperation at all of non-clan members with the clan are taken into account.
Here, we take over this simplifying assumption and allow non-clan members to cooperate with all
clan members and some other non-clan members to a certain extent. As a result the notion of fuzzy
clan game 1s introduced.

Let: N =41,..., n} be a finite set of players. We denote the non-empty set of clan members by C,
and treat clan members as crisp players. In the following we denote the set of crisp subcoalitions
of C by {0,1}€, the set of fuzzy coalitions on N\C by [0, 1]¥\C (equivalent to #V\%), and denote
[0, 1T¥\€ x {0,1}€ by FY. For each s€ F[, sy\c and s¢ will denote its restriction to N\C and C,
respectively. We denote the vector (e" )¢ by 1¢ in the following. Further, we denote by F{‘; the set

[0, 11\ x {1¢} of fuzzy coalitions on N, where all clan members have full participation level, and
where the participation level of non-clan members may vary between 0 and 1.
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In this section fuzzy clan games are defined using veto power of clan members, monotonicity,
and a so-called decreasing average marginal return property (DAMR-property). The DAMR-property
takes over for fuzzy clan games, the role which the total concavity (TC) property has for crisp clan
games. Specifically, the DAMR-property reflects the fact that an increase in the participation level of
a non-clan member, in growing coalitions containing at least all clan members with full participation
level, results in a decrease of the average marginal return of that player.

Formally, a game v: Z~ — R is a fuzzy clan game if v satisfies the following three properties:

(1) (veto-power of clan members) v(s)=0 1f s¢ # l¢:
(ii) (Monotonicity) v(s)<u(r) for all s,r€ Z~ with s<t;
(iii) (DAMR-property) for each i€ N\C, all s'.s°€ #" and all ¢.6 >0 such that s' <s° and
0<s' —¢ge'<s* — ere' we have

—1l7..7.] T L P U % ol 2 )
7 (U8 ) =S —'¢€1€)) =& "(U(S ) — v(S° — &€ )).

Property (1) expresses the fact that the full participation level of all clan members 1s a necessary
condition for generating a positive reward for coalitions.

Fuzzy clan games for which the clan consists of a single player are called fuzzy big boss games.
with the single clan member as the big boss.

As an introduction we give two examples of interactive situations, one of them leading to a fuzzy
clan game, but the other one not.

Example 1 (A production situation with owners and gradually available workers). Let N\C ={1.....

b G ={m-+t1s..... n}. Let £:[0,1]¥\“ = R be a monotonic non-decreasing function with f(0)=0
and with the decreasing average marginal return property. Then ¢:[0.1]V\C x {0.1}¢ S R
dehned! by o(s)=90 1f sc#* lc and v(s)= (51,5253 s, ) otherwise, 1s a fuzzy clan game with
clan C.

One can think of a production situation, where the clan members are providers of different (com-
plementary ) essential tools needed for the production and the production function measures the gains
if all clan members are cooperating with the set of workers N\C (ct. [5,11]), where each worker i
can participate at level s; which may vary from lack of participation to full participation.

Example 2 (A fuzzy voting situation with a fixed group with veto-power). Let N and C be as 1n
Example 1, and 0 <k <|N\C|. Let v:[0,1]V\€ x {0,1}¢ = R with

() otherwise.

Then v has the veto-power property for members in C and the monotonicity property, but not the
DAMR-property with respect to members of N\C, hence it 1s not a fuzzy clan game. This game can
be seen as arising from a voting situation, where to pass the bill all members of C' have to (fully)
agree and the sum of the support levels ZIEN\C' s; of N\C should exceed a fixed threshold &, where
s;=1 (5;, =0) correspond to full support (no support) of the bill, but also partial supports count.
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In the following the set of all fuzzy clan games with a fixed non-empty set of players N and
a fixed clan C is denoted by FCGY. We notice that FCG) is a convex cone in FG", that is for

all v,we FCG} and p,ge R, pv+ qwe FCG., where R, denotes the set of non-negative real
numbers.

Now, we show that for each game v € FCG, the corresponding crisp game w is a total clan game
if |C|>2, and a total big boss game if |C|=1.

Let v € FCG, . The corresponding crisp game w has the following properties which follow straight-
forwardly from the properties of v

(VY w(S)=011"C'& S:
(M) w(S)Ys<sw(T") ftor'all S;: 7 with- S'C T N
(TC) for all §,T with CCSCT and each i e S\C,

w(S) — w(S\{i}) = w(T)—w(T\{i}).

Here (TC) stands for the total concavity property expressing the fact that the marginal contribution
of each non-clan member 1s (weakly) greater in smaller coalitions which contain all clan members.

So, w is a total clan game in the terminology of Voorneveld et al. [19] if |[C|>=2, and a total big
boss game in the terminology of Branzei et al. [4] if |C|=1.

Fuzzy clan games can be seen as an extension of crisp clan games, in what concerns the possibili-
ties of cooperation available for non-clan members. Specifically, in a fuzzy clan game each non-clan
member can be involved in cooperation at each extent between 0 and 1, whereas in a crisp clan
game a non-clan member can only be or not a member ot a (crisp) coalition containing all clan
members.

In the following we consider z-restricted games corresponding to a fuzzy clan game and prove,
in Proposition 1, that these games are also fuzzy clan games.

Let v € FCGY and re #, . Recall that the r-restricted game v, of v with respect to ¢ is given by

v/(s)=uv(t *s) for each s € F~ .

Proposition 1. Let v, be the t-restricted game of v € FCG}, with reff:’i. Then v, € FCG.

Proof. First, note that for each s € fc} with s¢c # 1 we have (tx5)c # l¢, and then the veto-power
property of ¢ implies v,(s)=10v(r * s)=0. To prove the monotonicity property, let s' s> € Z~ with
s' <% Then v,(s')=0v(t*s")<v(r *5%)=v,(s*), where the inequality follows from the monotonicity
of v. Now, we focus on the DAMR-property. Let i€ N\C, s'.s*€ #", and let & >0, & >0 such

B

that s' <s® and 0<s! — g1e' <s° — &,€'. Then
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where the nequality follows from the DAMR-property of v. [C

For each ie N\C, x€[0,1] and r € Z2, let (' || x) be the element in Z7 such that (7' ||x), =1
for each j € N\{i} and (¢~ || x); = x. The function v: [0, 1]¥\€ x {0, 1}¢ =R is called coordinate-wise
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concave regarding non-clan members 1f tor each i € N\ C the function ¢, : [0, 1] = R with ¢g,-i(x) =
v(r~"||x) for each x€[0,1] 1s a concave function. Intuitively, this means that the function v is
concave in each coordinate corresponding to (the participation level of) a non-clan member when
all the other coordinates are kept fixed. Recall that a function / :[0.1]— R 1s concave if for all
a,b, o€[0,1] 1t holds f(aa 4+ (1 —a)b)=Zaf(a)+ (1 —a)f(D).

The function ¢:[0,1]¥\¢ x {0,1}¢ = R is said to have the submodularity property on [0, 1]V\¢
if e(sV1)+ v(sAt)<e(s) + o(r) for all s,r€ #", where sVt and sAt are those elements of
[0.1]¥\C x {1} with the ith coordinate equal, for each i€ N\C, to max{s;.;} and min{s.z]}.
respectively.

(The operations V and A play a similar role for fuzzy coalitions as the union and intersection tor
crisp coalitions.)

Remark 1. The DAMR-property implies two important properties of v, namely coordinate-wise con-
cavity and submodularity. Note that the coordinate-wise concavity follows straighttorwardly trom
the DAMR-property of v. The proof of the submodularity follows the same line as in the proof of
Theorem 6 1n (2], where 1t 1s shown that the IAMR-property implies supermodularity.

Let ©>0 and let s€ Z/. For each i € N\C we denote by D,v(s) the ith left derivative of ¢ in s
If 5;,>0, and the ith right derivative of v in s 1f 5, =0, 1.e.

D:v(s) = lim ¢ ' (v(s) — v(s — ¢g€')) if S;. > )

g—>()

and
1:1(8) = lin‘fl} :;_I(t'(.ﬂ; +¢ee')—uv(s)) If s; =0.

It 1s well known that for a concave real-valued function each tangent line to the graph lies above
the graph of the function. Based on this property we state

Lemma 1. Ler v€ FCG), t € 5‘7,': and i € N\C. Then for s; €[0,1,]
vt " || t;)—o(t " || si) = (t; — s;)Djo(t).

Proof. Applying the coordinate-wise concavity of ¢ and the property of tangent lines to the graph
of g—;, in (t;,g—;(t;)) one obtains

v(r™" || ;) — (t; — s;)Djv(t) = v(t™" || s;).

4. The core of fuzzy clan games

The main aim of this section 1s to provide an explicit description of the core of a fuzzy clan
game and give some insight into its geometrical shape. We start with a lemma.
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Lemma 2. Let v€ FCGp and let s€ #, . Then

o) =u(s) = Y (1 =s)Div(e").

(EN\C
Proof. Suppose that |N\C\-—m and denote N\C=4{1,2,..., mit. € = £l m + 2 ..... n} Let
a’,a',. .., g™ ek b D h" be the sequences of fuzzy coalitions on N Qwen by (I —edl —e=
N gl l(I—c,;‘) ek, b"=eV —(1—s,)e" for each r € e m}. Note that a” —*:EJ', , and a" v b =

e",.a" ' Nbf =a" for each re{l1,2,...,m}. Then

m m

o) —v(s) = ) _(o(d™")—u(a")) > Z( (&) = u(d")), (1)
=]
where the inequality follows from the submodularity property of v applied for each r€{1,2,..., m}.
Now for each r€{1,2,...,m} we have by Lemma |

D.(e") € (1 =5,.) (v(e") — v(e" = (1 =s;))),
thus obtaining

(e’ )— o) =v(e")—v(e" — (1 —s,.)¢) = (1 —s.)Dv(e). (2)

Now we combine (1) and (2). [

Theorem 1. Letr v be an element of FCG&'Y'. Then

(i) Core(v)={xeR"|Y"  xi=v(e"), 0<x;<D;v(e") for each i € N\C, 0<x; for each i€ C}, if
ICl> I
(ii) Core(v)={xeR"| > i xi=v(e"), 0<x;<Djv(e"’) for each ieN\{n}, v(e")<x,}, if
=10

Proof. We only prove (1).
(a) Let x € Core(v). Then x; =e'x=>v(e')=0 foreach i€ N and ), x; = v(e™ ). Further, for each
i € N\C and each ¢€(0,1) we have

3 e — ::_'(e'f.t — (e"\r —¢ge' )x) < _l( O e ) — U it ) ).

We use now the monotonicity propertv and the coordinate-wise concavity pmperty of v obtammu
that lim,_0 & ' (v(e") — v(e" — ee')) exists and this limit is equal to D;v(e”). Hence, x; <D;v(e"),
thus implying that Core(v) i1s a subset of the set on the right side of the equality in (1).

(b) To prove the converse inclusion, let x € R" with Z;’:,x;=r(eN ), 0<x; <D;v(e") for each
i€ N\C, and 0<x; for each i€ C. We have to show that the inequality sx=>uv(s) holds for each
s€[0,1]V. First, if s€[0,1]V is such that sc # lc, then v(s)=0<sx. Now, let se€[0,1]V, with



278 S.H. Tijs et al. | Fuzzy Sets and Systems 146 (2004 ) 271284

St‘ — ](ﬂ. Then
SX = Z Xi <1 SiXi
reC IEN\C
= p(e") — Z (1 —s;)x; 2 (e ) — Z L] = %;)D,l(t’\)

The inequality sx =u(s) follows then tfrom Lemma 2.

The core of a fuzzy clan game has an interesting geometric shape. It 1s the intersection of a simplex
with “hyperbands’ corresponding to the non-clan members. To be more precise, tor fuzzy clan games
(and fuzzy big boss games with v(e”)=0), we have Core(r)= A(v(e” ))NB(r)N - NB,(r),
where A(v(e")) is the simplex {xeR" | Y7  x;=v(e")}, and for each player i€ {1,2,...,m},
Bi(r)={xeR"|0<x;<D,v(e" )} is the region between the two parallel hyperplanes in R", {x € R"|
x;=0} and {x€R"|x;=D,v(e")}, which we call the *hyperband’ corresponding to i.

An interesting core element is h(v)=(Dyv(e”)/2..... Doole™)/2.1. .. t), with t=|C|™"(v(e") —
5™ Djr(e™)/2), which corresponds to the point with a central location in this geometric structure.
Note that A(r) i1s in the intersection of middle-hyperplanes of all hyperbands B;(v), i=1..... m, and
it has the property that the coordinates corresponding to clan members are equal.

Example 3. For a three-person fuzzy big boss game with player 3 as the big boss and (e’ )= 0 the
core has the shape of a parallelogram (in the imputation set) with vertices:

(0.0.v(eY)). (Dyv(e").0.v(e”) = Dye(e)). (0.D,v(e”).v(e” ) — Dyv(e)).

(D, l'(t"\- ). D> ( e ). U( e ) — D, r(ex ) — D;_-r(e‘“ ) ).

Note that h(v)=(Dv(e”)/2.Dyv(e” )/2.v(e” ) — (D v(e” )+ Dyv(e” ))/2) is the middle point of this
parallelogram.

For a convex fuzzy game the core of v and the core of the corresponding crisp game w coincide
(see Theorem 7(111) in [2]). This 1s not the case in general for fuzzy clan games as the next example
shows.

Example 4. Let N={1,2} and let v:[0,1] x {0,1} — R be given by v(s;,1)= /51, v(s51,0)=0 for
each sy €[0,1]. Then v 1s a fuzzy big boss game with player 2 as the big boss, and Core(v)= {(z. 1—
2) |2 €[0,1/2]}, Core(w)={(2,1—2)|2€[0,1]}. Hence Core(v)# Core(w).

The next lemma plays a role in the rest ot the paper.

Lemma 3. Let v€ FCGY. Let t€ " and v, be the t-restricted game of v. Then for each non-clan
member i € car(t): D;v,(e”)=1tDv(t).

Proof. D;v,(e” )= lim,—o ¢ ' (v/(e” ) — v/(e" — ee')) = lim,—q €' (v(t) — v(t — et;e')) = t;D;v(t).
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Theorem 2. Ler v € FCGEY. Then for each t & .?‘,"?i the core Core(v,) of the t-restricted game v, is
described by

(i) Core(v,)={x€R"|Y ..y xi=0v(t), 0<x;<t;D;jv(t) for each i€ N\C, 0<x; for each i€ C}, if
IC 15

(11) Core(v,)={x€R"| Zre.\’ xi=v(t), 0<x;<t;Djv(t) for each ieN\{n}, v(t,e")<x,}, if
Ci= AR}

Proof. We only prove (i). Let r& #", with |C|>1. Then, by the definition of the core of a fuzzy
game, Core(v,)={x€R"| Y .cxxi=vi(€"), D ey Sixi Zv,(s) for each s € F}. Since v(e")=v(t)
and since, by Proposition 1, ¢, is itself a fuzzy clan game, we can apply Theorem 1(1), thus obtaining
Core(v,)={x €R"| Y ..y xi=10v(r), 0<x; <Djv,(e") for each i€ N\C, 0<x; for each i€ C}.

Now we apply Lemma 3.

5. Monotonic allocation rules and bi-pamas

Let N NC =4 T, m} and C={m +1,..., n}. We introduce for each 2€[0,1]" and fe 4(C)=
A{m+1,....n})={zeR" ™™, 5" zi=1} an allocation rule y*f: FCG} — R" given by

iI=m+1 “1

v:Dv(e) i €L s m},

?ff | o | m |
Vi AR i} (t“(t"‘M = Z uDyv(e” )) if ie{m+1..... n}

k=1

We call this rule the compensation-sharing rule with compensation vector x and sharing vector 5.
The ith coordinate ; of the compensation vector x indicates that player i€ {l,.... m} obtains the
part 2,D,0(e" ) of his marginal contribution D;v(e" ) to e". Then for each i€ {m+ 1....,n}, the ith

m

coordinate fi; of the sharing vector f§ determines the share fi;(v(e")—>_", 2;,D;v(e™)) for the clan
v

member / from what is left for the group of clan members n ¢

Theorem 3. Let v€ FCG). Then

(1) y*P FCGEE' — R" is stable (i.e. y*P(v)€ Core(v) for each v € FCGS") and additive for each
2 € [0, 11" and each pe€ A(C);
(ii) Core(v)= {y*F(v)|a€[0,1]V\C, B A(C)};
(i11) The multi-function Core: FCGr —— R" which assigns to each v € FCGY the subset Core(v)
of R" is additive.

Proof. (i) v*P(pv + gw)= py*P(v) + qy*P(w) for all v,w € FCG} and all p,ge R, so U*P s
additive on the cone of fuzzy clan games. The stability follows trom Theorem 1.

(1) Clearly, each y*P(v) € Core(v). Conversely, let x € Core(v). Then, according to Theorem 1,
x; € [0, D;jv(eMN)] for each i€ N\C. Hence, for each i€ ({l,..., m} there is x €[0.1] such that
x; = a;D;v(e™).
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Now we show that

l

A e’ ) — Z x,-D,-i‘(e"'\' Y= () (3)

=]

Note that ¢“ € 7" is the fuzzy coalition where each non-clan member has participation level 0 and
each clan-member has participation level 1. We have

m i | — |
N . . i :
vie’ ) — z*(eC) — E & E c" + e( — E e + e’
i=1 k=1 k=]

Z(ue ) — (N —e')) = ZDt(e )

=]

ni

> Z x:D:v(e"),

=]

where the first inequality follows from the DAMR-property of by takmg Ll BN L
t=e", gg=¢e=1, the second inequality follows from Lemma | with r=¢" and s, =0, and the

tlmd mequality since D;v(e”)=0 in view of the monotonicity property of ¢v. Hence (3) holds.
Inequality (3) expresses the fact that the group of clan members is left a non-negative amount in

the grand coalition.
The fact that x;=>u(e') for each i€ C implies that x; >0 for each i€ {m + 1,.... n}. But then
there is a vector f€ A(C) such that x; = fi(v(e™ ) — 3" | 2;D;v(e")). (Take ff € A(C) arbitrarily if

v(e™)—=3 7L Djr(e™)=0, and fii =xi(v(e" )= 37, 2;D;u(eV))™", for each i € C, otherwise.) Hence

=y o)
(1) Trivially, Core(v+w) D Core(v)+ Core(w) for all v,w e FCG. Conversely, let v, w € FOGS
Then

Core(v +w)={Yy*P(v+w)|a € [0,11V\C, 8 € 4(C ) |
= {y™P(v) + Y*P(w) |2 € [0,1]V\C, B € 4(C))}

€ [0,1]M\C, B € A(C)} + {y*P(w)|x € [0,117\C, B € 4(C))

C {y*F(v)|

= Core(v) + Core(w),

where the equalities follow from (11).

For fuzzy clan games the notion of bi-monotonic allocation scheme which we introduce now
plays a similar role as pamas for convex fuzzy games in [2]. A bi-monotonic allocation scheme is
an oo x n-matrix, where the columns correspond to the players (clan and non-clan members) and
the rows to the fuzzy coalitions containing all clan members with full participation levels. In each
row ¢ there 1s a core element of the game v,. Each two different rows s.r with s<r are related
via a bi-monotonicity condition with respect to the participation levels. To be more precise, if the
scheme 1s used as a regulator for the payoff distributions in the restricted (fuzzy) games, non-clan
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members are paid per unit of participation less in larger coalitions than in smaller coalitions, while
clan members are better oft in larger coalitions.

Let vt € FCG,. A scheme [h,_f]!e,ﬁ—lx ien 1s called a hi-monotonic participation allocation scheme
i

(hi-pamas) tor v 1t the tollowing conditions hold:

(1) (Stability) (b, ;)ien € Core(v,) for each 1€ Z" .
(11) (Bi-monotonicity w.r.t. participation levels). For all s,1 65",‘: with s <t we have,

o 57 by, ;rf'h,_, for each i € (N\C)Ncar(s);
e h,;<h,; foreach ieC.

Remark 2. The restriction of [h,‘,-]!eﬁ-lx .en to a crisp environment (where only the crisp coalitions
.

are considered) 1s a bi-monotonic allocation scheme according to Branzei et al. [4] for the case
('l =1, and Voorneveld et al. [19] for the case [C|>=2; see also [7]. A bi-pmas of a crisp game i1s a
bunch ot core elements, one for each subgame vy with 7 D C and the game 1itself, which are related
via a bi-monotonicity condition guaranteeing that in coahitions containing all clan members each
non-clan member i1s worst off when more other non-clan members join him, while clan members are
better off in larger coalition than in smaller ones.

Lemmad. Ler v € FCGE‘.F. Let s.tE .5‘71-”{"_ with s<t and let i € car(s) be a non-clan member. Then
D.o(s)=D;uv(t).

Proof. D;v(s)= lim,_o& ' (v(s) — v(s — €e'))= lim,o e~ ' (v(¢) — v(t — ee'))=D;v(t), where the
inequality follows from the DAMR-property of v, with & = &>

.

Theorem 4. Let ve FCG/, with N\C ={1,..., m}. Then for each x€[0,1]" and € A(C)= A({m+
l.....n}) the compensation-sharing rule t/f’"” generates a bi-monotonic participation allocation
1 N
scheme for v, namely [t[/f’(r, )]‘,E_;l_x iEN"
"

Proof. We treat only the case |C|>1. In Theorem 2(i) we have proved that for each r€#" the core
Core(v,) of the r-restricted game v, i1s given by Core(v,)={x € R"| Z,.E_\, x;i=v(t), 0<x;<t;D;v(t)
for each i € N\C, 0<x; for each i€ C}.

Then, for each non-clan member i the xz-based compensation (regardless of [f) in the “grand
coalition™ r of the r-restricted game v, 1s lj/f‘”zzfrfD;r(t), = i m}. Hence, (pf‘ﬁzf)’,-(r(r) —
D i=y t;Djv(t)) for each i€ {m+1,..., nt.

First we prove that for each non-clan member / the compensation per unit of participation level 1s
weakly decreasing when the coalition containing all clan members with full participation level and
in which player i 1s active (1.e. 5;,>0) becomes larger.

Let s,r€ #," with s<t and i € car(s)N(N\C). We have

U (v5) = 2iDivg(eV) = aisiDi(v(s))
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where the second and third equalities by Lemma 3, and the inequality follows from Lemma 4.
Hence, for each s.r € #" with s<r and each non-clan member i € car(s)

l,bxﬁ(fn.) Wﬁ( ).

Now, denote by R,(t,) the z-based remainder for the clan members in the “grand coalition” ¢ of
the r-restricted game v,. Formally,

Rs(Up)i= r,(_c*‘y ) — Z v, D;v,(e" ) = v(1) — Z 2 Div(t).
iIEN\C i(EN\C
First we prove that for each 5.7 € #," with s<r

Ri(vr) 2 Ry(vy). (4)

Inequality (4) expresses the fact that the remainder for the clan members is weakly larger in larger
coalitions (when non-clan members increase their participation level).
Let 5.7 € :'7]: with s<t. Then

m k— |
r(f)—r(.ﬁ')zz ) ¢+Z (t: —s;)e' | — v .v-l—Z(rf—.?,-)e"
K= = =]
m A
> Y (e —s)Die [ s+ (6 —s5;)e
K= §==
> ) (6 — sp)Dyu(r) 2 Zm — sg ) Dyu(t),
k=1

where the first inequality follows from Lemma 1 and the second inequality from Lemma 4. This
implies v(r) — ) 7 kg Dyo(t) Ze(s) — Y7 sk Dyo(t) = v(s) — r—1 Sk Drv(s), where the last
inequality follows from Lemma 4. So, we proved that R,(v,)=R,(v,) for all s,r € J, with s <.
Now, note that inequality (4) implies that for each clan member the individual share (of the
remainder for the whole group of clan members) in v,, that is f;R,(t,). is weakly Increasing when

non-clan members increase their participation level. [

In crisp game theory a prominent class of total big boss games is the class of holding games
(ct. [17]). In the next example we consider a fuzzy approach to holding situations leading to a fuzzy
big boss game.

Example S. Let agents 1 and 2 have goods to be stored and let agent 3 possess a holding house
with capacity 1. Agents 1 and 2 at activity level s, and s-. respectively, want to store s; and s,
units, respectively, with corresponding benefit 10s, and 4s,. This economic situation leads to a fuzzy
game with N = {123}, i‘(.ﬂ'l,ﬁ‘_ﬁ_.O):O for all O B [O I] 's] S5 1 )= ]O‘i] +4H 1t S1 182 <, and
U(S1,52,1)=10s; +4(1 —51)=6s1+4 if sy +5,>1.

One can easily check that this is a fuzzy big boss game with player 3 as a big boss. The bi-pamas
[hf-"]fef“ 23 ie(1.2.3) corresponding to the compensation-sharing rule where players 1 and 2 obtain
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halt of their marginal contribution is given by: b, | =5t;; b2 =2t; b3 =5t +2t,, if ty +1< 1. and

Let v € FCG} and x € Core(v). Then we call x hi-pamas extendable if there exists a bi-pamas
[hm]re.ﬁ]" ;en such that h,v ; =x; for each i € N. In the next theorem we show that each core element
(

of a fuzzy clan game is bi-pamas extendable.

Theorem 5. Let v € FCGY and x € Core(v). Then x is bi-pamas extendable.

Proof. Let x & Core(v). Then, according to Theorem 3(ii), x is of the form */(v,v). Take now
[ "(t1)), & #+ jen~ Which is a bi-pamas by Theorem 4

6. Concluding remarks

In this paper games of the form ¢:[0,1]" x {0,1}** — R are considered, where the players in N,
have participation levels which may vary between 0 and 1, while the players in N, are crisp players
in the sense that they can fully cooperate or not at all. Special attention is given to a subclass of such
games, which we call fuzzy clan games, where the clan members are the crisp players. For the class
ot fuzzy clan games we have focused on the core [1] and on bi-monotonic participation allocation
rules and schemes that are introduced in this paper. In [16] we have paid attention to other cores
(the proper core, the dominance core and the crisp core) and stable sets for fuzzy clan games. For
crisp clan and big boss games properties of other solutions and their relations are studied, namely:
the bargaining set, the kernel, subsolutions, the Shapley value, the nucleolus, and the t-value [9,11].
A topic for turther research could be to introduce for games with (partly) fuzzy coalitions solutions
corresponding to the kernel, the bargaining set and subsolutions, and to study for fuzzy clan games
their properties, as well as their relations with other solution concepts.
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