

## P

## A PROGRAM FOR RESEARCH ON

# SOCIAL AND ECONOMIC Dimensions of an Aging POPULATION 

## MEDS-E USERS’ MANUAL

Frank T. Denton<br>Christine H. Feaver<br>Byron G. Spencer

SEDAP Research Paper No. 138

For further information about SEDAP and other papers in this series, see our web site: http://socserv2.mcmaster.ca/sedap

Requests for further information may be addressed to:
Secretary, SEDAP Research Program
Kenneth Taylor Hall, Room 426
McMaster University
Hamilton, Ontario, Canada
L8S 4M4
FAX: 9055218232
e-mail: sedap@mcmaster.ca

MEDS-E USERS' MANUAL

Frank T. Denton<br>Christine H. Feaver<br>Byron G. Spencer

SEDAP Research Paper No. 138

October 2005

The Program for Research on Social and Economic Dimensions of an Aging Population (SEDAP) is an interdisciplinary research program centred at McMaster University with co-investigators at seventeen other universities in Canada and abroad. The SEDAP Research Paper series provides a vehicle for distributing the results of studies undertaken by those associated with the program. Authors take full responsibility for all expressions of opinion. SEDAP has been supported by the Social Sciences and Humanities Research Council since 1999, under the terms of its Major Collaborative Research Initiatives Program. Additional financial or other support is provided by the Canadian Institute for Health Information, the Canadian Institute of Actuaries, Citizenship and Immigration Canada, Indian and Northern Affairs Canada, ICES: Institute for Clinical Evaluative Sciences, IZA: Forschungsinstitut zur Zukunft der Arbeit GmbH (Institute for the Study of Labour), SFI: The Danish National Institute of Social Research, Social Development Canada, Statistics Canada, and participating universities in Canada (McMaster, Calgary, Carleton, Memorial, Montréal, New Brunswick, Queen’s, Regina, Toronto, UBC, Victoria, Waterloo, Western, and York) and abroad (Copenhagen, New South Wales, University College London).

This paper is cross-classified as No. 401 in the McMaster University QSEP Research Report Series

# MEDS-E USERS' MANUAL 

 byFrank T. Denton, Christine H. Feaver, and Byron G. Spencer

October 2005

MEDS-E is the economic component of the MEDS (Models of the Economic-Demographic System) simulation/projection system. It is designed for use in projecting Canadian macroeconomic aggregates for a period of up to 50 years, starting from 2001. Historical values are included back to 1991.

MEDS is maintained on an on-going basis: see http://socserv2.mcmaster.ca/qsep/ for further information.

The Social Sciences and Humanities Research Council supports the MEDS project through its funding of the SEDAP Research Program. Additional support has been made available by Human Resources and Skills Development Canada.

## MEDS-E Users' Manual

## Frank T. Denton, Christine H. Feaver, and Byron G. Spencer


#### Abstract

: This report is the Users' Manual that accompanies MEDS-E, the economic component of a new Windows-based version of the MEDS (Models of the Economic-Demographic System) software. MEDS-E is designed to make use of the all-Canada population and labour force projections from MEDS-D in projecting various Canadian macro-economic aggregates. The projections, which are made year-to-year, extend as far as 2051.

The time paths of the economic projections are determined by the population and labour inputs, type of aggregate production function chosen, rates of depreciation, and investment, consumption, and other parameters. A set of "standard" assumptions is provided, but users can change those assumptions.


Keywords: population, labour force, projection
JEL Classification: J11, J21

## Résumé:

Ce document est le Guide de l'utilisateur qui accompagne MEDS-E, le module économique de la nouvelle version pour Windows du logiciel MEDS (Modèles du système démographique-économique). MEDS-E est conçu pour utiliser les projections de la population et de la main-d'œuvre au Canada de MEDS-D, à l'estimation de divers agrégats macro-économiques canadiens. Les projections, calculées pour chaque année, sont possibles jusqu'en 2051.

Les trajectoires temporelles des projections économiques sont déterminées par la population et la main-d'œuvre, le choix d'une fonction de production agrégée, le taux de dépréciation, ainsi que du niveau de l'investissement, de la consommation et d'autres paramètres. Le MEDS-E fonctionne à partir d'une série d'hypothèses standards qui peuvent être modifiées par l'utilisateur.

## Table of Contents

Introduction ..... 1
Installation ..... 1
First-time Users ..... 1
Main Menu Options ..... 1
Files Options ..... 2
Select Output Options ..... 3
General Features ..... 4
Capital Stock and Consumption Tables ..... 5
Educational Composition Tables ..... 6
Human Capital Tables ..... 7
Assumptions Options ..... 7
Production Function: Type ..... 8
Production Function: Rate of Neutral Technical Progress ..... 9
Capital Stock and Investment ..... 10
Labour Input: Proportion Part-time: Males, Females ..... 11
Labour Input: Full-time Hours: Males, Females ..... 12
Labour Input: Part-time Hours: Males, Females ..... 13
Labour Input: Weeks Worked per Year by Full-time Workers: Males, Females ..... 14
Labour Input: Weeks Worked per Year by Part-time Workers: Males, Females ..... 15
Labour Input: Educational Composition of "Domestic" Population: Males, Females ..... 16
Labour Input: Educational Composition of Immigrant Population: Males, Females17
Labour Input: Miscellaneous ..... 18
Income: Associated with Labour ..... 19
Income: Associated with Capital ..... 20
Consumption and Saving: ..... 21
Government Expenditure, Inventory Change, Trade Balance, Statistical Discrepancy: ..... 22
Human Capital: ..... 23
View Output Options ..... 23
APPENDIX A: The Economic Projection Model ..... 24
APPENDIX B: Selected Canadian Historical Series ..... 44
APPENDIX C: Selected Output of MEDS-E System ..... 49

## Introduction

MEDS is an acronym for "Models of the Economic-Demographic System." MEDS-E, the economic component of the projection/simulation system, is designed to make use of the all-Canada population and labour force projections from MEDS-D in projecting various Canadian macro-economic aggregates for up to 50 years starting from 2001. Historical values are included back to 1991. Unlike MEDS-D, MEDS-E makes projections only at the Canada level. The time paths of the economic projections are determined by assumptions about the production function, population and labour inputs, rates of depreciation, and investment and consumption parameters. Standard assumptions are provided; users can change them.

The program is designed around a main menu screen which is always displayed. Each option on the main menu has a sub-menu; choosing an option from a sub-menu will usually display another input screen. This manual describes the main menu and submenu options, showing sample screens where helpful. Appendix A lists the equations in the model along with definitions of the variables used. Appendix B provides some historical Canadian data which can be referred to in making assumptions about rates and other values that are required for making projections. Finally, Appendix C contains a selection of tables available from a MEDS-E projection.

## Installation

MEDS is supplied in a zipped file for installation on a machine running Windows 98 or higher. Users should first read the file readme.txt on the Setup Disk. To install, insert the Setup Disk in a drive (e.g. A). Copy the file pmedsz.zip into a temporary directory (e.g. C:Itemp) and unzip. Run C:Itemplsetup.exe and follow the instructions on the screen. After installing, double click on the MEDS-E icon to begin the program. The Main Menu screen appears (see next page).

By default, MEDS-E will use the standard Canadian population and labour force projection as supplied in the MEDS-D file pmedsd.var. Other MEDS-D projections may be used in MEDS-E either by (1) changing the MEDS-D assumptions and saving the results in pmedsd.var, or (2) by inputting another file created using MEDS-D.

## First-time Users

Click OK on the Welcome screen, then About... to get a quick overview of the program. Then click Run, View Output, and Summary Tables to view tables that show a macroeconomic projection for Canada based on standard assumptions.

## Main Menu Options

Files is used to save current assumptions and output choices for subsequent re-use, to change file names, and to return to default assumptions.
Select Output is used to view or change output selections; summary tables are always provided.

Assumptions is used to view or change assumptions.
Run is used to make a new projection.
View Output is used to display tables from the most recent projection on the screen.
Print is used to send the table file to the printer or to save it in a format for importing into a spreadsheet.
About is used to get a quick summary of instructions for using MEDS-E.
Quit is used to exit the program.
Note: Options may be selected either by clicking the mouse or from the Main Menu by typing Alt + the letter that is underlined, or from a drop-down menu, by typing only the letter that is underlined.



## Files Options

Save current assumptions: You may wish to save changes that you have made to the
assumptions or to the output selected for easy recall and reuse.
Suggestion: When prompted to choose a file name, use .ine as the file extension to identify it as a MEDS-E input economic file.

Select MEDS-D Variable file: You may use only the default file (pmedsd.var) or another file previously saved during a MEDS-D run.

Select Input file: You will be prompted to choose a file name. You may use only the default file (pmedestd.ine) or another file previously saved by MEDS-E using the Save current assumptions option.

Set file name for Tables: By default, the program stores output tables in the file pmedse.tab, over-writing this file for each projection run. To save results from multiple runs for later use, supply a unique file name before each run.

Suggestion: Use .tab as the file extension to identify it as a MEDS-E output file.
Set file name for Spreadsheet Data: By default, the program stores output tables in a delimited format suitable for importing into a spreadsheet in the file medse.prn and over-writes this file for each projection run. To save results from multiple runs for later use, supply a unique file name before each run. To use this option, after a projection run select Print, To Spreadsheet File.

Suggestion: Use .prn as the file extension to identify it as a MEDS-E spreadsheet file.
Initialize with Default files: This option will restore all default file names and read in standard assumptions from the default input file, pmedestd.ine. If you have made changes which you wish to save for later use, save them in a file by using the Save current assumptions option before using the Initialize option.

## Select Output Options:

For all output selections, when finished with a screen, use the OK button to make changes take effect; use Cancel to leave original values unchanged.

## General Features:



- Click on the spin button (the up and down arrowheads) to change the first and last years to be shown in the tables.
- The output can be displayed at 1, 5 or 10 year intervals; reported growth rates may be over the chosen interval or converted to annual averages.
- Projections start from 2001; however, as described below, use is made of more recent data; the user is able to update the information provided so that MEDS-E can take account of the most current information available.


## Capital Stock and Consumption Tables:



- Select by clicking boxes; unselect by clicking again.
- See Table 8 in Appendix $C$ for an example of the Consumption Measures table.


## Educational Composition Tables:



- Select by clicking boxes; unselect by clicking again.
- Click on spin button to change the number of age groups displayed (max=8).
- Adjacent age groups may be combined by editing.
- The projected educational composition is based on assumptions discussed below; see Assumptions, Labour Input.


## Human Capital Tables



- Select by clicking box; unselect by clicking again.
- Click on spin button to change the number of age groups displayed (max = 8).
- Adjacent age groups may be combined by editing.
- The calculations relating to human capital are described in Appendix A.


## Assumptions Options

For all screens

- Values on a grey background are fixed; most values on a white background may be changed.
- Click on the spin control (the up and down arrowheads) to increase or decrease the number of years shown on the grid.
- During a projection, MEDS-E generates input values as needed by interpolating linearly between years for which values are specified.
- To change any value in the grid, click on it. Once a box with dotted outline appears, press Enter. Use the delete key to remove unwanted characters before inserting new ones.
- Use the OK button to make changes take effect; use Cancel to leave original values unchanged.


## Production Function: Type:



- Select a production function by clicking the appropriate circle; the program will display the form of the equation, the current values of the parameters and the implied returns to scale.
- Parameter values may be changed.

Production Function: Rate of Neutral Technical Progress:


- The standard assumption holds neutral technical progress, PN, constant from 2005 at $0.5 \%$ per year (a value consistent with average growth over the previous 25 to 30 years).
- Values of PN for 1992 through 2004 are set so as to be consistent with Statistics Canada estimates of GDP for those years.


## Capital Stock and Investment:

| Investment Proportions fi Depreciation Rates |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of years: 16 |  |  |  |  |  | OK |
| Investment <br> Categories: <br> RES: <br> Residential; <br> NRES: Non- <br> residential; <br> MACH: <br> Machinery <br> and <br> Equipment: <br> DUR: <br> Consumer <br> Durables | Year | PRES | PNRES | PMACH | PDUR |  |
|  | 1991 | . 20521 | . 28103 | 24888 | 26487 | Cancel |
|  | 1992 | . 22384 | . 25185 | 25277 | . 27153 |  |
|  | 1993 | 21773 | . 25316 | 2509 | 27821 |  |
|  | 1994 | . 21191 | . 25956 | 25551 | 27302 |  |
|  | 1995 | . 18224 | . 25954 | 2769 | 28132 |  |
|  | 1996 | . 1916 | . 24614 | 28093 | 28133 |  |
|  | 1997 | . 18023 | 23715 | . 30264 | 27998 |  |
|  | 1998 | . 1685 | . 22853 | . 31795 | 28502 |  |
|  | 1999 | . 16207 | . 21993 | . 33056 | . 28744 |  |
|  | 2000 | . 16206 | . 21247 | 33494 | 29053 |  |
|  | 2001 | . 1724 | . 21996 | . 31625 | 29138 |  |
|  | 2002 | . 19039 | . 20724 | . 29682 | . 30556 |  |
|  | 2003 | . 19282 | . 20666 | 303 | 29753 |  |
|  | 2004 | . 19748 | . 19917 | . 31329 | 29006 |  |
|  | 2006 | . 17998 | . 22368 | . 30733 | 28902 |  |
|  | 2051 | . 17998 | 22368 | 30733 | 28902 |  |
| Depreciation Rate |  | DR | DNR | DM | DD |  |
|  |  | 025 | 03 | 085 | . 1 |  |

- The standard assumption moves investment proportions from their most recent actual values to the ten-year average of recent values by the year 2006.
- The proportion assigned to consumer durables is calculated residually and so cannot be changed directly.

Labour Input: Proportion Part-time: Males, Females:


- The standard assumption holds the proportion of males and females working parttime constant at their most recent levels.

Labour Input: Full-time Hours: Males, Females:


- The standard assumption holds the number of hours worked per week by males and females working full-time constant at their most recent levels.

Labour Input: Part-time Hours: Males, Females:


- The standard assumption holds the number of hours worked per week by males and females working part-time constant at their most recent levels.

Labour Input: Weeks Worked per Year by Full-time Workers: Males, Females:


- The standard assumption holds the number of weeks worked per year by males and females working full-time constant at their most recent levels.

Labour Input: Weeks Worked per Year by Part-time Workers: Males, Females:


- The standard assumption holds the number of weeks worked per year by males and females working part-time constant at their most recent levels.


## Labour Input: Educational Composition of "Domestic" Population: Males,

 Females:

- Setting alpha equal to 1 continues recent trends in educational attainment.


## Labour Input: Educational Composition of Immigrant Population: Males, Females:



- Setting ImWt to 1 implies a continuation of the 2001 relationship between immigrant and domestic levels of education.
- The standard assumption is to apply immigrant educational composition adjustments. If the box is unchecked, immigrants are assumed to have the same educational composition as the domestic population.


## Labour Input: Miscellaneous:



- The underlying equations are described in Appendix A, section 4.
- The standard assumption of 0 for PL assumes that there is no distinction between cohorts in terms of their embodied technical progress.
- In MEDS-E, relative earnings form the basis for parameters relating to relative productivity; the parameter DIFF allows for changes in male-female productivity differentials.

Income: Associated with Labour:


- The standard assumption is that wages are equal to marginal products; RWM1 allows for differences by sex, RWM2 for differences by age, and RWM3 for differences by educational attainment.

Income: Associated with Capital:


- The 70+ share is calculated residually and so cannot be changed directly.
- The ownership share parameters are derived from simulations using a lifecycle model.


## Consumption and Saving:



- Choose the form of the consumption function by clicking the appropriate circle.
- The standard assumption moves PCON1 from its most recent actual value to the ten-year average of recent values by the year 2006.
- The standard assumption for PGB implies that all of government current consumption expenditure is financed by taxes.

Government Expenditure, Inventory Change, Trade Balance, Statistical Discrepancy:

| Proportion of GDP |  |  |  |  |  | $x$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number of years: 16 |  |  |  |  | OK |
| GOVC: current government expenditure on goods and services: INVY: inventory change: TRD: trade balance: STATD: statistical discrepancy | Year | PGOVC | PINVY | PTRD | PSTATD |  |
|  | 1991 | . 23668 | -. 01155 | -. 00679 | . 00002 | Cancel |
|  | 1992 | 23678 | -. 01242 | -. 000008 | -. 00219 |  |
|  | 1993 | 23145 | -. 0038 | 01006 | -. 00271 |  |
|  | 1994 | 21798 | . 00039 | 02469 | -. 00152 |  |
|  | 1995 | 21097 | . 01073 | 03468 | -. 00103 |  |
|  | 1996 | . 20527 | . 00309 | 03765 | -. 00075 |  |
|  | 1997 | . 19457 | . 00927 | 01964 | -. 00008 |  |
|  | 1998 | . 1929 | . 00646 | 03516 | -. 00042 |  |
|  | 1999 | . 18675 | . 0068 | . 04728 | . 00009 |  |
|  | 2000 | . 18288 | . 01311 | 05181 | . 00069 |  |
|  | 2001 | . 18713 | -. 0023 | . 058 | -. 00039 |  |
|  | 2002 | . 18607 | . 00165 | 0548 | -. 00059 |  |
|  | 2003 | . 18697 | . 01011 | 03027 | -. 00037 |  |
|  | 2004 | . 18582 | . 01021 | 01951 | -. 00044 |  |
|  | 2006 | . 19193 | . 00691 | 0 | -. 00033 |  |
|  | 2051 | 19193 | . 00691 | 0 | -. 00033 |  |

- The standard assumption moves PGOVC, PINVY, and PSTATD from their most recent actual values to ten-year average values by the year 2006. As implied by PTRD = 0, external trade is assumed to be in balance by the year 2006.


## Human Capital:



- Select the form of the discount rate by clicking the appropriate circle; the present value of human capital for each cohort is based on calculations involving the current period's earnings (see Section 17 in Appendix A).


## View Output Options:

- Four Summary Tables are provided with each projection. Other tables that were selected before running the projection are also available for viewing on screen.
- If the set of tables selected for viewing is sufficiently large, a More button will appear on the screen. Click this button to view the remaining tables.


## APPENDIX A:

THE ECONOMIC PROJECTION MODEL

## THE STRUCTURE OF PMEDS-E

What follows is a discussion of the structure of the MEDS-E subsystem. A listing of the equations and of the associated definitions of variables is included. We organize our discussion under the headings of the sections in the equation listing.

## Aggregate Production and Factor Products

Total output (income) of the economy is generated by a production function, with inputs of labour and capital, and provision for technical progress (or technological change). A user may choose one of four alternative production functions: Cobb-Douglas, Constant Elasticity of Substitution (CES), Generalized Leontief, or Translog. (The standard assumption is CobbDouglas, but parameter values -- which may be altered by a user -- are provided for all four.) The rate of technical progress can be varied over the projection period, or held constant. Constant returns to scale is the standard assumption, but that can be replaced by increasing or decreasing returns. Marginal factor products are calculated separately for each age-sexeducation category of employment.

## Capital Stock Excluding Consumer Durables

Three types of producer capital stock are calculated -- residential construction, nonresidential construction, and machinery and equipment. The three are then aggregated to obtain the total producer capital stock, for entry into the chosen production function. The stocks are calculated from real investment by the perpetual inventory method: they are updated each year, as the economy moves through time, by applying depreciation rates and adding in new annual investment. The age distributions (or "vintages," to use a term familiar in economic growth theory) are determined for each type of stock, that being made possible by the use of the perpetual inventory method. (The depreciation rates vary with the type of stock; they can be modified by a user, if that is desired.)

## Fixed Investment

Real (fixed, as opposed to inventory) investment of each type is generated each year by applying share parameters to the aggregate saving generated by the economy. (See below for the calculation of aggregate saving.) Total investment is the sum of the three types.

## Labour Supply and the Services of Labour

Labour input is calculated in this section, for incorporation into the production function. Account is taken of the changing educational composition of the population, of the numbers of part-time and full-time workers and their hours of work, and of the accumulated labour force experience of different age-sex cohorts. The numbers employed in each age-sex group are weighted to reflect differences in productivity across the education, part-time/full-time, and experience categories in arriving at total (effective) labour input.

Income Associated with Labour
Wages (earnings) are based on marginal products, although they are not necessarily equal to marginal products: parameters are included to allow for differences because of discrimination, or for other reasons. The wage calculations are carried out separately for each age-sex-education category. Aggregate labour income is calculated as the difference between total gross domestic product and the share accruing to capital (before depreciation). An adjustment is then made to assure that the wages for individual groups are consistent with the labour income aggregate. Net wages are calculated by adjusting wages for taxes and transfer payments. (Note: it is convenient to speak of "wages" as the returns to labour; however the calculations include self-employment earnings and supplementary labour income, as well as wages in the narrower sense.)

## Ownership of Capital and Income from Capital

Total wealth in the form of capital is defined as the sum of the producer capital stock (as discussed above) and the stock of consumer durables (see below). The total wealth so calculated
is then distributed among population age cohorts, based on ownership share parameters derived from simulations using a lifecycle model that we have published elsewhere. Rates of return on producer capital, before and after depreciation, are calculated in this section also, followed by the calculation of the after-tax wealth income accruing to each age cohort.

## Total Income

The calculations in the previous two sections allow the calculation in this one of the total after-tax income of each age cohort.

## Consumer Durables: Stock and the Flow of Services

The stock of consumer durables is generated here, using again the perpetual inventory method. As with producer durables, that method allows the age distribution of the stock in each year to be kept track of. Investment in consumer durables is determined by a parameter that allocates a share of aggregate saving to the generation of durable goods. The consumption of the durable goods is calculated as equal to the annual depreciation on the stocks. The conventional national accounts do not take account of the consumption of durable goods, as such, but only expenditures on durable goods, which are essentially investments rather than consumption. We have made it a practice, though, in designing MEDS to include an explicit calculation of durablegoods consumption. Aggregate consumption can thus be calculated either in the conventional way, or in the stricter (and theoretically preferable) way, by including durable consumption rather than durable expenditure.

## Aggregate Consumption and Consumer Expenditure

Aggregate consumption is calculated here according to the strict definition given above (i.e., including durable consumption, rather than expenditure). Two options are provided: consumption can be generated by applying a share parameter to the gross domestic product remaining after government (all levels combined) has removed the amount required for its
current real expenditures on goods and services, or by applying a different parameter to total net (after-tax) income. (The standard parameter values are based on observed historical averages; those averages tend to be quite stable, in the longer-term, but the parameters -- like the other parameters of the model -- can be modified by a user to reflect anticipated changes, or to see how sensitive the projection results are to alternative values.) Consumer expenditure based on the conventional definition is calculated also in this section by adjusting aggregate consumption so as to replace the consumption of durables by durable expenditure (i.e., investment in durable goods).

## Aggregate Saving

Aggregate saving in the economy is identically equal (by national accounting rules) to the gross domestic product, minus consumption (the strict definition), government current expenditure on goods and services, the trade balance (exports minus imports), and the national accounts statistical discrepancy, plus consumption of durable consumer goods. Saving for purposes of fixed producer investment is equal to aggregate saving, minus inventory change, and minus the portion of government current expenditure financed by borrowing (rather than tax revenues).

## Government Expenditure

Government current expenditure on goods and services is modeled (for the long run) as a fraction of the gross domestic product. (The fraction can be altered at a user's discretion.) Aggregate Tax Rate, Net of Transfers

The overall tax rate, as defined for purposes of MEDS-E, is the ratio of the tax-financed portion of government expenditure on goods and services to the gross domestic product.

## Aggregate Inventory Change

A parameter is provided, representing the (long-run) ratio of inventory change to gross domestic product. Historically, the inventory change/GDP ratio has been relatively stable, in the long run, although there have been substantial fluctuations from year to year, the result in large part of fluctuations in farm inventories, and especially grain inventories.

## Aggregate Trade Balance

The net trade balance (exports minus imports) varies from year to year. In the long run, though, it must show some stability. It is modeled as a ratio to gross domestic product.

## Statistical Discrepancy

The statistical discrepancy represents the difference between gross domestic product calculated from the income side of the accounts, and GDP calculated from the expenditure side. It is erratic, but small, and is treated as a ratio to GDP.

## Total Factor Productivity

Labour productivity or capital productivity measures can be calculated as ratios of GDP to labour or capital inputs. However, it is useful to have also a total factor productivity measure. That is provided in the form of GDP divided by a weighted combination of labour and capital inputs, the weights being calculated from base-period marginal products of the two factors.

## Human Capital

The human capital embodied in an individual age-sex population cohort in each year of the projection period is calculated as the present value of the future earnings stream of the cohort, under the assumption that the age structure of employment patterns, mortality rates, and marginal product levels in the given year will hold for future years. The present values can be calculated using a fixed annual discount rate (of the user's choosing), or a variable rate equal to the current rate of return on physical capital (the "real interest rate," roughly speaking). Total human capital
is then obtained by summing over cohorts.

## EQUATIONS IN THE MEDS-E SUBSYSTEM

## 1. AGGREGATE PRODUCTION AND FACTOR PRODUCTS

Cobb-Douglas Production Function --

$$
\begin{aligned}
& \operatorname{GDP}(\mathrm{T})=\operatorname{PCD} 0(\mathrm{~T}) *(\mathrm{KTOT}(\mathrm{~T}) * * \mathrm{PCD} 1) *(\operatorname{LINPUT}(\mathrm{~T}) * * \mathrm{PCD} 2) \\
& \operatorname{PCD}(\mathrm{T})=\operatorname{PCD}(\mathrm{T}-1) *(1+\mathrm{PN}(\mathrm{~T})) \\
& \operatorname{MPKTOT}(\mathrm{T})=\operatorname{PCD} 1 *(\operatorname{GDP}(\mathrm{~T}) / \operatorname{KTOT}(\mathrm{T})) \\
& \operatorname{MPETOT}(\mathrm{T})=\operatorname{PCD} 2 *(\operatorname{GDP}(\mathrm{~T}) / \operatorname{LINPUT}(\mathrm{T})) \\
& \operatorname{PRTS}=\operatorname{PCD} 1+\operatorname{PCD} 2
\end{aligned}
$$

CES Production Function --

```
GDP(T) \(=\operatorname{PCES} 0(\mathrm{~T}) *((\) PCES1 \(*(\mathrm{KTOT}(\mathrm{T}) * *\) PCES3 \()+\) PCES2 \(*\)
```

        (LINPUT(T)**PCES3)) ** (PCES4/PCES3)
    PCESO(T) $=\operatorname{PCESO}(\mathrm{T}-1) *(1+\mathrm{PN}(\mathrm{T}))$
MPKTOT(T) = PCES4 * PCES1 * PCES0(T) * (PCES1 *
KTOT(T)**PCES3 + PCES2 * LINPUT(T) ** PCES3) **
((PCES4 - PCES3)/PCES3) * KTOT(T) ** (PCES3-1)
MPETOT(T) = PCES4 * PCES2 * PCES0(T) * (PCES1 *
KTOT(T)**PCES3 + PCES2 * LINPUT(T) ** PCES3) **
((PCES4 - PCES3)/PCES3) * LINPUT(T) ** (PCES3-1)
PRTS = PCES4

Generalized Leontief Production Function --

```
GDP(T) \(=\) PGL0 \((\mathrm{T}) ~ *\left(\right.\) PGL1 \(*\) KTOT(T) \({ }^{* * P G L 4 ~+~ P G L 2 ~} *\)
    LINPUT(T)**PGL4 + 2.0 * PGL3 * KTOT(T)**(0.5*PGL4) *
    LINPUT(T)**(0.5*PGL4))
\(\operatorname{PGLO}(\mathrm{T})=\mathrm{PGL} 0(\mathrm{~T}-1) *(1+\mathrm{PN}(\mathrm{T}))\)
MPKTOT(T) \(=\) PGL4 \(* \operatorname{PGL0(T)~*~}(\) PGL1 + PGL3 *
    (LINPUT(T)/KTOT(T))**(0.5*PGL4)) * KTOT(T)**(PGL4-1)
\(\operatorname{MPETOT}(\mathrm{T})=\) PCL4 \(4 \operatorname{PGLO}(\mathrm{~T}) *(\) PGL2 + PGL3 *
    (KTOT(T)/LINPUT(T))**(0.5*PGL4)) * LINPUT(T)**(PGL4-1)
```

PRTS = PGL4

Translog Production Function --

```
LN(GDP(T)) \(=\) PTLO(T) + PTL1 * LN(KTOT(T) \()+\) PTL2 *
    LN(LINPUT(T)) + 0.5 * PTL3 * (LN(KTOT(T)))**2 +
    PTL4 * LN(KTOT(T)) * LN(LINPUT(T)) + 0.5 * PTL5 *
    (LN(LINPUT(T)))**2
PTL0(T) \(=\) PTL0 \((\mathrm{T}-1)+\mathrm{T} *(\mathrm{LN}((1+\mathrm{PN}(\mathrm{T}))\)
MPKTOT(T) \(=(\) PTL1 + PTL3 \(*\) LN(KTOT(T) + PTL4 \(*\) LN(LINPUT(T) \())\)
    * (GDP(T)/KTOT(T))
\(\operatorname{MPETOT}(\mathrm{T})=(\) PTL2 + PTL4 * LN(KTOT(T) \()+\) PTL5 *
    LN(LINPUT(T))) * (GDP(T)/LINPUT(T))
PRTS \(=\) PTL1 + PTL2
```

Marginal Product Calculations, All Production Functions --

$$
\begin{aligned}
& \text { MPROD }(\mathrm{S}, \mathrm{~A}, \mathrm{~T})=\mathrm{MPETOT}(\mathrm{~T}) * \operatorname{LWT1}(\mathrm{~A}, \mathrm{~T}) * \mathrm{LEX}(\mathrm{~S}, \mathrm{~A}, \mathrm{~T}) * * \mathrm{ETA} * \\
& \operatorname{LADJ1}(\mathrm{~S}, \mathrm{~A}, \mathrm{~T}) *(\mathrm{SUM}(\mathrm{E})(\mathrm{LWT} 2(\mathrm{~S}, \mathrm{~A}, \mathrm{E}, \mathrm{~T}) * \\
& \mathrm{ECOMP}(\mathrm{~S}, \mathrm{~A}, \mathrm{E}, \mathrm{~T}))) \quad(\mathrm{S}=1,2 ; \mathrm{A}=\mathrm{A} 1, \ldots, \mathrm{~A} 8) \\
& \mathrm{MPRODE}(\mathrm{~S}, \mathrm{~A}, \mathrm{E}, \mathrm{~T})=\mathrm{MPETOT}(\mathrm{~T}) * \mathrm{LWT}(\mathrm{~A}, \mathrm{~T}) * \mathrm{LEX}(\mathrm{~S}, \mathrm{~A}, \mathrm{~T}) * * \mathrm{ETA} * \\
& \mathrm{LADJ} 1(\mathrm{~S}, \mathrm{~A}, \mathrm{~T}) * \mathrm{LWT}(\mathrm{~S}, \mathrm{~A}, \mathrm{E}, \mathrm{~T}) \\
& (\mathrm{S}=1,2 ; \mathrm{A}=\mathrm{A} 1, \ldots, \mathrm{~A} 8 ; \mathrm{E}=\mathrm{E} 1, \ldots, \mathrm{E} 5)
\end{aligned}
$$

## 2. CAPITAL STOCK EXCLUDING CONSUMER DURABLES

Fixed Capital Stock, by Type --

$$
\operatorname{KRES}(\mathrm{T})=(1-\mathrm{DR}) * \operatorname{KRES}(\mathrm{~T}-1)+\operatorname{IRES}(\mathrm{T}-1)
$$

KNRES(T) $=(1-\mathrm{DNR}) * \operatorname{KNRES}(\mathrm{~T}-1)+\operatorname{INRES}(\mathrm{T}-1)$
$\operatorname{KMACH}(\mathrm{T})=(1-\mathrm{DM}) * \operatorname{KMACH}(\mathrm{~T}-1)+\operatorname{IMACH}(\mathrm{T}-1)$
$\operatorname{KTOT}(\mathrm{T})=\operatorname{KRES}(\mathrm{T})+\operatorname{KNRES}(\mathrm{T})+\operatorname{KMACH}(\mathrm{T})$
Fixed Capital Stock, by Type and Vintage --

$$
\begin{array}{ll}
\mathrm{KR}(\mathrm{~A}, \mathrm{~T})=\left((1-\mathrm{DR})^{* *} \mathrm{~A}\right) * \operatorname{IRES}(\mathrm{~T}-\mathrm{A}-1) & (\mathrm{A}=0,1,2, \ldots) \\
\mathrm{KNR}(\mathrm{~A}, \mathrm{~T})=((1-\mathrm{DNR}) * * \mathrm{~A}) * \operatorname{INRES}(\mathrm{~T}-\mathrm{A}-1) & (\mathrm{A}=0,1,2, \ldots) \\
\mathrm{KM}(\mathrm{~A}, \mathrm{~T})=((1-\mathrm{DM}) * * \mathrm{~A}) * \operatorname{IMACH}(\mathrm{~T}-\mathrm{A}-1) & (\mathrm{A}=0,1,2, \ldots) \\
\mathrm{KT}(\mathrm{~A}, \mathrm{~T})=\mathrm{KR}(\mathrm{~A}, \mathrm{~T})+\mathrm{KNR}(\mathrm{~A}, \mathrm{~T})+\mathrm{KM}(\mathrm{~A}, \mathrm{~T}) & (\mathrm{A}=0,1,2, \ldots)
\end{array}
$$

Depreciation --
DEP(T) $=$ DR*KRES(T) + DNR*KNRES(T) + DM*KMACH(T)
$\operatorname{DELTA}(\mathrm{T})=\operatorname{DEP}(\mathrm{T}) / \operatorname{KTOT}(\mathrm{T})$

## 3. FIXED INVESTMENT

$$
\begin{aligned}
& \operatorname{IRES}(T)=\operatorname{PRES}(T) * \operatorname{ISAVING}(T) \\
& \operatorname{INRES}(T)=\operatorname{PNRES}(\mathrm{T}) * \operatorname{ISAVING}(\mathrm{~T}) \\
& \operatorname{IMACH}(\mathrm{T})=\operatorname{PMACH}(\mathrm{T}) * \operatorname{ISAVING}(\mathrm{~T}) \\
& \operatorname{ITOT}(\mathrm{T})=\operatorname{IRES}(\mathrm{T})+\operatorname{INRES}(\mathrm{T})+\operatorname{IMACH}(\mathrm{T})
\end{aligned}
$$

4. LABOUR SUPPLY AND THE SERVICES OF LABOUR

Educational Composition of the Population -POPED(S,A,E,T) = ECOMP(S,A,E,T) * POP(S,A,T)
$\operatorname{IMED}(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T})=\operatorname{IMECOMP}(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T}) * \operatorname{IM}(\mathrm{~S}, \mathrm{~A}, \mathrm{~T})$
ECOMP $(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T})=\operatorname{ECOMP1}(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T}) *(\operatorname{POPED}(\mathrm{~S}, \mathrm{~A}, \mathrm{E}, \mathrm{T}-1)-$
$\operatorname{IMED}(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T})) /(\operatorname{POPED}(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T}-1)+$
IMECOMP(S,A,E,T)*IMED(S,A,E,T)/POPED(S,A,E,T-1) + ECOMP(S,A,E,T-1) -
ECOMP1(S,A,E,T-1)
Note: $\operatorname{SUM}(E)(\operatorname{ECOMP}(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T}))=1.0$ for $\mathrm{A}=\mathrm{A} 1, \ldots, \mathrm{~A} 12$
ECOMP1(S,A,E,T) = ECOMP1(S,A-1,E,T-5) + ALPHA(T) * 1/2 * ((ECOMP1(S,A,E,2001) - ECOMP1(S,A-1,E,1996) + ECOMP1(S,A,E,1996) -
ECOMP1(S,A-1,E,1991)) for A=A2,...,A4
ECOMP1(S,A1,E,T) = ECOMP1(S,A1,E,T-5) $+\operatorname{ALPHA(T)~*~1/2~*~}$
((ECOMP1(S,A1,E,2001) - ECOMP1(S,A1,E,1991))
ECOMP1(S,A,E,T) = ECOMP1(S,A-1,E,T-5) for A = A5,...,A12
0 \# ECOMP1(S,A,E,T) \#1
$\operatorname{SUM}(\mathrm{A})(E C O M P 1(S, A, E, T))=1.000$
$\operatorname{IMREL}(\mathrm{S}, \mathrm{A}, \mathrm{E}, 2001)=\operatorname{IMECOMP}(\mathrm{S}, \mathrm{A}, \mathrm{E}, 2001) / \operatorname{ECOMP}(\mathrm{S}, \mathrm{A}, \mathrm{E}, 2001)$
IMECOMP(S,A1,E,T) = IMREL(S,A1,E,2001) * ECOMP1(S,A1,E,T)
$\operatorname{IMECOMP}(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T})=\operatorname{IMWT}(\mathrm{E}, \mathrm{T}) * \operatorname{IMREL}(\mathrm{~S}, \mathrm{~A}, \mathrm{E}, 2001) * E C O M P 1(\mathrm{~S}, \mathrm{~A}, \mathrm{E}, \mathrm{T})$ for $\mathrm{A}=\mathrm{A} 2, \ldots, \mathrm{~A} 12$
$\operatorname{SUM}(E)(\operatorname{IMECOMP}(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T}))=1.0$ for $\mathrm{A}=\mathrm{A} 1, \ldots, \mathrm{~A} 12$

Labour in Aggregate Production -

```
LF(S,A,E,T) = LFPR(S,A,E,T) *(1-XPROP(S,A,E,T))* POPED(S,A,E,T)
LFPR(S,A,E,T) = f(LF(S,A,T))
XPROP(S,A.E,T) = XPROP(S,A,T)
EMPLOY(S,A,E,T) = (1-URATE(S,A,E,T))*LF(S,A,E,T)
URATE(S,A,E,T) = f (UFIX(T))
LINPUT(T) = SUM(S,A) (LWT1(A,T) * LEXR(S,A,T)**ETA * SUM(E)
        (LWT2(S,A,E,T) * LADJ1(S,A,E,T) * EMPLOY(S,A,E,T))
    LWT1(A,T) = (SUM(AA=AL,AH) (1+PL(T-TBASE-AA+15)) ** (T-TBASE-
    AA+15))/(AH-AL+1)
    LEX(S,A,T) = LEX(S,A,T-1)*(4/5) + (PRATE(S,A-1,T-1)/
    PRMAX)*(1/5) (A = A3,...A12)
    LEX(S,A,T) = 1.0 (A = A1,A2)
    LEXR(S,A,T) = LEX(S,A,T)/LEX(S,A,TBASE)
    LWT2(2,A,E,T) = (LWT2(2,A,E,TBASE) + DIFF(T) *
        (LWT2(1,A,E,TBASE) - LWT2(2,A,E,TBASE)))
LADJ1(S,A,E,T) = PPART(S,A,E,T) * HRSPW(S,A,E,T) * WKSPY(S,A,E,T) + (1-
        PPART(S,A,E,T)) * HRSFW(S,A,E,T) * WKSFY(S,A,E,T)
PPART(S,A,E,T) = f(PPART(S,A,T))
HRSPW(S,A,E,T) = f(HRSPW(S,A,T))
HRSFW(S,A,E,T) = f(HRSFW(S,A,T))
```


## 5. INCOME ASSOCIATED WITH LABOUR

```
WAGE(S,A,E,T) = (RWM(S,A,E) * MPRODE(S,A,E,T) / PRTS) *
    WCFACT(T)
    WCFACT(T) = SHAREA(T) / SHAREB(T)
    SHAREA(T) = GDP(T) - RG(T) * KTOT(T)
    SHAREB(T) = SUM(S,A,E) ( (EMPLOY(S,A,T)*ECOMP(S,A,E,T))
    * WAGE(S,A,E,T) )
    RWM(S,A,E) = RWM1(S) * RWM2(A) * RWM3(E)
    NETWAGE(S,A,E,T) = (1-TRATE(T)) * WAGE(S,A,E,T)
```

$\operatorname{NETYL}(\mathrm{A}, \mathrm{T})=\operatorname{SUM}(\mathrm{S}, \mathrm{E})(\operatorname{EMPLOY}(\mathrm{S}, \mathrm{A}, \mathrm{E}, \mathrm{T}) * \operatorname{NETWAGE}(\mathrm{~S}, \mathrm{~A}, \mathrm{E}, \mathrm{T}))$
6. OWNERSHIP OF CAPITAL AND INCOME FROM CAPITAL
$\operatorname{KWEALTH}(\mathrm{T})=\operatorname{KTOT}(\mathrm{T})+\operatorname{KDUR}(\mathrm{T})$
$\operatorname{KW}(\mathrm{A}, \mathrm{T})=\operatorname{PKW}(\mathrm{A}, \mathrm{T}) * \operatorname{KWEALTH}(\mathrm{~T})$
$\operatorname{PKW}(\mathrm{A}, \mathrm{T})=\operatorname{PKWLC}(\mathrm{A}, \mathrm{T}) * \operatorname{POP}(\mathrm{~A}, \mathrm{~T}) / \operatorname{SUM}(\mathrm{A})(\operatorname{PKWLC}(\mathrm{A}, \mathrm{T}) *$ $\operatorname{POP}(\mathrm{A}, \mathrm{T}))$
$\operatorname{RG}(\mathrm{T})=\operatorname{MPKTOT}(\mathrm{T}) / \operatorname{PRTS}$
$\operatorname{RN}(\mathrm{T})=\mathrm{RG}(\mathrm{T})-\operatorname{DELTA}(\mathrm{T})$
$\operatorname{NETYK}(\mathrm{A}, \mathrm{T})=\mathrm{KW}(\mathrm{A}, \mathrm{T}) * \operatorname{RN}(\mathrm{~T}) *(1-\operatorname{TRATE}(\mathrm{T}))$
7. TOTAL INCOME
$\operatorname{NETY}(\mathrm{A}, \mathrm{T})=\operatorname{NETYL}(\mathrm{A}, \mathrm{T})+\operatorname{NETYK}(\mathrm{A}, \mathrm{T})$
$\operatorname{GROSSDY}(\mathrm{A}, \mathrm{T})=\operatorname{NETY}(\mathrm{A}, \mathrm{T})+\operatorname{DELTA}(\mathrm{T}) * \operatorname{KW}(\mathrm{~A}, \mathrm{~T})$
8. CONSUMER DURABLES: STOCK AND THE FLOW OF SERVICES
$\operatorname{KDUR}(T)=(1-D D) * \operatorname{KDUR}(T-1)+\operatorname{IDUR}(T-1)$
$\mathrm{KD}(\mathrm{A}, \mathrm{T})=\left((1-\mathrm{DD})^{* *} \mathrm{~A}\right) * \operatorname{IDUR}(\mathrm{~T}-\mathrm{A}-1) \quad(\mathrm{A}=0,1,2, \ldots)$
$\operatorname{IDUR}(\mathrm{T})=\operatorname{PDUR}(\mathrm{T}) * \operatorname{ISAVING}(\mathrm{~T})$
$\operatorname{CDUR}(\mathrm{T})=\operatorname{DD} * \operatorname{KDUR}(\mathrm{~T})$

## 9. AGGREGATE CONSUMPTION AND CONSUMER EXPENDITURE

Standard Specification --

$$
\operatorname{CONSUM}(\mathrm{T})=\operatorname{PCON} 1(\mathrm{~T}) *(\operatorname{GDP}(\mathrm{~T})-\operatorname{GOVC}(\mathrm{T}))
$$

Alternative Specification --

$$
\operatorname{CONSUM}(\mathrm{T})=\operatorname{PCON} 2(\mathrm{~T}) * \operatorname{NETY}(\mathrm{~T})
$$

Consumer Expenditure --

$$
\operatorname{CONEX}(\mathrm{T})=\operatorname{CONSUM}(\mathrm{T})+\operatorname{IDUR}(\mathrm{T})-\operatorname{CDUR}(\mathrm{T})
$$

10. AGGREGATE SAVING
$\operatorname{SAVING}(\mathrm{T})=\operatorname{GDP}(\mathrm{T})-\operatorname{CONSUM}(\mathrm{T})-\operatorname{GOVC}(\mathrm{T})-\operatorname{TRADEBAL}(\mathrm{T})-$ STATD(T) + CDUR(T)
$\operatorname{ISAVING}(\mathrm{T})=\operatorname{SAVING}(\mathrm{T})-\operatorname{INVENT}(\mathrm{T})-\operatorname{PGB}(\mathrm{T}) * \operatorname{GOVC}(\mathrm{~T})$
11. GOVERNMENT EXPENDITURE
$\operatorname{GOVC}(\mathrm{T})=\operatorname{PGOVC}(\mathrm{T}) * \operatorname{GDP}(\mathrm{~T})$
12. AGGREGATE TAX RATE, NET OF TRANSFERS $\operatorname{TRATE}(\mathrm{T})=(1-\mathrm{PGB}(\mathrm{T})) *(\mathrm{GOVC}(\mathrm{T}) / \mathrm{GDP}(\mathrm{T}))$
13. AGGREGATE INVENTORY CHANGE $\operatorname{INVENT}(\mathrm{T})=\operatorname{PINVY}(\mathrm{T}) * \operatorname{GDP}(\mathrm{~T})$
14. AGGREGATE TRADE BALANCE

TRADEBAL $(\mathrm{T})=\operatorname{PTRD}(\mathrm{T}) * \operatorname{GDP}(\mathrm{~T})$
15. STATISTICAL DISCREPANCY
$\operatorname{STATD}(\mathrm{T})=\operatorname{PSTATD}(\mathrm{T}) * \operatorname{GDP}(\mathrm{~T})$
17. HUMAN CAPITAL

```
RDISC(T) = PDISC * RN(T) or RDISC(T) = RDISCF
ADISC(T) = 1/(1+RDISC(T))
DISC(AJ,A,T) = F(ADISC(T))
HCAP(S,A,T) = EMPLOY(S,A,T) * MPROD(S,A,T) * YRS(A)/2
    + SUM(AJ=A+1,AMAX)(DISC(AJ,A,T)
    * (LX(S,AJ,T)/LX(S,A,T))
    * (EMPLOY(S,AJ,T)/POP(S,AJ,T))
    * (MPROD(S,AJ,T) * YRS(AJ)))
    * POP(S,A,T)
HCAPTOT(T) = SUM(S,A)(HCAP(S,A,T))
```


## LIST OF DEFINITIONS

A

AA

ADISC annual discount factor for calculation of human capital
subscript denoting age of population or labour force cohort ( $\mathrm{A}=$ A1, .., A12) or of vintage of capital stock ( $\mathrm{A}=0,1, \ldots$ )
subscript denoting age of labour force or population cohort, used to indicate single years of age subscript denoting highest single year of age

AJ subscript denoting age group
AL subscript denoting lowest single year of age
ALPHA* adjustment factor for rate of change of educational composition
AMAX maximum age group in calculation of human capital
CDUR services provided by consumer durable goods
CONEX consumer expenditures, measured on a national accounts basis
CONSUM consumption; the flow of services provided by consumer goods, including the service of consumer durables

DD*

DELTA annual rate of depreciation on the fixed capital stock, excluding consumer durables

DEP depreciation of the fixed capital stock, excluding consumer durables
DIFF* parameter relating to the difference between male and female marginal productivity

DISC(AJ,A,T) factor calculated from ADISC for discounting between midpoint of age group A and midpoint of age group AJ (for AJ greater than or equal to A)

DM* annual rate of depreciation associated with machinery and equipment
DNR* annual rate of depreciation associated with non-residential construction
DR* annual rate of depreciation associated with residential construction

| E | subscript indicating education (highest level of schooling) $(\mathrm{E}=$ E1,...,E7) |
| :---: | :---: |
| ECOMP | educational composition of the population |
| ECOMP1 | educational composition of the population in the absence of immigration |
| EMPLOY+ | employment |
| ETA* | elasticity parameter relating to labour experience |
| ETOT+ | total employment |
| F | general symbol used to denote a function |
| GDP | gross domestic product |
| GOV | total government expenditures |
| GOVC | government current expenditure on goods and services |
| GROSSDY | gross disposable income |
| HCAP | human capital of population of given sex and age |
| HCAPTOT | total human capital |
| HOUSE+ | number of households |
| HRSFW* | average weekly hours of full-time workers |
| HRSPW* | average weekly hours of part-time workers |
| IDUR | annual gross investment expenditure on consumer durables |
| IM | immigration |
| IMACH | annual gross investment expenditure on machinery and equipment |
| IMECOMP | educational composition of immigration |
| IMED | immigration by educational group |
| IMREL | fraction of immigration in educational group relative to corresponding fraction in rest of population |
| IMWT | relative weight associated with educational group in determining |

educational distribution of immigration

INRES

INVENT
IRES

ISAVING
ITOT
KD
KDUR

KM
KMACH
KNR

KNRES
KR

KRES
KT

KTOT
KW

KWEALTH
LADJ1 employment adjustment factor, to make allowance for part-weeks and part-hours of work

LEX labour force experience variable
LEXR labour force experience relative to base period
LFTOT $+\quad$ total labour force
LINPUT effective labour input in aggregate production process

| LF | labour force in age-sex-education group |
| :---: | :---: |
| LFPR | labour force participation rate for age-sex-education group |
| LWT1 | productivity factor associated with cohort |
| LWT2 | age-productivity profile, specified for each education level and each sex |
| LX | proportion of population surviving to given age (based on current mortality rates) |
| MPETOT | marginal product of labour (in the aggregate) |
| MPKTOT | marginal product of capital (in the aggregate) |
| MPROD | marginal product of labour for age-sex-specific group |
| MPRODE | marginal product of labour for age-sex-education-specific group |
| NETWAGE | net wages, after allowance for taxes |
| NETY | net income, after allowance for taxes and depreciation |
| NETYK | net income from capital, after allowance for taxes and depreciation |
| NETYL | net income from labour, after allowance for taxes |
| PCD0 | measure incorporating neutral technological progress, associated with Cobb-Douglas production function |
| PCD1* | parameter associated with Cobb-Douglas production function |
| PCD2* | parameter associated with Cobb-Douglas production function |
| PCES0 | measure incorporating neutral technological progress, associated with CES production function |
| PCES1* | parameter associated with CES production function |
| PCES2* | parameter associated with CES production function |
| PCES3* | parameter associated with CES production function |
| PCES4* | parameter associated with CES production function |
| PCON1* | parameter in consumption function |


| PCON2* | parameter in consumption function |
| :---: | :---: |
| PDISC* | parameter representing proportionate adjustment of RN for calculation of human capital |
| PDUR* | parameter in consumer durable goods investment equation |
| PGB* | parameter indicating the proportion of government expenditure not financed by taxes |
| PGL0 | measure incorporating neutral technological progress, associated with generalized Leontief production function |
| PGL1* | parameter associated with generalized Leontief production function |
| PGL2* | parameter associated with generalized Leontief production function |
| PGL3* | parameter associated with generalized Leontief production function |
| PGL4* | parameter associated with generalized Leontief production function |
| PGOVC* | parameter in government expenditure equation |
| PINVY* | parameter in inventory change equation |
| PKW | proportion of aggregate fixed wealth that is held by a particular group, based on life-cycle optimization model |
| PKWLC* | life-cycle value of parameter that allocates total fixed wealth to an age group |
| PL* | rate of labour-embodied technological change |
| PMACH* | parameter in machinery and equipment investment equation |
| PN* | rate of neutral technological change |
| PNRES* | parameter in non-residential construction investment equation |
| POP+ | population |
| POPED | population by educational group |
| POPTOT + | total population |
| PPART* | proportion of employed labour force that works part-time |


| PRATE+ | labour force participation rate |
| :---: | :---: |
| PRES* | parameter in residential construction investment equation |
| PRMAX | maximum labour force participation rate |
| PRTS | parameter indicating returns to scale |
| PSTATD* | parameter in statistical discrepancy equation |
| PTL0 | measure incorporating neutral technological progress, associated with translog production function |
| PTL1* | parameter associated with translog production function |
| PTL2* | parameter associated with translog production function |
| PTL3* | parameter associated with translog production function |
| PTL4* | parameter associated with translog production function |
| PTRD* | parameter in trade balance equation |
| RDISC | annual rate of discount for calculation of human capital |
| RDISCF* | fixed value assigned to RDISC (at the option of a user of the model) |
| RG | gross rate of return on the aggregate capital stock, excluding consumer durables |
| RN | net (i.e., after depreciation) rate of return on the capital stock, excluding consumer durables |
| RWM | ratio of wage to marginal product |
| RWM1* | ratio of wage to marginal product, component associated with age |
| RWM2* | ratio of wage to marginal product, component associated with gender |
| RWM3* | ratio of wage to marginal product, component associated with education |
| S | subscript indicating sex ( $\mathrm{S}=1$ for male, $\mathrm{S}=2$ for female) |
| SAVING | aggregate saving |
| SHAREA | labour income, calculated as that portion of GDP not accruing to capital |


| SHAREB | labour income, calculated as the summation of income accruing to each age-sex-education group |
| :---: | :---: |
| STATD | statistical discrepancy in the national accounts |
| SUM | operator indicating summation (e.g., SUM(E) indicates summation over E, $\operatorname{SUM}(\mathrm{S}, \mathrm{A})$ indicates summation over A and S) |
| T | subscript indicating time |
| TBASE | base year (1991) |
| TRADEBAL | aggregate trade balance (exports less imports) |
| TRATE | aggregate tax rate net of transfers |
| URATE+ | unemployment rate |
| UFIX* | age-sex standardized unemployment rate (specified in MEDS-D) |
| WAGE | annual wage rate |
| WCFACT | adjustment factor, used to ensure that labour income, as allocated, is equal to total labour income available |
| WKSFY* | average weeks worked per year by part-time workers |
| WKSPY* | average weeks worked per year by full-time workers |
| XPROP | proportion of population excluded in calculating labour force source population |
| YRS | number of years in a given age group (e.g., 5 for 15-19 age group, 10 for 25-34 age group) |

## APPENDIX B:

## SELECTED CANADIAN HISTORICAL SERIES

1991-2004

This appendix contains historical data back to 1981 for some selected series; the series shown here are of particular importance in framing assumptions for projections. The CANSIM identifier number is shown, where applicable.

Symbols not mentioned in Appendix A are defined as follows:
BINV -- annual gross business investment expenditure on inventory change
GINV -- annual gross government investment expenditure on inventory change
EXPORT -- annual exports of goods and services
IMPORT -- annual imports of goods and services

Appendix B: Selected Canadian Historical Series

|  |  |  |  | V1 |  | V1992044 |  | CDUR CONSUM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ear | IRES | INRES | IMAC | TOT | IDUR | ISAVING | CONE |  |  |
| 81 | 36904. | 54894. | 33104. | 124902. | 35132. | 160034. | 34477 | 22277 |  |
| 982 | 30532. | 51525. | 28381. | 110438. | 30926 | 141364. | 336080 | 23562. | 6. |
| 83 | 35618. | 47529. | 27312. | 110459. | 35202 | 145661. | 344897 | 24299. | 3994. |
| 884 | 35661. | 47276. | 29291. | 112228. | 40371 | 152599 | 359502 | 25389. | 344520 |
| 985 | 38726. | 50818. | 32350. | 121894. | 46236 | 168130 | 377329 | 26887. | 357980. |
| 986 | 43462. | 48026. | 35661. | 127149. | 48966 | 176115 | 391399 | 28822. | 371255 |
| 987 | 49784. | 49559. | 40845. | 140188. | 52245 | 192433 | 407702 | 30836. | 386293. |
| 988 | 50876. | 53287. | 48204. | 152367. | 55793 | 208160 | 425265 | 32977. | 402449 |
| 989 | 52903. | 55654. | 52073. | 160630. | 56347. | 216977 | 439855 | 35259 | 418767 |
| 90 | 47434. | 56768. | 50002. | 154204. | 54739. | 208943 | 44492 | 37368 | 4275 |
| 91 | 40572. | 55562. | 49205. | 145339. | 52367 | 197706 | 43791 | 39105 | 42465 |
| 992 | 43365. | 48792. | 48970. | 141127 | 52604. | 193731 | 444643 | 40431 | 4324 |
| 993 | 41715. | 48504. | 48070. | 138289 | 53303 | 191592 | 452569 | 41648 | 44091 |
| 94 | 43351. | 53100. | 52271. | 148722 | 55852 | 204574 | 466296 | 42814 | 45325 |
| 95 | 36887. | 52532. | 56047. | 145466. | 56942. | 202408. | 475880 | 44118. | 463056 |
| 96 | 40458. | 51973. | 59319. | 151750 | 59405. | 211155. | 488155 | 45400. | 474150. |
| 997 | 43765. | 57587. | 73489. | 174841. | 67988. | 242829 | 510695 | 46801. | 489508. |
| 998 | 42212. | 57251. | 79653. | 179116. | 71404. | 250520. | 524807. | 48919. | 502322. |
| 1999 | 43725. | 59334. | 89179. | 192238. | 77547. | 269785. | 544753. | 51168. | 518374. |
| 000 | 46014. | 60329. | 95100. | 201443. | 82492. | 283935. | 566664. | 53806. | 537978. |
| 2001 | 50832. | 64855. | 93244. | 208931. | 85913. | 294844. | 579513. | 56674. | 550274. |
| 2002 | 58103. | 63247. | 90584. | 211934. | 93252. | 305186. | 600701. | 59598. | 567047. |
| 2003 | 61689. | 66117. | 96940. | 224746. | 95189. | 319935. | 619401. | 62964. | 587176. |
| 2004 | 66803. | 67374. | 10597 | 240153. | 98119 | 338272 | 64063 | 6618 | 08 |


| CANSIM \# | V1992049 | V1992057 | V1992051 |  | V1992060 | V1992063 |  | V1992066 | V1992059 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | GOVC | BINV | GINV | INVENT | EXPORT | IMPORT | TRADEBAL | STATD | GDP |
| 1981 | 137226. | -524. | 3119. | 2595. | 128879. | 129473. | -594 | 2533 | 594082. |
| 1982 | 139942. | 169. | -22408. | -22239. | 126858 | 108616 | 18242 . | 1134 | 576744. |
| 1983 | 142262. | -95. | -10180. | -10275. | 134353. | 119425. | 14928. | -1280. | 592684. |
| 1984 | 143736. | 41. | -134. | -93. | 159088. | 139824. | 19264. | -1082. | 626378. |
| 1985 | 149892. | -128. | -494 | -622. | 166749. | 151482. | 15267. | 127 | 660318. |
| 1986 | 152597. | -67. | -1632. | -1699. | 173904. | 162412. | 11492. | -766. | 677802. |
| 1987 | 154614. | -71. | -459. | -530. | 179015. | 171070. | 7945. | -1661. | 705701. |
| 1988 | 161662. | 118. | -257. | -139. | 195014. | 194083. | 931. | 2170 | 740592. |
| 1989 | 166112. | -2. | 2459. | 2457. | 196924. | 205490. | -8566. | 463 | 759821. |
| 1990 | 171971. | 122. | -4695. | -4573. | 206121. | 209664. | -3543. | 30. | 762381. |
| 1991 | 177006. | -61. | -8576. | -8637. | 209812. | 214887. | -5075. | 12 | 747857. |
| 1992 | 178729. | -67. | -9310. | -9377. | 224857. | 224920. | -63. | -1652. | 754835. |
| 1993 | 178796. | -5. | -2931. | -2936. | 249226. | 241458. | 7768. | -2090. | 772498. |
| 1994 | 176570. | 0. | 314. | 314. | 280890. | 260894. | 19996. | -1233. | 810016. |
| 1995 | 175557. | 49. | 8877. | 8926. | 304727. | 275871. | 28856. | -859. | 832138. |
| 1996 | 173484. | -3. | 2611. | 2608. | 321787. | 289968. | 31819. | -634 | 845157 . |
| 1997 | 171756. | 5. | 8174 | 8179. | 348604. | 331271. | 17333. | -72. | 882734. |
| 1998 | 177277. | -26. | 5964. | 5938. | 380407 . | 348095. | 32312 . | -386. | 919000. |
| 1999 | 181006. | -3 | 6589. | 6586. | 421046. | 375219. | 45827. | 86 | 969242. |
| 2000 | 186589. | 23. | 13353. | 13376. | 458574. | 405715. | 52859. | 709. | 1020258. |
| 2001 | 193876. | 13. | -2399. | -2386. | 444986. | 384894. | 60092. | -409. | 1036048. |
| 2002 | 198828. | -40. | 1800. | 1760. | 449305. | 390744. | 58561. | -627. | 1068540. |
| 2003 | 204593. | 14. | 11052. | 11066. | 439784. | 406664. | 33120. | -405. | 1094278. |
| 2004 | 210049. | 19. | 11517. | 11536. | 461675. | 439619 . | 22056. | -493. | 1130405. |

Ratios:

|  | IS |  |  |  | to GDP |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | PRES | PNRES | PMAC | PDUR | PCO | PGO | PINVY | PTRD | PSTATD |
| 1981 | 0.23060 | 0.34301 | 0.20686 | 0.21953 | 0.72654 | 0.23099 | 0.00437 | -0.00100 | 0.00426 |
| 1982 | 0.21598 | 0.36448 | 0.20077 | 0.21877 | 0.75255 | 0.24264 | -0.03856 | 0.03163 | 0.00197 |
| 1983 | 0.24453 | 0.32630 | 0.18750 | 0.24167 | 0.74151 | 0.24003 | -0.01734 | 0.02519 | -0.00216 |
| 1984 | 0.23369 | 0.30981 | 0.19195 | 0.26456 | 0.71382 | 0.22947 | -0.00015 | 0.03075 | -0.00173 |
| 1985 | 0.23033 | 0.30225 | 0.19241 | 0.27500 | 0.70134 | 0.22700 | -0.00094 | 0.02312 | 0.00019 |
| 1986 | 0.24678 | 0.27270 | 0.20249 | 0.27803 | 0.70688 | 0.22514 | -0.00251 | 0.01695 | -0.00113 |
| 1987 | 0.25871 | 0.25754 | 0.21226 | 0.27150 | 0.70097 | 0.21909 | -0.00075 | 0.01126 | -0.00235 |
| 1988 | 0.24441 | 0.25599 | 0.23157 | 0.26803 | 0.69516 | 0.21829 | -0.00019 | 0.00126 | 0.00293 |
| 1989 | 0.24382 | 0.25650 | 0.23999 | 0.25969 | 0.70534 | 0.21862 | 0.00323 | -0.01127 | 0.00061 |
| 1990 | 0.22702 | 0.27169 | 0.23931 | 0.26198 | 0.72416 | 0.22557 | -0.00600 | -0.00465 | 0.00004 |
| 1991 | 0.20521 | 0.28103 | 0.24888 | 0.26487 | 0.74390 | 0.23668 | -0.01155 | -0.00679 | 0.00002 |
| 1992 | 0.22384 | 0.25185 | 0.25277 | 0.27153 | 0.75068 | 0.23678 | -0.01242 | -0.00008 | -0.00219 |
| 1993 | 0.21773 | 0.25316 | 0.25090 | 0.27821 | 0.74265 | 0.23145 | -0.00380 | 0.01006 | -0.00271 |
| 1994 | 0.21191 | 0.25956 | 0.25551 | 0.27302 | 0.71554 | 0.21798 | 0.00039 | 0.02469 | -0.00152 |
| 1995 | 0.18224 | 0.25954 | 0.27690 | 0.28132 | 0.70525 | 0.21097 | 0.01073 | 0.03468 | -0.00103 |
| 1996 | 0.19160 | 0.24614 | 0.28093 | 0.28133 | 0.70592 | 0.20527 | 0.00309 | 0.03765 | -0.00075 |
| 1997 | 0.18023 | 0.23715 | 0.30264 | 0.27998 | 0.68850 | 0.19457 | 0.00927 | 0.01964 | -0.00008 |
| 1998 | 0.16850 | 0.22853 | 0.31795 | 0.28502 | 0.67724 | 0.19290 | 0.00646 | 0.03516 | -0.00042 |
| 1999 | 0.16207 | 0.21993 | 0.33056 | 0.28744 | 0.65764 | 0.18675 | 0.00680 | 0.04728 | 0.00009 |
| 2000 | 0.16206 | 0.21247 | 0.33494 | 0.29053 | 0.64531 | 0.18288 | 0.01311 | 0.05181 | 0.00069 |
| 2001 | 0.17240 | 0.21996 | 0.31625 | 0.29138 | 0.65340 | 0.18713 | -0.00230 | 0.05800 | -0.00039 |
| 2002 | 0.19039 | 0.20724 | 0.29682 | 0.30556 | 0.65199 | 0.18607 | 0.00165 | 0.05480 | -0.00059 |
| 2003 | 0.19282 | 0.20666 | 0.30300 | 0.29753 | 0.65998 | 0.18697 | 0.01011 | 0.03027 | -0.00037 |
| 2004 | 0.19748 | 0.19917 | 0.31329 | 0.29006 | 0.66137 | 0.18582 | 0.01021 | 0.01951 | -0.00044 |

## APPENDIX C:

## SELECTED OUTPUT OF MEDS-E SYSTEM

MEDS-E TABLE 1: MAJOR DEMOGRAPHIC AND ECONOMIC AGGREGATES ID: STANDARD (AS OF 22/SEPT/05)

DATE: 26SEP2005

| YEAR | $\begin{aligned} & \text { Popula- } \\ & \text { tion } \\ & \text { POPTOT } \end{aligned}$ | Labour <br> Force LFTOT | Employ -ment ETOT | Gross Domestic Product GDP | $\begin{gathered} \text { Consump } \\ \text {-tion } \\ \text { CONSUM } \end{gathered}$ | Fixed Invest -ment ITOT | Gov't <br> Current <br> Expend. <br> GOVC | Fixed Capital Stock KTOT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | - levels | - |  |  |  |
| 2001 | 31021. | 16168. | 15004. | 1036.0 | 550.2 | 206.3 | 193.9 | 2744.3 |
| 2006 | 32509. | 17755. | 16476. | 1209.7 | 655.6 | 275.2 | 232.2 | 3284.5 |
| 2011 | 33899. | 18635. | 17293. | 1403.9 | 760.9 | 324.9 | 269.5 | 4002.2 |
| 2016 | 35237 . | 19123. | 17746. | 1590.2 | 861.8 | 373.3 | 305.2 | 4792.4 |
| 2021 | 36472. | 19161. | 17782. | 1754.2 | 950.7 | 417.4 | 336.7 | 5633.9 |
| 2026 | 37531. | 19095. | 17720. | 1905.7 | 1032.8 | 458.6 | 365.8 | 6502.3 |
| 2031 | 38342. | 19073. | 17700. | 2042.1 | 1106.7 | 496.2 | 391.9 | 7382.4 |
| 2036 | 38888. | 19129. | 17752. | 2179.3 | 1181.1 | 533.3 | 418.3 | 8265.7 |
| 2041 | 39208. | 19160. | 17780. | 2311.7 | 1252.8 | 569.1 | 443.7 | 9150.4 |
| 2046 | 39359. | 19091. | 17716. | 2435.8 | 1320.1 | 602.8 | 467.5 | 10031.0 |
| 2051 | 39400 . | 18935. | 17572. | 2552.4 | 1383.3 | 634.5 | 489.9 | 10900.7 |

Note: Numbers of persons are in thousands; income/expenditure figures are in billions of 1997 dollars.

MEDS-E TABLE 2: MAJOR DEMOGRAPHIC AND ECONOMIC AGGREGATES ID: STANDARD (AS OF 22/SEPT/05)

DATE: 26SEP2005

|  | Gross |  |  |  |  | Fixed | Gov't | Fixed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Popula- | Labour | Employ | Domestic | Consump | Invest | Current | Capital |
|  | tion | Force | -ment | Product | -tion | -ment | Expend. | Stock |
| YEAR | POPTOT | LFTOT | ETOT | GDP | CONSUM | ITOT | GOVC | KTOT |

- percentage growth rates -

|  |  |  | 9.8 | 9.8 | 16.8 | 19.2 | 33.4 | 19.8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2006 | 4.3 | 5.0 | 5.0 | 16.1 | 16.1 | 18.1 | 16.1 | 21.8 |
| 2011 | 3.9 | 2.6 | 2.6 | 13.3 | 13.3 | 14.9 | 13.3 | 19.7 |
| 2021 | 3.5 | .2 | .2 | 10.3 | 10.3 | 11.8 | 10.3 | 17.6 |
| 2026 | 2.9 | -.3 | -.3 | 8.6 | 8.6 | 9.9 | 8.6 | 15.4 |
| 2031 | 2.2 | -.1 | -.1 | 7.2 | 7.2 | 8.2 | 7.2 | 13.5 |
| 2036 | 1.4 | .3 | .3 | 6.7 | 6.7 | 7.5 | 6.7 | 12.0 |
| 2041 | .8 | .2 | .2 | 6.1 | 6.1 | 6.7 | 6.1 | 10.7 |
| 2046 | .4 | -.4 | -.4 | 5.4 | 5.4 | 5.9 | 5.4 | 9.6 |
| 2051 | .1 | -.8 | -.8 | 4.8 | 4.8 | 5.3 | 4.8 | 8.7 |

Note: The growth rates show total growth over the preceding 5 years.

MEDS-E TABLE 3: RATIOS OF AGGREGATE VARIABLES
DATE: 26SEP2005

| Year | GDP/POPTOT |  |  | Percent of GDP-- |  |  | URATE (\%) | KTOT <br> GDP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  | index \% growth |  | CONSUM | ITOT | GOVC | ADEB |  |  |
| 2001 | 100.0 |  | 53.1 | 19.9 | 18.7 | 5.8 | 7.2 | 2.6 |
| 2006 | 111.4 | 11.4 | 54.2 | 22.7 | 19.2 | . 0 | 7.2 | 2.7 |
| 2011 | 124.0 | 11.3 | 54.2 | 23.1 | 19.2 | . 0 | 7.2 | 2.9 |
| 2016 | 135.1 | 9.0 | 54.2 | 23.5 | 19.2 | . 0 | 7.2 | 3.0 |
| 2021 | 144.0 | 6.6 | 54.2 | 23.8 | 19.2 | . 0 | 7.2 | 3.2 |
| 2026 | 152.0 | 5.6 | 54.2 | 24.1 | 19.2 | . 0 | 7.2 | 3.4 |
| 2031 | 159.5 | 4.9 | 54.2 | 24.3 | 19.2 | . 0 | 7.2 | 3.6 |
| 2036 | 167.8 | 5.2 | 54.2 | 24.5 | 19.2 | . 0 | 7.2 | 3.8 |
| 2041 | 176.6 | 5.2 | 54.2 | 24.6 | 19.2 | . 0 | 7.2 | 4.0 |
| 2046 | 185.3 | 5.0 | 54.2 | 24.7 | 19.2 | . 0 | 7.2 | 4.1 |
| 2051 | 194.0 | 4.7 | 54.2 | 24.9 | 19.2 | . 0 | 7.2 | 4.3 |

Note: The growth rates show total growth over the preceding 5 years.


Note: The growth rates show total growth over the preceding 5 years.

MEDS-E TABLE 5: FIXED CAPITAL STOCK AND INVESTMENT
ID: STANDARD (AS OF 22/SEPT/05)
DATE: 26SEP2005

| Year | KTOT | KRES | KNRES | KMACH | ITOT | IRES | INRES | IMACH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - levels - |  |  |  |  |  |  |  |
| 2001 | 2744.3 | 988.9 | 1137.9 | 617.5 | 206.3 | 50.2 | 64.0 | 92.1 |
| 2006 | 3284.5 | 1164.2 | 1297.3 | 823.0 | 275.2 | 69.7 | 86.6 | 118.9 |
| 2011 | 4002.2 | 1381.5 | 1551.8 | 1068.9 | 324.9 | 82.2 | 102.2 | 140.4 |
| 2016 | 4792.4 | 1632.3 | 1843.5 | 1316.6 | 373.3 | 94.5 | 117.4 | 161.4 |
| 2021 | 5633.9 | 1909.7 | 2163.4 | 1560.7 | 417.4 | 105.7 | 131.3 | 180.4 |
| 2026 | 6502.3 | 2205.7 | 2501.5 | 1795.2 | 458.6 | 116.1 | 144.3 | 198.2 |
| 2031 | 7382.4 | 2514.2 | 2850.5 | 2017.7 | 496.2 | 125.6 | 156.1 | 214.5 |
| 2036 | 8265.7 | 2831.1 | 3205.8 | 2228.8 | 533.3 | 135.0 | 167.8 | 230.5 |
| 2041 | 9150.4 | 3154.5 | 3565.1 | 2430.9 | 569.1 | 144.1 | 179.0 | 246.0 |
| 2046 | 10031.0 | 3481.5 | 3925.4 | 2624.1 | 602.8 | 152.6 | 189.6 | 260.6 |
| 2051 | 10900.7 | 3809.2 | 4283.6 | 2808.0 | 634.5 | 160.6 | 199.6 | 274.3 |

Note: Figures are in billions of 1997 dollars.

MEDS-E TABLE 6: FIXED CAPITAL STOCK AND INVESTMENT
ID: STANDARD (AS OF 22/SEPT/05)
DATE: 26SEP2005

| Year | KTOT | KRES | KNRES | KMACH | ITOT | IRES | INRES | IMACH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - percentage growth rates - |  |  |  |  |  |  |  |
| 2006 | 19.7 | 17.7 | 14.0 | 33.3 | 33.4 | 38.8 | 35.2 | 29.2 |
| 2011 | 21.8 | 18.7 | 19.6 | 29.9 | 18.1 | 18.1 | 18.1 | 18.1 |
| 2016 | 19.7 | 18.2 | 18.8 | 23.2 | 14.9 | 14.9 | 14.9 | 14.9 |
| 2021 | 17.6 | 17.0 | 17.4 | 18.5 | 11.8 | 11.8 | 11.8 | 11.8 |
| 2026 | 15.4 | 15.5 | 15.6 | 15.0 | 9.9 | 9.9 | 9.9 | 9.9 |
| 2031 | 13.5 | 14.0 | 14.0 | 12.4 | 8.2 | 8.2 | 8.2 | 8.2 |
| 2036 | 12.0 | 12.6 | 12.5 | 10.5 | 7.5 | 7.5 | 7.5 | 7.5 |
| 2041 | 10.7 | 11.4 | 11.2 | 9.1 | 6.7 | 6.7 | 6.7 | 6.7 |
| 2046 | 9.6 | 10.4 | 10.1 | 8.0 | 5.9 | 5.9 | 5.9 | 5.9 |
| 2051 | 8.7 | 9.4 | 9.1 | 7.0 | 5.3 | 5.3 | 5.3 | 5.3 |

Note: The growth rates show total growth over the preceding 5 years.

MEDS-E TABLE 7: FIXED CAPITAL STOCK AND ITS AGE DISTRIBUTION (TYPE: KTOT ) ID: STANDARD (AS OF 22/SEPT/05) DATE: 26SEP2005

| Year | KTOT | $\begin{aligned} & \text { Median } \\ & \text { Age } \\ & \text { (years) } \end{aligned}$ | Age Distribution of KTOT , in Years (\%) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | All ages | 10+ | 20+ | 30+ | 40+ | 50+ |
| 2001 | 2744.3 | 10.4 | 100.0 | 51.4 | 24.3 | 11.0 | 4.9 | 1.9 |
| 2006 | 3284.5 | 9.7 | 100.0 | 49.2 | 25.2 | 11.8 | 5.3 | 2.2 |
| 2011 | 4002.2 | 8.9 | 100.0 | 46.5 | 25.4 | 12.4 | 5.7 | 2.5 |
| 2016 | 4792.4 | 8.9 | 100.0 | 45.9 | 24.2 | 12.8 | 6.1 | 2.7 |
| 2021 | 5633.9 | 9.2 | 100.0 | 47.2 | 23.4 | 13.3 | 6.6 | 3.0 |
| 2026 | 6502.3 | 9.7 | 100.0 | 48.7 | 23.8 | 13.1 | 7.0 | 3.4 |
| 2031 | 7382.4 | 10.1 | 100.0 | 50.4 | 25.2 | 13.0 | 7.6 | 3.8 |
| 2036 | 8265.7 | 10.6 | 100.0 | 52.0 | 26.7 | 13.6 | 7.7 | 4.2 |
| 2041 | 9150.4 | 11.0 | 100.0 | 53.4 | 28.3 | 14.7 | 7.8 | 4.6 |
| 2046 | 10031.0 | 11.5 | 100.0 | 54.6 | 29.8 | 15.9 | 8.3 | 4.8 |
| 2051 | 10900.7 | 11.9 | 100.0 | 55.8 | 31.3 | 17.2 | 9.1 | 4.9 |

Note: KTOT is in billions of 1997 dollars.


Note: KDUR, CONSUM, CDUR, and CONEX are in billions of 1997 dollars; the ratios involving CONSUM are in thousands of 1997 dollars per person and per household.

| MEDS-E | TABLE | 9: | $\begin{aligned} & \text { PRO } \\ & \text { ID: } \end{aligned}$ | JECTED EDUC STANDARD | CATIO <br> (AS | $\begin{aligned} & \mathrm{ON} \text { OF } \\ & \mathrm{OF} \quad 22 \end{aligned}$ | PULA SEPT/ | $\begin{aligned} & \text { TION } \\ & 05) \end{aligned}$ |  | BOTH SEXES <br> DATE: 26SEP2005 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 15+ |  |  |  |  |  | 20-24 |  |  |  |
|  | E1 | E2 | E3 | E4 E5 | E6 | 6 E7 | E1 | E2 | E3 | E4 | E5 | E6 | E7 |
|  |  | - | thous | sands |  |  |  |  | tho | and | - |  |  |
| 2001 | 2491 | 4408 | 4873 | 23007094 | 2724 | 1273 | 39 | 234 | 500 | 535 | 608 | 170 | 22 |
| 2006 | 2048 | 4342 | 5068 | 25627885 | 3286 | 1679 | 34 | 253 | 485 | 606 | 615 | 177 | 24 |
| 2011 | 1669 | 4199 | 5188 | 28358655 | 3889 | 2014 | 33 | 255 | 465 | 645 | 613 | 179 | 27 |
| 2016 | 1310 | 3909 | 5258 | 31059305 | 4496 | 2353 | 35 | 255 | 443 | 680 | 606 | 179 | 29 |
| 2021 | 1039 | 3661 | 5250 | 33339912 | 5041 | 12615 | 34 | 232 | 384 | 652 | 546 | 164 | 29 |
| 2026 | 838 | 3536 | 5237 | 363210376 | 5427 | 2814 | 35 | 224 | 353 | 664 | 522 | 160 | 30 |
| 2031 | 740 | 3459 | 5079 | 393810775 | 5776 | 62963 | 37 | 228 | 340 | 708 | 525 | 164 | 33 |
| 2036 | 669 | 3220 | 4795 | 426911113 | 6201 | 3122 | 40 | 231 | 327 | 756 | 528 | 168 | 35 |
| 2041 | 576 | 2966 | 4354 | 460911283 | 6680 | 3330 | 42 | 231 | 310 | 792 | 523 | 170 | 37 |
| 2046 | 529 | 2612 | 3893 | 488211551 | 6989 | 3507 | 43 | 221 | 287 | 813 | 510 | 168 | 39 |
| 2051 | 526 | 2370 | 3698 | 524411480 | 7058 | 3599 | 43 | 207 | 261 | 822 | 489 | 165 | 39 |

Note: E1 refers to grade 8 or lower, E2 to some secondary, E3 to secondary school graduation, E4 to some post-secondary, E5 to post-secondary certificate or diploma, E6 to completed bachelor's degree, and E7 to university degree or certificate above bachelor's.

MEDS-E TABLE 10: PROJECTED EDUCATION OF POPULATION BOTH SEXES
ID: STANDARD (AS OF 22/SEPT/05)
DATE: 26SEP2005

| YEAR | 15+ |  |  |  |  |  |  | 20-24 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E1 | E2 | E3 | E4 | E5 | E6 | E7 |
|  | - | perce | tage | dis | ribut | ion |  |  | per | enta | e di | ri | n |  |
| 2001 | 9.9 | 17.5 | 19.4 | 9.1 | 28.2 | 10.8 | 5.1 | 1.9 | 11.1 | 23.7 | 25.4 | 28.8 | 8.1 | 1.1 |
| 2006 | 7.6 | 16.2 | 18.9 | 9.5 | 29.3 | 12.2 | 6.2 | 1.6 | 11.5 | 22.1 | 27.6 | 28.0 | 8.1 | 1.1 |
| 2011 | 5.9 | 14.8 | 18.2 | 10.0 | 30.4 | 13.7 | 7.1 | 1.5 | 11.5 | 21.0 | 29.1 | 27.6 | 8.1 | 1.2 |
| 2016 | 4.4 | 13.1 | 17.7 | 10.4 | 31.3 | 15.1 | 7.9 | 1.6 | 11.4 | 19.9 | 30.5 | 27.2 | 8.1 | 1.3 |
| 2021 | 3.4 | 11.9 | 17.0 | 10.8 | 32.1 | 16.3 | 8.5 | 1.7 | 11.4 | 18.8 | 31.9 | 26.7 | 8.1 | 1.4 |
| 2026 | 2.6 | 11.1 | 16.4 | 11.4 | 32.6 | 17.0 | 8.8 | 1.8 | 11.3 | 17.7 | 33.3 | 26.2 | 8.1 | 1.5 |
| 2031 | 2.3 | 10.6 | 15.5 | 12.0 | 32.9 | 17.6 | 9.1 | 1.9 | 11.2 | 16.7 | 34.8 | 25.8 | 8.1 | 1.6 |
| 2036 | 2.0 | 9.6 | 14.4 | 12.8 | 33.3 | 18.6 | 9.4 | 1.9 | 11.1 | 15.7 | 36.2 | 25.3 | 8.1 | 1.7 |
| 2041 | 1.7 | 8.8 | 12.9 | 13.6 | 33.4 | 19.8 | 9.9 | 2.0 | 11.0 | 14.7 | 37.6 | 24.8 | 8.1 | 1.8 |
| 2046 | 1.6 | 7.7 | 11.5 | 14.4 | 34.0 | 20.6 | 10.3 | 2.1 | 10.6 | 13.8 | 39.0 | 24.5 | 8.1 | 1.9 |
| 2051 | 1.5 | 7.0 | 10.9 | 15.4 | 33.8 | 20.8 | 10.6 | 2.2 | 10.2 | 12.9 | 40.5 | 24.1 | 8.1 | 2.0 |

Note: E1 refers to grade 8 or lower, E2 to some secondary, E3 to secondary school graduation, E4 to some post-secondary, E5 to post-secondary certificate or diploma, E6 to completed bachelor's degree, and E7 to university degree or certificate above bachelor's.

| MEDS-E | TABLE 12: | AGGREGATE MEASURES RELATING TO HUMAN CAPITAL |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | HCAP | HCAP/POPTOT | HCAP/ETOT | HCAP/GDP | HCAP/KTOT | RDISC |
| - levels - |  |  |  |  |  |  |
| 2001 | 8510. | 274.3 | 567.2 | 8.2 | 3.1 | 7.3 |
| 2006 | 10232. | 314.8 | 621.0 | 8.5 | 3.1 | 6.8 |
| 2011 | 12413. | 366.2 | 717.8 | 8.8 | 3.1 | 6.2 |
| 2016 | 14739. | 418.3 | 830.5 | 9.3 | 3.1 | 5.6 |
| 2021 | 17169. | 470.8 | 965.6 | 9.8 | 3.0 | 5.0 |
| 2026 | 19678. | 524.3 | 1110.5 | 10.3 | 3.0 | 4.4 |
| 2031 | 22139. | 577.4 | 1250.8 | 10.8 | 3.0 | 4.0 |
| 2036 | 24488. | 629.7 | 1379.5 | 11.2 | 3.0 | 3.6 |
| 2041 | 26817. | 684.0 | 1508.3 | 11.6 | 2.9 | 3.3 |
| 2046 | 29187. | 741.5 | 1647.5 | 12.0 | 2.9 | 3.0 |
| 2051 | 31607. | 802.2 | 1798.7 | 12.4 | 2.9 | 2.8 |
| Note: | HCAP represents human capital embodied in the population 15 years of age and over; it is in billions of 1997 dollars; HCAP/POPTOT and HCAP/ETOT are in thousands of 1997 dollars per person; HCAP/GDP and HCAP/KTOT are ratios; RDISC is a percent. |  |  |  |  |  |
| MEDS-E TABLE 13: AGGREGATE MEASURES RELATING TO HUMAN CAPITAL <br> ID: STANDARD (AS OF 22/SEPT/05) DATE: 26SEP2005 |  |  |  |  |  |  |
| Year | HCAP | HCAP/POPTOT | HCAP/ETOT | HCAP/GDP | HCAP/KTOT | RDISC |
| - percentage growth rates - |  |  |  |  |  |  |
| 2006 | 20.2 | 14.7 | 9.5 | 3.0 | . 5 |  |
| 2011 | 21.3 | 16.3 | 15.6 | 4.5 | -. 4 |  |
| 2016 | 18.7 | 14.2 | 15.7 | 4.8 | -. 8 |  |
| 2021 | 16.5 | 12.5 | 16.3 | 5.6 | -. 9 |  |
| 2026 | 14.6 | 11.4 | 15.0 | 5.5 | -. 7 |  |
| 2031 | 12.5 | 10.1 | 12.6 | 5.0 | -. 9 |  |
| 2036 | 10.6 | 9.1 | 10.3 | 3.6 | -1.2 |  |
| 2041 | 9.5 | 8.6 | 9.3 | 3.2 | -1.1 |  |
| 2046 | 8.8 | 8.4 | 9.2 | 3.3 | -. 7 |  |
| 2051 | 8.3 | 8.2 | 9.2 | 3.3 | -. 3 |  |

Note: The growth rates show total growth over the preceding 5 years.

| MEDS-E | TABLE 1 | AGE-SEX COMPOSITION OF HUMAN CAPITAL ID: STANDARD (AS OF 22/SEPT/05) |  |  |  |  | MALES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AGE GROUP |  |  |  |  |  |  |  |
| YEAR | TOTAL 15+ | 15-19 | 20-24 | 25-34 | 35-44 | 45-54 | 55-64 | 65-69 | 70+ |
| - per capita - |  |  |  |  |  |  |  |  |  |
| 2001 | 421.4 | 320.5 | 511.2 | 667.1 | 619.0 | 436.4 | 150.4 | 19.6 | 6.4 |
| 2006 | 450.2 | 350.0 | 547.5 | 727.7 | 685.5 | 476.7 | 188.0 | 29.9 | 8.1 |
| 2011 | 497.9 | 411.7 | 628.7 | 833.6 | 798.3 | 531.9 | 211.0 | 40.4 | 10.7 |
| 2016 | 549.1 | 487.3 | 726.2 | 957.0 | 914.6 | 600.6 | 234.0 | 48.8 | 13.8 |
| 2021 | 605.4 | 583.7 | 848.0 | 1107.4 | 1037.0 | 689.1 | 253.3 | 53.5 | 15.7 |
| 2026 | 662.7 | 691.6 | 981.5 | 1273.2 | 1169.0 | 770.3 | 275.6 | 56.8 | 16.5 |
| 2031 | 724.7 | 811.7 | 1127.3 | 1451.0 | 1311.6 | 842.2 | 312.3 | 62.8 | 17.0 |
| 2036 | 786.1 | 928.6 | 1268.0 | 1625.0 | 1445.2 | 912.4 | 340.7 | 70.7 | 18.4 |
| 2041 | 851.5 | 1045.5 | 1409.7 | 1802.5 | 1588.4 | 984.4 | 359.7 | 77.4 | 20.6 |
| 2046 | 923.6 | 1168.6 | 1560.0 | 1988.9 | 1738.3 | 1051.7 | 381.1 | 81.6 | 22.3 |
| 2051 | 1000.9 | 1297.4 | 1716.9 | 2185.6 | 1891.7 | 1133.9 | 404.7 | 86.6 | 23.2 |

Note: Figures are in thousands of 1997 dollars.

| Number | Title | Author(s) |
| :---: | :---: | :---: |
| -2003 |  |  |
| No. 89: | The Wealth and Asset Holdings of U.S.-Born and ForeignBorn Households: Evidence from SIPP Data | D.A. Cobb-Clark <br> V. Hildebrand |
| No. 90: | Population Aging, Productivity, and Growth in Living Standards | W. Scarth |
| No. 91: | A Life-course Perspective on the Relationship between Socioeconomic Status and Health: Testing the Divergence Hypothesis | S.G. Prus |
| No. 92: | Immigrant Mental Health and Unemployment | S. Kennedy |
| No. 93: | The Relationship between Education and Health in Australia and Canada | S. Kennedy |
| No. 94: | The Transition from Good to Poor Health: An Econometric Study of the Older Population | N.J. Buckley <br> F.T. Denton <br> A.L. Robb <br> B.G. Spencer |
| No. 95: | Using Structural Equation Modeling to Understand the Role of Informal and Formal Supports on the Well-being of Caregivers of Persons with Dementia | P. Raina <br> C. McIntyre <br> B. Zhu <br> I. McDowell <br> L. Santaguida <br> B. Kristjansson <br> A. Hendricks <br> L.W. Chambers |
| No. 96: | Helping to Build and Rebuild Secure Lives and Futures: Intergenerational Financial Transfers from Parents to Adult Children and Grandchildren | J. Ploeg <br> L. Campbell <br> M. Denton <br> A. Joshi <br> S. Davies |
| No. 97: | Geographic Dimensions of Aging in Canada 1991-2001 | E.G. Moore M.A. Pacey |
| No. 98: | Examining the "Healthy Immigrant Effect" in Later Life: Findings from the Canadian Community Health Survey | E.M. Gee <br> K.M. Kobayashi <br> S.G. Prus |
| No. 99: | The Evolution of High Incomes in Canada, 1920-2000 | E. Saez <br> M.R. Veall |


| Number | Title | Author(s) |
| :---: | :---: | :---: |
| No. 100: | Macroeconomic Implications of Population Aging and Public Pensions | M. Souare |
| No. 101: | How Do Parents Affect the Life Chances of Their Children as Adults? An Idiosyncratic Review | J. Ermisch |
| No. 102: | Population Change and Economic Growth: The Long-Term Outlook | F.T. Denton <br> B.G. Spencer |
| No. 103: | Use of Medicines by Community Dwelling Elderly in Ontario | P.J. Ballantyne <br> J.A. Marshman <br> P.J. Clarke <br> J.C. Victor |
| No. 104: | The Economic Legacy of Divorced and Separated Women in Old Age | L. McDonald A.L. Robb |
| No. 105: | National Catastrophic Drug Insurance Revisited: Who Would Benefit from Senator Kirby's Recommendations? | T.F. Crossley <br> P.V. Grootendorst <br> M.R. Veall |
| No. 106: | WAGES in CANADA: SCF, SLID, LFS and the Skill Premium | A.L Robb <br> L. Magee J.B. Burbidge |
| No. 107: | A Synthetic Cohort Analysis of Canadian Housing Careers | T.F. Crossley <br> Y. Ostrovsky |
| No. 108: | The Policy Challenges of Population Ageing | A. Walker |
| No. 109: | Social Transfers and Income Inequality in Old-age: A Multinational Perspective | R.L. Brown S.G. Prus |
| No. 110: | Organizational Change and the Health and Well-Being of Home Care Workers | M. Denton I.U. Zeytinoglu S. Davies |
| No. 111: | Stasis Amidst Change: Canadian Pension Reform in an Age of Retrenchment | D. Béland <br> J. Myles |
| No. 112: | Socioeconomic Aspects of Healthy Aging: Estimates Based on Two Major Surveys | N.J. Buckley <br> F.T. Denton <br> A.L. Robb <br> B.G. Spencer |


| Number | Title | Author(s) |
| :--- | :--- | :--- |
| No. 113: | An Invitation to Multivariate Analysis: An Example About <br> the Effect of Educational Attainment on Migration <br> Propensities in Japan | A. Otomo <br> K-L. Liaw |
| -2004 |  |  |
| No. 114: | The Politics of Protest Avoidance: Policy Windows, Labor <br> Mobilization, and Pension Reform in France | D. Béland |
| No. 115: | The Impact of Differential Cost Sharing of Non-Steroidal <br> Anti-Inflammatory Agents on the Use and Costs of Analgesic <br> Drugs | P.V. Grootendorst |
|  | J.K. Marshall |  |
|  | A.M. Holbrook <br> No. 116: | The Wealth of Mexican Americans |
|  | B.J. O’Brien |  |
| No. 117: | Precautionary Wealth and Portfolio Allocation: Evidence from <br> Canadian Microdata | A.R. Levy |


| Number | Title | Author(s) |
| :---: | :---: | :---: |
| No. 124: | Exploring the Use of a Nonparametrically Generated Instrumental Variable in the Estimation of a Linear Parametric Equation | F.T. Denton |
| No. 125: | Borrowing Constraints, The Cost of Precautionary Saving, and Unemployment Insurance | T.F. Crossley H.W. Low |
| No. 126: | Entry Costs and Stock Market Participation Over the Life Cycle | S. Alan |
| No. 127: | Income Inequality and Self-Rated Health Status: Evidence from the European Community Household Panel | V. Hildebrand <br> P. Van Kerm |
| No. 128: | Where Have All The Home Care Workers Gone? | M. Denton I.U. Zeytinoglu S. Davies <br> D. Hunter |
| No. 129: | Survey Results of the New Health Care Worker Study: Implications of Changing Employment Patterns | I.U. Zeytinoglu <br> M. Denton <br> S. Davies <br> A. Baumann <br> J. Blythe <br> Ann Higgins |
| No. 130 | Does One Size Fit All? The CPI and Canadian Seniors | M. Brzozowski |
| No. 131 | Unexploited Connections Between Intra- and Inter-temporal Allocation | T.F. Crossley H.W. Low |
| No. 132 | Grandparents Raising Grandchildren in Canada: A Profile of Skipped Generation Families | E. FullerThomson |
| No. 133 | Measurement Errors in Recall Food Expenditure Data | N. Ahmed <br> M. Brzozowski <br> T.F. Crossley |
| No. 134 | The Effect of Health Changes and Long-term Health on the Work Activity of Older Canadians | D.W.H. Au <br> T. F. Crossley <br> M.. Schellhorn |
| No. 135 | Population Aging and the Macroeconomy: Explorations in the Use of Immigration as an Instrument of Control | F. T. Denton <br> B. G. Spencer |


| Number | Title | Author(s) |
| :--- | :--- | :--- |

No. 136 Users and Suppliers of Physician Services: A Tale of Two Populations

No. 137 MEDS-D USERS' MANUAL

No. 138 MEDS-E USERS' MANUAL

Frank T. Denton
Amiram Gafni
Byron G. Spencer

Frank T. Denton
Christine H. Feaver Byron G. Spencer

Frank T. Denton Christine H. Feaver Byron G. Spencer

