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Abstract

We present a measure of the correlation between the education

levels of spouses based on a bivariate ordered probit model. The

change in this correlation over time can be measured while

controlling for the large changes in the educational attainment

levels. The model is estimated with data from 20 Surveys of

Consumer Finances in Canada over 1971-1996. Our main findings are

a reduction in this correlation among younger couples beginning

in the 1980s, and an inverted U-shaped effect of the spouses’ age

difference on the correlation, with the maximum correlation

occurring approximately when the spouses’ ages are equal. 
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1.  Introduction

A person’s educational attainment has a large influence on his

or her income. It follows that the correlation between the

education levels of spouses should have implications for

household income inequality. This correlation also is of

intrinsic interest. Mare (1991) writes: “... who marries whom

[is] a fundamental building block in understanding social

structures and social life.”

Pencavel (1998) and Mancuso and Pencavel (1999) have used U.S.

data to look at trends in “schooling homogamy” among married

couples, which is a general term for the tendency for spouses to

have the same education level. This also is the emphasis in Mare

(1991), who examines the strength of barriers to educational

intermarriage, or heterogamy, in the U.S. 

We look at the correlation between the education levels of

husbands and wives rather than at schooling homogamy. If there is

a positive relation between education and income for both

spouses, a higher education correlation between spouses should

translate into higher household income inequality, all else

equal. If the education distribution is similar for husbands and

wives, correlation and homogamy have similar interpretations. 

To illustrate briefly, suppose there are three education

categories, A, B and C. Let (A,B) refer to a couple where the

husband has education level A and the wife has B. If all couples

were one of (A,A), (B,B) or (C,C), then there would be both

perfect schooling homogamy and a correlation of one. The

education distributions of husbands and wives would be equal.

However, if instead all couples were one of (A,B) or (B,C), there

would still be a perfect correlation, but not perfect schooling

homogamy, and the education distributions of husbands and wives

would differ. 

We observe four education categories for persons in married

couples in twenty Canadian Survey of Consumer Finances surveys
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covering the period 1971-1996. We use the correlation between the

two latent standard normal variables in a bivariate probit model

estimated by maximum likelihood to measure the correlation

between the husband’s and wife’s ordered categorical education

variables. This measure of association dates back to Pearson

(1900). Goodman (1984, p.112) provides further references.

We model the ordered probit cutoffs (or thresholds) as

functions of time and age. In this way we account for the large

changes in education attainments over this period without

changing the underlying correlation concept. The correlation

itself is specified as a function of the year and the couple’s

ages. We can then examine the time trend in the correlation while

controlling for changes in educational attainment and age

distribution. 

Other measures of association for ordered categorical

variables have been proposed. Goodman and Kruskal (1954,1979)

suggest measures that do not rely on a fully specified

statistical model. In other work we plan to compare the trends

resulting from the Goodman-Kruskal measures to the one used in

this paper, for both Canadian and U.S. data.

The statistical model underlying our approach allows us to

control for age and year effects within the maximum likelihood

framework. A minimum chi-square procedure is used. Coefficients

are estimated for each year in the first stage, and then are

combined by a GLS regression in the second stage to give smooth

time trends.

Section 2 summarizes a few papers on schooling homogamy.

Sections 3 and 4 describe the statistical methods used in this

paper. Section 5 discusses the data. The results are given in

Section 6, followed by the conclusion. Some details of the ML

algorithm are given in an appendix.

2.  Literature Review

From the vast literature on marriage and assortative mating,
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we limit this section to a few recent papers that deal

specifically with schooling homogamy.

Mare (1991) uses a “crossings model,” which models the

probability that the spouses’ education levels differ at various

education levels. Using U.S. Census and Current Population Survey

(CPS) data, he finds that “the association between spouses’

schooling increased between the 1930s and the 1970s and was

stable or decreased in the 1980s.” He explains this trend as a

function of the time gap between schooling and marriage. This gap

decreased during 1930-1960 because of an increase in educational

attainment and a decrease in age of first marriage, and it

increased in the 1970s and 1980s because of an increase in age at

marriage. Mare also notes that more highly educated persons are

more likely to have the same schooling level.

Qian (1998) also uses U.S. Census and CPS data to examine

crossing probabilities, the probability of marriage, and

differences between married and cohabiting couples, by age and

education. He does not use a summary measure of education

correlation or homogamy, but gives many detailed results. For

example, since 1980, the reduction in the propensity to marry has

been more pronounced among less-educated men and women. Similar

to Mare, he finds those who marry at a later age have higher

education homogamy. He finds that the relation between age at

marriage and the degree of education homogamy is weak for men.

Women who marry at older ages tend to have education levels

similar to their husbands, while women who marry at a young age

tend to be less educated than their husbands, controlling for

husbands’ age. 

Pencavel (1998) examines cross-tabulations of similar U.S.

data. Unlike Mare, he finds an increase in schooling homogamy

between 1960 and 1990. He attributes this difference to the

availability of data from the 1990 Census. He offers the increase

in labour force participation of wives as an explanation for this
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increase. This could lead to an increased emphasis by a husband

on the wife’s earnings potential, and hence her education, in an

assortative mating framework. 

Mancuso and Pencavel (1999) use similar data and a simulation-

based empirical approach based on assortative mating.  This

method allows them to control for changes in schooling attainment

over time. Like Pencavel, they find an increase in schooling

homogamy since 1950. 

3.  Bivariate Ordered Probit Model

Consider the observed pairs (Hi,Wi), where Hi and Wi are

ordered categorical variables from the set {1,2,3,4} indicating

the education levels of the ith husband and wife. Let zHi and zWi

be latent variables distributed as bivariate normal with N[0,1]

marginal densities. Leaving covariates aside for now, denote the

wife’s cutoffs as CW,k, where CW,k-1 < CW,k, k = 1,2,3,4, and let 

CW,k = -4 for k = 0 and CW,k = 4 for k = 4. Then Wi = k if and only

if CW,k-1 < zWi # CW,k. The husband’s indicator Hi is determined in

the same way with H replacing W. 

The association measure ñ is the correlation between zwi and

zHi. The contribution of observation i to the likelihood function

is Prob(Hi,Wi) = Prob(CH,Hi-1 < zH # CH,Hi and CW,Wi-1 < zW # CW,Wi). This

probability is the integral of the bivariate normal density

 ö2(zH,zW*ñ) = (2ð)-1(1-ñ2)-1/2exp{-(zH2 + zW2 - 2ñzHzW)/(2(1-ñ2))} (1)

integrated over the rectangular area in zH-zW space bounded by

the four cutoff values CH,Hi-1, CH,Hi, CW,Wi-1 and CW,Wi. 

The dependence of educational attainment on time and age is

captured by parameterizing CW,k and CH,k for couple i as xW,iTâW,k and

xH,iTâH,k respectively, where the x vectors contain the age of the

person in question and its square, etc., and year variables. The

dependence of the correlation measure ñ on the spouses’ ages and
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the year is modeled as ñi = wiTç, where wi is a vector of year and

age variables.

The parameters were estimated by maximum likelihood using a

GAUSS program available upon request. A hill-climbing algorithm

was employed using analytic first derivatives. More details are 

in the appendix. 

4.  Minimum Chi Square Estimation

Our sample consists of 428,967 couples observed over the 20

surveys. Sample sizes for individual years range from 15,816 in

1971 to 26,210 in 1990. The estimation algorithm requires

repeated bivariate integration and the model involves many

parameters, so estimating with the full data set would be

difficult and slow. Instead, we split the estimation procedure

into two stages. In the first stage, the model was estimated for

each survey year separately. The cutoffs and correlation were

specified as year-specific polynomial functions of age. In the

second stage, the first-stage coefficient estimates were used as

dependent variables and their covariance matrix estimates were

used in a GLS regression that models the coefficients as

functions of time. This step was relatively fast, so most of the

model specification searching was done in the second stage. 

This is a minimum chi square procedure. In other applications

with time series of cross sections, e.g. Burbidge et al. (1997),

the first stage involves computing means or medians of the

dependent variable, and their estimated variances, for each

year/age cell, and no parametric restrictions are imposed until

the second stage. We did not use this approach here because there

would have been very many cells, many of them empty or nearly so.

Some sort of grouping or smoothing was necessary in the first

stage. Discrete grouping would create problems with the

age/year/cohort aspect.

More specifically, in the first stage the cutoffs are modeled
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as 

CW,k(aWi,t) = â0Wkt + â1WktaWi + â2WktaWi
2 + â3WktaWi

3 + â4WktaWi
4, (2)

where aWi is the age of wife i observed in survey year t. Note

that wife i in year t is not the same person as wife i in year s,

s … t. Coefficients are estimated for each cutoff (k=1,2,3), each

time period (20 values of t), and for the husband as well (with H

replacing W). 

The first stage model for the correlation is 

ñ(aWi,aHi,t) = ã0t + ã1taGi + ã2taGi
2  + ã3taGi

3 + ã4tdi + ã5tdi
2 + ã6tdi

3 (3)

where aGi = (aHi + aWi)/2 and di = aHi - aWi.

The first stage produces 20 vectors of coefficient estimates,

one for each year, of {â0Wkt,â1Wkt,â2Wkt,â3Wkt,â4Wkt} for each of the six

cutoffs in (2) and 20 vectors {ã0t,ã1t,ã2t,ã3t,ã4t,ã5t,ã6t} for the

correlation in (3). If these were used to plot trends in

educational attainment and in the correlation over time, sampling

error would cause the plots to be bumpy. We expect that the

actual trends are smooth, since they involve characteristics of

the stock of married couples, which evolves gradually with time. 

The second stage fits time polynomials to these coefficients,

resulting in smooth temporal trends. For reasons described in

Section 5, four time period dummies are used in place of a single

intercept in the cutoff and correlation functions, to account for

three changes in the data over the 1971-1996 period. 

For each cutoff, the â’s in (2) are modeled (suppressing the

W,H and j subscripts) as:

â0t = f(four time period dummies) + è01t + è02t2 + è03t3 + è04t4

â1t = è10 + è11t + è12t2 + è13t3 + è14t4
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â2t = è20 + è21t + è22t2 + è23t3 + è24t4 (4)

â3t = è30 + è31t + è32t2 + è33t3 + è34t4

â4t = è40 + è41t + è42t2 + è43t3 + è44t4

This reduces the number of coefficients describing each cutoff

from 100 (20 years × five quartic coefficients) to 28 (eight

coefficients in the â0t equation, five in each of the other four

equations). 

The ã coefficients in (3) are smoothed in a similar way:

ã0t = g(four time period dummies) + ù01t + ù02t2 + ù03t3 + ù04t4 

ã1t = ù10 + ù11t + ù12t2 + ù13t3 + ù14t4  

ã2t = ù20 + ù21t + ù22t2 + ù23t3 + ù24t4 (5)

ã3t = ù30 + ù31t + ù32t2 + ù33t3 + ù34t4 

ã4t = ù40 + ù41t;  ã5t = ù50 + ù51t ;  ã6t = ù60 + ù61t.  

This reduces the number of coefficients summarizing the

correlation from 140 (20 years × seven coefficients in (3)) to

the 29 coefficients appearing on the right hand side of (5). We

found that a linear trend alone is sufficient for modeling the

age difference coefficients ã4t, ã5t and ã6t. Specification tests

are discussed in Section 6.1.  

The right-hand side coefficients in (4) and (5) are estimated

by GLS, using the estimates of the â’s and ã’s from the first

stage as dependent variables and using their estimated variance-

covariance matrices to construct the variance-covariance matrices

for the error terms that consequently would appear in (4) and

(5). Cross-equation contemporaneous correlation exists in the

error terms that result from replacing the left-hand-side

variables in (4) and (5) by their first-stage estimates.

This model does not have the commonly-used additive year (t),

age (ai) and cohort (as represented by birth year = t-ai) effects

structure (e.g. Deaton and Paxson (1994)). Additive effects imply
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that C(ai,t) in (2), for example, is 

C(ai,t) = ft(t) + fa(ai) + fc(t-ai). (6)

One way to see that our model is not additive is to substitute

the â’s from (4) into (2), giving C as a function of ai and t as

in (6). But if coefficients such as è44 are nonzero, then terms

like t4ai4 appear in (6). These can only arise in an additive-

effects model through a term like (t-ai)8 in the cohort effect,

but such terms would also imply that terms such as t8 or t6ai
2

should also appear in (6), and they do not. We found that

additive effects do not accurately fit these data when quartic

polynomials are used.

The plots given in Section 6 can be thought of as fixed-age or

fixed-year “slices” of the three-dimensional surface C or ñ as a

function of ai and t. No attempt is made to assign trends to year

or cohort effects, although we think of them as cohort effects.

5.  Data

We use twenty Surveys of Consumer Finances from Canada for

1971, 1973, 1975, 1977, 1979, 1981, 1982, and 1984-1996. We take

all married couples with the husband aged 25 to 75 and with

information present on both spouses’ education and age. This

includes couples who are living common law, or “cohabiting”,

although we cannot distinguish these couples from officially-

married couples. No same-sex couples are indicated in these data

sets. 

The education question changed in 1975 and 1989, and our data

switches from census family to individual files in 1981. (For

more details on these changes, see Bar-Or et al. (1995, pp. 789-

791).) To capture any effects these changes might have on the

levels of the cutoffs and the correlation, each of the intercept
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equations in the second stage has time period dummies for the

1971-1973, 1975-1979, 1981-1988, and 1989-1996 periods as

indicated in the first equations of (4) and (5).  

The education categories are: “1" for less than high school,

“2" for high school, “3" for some post-secondary, and “4" for a

university degree. (See Bar-Or et al. (1995) for the algorithm

converting the education variable for each year to these four-

category variables.) The ordered nature of the categories is

strong, but not perfect. For example, someone could be ranked “3"

who has a diploma from some specialized training without having

completed high school. 

6.  Results

6.1  Specification Tests

The first stage gives a total of 740 estimates: 37

coefficients (30 of them from the six cutoffs times five

coefficients per cutoff in (2), plus seven from the correlation

in (3)) for each of the 20 survey years. Out of the total of 120

coefficient estimates on the highest-order terms in the age

quartics for the 6 cutoffs from each year, 78 are significantly

different from zero at the 5% level and 67 are significant at the

1% level. There are a total of 40 highest-order terms in the

average-age and age-difference cubics for the correlation from

the 20 years, of which 9 and 5 estimates are statistically

significant at the 5% and 1% levels respectively. These 40 t-

statistics all are less that 3.3 in magnitude. We take this as

informal evidence that underspecification of these first stage

polynomials is not likely too serious, particularly in the

correlations, where these tests would support reducing the order

of most of the polynomials. 

The second stage, as mentioned in section 4, imposes

polynomial smoothing constraints, which reduce the number of
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coefficients describing the model. If the first stage model is

well-specified, these restrictions can be tested using

asymptotically valid chi-square tests of the form:

W =  (â^(2) - â
^
(1))T[EstVar(â^(1)]-1(â^(2) - â

^
(1)),

where â^(1) is a vector of estimates of some of the â’s from the

first stage, EstVar(â^(1)) is the estimated variance-covariance

matrix of â^(1), also from the first stage ML, assuming

independence across years and across observations within year,

and â^(2) is the estimate of the same vector of â’s from the second

stage, as predicted from the estimated equations (4). With

appropriately chosen â vectors, the number of restrictions is

clear.

The second-stage restrictions imposed on the intercepts of the

cutoff functions are rejected at the 1% level in 5 of the 6

cases. There are 12 restrictions imposed on each intercept, as

the 20 first-stage intercepts, â0Wkt or â0Hkt, for 20 values of t,

are modeled by 8 parameters as shown in the first equation of

(4). Because we centred the age variable to equal 0 at age 50,

these â^0t‘s can be interpreted as the ordered probit cutoffs for

a person aged 50. The 6 test statistics range in value from 19.3

to 50.6, with a 1% critical value of 26.2. 

Although the fraction of rejections is high, they are not

emphatic rejections given the large sample sizes. Figure 1 plots

the stage 2 fitted cutoffs (solid lines) against the stage 1

intercepts (dots) for the 6 cutoffs. They appear to fit very

well. The period dummies play an important role for cutoffs 1 and

2 in 1975 and for cutoffs 2 and 3 in 1989, as seen by the jumps

in the plots. These appear to derive from changes to the

education question that occurred in those two years. Wald test

statistics of the null hypothesis of no period effects, which is

that the coefficients on these four dummies are equal, range from
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83.2 to 528.6 across the six cutoffs. These all are emphatic

rejections, testing just three restrictions. 

The second stage reduces the total number of coefficients

describing the correlations from 140 to 29. A Wald test accepts

these 111 restrictions at the 5% level, with a statistic of

132.08, giving a P-value of 8.4%. The four period dummies are not

significantly different from each other, with a Wald statistic of

0.34 and P-value of 95.2%. This indicates that the changes in the

survey, which had a large effect on the cutoffs as seen in Figure

1 and the tests mentioned earlier, had little or no effect on the

correlations.

6.2  The Education Correlation

The top panel of Figure 2 shows the estimated education

correlation as a function of the average age of the couple,

setting the age difference to zero, for three years. They are

taken from the stage two estimates, so that the data from all

years have influenced each plot due to the cross-year smoothing

in stage two. 

This plot shows the main finding of the paper. By the 1990s

there had emerged, especially among the younger couples, a

decrease in the education correlation. To check that the age

effect on the correlation is statistically significant, a Wald

test was used to test the three restrictions ã1t = ã2t = ã3t = 0

from (5), for each year. The Wald statistics for 1973, 1984 and

1995 are 5.7, 110.1 and 40.3 respectively, with a 5% critical

value of 7.8. We reject both null hypotheses that the true 1984

and 1995 plots are horizontal lines, and conclude that the

decreased correlation among younger couples, compared to older

couples, which emerges by 1995 is statistically significant.

We also tested the null hypothesis that the 1984 and 1995

correlations are equal. This was done separately for ages 30, 40,

50, 60 and 70. The Wald statistics, each testing a single
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restriction, are 23.8, 17.7, 8.0, 2.1 and 0.4 respectively, with

a 5% critical value of 3.84. This confirms that there has been a

statistically significant drop in the correlation among younger

couples over this period. 

It may be surprising to see a noticeable difference in the

correlation between, say, a 40-year-old couple in 1984 and a 51-

year-old couple in 1995, since many of the couples in these two

populations (not in the samples) are the same. Possible

explanations for this difference include: changes in the

composition of this group over the 1984-1995 period arising from

marriage, divorce, migration, death, or from a change in who gets

classified as a married couple, although on this last point we

are not aware of any such changes; changes in their education

levels (e.g. they go back to school in their forties); and model

misspecification.

The bottom panel of Figure 2 shows the change in these

correlations over time holding the average age of the couple

fixed, again setting the age difference to zero. This also

displays a decrease in the correlation among young couples

beginning in the early 1980s. The exact wavy patterns of these

plots should not be trusted, but this decrease comes through

clearly.

Figure 3 shows the effect of the age difference on the

correlation, for a couple with average age 50, for selected

years. The age difference in the Figure, defined as husband’s age

minus wife’s age, ranges from -6 years to +15 years. This range

covers about 97% of the couples in the sample, with roughly half

of the remaining 3% at each end. For most years, the correlation

is maximized approximately when the spouses’ ages are equal. The

1996 plot shows a lower correlation for couples with older

husbands than the 1971 or 1984 plots. The Wald statistic for

testing ù41 = ù51 = ù61 = 0, is 22.0, which is significant with 3

d.f. This rejects the null that the differences between the three
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true plots are constant over time. 

The relatively large magnitude of the age difference effect

might lead one to wonder about changes in the distribution of the

age difference itself over time. In our data, the age difference

has decreased slightly and its variance has increased slightly.

These changes have not been large enough to have had much of an

effect on the correlations. The mode and median age difference in

the overall sample is +2 years.

6.3   Trends in the Educational Attainment of Husbands and Wives

A summary of the trends in educational attainment of husbands

and wives is not the main purpose of our model. There are other,

possibly preferable, ways to examine this issue, for example by

nonparametric smoothing over age and time. Nevertheless, this 

model provides probabilities of someone being in each education

group as a function of their sex, age and year. These are shown

in Figures 4 and 5. This parametric approach has the virtue of

removing the effects of the changes in the survey through the use

of the time period dummies, as seen by the jumps in Figure 1. In

Figures 4 and 5, the time period effect is held fixed at its

estimated value for the 1989-1996 period. 

We do not look at these probabilities conditional on the

educational attainment of the spouse. This could be done with

calculations involving the latent variables and the correlation.

However, there may be patterns in the actual conditional

probabilities that get wiped out by our bivariate normality

assumption. One way to study these in greater detail is with a

‘crossings’ model as in Mare (1991) and Qian (1998).

Figure 4 shows the probabilities as a function of time for

husbands and wives aged 35 years. The trends are similar. In

1971, a much higher proportion of husbands than wives had a

university degree, but by 1996 this proportion is higher for

wives. The probability of a 35-year-old husband having a
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university degree in Canada has not risen much since the late

1970s, whereas it increased throughout the sample for wives with

no sign of slowing. By 1996, considerably more wives than

husbands also are in the greater than high school category. More

husbands than wives are in the less than high school and high

school groups.

Figure 5 shows these same trends through cross-section plots

for 1996. At every age, slightly more husbands than wives have

less than high school education, but their age patterns are very

similar. Older wives are more likely than older husbands to be in

the high school group, but this switches for younger spouses, as

mentioned above.

7.  Conclusion

We have presented a bivariate probit method for measuring the

correlation between spouses’ education levels, which are recorded

as ordered categories in Canada. The results were used to examine

the effects of the year and the spouses’ ages on the education

correlation during the 1971-1996 period. A two-stage minimum chi

square estimation technique was used. 

Perhaps surprisingly, we find that the most noticeable trend

is a decrease in this correlation among younger couples emerging

in the 1980s. This differs from Pencavel (1998) and Mancuso and

Pencavel (1999), who use U.S. data and different techniques. One

way to explain this finding, following Mare’s (1991) reasoning,

is to note the increase in the age at which couples are getting

married in Canada. As the time gap between the age of completion

of one’s education and the age of marriage grows, the importance

of education as a sorting criterion is reduced. Also, we do not

have information on whether these couples are in a first

marriage. An increase in the number of people in second-or-more

marriages could result in a reduced correlation for the same

reason. Mancuso and Pencavel selected only couples in their first
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marriage. 

The model also allows us to plot age and year patterns in the

educational attainment probabilities of husbands and wives,

controlling for changes in the education question over the sample

period. The trends of husbands and wives are similar in most

respects. The growth in the proportion of young wives with a

university degree or some post-secondary education is greater

than that of young husbands, with the wives’ proportion

surpassing husbands’ by 1996. 

Other association measures are available. In future work, we

plan to compare the U.S. and Canadian results using similar

sample selection criteria and a variety of measures.

One reason for studying this issue is its implications for

household income inequality. These implications are much more

significant now than say 30 years ago because of the increase in

labour force participation of wives. Some empirical work on

assortative mating on earnings or wages has been done by Zimmer

(1996) and others. (See the references in Zimmer.) An aim of our

paper is to present some basic facts on the education aspect of

the assortative mating process in Canada to have one more piece

of the picture in the determinants of trends in income inequality

across households. It appears that there has been a decrease, not

an increase, in assortative mating by education among younger

couples in Canada. This would not appear to be a cause of any

increase in household income inequality in recent decades. 
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Appendix: Maximum Likelihood Estimation

The log likelihood function is R(â,ç) = 3iRi(â,ç), where 

Ri(â,ç) = R(â,ç*xw,i,xH,i,wi,Hi,Wi) = ln(Ö2,i) = 

ln(Ö2(xW,iTâW,Wi-1,xW,iTâW,Wi; xH,iTâH,Hi-1,xH,iTâH,Hi; wiTç)),

where Ö2(a,b;c,d;ñ) = IabIcdö2(zH,zW*ñ)dzHdzW and ö2 is given in (1). 

The partial derivatives are:

MRi/MâW,k = xW,i{I[Wi=k](MÖ2,i/Mb) - I[Wi=k+1](MÖ2,i/Ma)}

= xW,iö(xW,iTâW,k){I[Wi=k][(Ö((xH,iTâH,Hi - ñxW,i
TâW,k)/(1-ñ2)1/2) -

Ö((xH,i
TâH,Hi-1 - ñxW,i

TâW,k)/(1-ñ2)1/2))]

- I[Wi=k+1][(Ö((xH,iTâH,Hi - ñxW,i
TâW,k)/(1-ñ2)1/2) -

Ö((xH,i
TâH,Hi-1 - ñxW,i

TâW,k)/(1-ñ2)1/2))]},

where ö and Ö are the standard normal pdf and cdf functions. A

similar derivative for MRi/MâH,k is obtained by switching W and H

in the above expression. The remaining derivative is 

MRi/Mç = wiGi/Ö2,i,

where Gi = MÖ2,i/Mñ = G(xW,i
TâW,Wi-1,xW,iTâW,Wi; xH,iTâH,Hi-1,xH,iTâH,Hi; wiTç)),

with 

G(a,b;c,d;ñ) = 

 IabIcdö2(zH,zW*ñ){(1-ñ2)-1[ñ + zHzW - ñ(zH2+zW2-2ñzHzW)/(1-ñ2)]}dzHdzW. 

Let è^ be the entire vector of estimates of the â’s and ç, and

let L^ be the n-by-k derivative matrix with ith row RiNT, where RiN

comprises the MRi/MâW,k and MRi/Mç vectors described above evaluated

at è^. The ML estimates were found by hill-climbing using the OPG

matrix:
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è^(m+1) = è
^
(m) + (L

^TL^)-1L^Té, (A1)

where é is a vector of ones. Upon convergence, using 

éTL^(L^TL^)-1L^Té as the convergence criterion, (L^TL^)-1 was used as the

estimator of Var(è^).

During the hill-climbing iterations, the cutoff functions

occasionally crossed. This results in a violation of the

inequality between lower and upper bounds necessary for

integration. When this occurred, the step size in (A1) was halved

until the crossings no longer occurred. If the log likelihood at

è^(m+1) was smaller than at è
^
(m), the step size was halved

successively until the log likelihood was higher at the new è^(m+1).

A similar problem occurred with estimates of ñi lying outside

the [-1,1] range. This resulted from a small number of

observations where the age difference between spouses was large.

We handled this by truncating the age difference variable, di in

(3), to a minimum of -20 years and a maximum of 20 years. This

affected only a tiny fraction of the observations.
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Figure 1.   Stage 2 Fits of Stage 1 Intercept Estimates
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Figure 2. Correlations by Age and Year
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Figure 3.  Age Difference Effect on Correlation

Average Age = 50
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Figure 4.   Education Level Probabilities
By Year, Age = 35
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Figure 5.   Education Level Probabilities
By Age, 1996
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