SEDAP

A PROGRAM FOR RESEARCH ON

SOCIAL AND ECONOMIC DIMENSIONS OF AN AGING POPULATION

MEDS-E USERS' MANUAL

Frank T. Denton Christine H. Feaver Byron G. Spencer

SEDAP Research Paper No. 138

For further information about SEDAP and other papers in this series, see our web site: http://socserv2.mcmaster.ca/sedap

> Requests for further information may be addressed to: Secretary, SEDAP Research Program Kenneth Taylor Hall, Room 426 McMaster University Hamilton, Ontario, Canada L8S 4M4 FAX: 905 521 8232 e-mail: sedap@mcmaster.ca

MEDS-E USERS' MANUAL

Frank T. Denton Christine H. Feaver Byron G. Spencer

SEDAP Research Paper No. 138

October 2005

The Program for Research on Social and Economic Dimensions of an Aging Population (SEDAP) is an interdisciplinary research program centred at McMaster University with co-investigators at seventeen other universities in Canada and abroad. The SEDAP Research Paper series provides a vehicle for distributing the results of studies undertaken by those associated with the program. Authors take full responsibility for all expressions of opinion. SEDAP has been supported by the Social Sciences and Humanities Research Council since 1999, under the terms of its Major Collaborative Research Initiatives Program. Additional financial or other support is provided by the Canadian Institute for Health Information, the Canadian Institute of Actuaries, Citizenship and Immigration Canada, Indian and Northern Affairs Canada, ICES: Institute for Clinical Evaluative Sciences, IZA: Forschungsinstitut zur Zukunft der Arbeit GmbH (Institute for the Study of Labour), SFI: The Danish National Institute of Social Research, Social Development Canada, Statistics Canada, and participating universities in Canada (McMaster, Calgary, Carleton, Memorial, Montréal, New Brunswick, Queen's, Regina, Toronto, UBC, Victoria, Waterloo, Western, and York) and abroad (Copenhagen, New South Wales, University College London).

This paper is cross-classified as No. 401 in the McMaster University QSEP Research Report Series

MEDS-E

USERS' MANUAL

by

Frank T. Denton, Christine H. Feaver, and Byron G. Spencer

October 2005

MEDS-E is the economic component of the MEDS (Models of the Economic-Demographic System) simulation/projection system. It is designed for use in projecting Canadian macroeconomic aggregates for a period of up to 50 years, starting from 2001. Historical values are included back to 1991.

MEDS is maintained on an on-going basis: see <u>http://socserv2.mcmaster.ca/qsep/</u> for further information.

The **Social Sciences and Humanities Research Council** supports the MEDS project through its funding of the SEDAP Research Program. Additional support has been made available by **Human Resources and Skills Development Canada.**

MEDS-E Users' Manual

Frank T. Denton, Christine H. Feaver, and Byron G. Spencer

Abstract:

This report is the Users' Manual that accompanies MEDS-E, the economic component of a new Windows-based version of the MEDS (Models of the Economic-Demographic System) software. MEDS-E is designed to make use of the all-Canada population and labour force projections from MEDS-D in projecting various Canadian macro-economic aggregates. The projections, which are made year-to-year, extend as far as 2051.

The time paths of the economic projections are determined by the population and labour inputs, type of aggregate production function chosen, rates of depreciation, and investment, consumption, and other parameters. A set of "standard" assumptions is provided, but users can change those assumptions.

Keywords: population, labour force, projection

JEL Classification: J11, J21

Résumé:

Ce document est le Guide de l'utilisateur qui accompagne MEDS-E, le module économique de la nouvelle version pour Windows du logiciel MEDS (Modèles du système démographique-économique). MEDS-E est conçu pour utiliser les projections de la population et de la main-d'œuvre au Canada de MEDS-D, à l'estimation de divers agrégats macro-économiques canadiens. Les projections, calculées pour chaque année, sont possibles jusqu'en 2051.

Les trajectoires temporelles des projections économiques sont déterminées par la population et la main-d'œuvre, le choix d'une fonction de production agrégée, le taux de dépréciation, ainsi que du niveau de l'investissement, de la consommation et d'autres paramètres. Le MEDS-E fonctionne à partir d'une série d'hypothèses standards qui peuvent être modifiées par l'utilisateur.

Table of Contents

Introduction
Installation
First-time Users
Main Menu Options
Files Options
Select Output Options 3 General Features 4 Capital Stock and Consumption Tables 5 Educational Composition Tables 6 Human Capital Tables 7
Assumptions Options 7 Production Function: Type 8 Production Function: Rate of Neutral Technical Progress 9 Capital Stock and Investment 10 Labour Input: Proportion Part-time: Males, Females 11 Labour Input: Full-time Hours: Males, Females 12 Labour Input: Part-time Hours: Males, Females 13 Labour Input: Weeks Worked per Year by Full-time Workers: Males, Females 13
Labour Input: Weeks Worked per Year by Part-time Workers: Males, Females
Labour Input: Educational Composition of "Domestic" Population: Males, Females 16 Labour Input: Educational Composition of Immigrant Population: Males, Females
17 Labour Input: Miscellaneous 18 Income: Associated with Labour 19 Income: Associated with Capital 20 Consumption and Saving: 21 Government Expenditure, Inventory Change, Trade Balance, Statistical
Discrepancy:
View Output Options
APPENDIX A: The Economic Projection Model 24
APPENDIX B: Selected Canadian Historical Series
APPENDIX C: Selected Output of MEDS-E System 49

Introduction

MEDS is an acronym for "Models of the Economic-Demographic System." MEDS-E, the economic component of the projection/simulation system, is designed to make use of the all-Canada population and labour force projections from MEDS-D in projecting various Canadian macro-economic aggregates for up to 50 years starting from 2001. Historical values are included back to 1991. Unlike MEDS-D, MEDS-E makes projections only at the Canada level. The time paths of the economic projections are determined by assumptions about the production function, population and labour inputs, rates of depreciation, and investment and consumption parameters. Standard assumptions are provided; users can change them.

The program is designed around a main menu screen which is always displayed. Each option on the main menu has a sub-menu; choosing an option from a sub-menu will usually display another input screen. This manual describes the main menu and sub-menu options, showing sample screens where helpful. Appendix A lists the equations in the model along with definitions of the variables used. Appendix B provides some historical Canadian data which can be referred to in making assumptions about rates and other values that are required for making projections. Finally, Appendix C contains a selection of tables available from a MEDS-E projection.

Installation

MEDS is supplied in a zipped file for installation on a machine running Windows 98 or higher. Users should first read the file **readme.txt** on the Setup Disk. To install, insert the Setup Disk in a drive (e.g. A). Copy the file **pmedsz.zip** into a temporary directory (e.g. C:\temp) and unzip. Run C:\temp\setup.exe and follow the instructions on the screen. After installing, double click on the MEDS-E icon to begin the program. The Main Menu screen appears (see next page).

By default, MEDS-E will use the standard Canadian population and labour force projection as supplied in the MEDS-D file **pmedsd.var**. Other MEDS-D projections may be used in MEDS-E either by (1) changing the MEDS-D assumptions and saving the results in **pmedsd.var**, or (2) by inputting another file created using MEDS-D.

First-time Users

Click **OK** on the Welcome screen, then **About...** to get a quick overview of the program. Then click **Run**, **View Output**, and **Summary Tables** to view tables that show a macroeconomic projection for Canada based on standard assumptions.

Main Menu Options

Files is used to save current assumptions and output choices for subsequent re-use, to change file names, and to return to default assumptions.

Select Output is used to view or change output selections; summary tables are always provided.

Assumptions is used to view or change assumptions.

Run is used to make a new projection.

View Output is used to display tables from the most recent projection on the screen.

Print is used to send the table file to the printer or to save it in a format for importing into a spreadsheet.

About is used to get a quick summary of instructions for using MEDS-E. **Quit** is used to exit the program.

Note: Options may be selected either by clicking the mouse or from the Main Menu by typing Alt + the letter that is underlined, or from a drop-down menu, by typing only the letter that is underlined.

Files Options

Save current assumptions: You may wish to save changes that you have made to the

assumptions or to the output selected for easy recall and reuse.

- Suggestion: When prompted to choose a file name, use **.ine** as the file extension to identify it as a MEDS-E input economic file.
- Select MEDS-D Variable file: You may use only the default file (pmedsd.var) or another file previously saved during a MEDS-D run.
- Select Input file: You will be prompted to choose a file name. You may use only the default file (pmedestd.ine) or another file previously saved by MEDS-E using the Save current assumptions option.
- Set file name for Tables: By default, the program stores output tables in the file **pmedse.tab**, over-writing this file for each projection run. To save results from multiple runs for later use, supply a unique file name before each run.

Suggestion: Use .tab as the file extension to identify it as a MEDS-E output file.

- Set file name for Spreadsheet Data: By default, the program stores output tables in a delimited format suitable for importing into a spreadsheet in the file **medse.prn** and over-writes this file for each projection run. To save results from multiple runs for later use, supply a unique file name before each run. To use this option, after a projection run select **Print**, **To Spreadsheet File**.
 - Suggestion: Use .prn as the file extension to identify it as a MEDS-E spreadsheet file.
- **Initialize with Default files**: This option will restore all default file names and read in standard assumptions from the default input file, **pmedestd.ine**. If you have made changes which you wish to save for later use, save them in a file by using the **Save current assumptions** option before using the **Initialize** option.

Select Output Options:

For all output selections, when finished with a screen, use the **OK** button to make changes take effect; use **Cancel** to leave original values unchanged.

General Features:

Output Selection 1: General Features
Projection identification (title used in all table headings):
STANDARD (AS OF 22/SEPT/05)
First year to show in tables (first possible is 1991): 2001 🚍
Last year to show in tables (last possible is 2051): 2051 🚔
Reporting interval (in years): 5 💌
Calculate all growth rates: over reporting interval 💌
Four summary tables are always provided. On the remaining selection panels, check off any other tables required.

- Click on the spin button (the up and down arrowheads) to change the first and last years to be shown in the tables.
- The output can be displayed at 1, 5 or 10 year intervals; reported growth rates may be over the chosen interval or converted to annual averages.
- Projections start from 2001; however, as described below, use is made of more recent data; the user is able to update the information provided so that MEDS-E can take account of the most current information available.

Capital Stock and Consumption Tables:

Output Selection 2: Capital Stock & Consumption Tab	les 🗵
Check required tables:	ок
Capital Stock and Investment Components	
Age Distribution of Capital Stock: Total	Cancel
Age Distribution of Capital Stock: Residential	
Age Distribution of Capital Stock: Non-Residential	
Age Distribution of Capital Stock: Machinery and Equipment	
Consumption Measures	

- Select by clicking boxes; unselect by clicking again.
 See Table 8 in Appendix C for an example of the Consumption Measures table.

Educational Composition Tables:

Output Selection 3: Educational Composition Tables	×
Check required tables:	ОК
Educational Composition of Population Tables	Cancel
🔽 Number of persons 🛛 🖉 & distribution 🖓 growth rates	
🔽 Males and females separately 🔽 Both sexes combined	
Number of age groups to show: 🛛 😝	
Beginning group #: 1 2 3 5 7 9 11 12	
Ending group #: 1 2 4 6 8 10 11 12	
Age range: 15-19 20-24 25-34 35-44 45-54 55-64 65-69 70+	
min #: 1 (15-19); max #: 12 (70+); groups may overlap and be combined	

- Select by clicking boxes; unselect by clicking again.
- Click on spin button to change the number of age groups displayed (max = 8).
- Adjacent age groups may be combined by editing.
- The projected educational composition is based on assumptions discussed below; see Assumptions, Labour Input.

Human Capital Tables

Output Selection 4: Human Capital Tables	×
Check required tables:	ОК
F Human Capital Summary Tables	
✓ Human Capital Tables by Age and Sex	Cancel
🔽 Levels 🔽 🎖 distribution 🔽 Growth rates 🔽 Per capita	
🔽 Males 🔽 Females 🔽 Both sexes combined	
Number of age groups to show: 🛛 😝	
Beginning group #: 1 2 3 5 7 9 11 12	
Ending group #: 1 2 4 6 8 10 11 12	
Age range: 15-19 20-24 25-34 35-44 45-54 55-64 65-69 70+	
min #: 1 (15-19); max #: 12 (70+); groups may overlap and be com	oined

- Select by clicking box; unselect by clicking again.
- Click on spin button to change the number of age groups displayed (max = 8).
- Adjacent age groups may be combined by editing.
- The calculations relating to human capital are described in Appendix A.

Assumptions Options

For all screens

- Values on a grey background are fixed; most values on a white background may be changed.
- Click on the spin control (the up and down arrowheads) to increase or decrease the number of years shown on the grid.
- During a projection, MEDS-E generates input values as needed by interpolating linearly between years for which values are specified.
- To change any value in the grid, click on it. Once a box with dotted outline appears, press Enter. Use the delete key to remove unwanted characters before inserting new ones.
- Use the **OK** button to make changes take effect; use **Cancel** to leave original values unchanged.

Production Function: Type:

Production	n Function	×
 Cobb-Dougla Constant Ela Generalized Translog (TL) 	asticity of Substitution (CES) Leontief (GL)	OK Cancel
Equation:	GDP(t) = PCD0(t) * KTOT(t)**PCD1 * LINPUT(t)**PCD	2
Parameters: Returns to Sca	PCD1 PCD2 .3 .7 le: PRTS = PCD1 + PCD2 = 1	

- Select a production function by clicking the appropriate circle; the program will display the form of the equation, the current values of the parameters and the implied returns to scale.
- Parameter values may be changed.

Number of years:	16 🚔	
Year	PN	
1991	0	
1992	0034	<u> </u>
1993	.0037	The standard values suppli
1994	.0214	1991 to 2004 are based or
1995	.002	Cobb-Douglas production f
1996	0033	they are chosen to generat
1997	.0132	published estimates for GD this period.
1998	.0072	ans penou.
1999	.0188	
2000	.0163	
2001	0087	
2002	0007	
2003	0089	
2004	.0018	
2005	.005	
2051	.005	

Production Function: Rate of Neutral Technical Progress:

- The standard assumption holds neutral technical progress, PN, constant from 2005 at 0.5% per year (a value consistent with average growth over the previous 25 to 30 years).
- Values of PN for 1992 through 2004 are set so as to be consistent with Statistics Canada estimates of GDP for those years.

Capital Stock and Investment:

				reciati	on Rates	2
I	Number of y	years: 1	6			OK
Investment	Year	PRES	PNRES	PMACH	PDUR	
Categories:	1991	.20521	.28103	.24888	.26487	Cancel
RES:	1992	.22384	.25185	.25277	.27153	
Residential;	1993	.21773	.25316	.2509	.27821	
NRES: Non-	1994	.21191	.25956	.25551	.27302	
residential; MACH:	1995	.18224	.25954	.2769	.28132	
Machinery	1996	.1916	.24614	.28093	.28133	
and	1997	.18023	.23715	.30264	.27998	
Equipment; DUR:	1998	.1685	.22853	.31795	.28502	
Consumer	1999	.16207	.21993	.33056	.28744	
Durables	2000	.16206	.21247	.33494	.29053	
	2001	.1724	.21996	.31625	.29138	
	2002	.19039	.20724	.29682	.30556	
	2003	.19282	.20666	.303	.29753	
	2004	.19748	.19917	.31329	.29006	
	2006	.17998	.22368	.30733	.28902	
	2051	.17998	.22368	.30733	.28902	
		DR	DNR	DM	DD	
Deprecia	tion Rates:	.025	.03	.085	.1	

- The standard assumption moves investment proportions from their most recent actual values to the ten-year average of recent values by the year 2006.

- The proportion assigned to consumer durables is calculated residually and so cannot be changed directly.

		-					
Year 15-1	-19 20-24 25-29	30-34 35-39	40-44 45-49	50-54 5	5-59 60-64	65-69	70+
1991 .649	49 .177 .057	.037 .033	.029 .028	.042 .0	064 .122	.324	.445
1996 .655	55 .231 .078	.05 .04	.039 .038	.05 .0	072 .149	.336	.404
2001 .641	41 .201 .071	.045 .038	.039 .039	.049 .0	.152 .73	.319	.383
2004 .633	33 .223 .074	.044 .039	.037 .038	.048 .0	082 .152	.305	.452
2051 .633	33 .223 .074	.044 .039	.037 .038	.048 .0	082 .152	.305	.452

Labour Input: Proportion Part-time: Males, Females:

- The standard assumption holds the proportion of males and females working parttime constant at their most recent levels.

lumber of years:	ars: 5 🚔			
Year 15-19 2	9 20-24 25-29 30-34	35-39 40-44 45-49	50-54 55-59 60-64 6	5-69 70+
				6.5 44.6
1996 40 4	41.5 43 43.5	44 44.1 44	44.4 44.2 44.4 4	5.9 46.1
2001 39.2 4	2 40.6 41.7 42.4	42.8 42.9 42.7	42.8 43.3 43.5 44	1.3 46.3
2004 39.3 4	3 40.4 41.4 42.1 ·	42.7 42.8 43	42.8 43.1 43.4 44	1.2 46.3
2051 39.3 4	3 40.4 41.4 42.1 ·	42.7 42.8 43	42.8 43.1 43.4 44	1.2 46.3

Labour Input: Full-time Hours: Males, Females:

- The standard assumption holds the number of hours worked per week by males and females working full-time constant at their most recent levels.

Year 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70+ 1000000000000000000000000000000000000	Year 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70+ 1991 13.2 15.8 16.8 16.9 17.5 17.8 17.3 18 16.7 16.2 15.4 14.4 1996 12.7 16 17.1 17.7 17.3 18.3 17.3 17.7 16.6 15.8 14.6 14.8 2001 14.3 17 17.8 18.6 17.8 18.2 18.7 18.1 17.2 16.9 16.2 14.6 2004 14.3 16.9 17.8 18.8 18.2 18.3 18.2 17.8 17.2 16 15.2	Worke	_				t-tin	ıe W	orke	rs by	Age	: Ma	ales		
Year 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70+ 1991 13.2 15.8 16.8 16.9 17.5 17.8 17.3 18 16.7 16.2 15.4 14.4 1996 12.7 16 17.1 17.7 17.3 18.3 17.7 16.6 15.8 14.6 14.8 2001 14.3 17 17.8 18.2 18.7 18.1 17.2 16.9 16.2 14.6 2004 14.3 16.9 17.8 18.8 18.2 18.3 18.2 17.8 17.2 16.9 16.2 14.6	Year 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70+ 1991 13.2 15.8 16.8 16.9 17.5 17.8 17.3 18 16.7 16.2 15.4 14.4 1996 12.7 16 17.1 17.7 17.3 18.3 17.7 16.6 15.8 14.6 14.8 2001 14.3 17 17.8 18.2 18.7 18.1 17.2 16.9 16.2 14.6 2004 14.3 16.9 17.8 18.8 18.2 18.3 18.2 17.8 17.8 17.2 16 15.2	Number	of year:	s: 5											OK
1991 13.2 15.8 16.8 16.9 17.5 17.8 17.3 18 16.7 16.2 15.4 14.4 1996 12.7 16 17.1 17.7 17.3 18.3 17.7 16.6 15.8 14.6 14.8 2001 14.3 17 17.8 18.2 18.7 18.1 17.2 16.9 16.2 14.6 2004 14.3 16.9 17.8 18.8 18.2 18.3 18.2 17.8 17.2 16.9 16.2 14.6 2004 14.3 16.9 17.8 18.8 18.2 18.3 18.2 17.8 17.2 16.9 16.2 14.6	1991 13.2 15.8 16.8 16.9 17.5 17.8 17.3 18 16.7 16.2 15.4 14.4 1996 12.7 16 17.1 17.7 17.3 18.3 17.7 16.6 15.8 14.6 14.8 2001 14.3 17 17.8 18.2 18.7 18.1 17.2 16.9 16.2 14.6 2004 14.3 16.9 17.8 18.8 18.2 18.3 18.2 17.8 17.2 16.9 16.2 14.6 2004 14.3 16.9 17.8 18.8 18.2 18.3 18.2 17.8 17.2 16.9 16.2 14.6	Year	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70+	(C
2001 14.3 17 17.8 18.6 17.8 18.2 18.7 18.1 17.2 16.9 16.2 14.6 2004 14.3 16.9 17.8 18.8 18.2 18.3 18.2 17.8 17.8 15.2	2001 14.3 17 17.8 18.6 17.8 18.2 18.7 18.1 17.2 16.9 16.2 14.6 2004 14.3 16.9 17.8 18.8 18.2 18.3 18.2 17.8 17.8 17.2 16.9 16.2 14.6	1991	13.2	15.8	16.8	16.9	17.5	17.8	17.3	18	16.7	16.2	15.4	14.4	Lance
2004 14.3 16.9 17.8 18.3 18.8 18.2 18.3 18.2 17.8 17.2 16 15.2	2004 14.3 16.9 17.8 18.3 18.8 18.2 18.3 18.2 17.8 17.2 16 15.2	1996	12.7	16	17.1	17.7	17.3	18.3	17.3	17.7	16.6	15.8	14.6	14.8	
		2001	14.3	17	17.8	18.6	17.8	18.2	18.7	18.1	17.2	16.9	16.2	14.6	
2051 14.3 16.9 17.8 18.3 18.8 18.2 18.3 18.2 17.8 17.2 16 15.2	<u>2051 14.3 16.9 17.8 18.3 18.8 18.2 18.3 18.2 17.8 17.2 16 15.2</u>							18.2							
		2051	14.3	16.9	17.8	18.3	18.8	18.2	18.3	18.2	17.8	17.2	16	15.2	

Labour Input: Part-time Hours: Males, Females:

- The standard assumption holds the number of hours worked per week by males and females working part-time constant at their most recent levels.

Year 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70+ 1991 23.9 36.5 44 45.9 46.7 47.3 47.4 47.1 46 44.5 41.9 43 1996 22.4 35.5 43.4 45.8 46.6 47 47.2 46.9 45.7 43.9 41.6 44.4 2001 25.1 38.4 45.3 47 47.7 48 47.9 46.7 45.3 42.7 44.9 2051 25.1 38.4 45.3 47 47.7 48 47.9 46.7 45.3 42.7 44.9 2051 25.1 38.4 45.3 47 47.5 47.7 48 47.9 46.7 45.3 42.7 44.9
1996 22.4 35.5 43.4 45.8 46.6 47 47.2 46.9 45.7 43.9 41.6 44.4 2001 25.1 38.4 45.3 47 47.5 47.7 48 47.9 46.7 45.3 42.7 44.9
2001 25.1 38.4 45.3 47 47.5 47.7 48 47.9 46.7 45.3 42.7 44.9
2051 25.1 38.4 45.3 47 47.5 47.7 48 47.9 46.7 45.3 42.7 44.9

- The standard assumption holds the number of weeks worked per year by males and females working full-time constant at their most recent levels.

Labour Input: Weeks Worked per Year by Part-time Workers: Males, Females:

Year						40-44						
1991	26.5	30.4		31.3	31.5		31	31.9	32.9	32.8	32.2	33.3
1996	25.3	30.9	32	32	30.7	31.9	33	32.5	31.2	32.2	31.6	33.1
2001	26.1	32.2	33.7	32.9	34.2	33.7	34.4	35	33.6	33	32.3	34
2051	26.1	32.2	33.7	32.9	34.2	33.7	34.4	35	33.6	33	32.3	34

- The standard assumption holds the number of weeks worked per year by males and females working part-time constant at their most recent levels.

Labour Input: Educational Composition of "Domestic" Population: Males, Females:

Educational Composi	tion of Dom	estic Population 🛛 🛛 🛛
Number of years:	3	ОК
Year 1991 2001 2051	Alpha 1 1 1	Alpha is a multiplier for the assumed rate of change in educational composition of the 'domestic' population for age groups 1 to 4 (15-19,,30-34)

- Setting alpha equal to 1 continues recent trends in educational attainment.

- Year	E1	E2	E3	E4	E5	E6	E7	
1991	1	1	1	1	1	1	1	Cano
2001	1	1	1	1	1	1	1	ImWt ap
								over. Im multiplied fraction immigrat an educ group re to the correspo fraction rest of th populati

Labour Input: Educational Composition of Immigrant Population: Males, Females:

- Setting ImWt to 1 implies a continuation of the 2001 relationship between immigrant and domestic levels of education.
- The standard assumption is to apply immigrant educational composition adjustments. If the box is unchecked, immigrants are assumed to have the same educational composition as the domestic population.

Labour Input: Miscellaneous:

Labour Inp	ut: Cohor	ts, Relati	ive Produc	tivity, Experience 🏼 🛛
Num	ber of years:	4		ОК
Cohort Effect: PL is the rate of labour-embodied technological progress that distinguishes one cohort from another.	Year 1991 2001 2026 2051	PL 0 0 0 0	DIFF 0 .5 .5 .5	Cancel Relative Productivity Effect: DIFF adjusts over time for the initial difference between male and female marginal products. A value of .5 means half the difference is removed.
	Elasticity of labour input to experienc	with respect	ETA 1	

- The underlying equations are described in Appendix A, section 4.
- The standard assumption of 0 for PL assumes that there is no distinction between cohorts in terms of their embodied technical progress.
- In MEDS-E, relative earnings form the basis for parameters relating to relative productivity; the parameter DIFF allows for changes in male-female productivity differentials.

Income: Associated with Labour:

Incom	ie Ass	ociat	ed w	ith La	bour							×
Ratio RWM	of Wage (S,A,E) =	e to Marg RWM1	jinal Pro (S) * RW	duct: M2(A) * I	RWM3(E)						OK
Sex RWM1	Male 1	Female 1]									Cancel
Age RWM2	15-19 1	20-24	25-29 1	30-34 1	35-39 1	40-44	45-49	50-54	55-59 1	60-64	65-69 1	70+
Educati Attainm RWM3		E1 1	E2] 1	E3 1	E4 1	E5] 1	E6 1	E7 1]			

- The standard assumption is that wages are equal to marginal products; RWM1 allows for differences by sex, RWM2 for differences by age, and RWM3 for differences by educational attainment.

Income: Associated with Capital:

Relative Per	Capita	Owne	rship	o of (Capi	tal S	tock	by a	Age	Groι	IP	×
Number	of years:	2	÷									ОК
Year	15-19 20-	-24 25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70+	
1991 2051	00100 00100		.002 .002	.01 .01	.021 .021	.061 .061	.1 .1	.158 .158	.16 .16	.167 .167	.338 .338	Cancel

- The 70+ share is calculated residually and so cannot be changed directly.
 The ownership share parameters are derived from simulations using a lifecycle model.

Consumption and Saving:

Year	PCON1	PCON2	PGB	
1991	.7439	.73	0	
1992	.75068	.73	0	
1993	.74265	.73	0	
1994	.71554	.73	0	
1995	.70525	.73	0	
1996	.70592	.73	0	
1997	.6885	.73	0	
1998	.67724	.73	0	
1999	.65764	.73	0	
2000	.64531	.73	0	
2001	.6534	.73	0	
2002	.65199	.73	0	
2003	.65998	.73	0	
2004	.66137	.73	0	
2006	.67066	.73	0	
2051	.67066	.73	0	
2003 2004 2006	.65998 .66137 .67066	.73 .73 .73	0 0 0 0	

- Choose the form of the consumption function by clicking the appropriate circle.
- The standard assumption moves PCON1 from its most recent actual value to the ten-year average of recent values by the year 2006.
- The standard assumption for PGB implies that all of government current consumption expenditure is financed by taxes.

Government Expenditure, Inventory Change, Trade Balance, Statistical Discrepancy:

umber o	f years: 10	5		
Year	PGOVC	PINVY	PTRD	PSTATD
1991	.23668	01155	00679	.00002
1992	.23678	01242	00008	00219
1993	.23145	0038	.01006	00271
1994	.21798	.00039	.02469	00152
1995	.21097	.01073	.03468	00103
1996	.20527	.00309	.03765	00075
1997	.19457	.00927	.01964	00008
1998	.1929	.00646	.03516	00042
1999	.18675	.0068	.04728	.00009
2000	.18288	.01311	.05181	.00069
2001	.18713	0023	.058	00039
2002	.18607	.00165	.0548	00059
2003	.18697	.01011	.03027	00037
2004	.18582	.01021	.01951	00044
2006	.19193	.00691	0	00033
2051	.19193	.00691	0	00033

- The standard assumption moves PGOVC, PINVY, and PSTATD from their most recent actual values to ten-year average values by the year 2006. As implied by PTRD = 0, external trade is assumed to be in balance by the year 2006.

Human Capital:

- Select the form of the discount rate by clicking the appropriate circle; the present value of human capital for each cohort is based on calculations involving the current period's earnings (see Section 17 in Appendix A).

View Output Options:

- Four **Summary Tables** are provided with each projection. Other tables that were selected before running the projection are also available for viewing on screen.
- If the set of tables selected for viewing is sufficiently large, a **More** button will appear on the screen. Click this button to view the remaining tables.

APPENDIX A:

THE ECONOMIC PROJECTION MODEL

THE STRUCTURE OF PMEDS-E

What follows is a discussion of the structure of the MEDS-E subsystem. A listing of the equations and of the associated definitions of variables is included. We organize our discussion under the headings of the sections in the equation listing.

Aggregate Production and Factor Products

Total output (income) of the economy is generated by a production function, with inputs of labour and capital, and provision for technical progress (or technological change). A user may choose one of four alternative production functions: Cobb-Douglas, Constant Elasticity of Substitution (CES), Generalized Leontief, or Translog. (The standard assumption is Cobb-Douglas, but parameter values -- which may be altered by a user -- are provided for all four.) The rate of technical progress can be varied over the projection period, or held constant. Constant returns to scale is the standard assumption, but that can be replaced by increasing or decreasing returns. Marginal factor products are calculated separately for each age-sexeducation category of employment.

Capital Stock Excluding Consumer Durables

Three types of producer capital stock are calculated -- residential construction, nonresidential construction, and machinery and equipment. The three are then aggregated to obtain the total producer capital stock, for entry into the chosen production function. The stocks are calculated from real investment by the perpetual inventory method: they are updated each year, as the economy moves through time, by applying depreciation rates and adding in new annual investment. The age distributions (or "vintages," to use a term familiar in economic growth theory) are determined for each type of stock, that being made possible by the use of the perpetual inventory method. (The depreciation rates vary with the type of stock; they can be modified by a user, if that is desired.)

Fixed Investment

Real (fixed, as opposed to inventory) investment of each type is generated each year by applying share parameters to the aggregate saving generated by the economy. (See below for the calculation of aggregate saving.) Total investment is the sum of the three types.

Labour Supply and the Services of Labour

Labour input is calculated in this section, for incorporation into the production function. Account is taken of the changing educational composition of the population, of the numbers of part-time and full-time workers and their hours of work, and of the accumulated labour force experience of different age-sex cohorts. The numbers employed in each age-sex group are weighted to reflect differences in productivity across the education, part-time/full-time, and experience categories in arriving at total (effective) labour input.

Income Associated with Labour

Wages (earnings) are based on marginal products, although they are not necessarily equal to marginal products: parameters are included to allow for differences because of discrimination, or for other reasons. The wage calculations are carried out separately for each age-sex-education category. Aggregate labour income is calculated as the difference between total gross domestic product and the share accruing to capital (before depreciation). An adjustment is then made to assure that the wages for individual groups are consistent with the labour income aggregate. Net wages are calculated by adjusting wages for taxes and transfer payments. (Note: it is convenient to speak of "wages" as the returns to labour; however the calculations include self-employment earnings and supplementary labour income, as well as wages in the narrower sense.)

Ownership of Capital and Income from Capital

Total wealth in the form of capital is defined as the sum of the producer capital stock (as discussed above) and the stock of consumer durables (see below). The total wealth so calculated

is then distributed among population age cohorts, based on ownership share parameters derived from simulations using a lifecycle model that we have published elsewhere. Rates of return on producer capital, before and after depreciation, are calculated in this section also, followed by the calculation of the after-tax wealth income accruing to each age cohort.

Total Income

The calculations in the previous two sections allow the calculation in this one of the total after-tax income of each age cohort.

Consumer Durables: Stock and the Flow of Services

The stock of consumer durables is generated here, using again the perpetual inventory method. As with producer durables, that method allows the age distribution of the stock in each year to be kept track of. Investment in consumer durables is determined by a parameter that allocates a share of aggregate saving to the generation of durable goods. The consumption of the durable goods is calculated as equal to the annual depreciation on the stocks. The conventional national accounts do not take account of the consumption of durable goods, as such, but only expenditures on durable goods, which are essentially investments rather than consumption. We have made it a practice, though, in designing MEDS to include an explicit calculation of durablegoods consumption. Aggregate consumption can thus be calculated either in the conventional way, or in the stricter (and theoretically preferable) way, by including durable consumption rather than durable expenditure.

Aggregate Consumption and Consumer Expenditure

Aggregate consumption is calculated here according to the strict definition given above (i.e., including durable consumption, rather than expenditure). Two options are provided: consumption can be generated by applying a share parameter to the gross domestic product remaining after government (all levels combined) has removed the amount required for its

27

current real expenditures on goods and services, or by applying a different parameter to total net (after-tax) income. (The standard parameter values are based on observed historical averages; those averages tend to be quite stable, in the longer-term, but the parameters -- like the other parameters of the model -- can be modified by a user to reflect anticipated changes, or to see how sensitive the projection results are to alternative values.) Consumer expenditure based on the conventional definition is calculated also in this section by adjusting aggregate consumption so as to replace the consumption of durables by durable expenditure (i.e., investment in durable goods).

Aggregate Saving

Aggregate saving in the economy is identically equal (by national accounting rules) to the gross domestic product, minus consumption (the strict definition), government current expenditure on goods and services, the trade balance (exports minus imports), and the national accounts statistical discrepancy, plus consumption of durable consumer goods. Saving for purposes of fixed producer investment is equal to aggregate saving, minus inventory change, and minus the portion of government current expenditure financed by borrowing (rather than tax revenues).

Government Expenditure

Government current expenditure on goods and services is modeled (for the long run) as a fraction of the gross domestic product. (The fraction can be altered at a user's discretion.) Aggregate Tax Rate, Net of Transfers

The overall tax rate, as defined for purposes of MEDS-E, is the ratio of the tax-financed portion of government expenditure on goods and services to the gross domestic product.

28

Aggregate Inventory Change

A parameter is provided, representing the (long-run) ratio of inventory change to gross domestic product. Historically, the inventory change/GDP ratio has been relatively stable, in the long run, although there have been substantial fluctuations from year to year, the result in large part of fluctuations in farm inventories, and especially grain inventories.

Aggregate Trade Balance

The net trade balance (exports minus imports) varies from year to year. In the long run, though, it must show some stability. It is modeled as a ratio to gross domestic product. <u>Statistical Discrepancy</u>

The statistical discrepancy represents the difference between gross domestic product calculated from the income side of the accounts, and GDP calculated from the expenditure side. It is erratic, but small, and is treated as a ratio to GDP.

Total Factor Productivity

Labour productivity or capital productivity measures can be calculated as ratios of GDP to labour or capital inputs. However, it is useful to have also a total factor productivity measure. That is provided in the form of GDP divided by a weighted combination of labour and capital inputs, the weights being calculated from base-period marginal products of the two factors. <u>Human Capital</u>

The human capital embodied in an individual age-sex population cohort in each year of the projection period is calculated as the present value of the future earnings stream of the cohort, under the assumption that the age structure of employment patterns, mortality rates, and marginal product levels in the given year will hold for future years. The present values can be calculated using a fixed annual discount rate (of the user's choosing), or a variable rate equal to the current rate of return on physical capital (the "real interest rate," roughly speaking). Total human capital

is then obtained by summing over cohorts.

EOUATIONS IN THE MEDS-E SUBSYSTEM

1. AGGREGATE PRODUCTION AND FACTOR PRODUCTS

Cobb-Douglas Production Function --GDP(T) = PCD0(T) * (KTOT(T) * PCD1) * (LINPUT(T) * PCD2)PCD0(T) = PCD0(T-1) * (1+PN(T))MPKTOT(T) = PCD1 * (GDP(T)/KTOT(T))MPETOT(T) = PCD2 * (GDP(T)/LINPUT(T))PRTS = PCD1 + PCD2**CES Production Function --**

```
GDP(T) = PCES0(T) * ((PCES1 * (KTOT(T)) * PCES3) + PCES2 *
```

(LINPUT(T)**PCES3)) ** (PCES4/PCES3)

PCESO(T) = PCESO(T-1) * (1+PN(T))

MPKTOT(T) = PCES4 * PCES1 * PCES0(T) * (PCES1 *

KTOT(T)**PCES3 + PCES2 * LINPUT(T) ** PCES3) **

((PCES4 - PCES3)/PCES3) * KTOT(T) ** (PCES3-1)

MPETOT(T) = PCES4 * PCES2 * PCES0(T) * (PCES1 *

KTOT(T)**PCES3 + PCES2 * LINPUT(T) ** PCES3) **

((PCES4 - PCES3)/PCES3) * LINPUT(T) ** (PCES3-1)

PRTS = PCES4

Generalized Leontief Production Function --

```
GDP(T) = PGL0(T) * (PGL1 * KTOT(T) * PGL4 + PGL2 *
```

```
LINPUT(T)**PGL4 + 2.0 * PGL3 * KTOT(T)**(0.5*PGL4) *
```

(LINPUT(T)/KTOT(T))**(0.5*PGL4)) * KTOT(T)**(PGL4-1)

(KTOT(T)/LINPUT(T))**(0.5*PGL4)) * LINPUT(T)**(PGL4-1)

31

LINPUT(T)**(0.5*PGL4))

```
PGL0(T) = PGL0(T-1) * (1+PN(T))
```

MPKTOT(T) = PGL4 * PGL0(T) * (PGL1 + PGL3 *

MPETOT(T) = PCL4 * PGL0(T) * (PGL2 + PGL3 *

PRTS = PGL4

Translog Production Function --

 $\label{eq:LN(GDP(T)) = PTL0(T) + PTL1 * LN(KTOT(T)) + PTL2 * \\ LN(LINPUT(T)) + 0.5 * PTL3 * (LN(KTOT(T)))*2 + \\ PTL4 * LN(KTOT(T)) * LN(LINPUT(T)) + 0.5 * PTL5 * \\ (LN(LINPUT(T)))*2 \\ PTL0(T) = PTL0(T-1) + T * (LN((1+PN(T))) \\ MPKTOT(T) = (PTL1 + PTL3 * LN(KTOT(T) + PTL4 * LN(LINPUT(T))) \\ * (GDP(T)/KTOT(T)) \\ MPETOT(T) = (PTL2 + PTL4 * LN(KTOT(T)) + PTL5 * \\ LN(LINPUT(T))) * (GDP(T)/LINPUT(T)) \\ PRTS = PTL1 + PTL2 \\ \end{tabular}$

Marginal Product Calculations, All Production Functions --MPROD(S,A,T) = MPETOT(T) * LWT1(A,T) * LEX(S,A,T)**ETA * LADJ1(S,A,T) * (SUM(E) (LWT2(S,A,E,T) * ECOMP(S,A,E,T))) (S = 1,2; A = A1,...,A8) MPRODE(S,A,E,T) = MPETOT(T) * LWT1(A,T) * LEX(S,A,T)**ETA * LADJ1(S,A,T) * LWT2(S,A,E,T) (S = 1,2; A = A1,...,A8; E = E1,...,E5)

2. CAPITAL STOCK EXCLUDING CONSUMER DURABLES

Fixed Capital Stock, by Type --

KRES(T) = (1-DR) * KRES(T-1) + IRES(T-1)

KNRES(T) = (1-DNR) * KNRES(T-1) + INRES(T-1)

KMACH(T) = (1-DM) * KMACH(T-1) + IMACH(T-1)

KTOT(T) = KRES(T) + KNRES(T) + KMACH(T)

Fixed Capital Stock, by Type and Vintage --

 $KR(A,T) = ((1-DR)^{**}A) * IRES(T-A-1) \qquad (A = 0,1,2,...)$ $KNR(A,T) = ((1-DNR)^{**}A) * INRES(T-A-1) \qquad (A = 0,1,2,...)$

$$KM(A,T) = ((1-DM)^{**}A) * IMACH(T-A-1)$$
 (A = 0,1,2,...)

KT(A,T) = KR(A,T) + KNR(A,T) + KM(A,T) (A = 0,1,2,...)

Depreciation --

```
DEP(T) = DR*KRES(T) + DNR*KNRES(T) + DM*KMACH(T)DELTA(T) = DEP(T)/KTOT(T)
```

3. FIXED INVESTMENT

IRES(T) = PRES(T) * ISAVING(T)INRES(T) = PNRES(T) * ISAVING(T)IMACH(T) = PMACH(T) * ISAVING(T)ITOT(T) = IRES(T) + INRES(T) + IMACH(T)

```
4. LABOUR SUPPLY AND THE SERVICES OF LABOUR
Educational Composition of the Population --
POPED(S,A,E,T) = ECOMP(S,A,E,T) * POP(S,A,T)
IMED(S,A,E,T) = IMECOMP(S,A,E,T)*IM(S,A,T)
ECOMP(S,A,E,T) = ECOMP1(S,A,E,T)*(POPED(S,A,E,T-1)-
```

```
IMED(S,A,E,T))/(POPED(S,A,E,T-1) +
```

IMECOMP(S, A, E, T)*IMED(S, A, E, T)/POPED(S, A, E, T-1) + ECOMP(S, A, E, T-1) - IMECOMP(S, A, E, T) + IMED(S, A, E, T) + IME

ECOMP1(S,A,E,T-1)

Note: SUM(E) (ECOMP(S,A,E,T)) = 1.0 for A=A1,...,A12

ECOMP1(S,A,E,T) = ECOMP1(S,A-1,E,T-5) + ALPHA(T) * 1/2 *

((ECOMP1(S,A,E,2001) - ECOMP1(S,A-1,E,1996) + ECOMP1(S,A,E,1996) -

for A=A2....A4

```
ECOMP1(S,A-1,E,1991))
```

ECOMP1(S,A1,E,T) = ECOMP1(S,A1,E,T-5) + ALPHA(T) * 1/2 *

((ECOMP1(S,A1,E,2001) - ECOMP1(S,A1,E,1991))

ECOMP1(S,A,E,T) = ECOMP1(S,A-1,E,T-5) for A = A5,...,A12

0 # ECOMP1(S,A,E,T) # 1

SUM(A) (ECOMP1(S,A,E,T)) = 1.000

IMREL(S,A,E,2001) = IMECOMP(S,A,E,2001) / ECOMP(S,A,E,2001)

IMECOMP(S,A1,E,T) = IMREL(S,A1,E,2001) * ECOMP1(S,A1,E,T)

IMECOMP(S,A,E,T) = IMWT(E,T)*IMREL(S,A,E,2001)*ECOMP1(S,A,E,T)

for A = A2,...,A12

SUM(E) (IMECOMP(S,A,E,T)) = 1.0 for A=A1,...,A12

Labour in Aggregate Production -

LF(S,A,E,T) = LFPR(S,A,E,T) * (1-XPROP(S,A,E,T))* POPED(S,A,E,T)

LFPR(S,A,E,T) = f(LF(S,A,T))

XPROP(S,A.E,T) = XPROP(S,A,T)

EMPLOY(S,A,E,T) = (1-URATE(S,A,E,T))*LF(S,A,E,T)

URATE(S,A,E,T) = f(UFIX(T))

LINPUT(T) = SUM(S,A) (LWT1(A,T) * LEXR(S,A,T)**ETA * SUM(E)

(LWT2(S,A,E,T) * LADJ1(S,A,E,T) * EMPLOY(S,A,E,T))

LWT1(A,T) = (SUM(AA=AL,AH) (1+PL(T-TBASE-AA+15)) ** (T-TBASE-

AA+15))/(AH-AL+1)

LEX(S,A,T) = LEX(S,A,T-1)*(4/5) + (PRATE(S,A-1,T-1)/

 $PRMAX)^{*}(1/5) \qquad (A = A3,...A12)$

LEX(S,A,T) = 1.0 (A = A1,A2)

LEXR(S,A,T) = LEX(S,A,T)/LEX(S,A,TBASE)

LWT2(2,A,E,T) = (LWT2(2,A,E,TBASE) + DIFF(T) *

(LWT2(1,A,E,TBASE) - LWT2(2,A,E,TBASE)))

LADJ1(S,A,E,T) = PPART(S,A,E,T) * HRSPW(S,A,E,T) * WKSPY(S,A,E,T) + (1-1)

PPART(S,A,E,T)) * HRSFW(S,A,E,T) * WKSFY(S,A,E,T)

PPART(S,A,E,T) = f(PPART(S,A,T))

HRSPW(S,A,E,T) = f(HRSPW(S,A,T))

HRSFW(S,A,E,T) = f(HRSFW(S,A,T))

5. INCOME ASSOCIATED WITH LABOUR

WAGE(S,A,E,T) = (RWM(S,A,E) * MPRODE(S,A,E,T) / PRTS) *

WCFACT(T)

WCFACT(T) = SHAREA(T) / SHAREB(T)

SHAREA(T) = GDP(T) - RG(T) * KTOT(T)

SHAREB(T) = SUM(S,A,E) ((EMPLOY(S,A,T)*ECOMP(S,A,E,T))

* WAGE(S,A,E,T))

RWM(S,A,E) = RWM1(S) * RWM2(A) * RWM3(E)

NETWAGE(S,A,E,T) = (1-TRATE(T)) * WAGE(S,A,E,T)

NETYL(A,T) = SUM(S,E) (EMPLOY(S,A,E,T) * NETWAGE(S,A,E,T))

6. OWNERSHIP OF CAPITAL AND INCOME FROM CAPITAL

KWEALTH(T) = KTOT(T) + KDUR(T) KW(A,T) = PKW(A,T) * KWEALTH(T) PKW(A,T) = PKWLC(A,T) * POP(A,T) / SUM(A) (PKWLC(A,T) * POP(A,T)) RG(T) = MPKTOT(T) / PRTS RN(T) = RG(T) - DELTA(T) NETYK(A,T) = KW(A,T) * RN(T) * (1-TRATE(T))

7. TOTAL INCOME

NETY(A,T) = NETYL(A,T) + NETYK(A,T)GROSSDY(A,T) = NETY(A,T) + DELTA(T) * KW(A,T)

- 8. CONSUMER DURABLES: STOCK AND THE FLOW OF SERVICES KDUR(T) = (1-DD) * KDUR(T-1) + IDUR(T-1) KD(A,T) = ((1-DD)**A) * IDUR(T-A-1) (A = 0,1,2,...) IDUR(T) = PDUR(T) * ISAVING(T)CDUR(T) = DD * KDUR(T)
- 9. AGGREGATE CONSUMPTION AND CONSUMER EXPENDITURE Standard Specification --CONSUM(T) = PCON1(T) * (GDP(T) - GOVC(T))

Alternative Specification --

CONSUM(T) = PCON2(T) * NETY(T)

Consumer Expenditure --

CONEX(T) = CONSUM(T) + IDUR(T) - CDUR(T)

10. AGGREGATE SAVING

SAVING(T) = GDP(T) - CONSUM(T) - GOVC(T) - TRADEBAL(T) -STATD(T) + CDUR(T)ISAVING(T) = SAVING(T) - INVENT(T) - PGB(T) * GOVC(T)

- 11. GOVERNMENT EXPENDITURE GOVC(T) = PGOVC(T) * GDP(T)
- 12. AGGREGATE TAX RATE, NET OF TRANSFERS TRATE(T) = (1-PGB(T)) * (GOVC(T)/GDP(T))
- 13. AGGREGATE INVENTORY CHANGE INVENT(T) = PINVY(T) * GDP(T)
- 14. AGGREGATE TRADE BALANCE TRADEBAL(T) = PTRD(T) * GDP(T)
- 15. STATISTICAL DISCREPANCY STATD(T) = PSTATD(T) * GDP(T)
- 17. HUMAN CAPITAL

$$\begin{split} \text{RDISC}(\text{T}) &= \text{PDISC} * \text{RN}(\text{T}) \quad \text{or} \quad \text{RDISC}(\text{T}) = \text{RDISCF} \\ \text{ADISC}(\text{T}) &= 1/(1 + \text{RDISC}(\text{T})) \\ \text{DISC}(\text{AJ}, \text{A}, \text{T}) &= \text{F}(\text{ADISC}(\text{T})) \\ \text{HCAP}(\text{S}, \text{A}, \text{T}) &= \text{EMPLOY}(\text{S}, \text{A}, \text{T}) * \text{MPROD}(\text{S}, \text{A}, \text{T}) * \text{YRS}(\text{A})/2 \\ &\quad + \text{SUM}(\text{AJ} = \text{A} + 1, \text{AMAX})(\text{DISC}(\text{AJ}, \text{A}, \text{T}) \\ &\quad * (\text{LX}(\text{S}, \text{AJ}, \text{T})/\text{LX}(\text{S}, \text{A}, \text{T})) \\ &\quad * (\text{EMPLOY}(\text{S}, \text{AJ}, \text{T})/\text{POP}(\text{S}, \text{AJ}, \text{T})) \\ &\quad * (\text{MPROD}(\text{S}, \text{AJ}, \text{T}) * \text{YRS}(\text{AJ}))) \end{split}$$

* POP(S,A,T)

HCAPTOT(T) = SUM(S,A)(HCAP(S,A,T))

LIST OF DEFINITIONS

A	subscript denoting age of population or labour force cohort (A = A1,,A12) or of vintage of capital stock (A = $0,1,$)
AA	subscript denoting age of labour force or population cohort, used to indicate single years of age
ADISC	annual discount factor for calculation of human capital
AH	subscript denoting highest single year of age
AJ	subscript denoting age group
AL	subscript denoting lowest single year of age
ALPHA*	adjustment factor for rate of change of educational composition
AMAX	maximum age group in calculation of human capital
CDUR	services provided by consumer durable goods
CONEX	consumer expenditures, measured on a national accounts basis
CONSUM	consumption; the flow of services provided by consumer goods, including the service of consumer durables
DD*	annual rate of depreciation associated with consumer durables
DELTA	annual rate of depreciation on the fixed capital stock, excluding consumer durables
DEP	depreciation of the fixed capital stock, excluding consumer durables
DIFF*	parameter relating to the difference between male and female marginal productivity
DISC(AJ,A,T)	factor calculated from ADISC for discounting between midpoint of age group A and midpoint of age group AJ (for AJ greater than or equal to A)
DM*	annual rate of depreciation associated with machinery and equipment
DNR*	annual rate of depreciation associated with non-residential construction
DR*	annual rate of depreciation associated with residential construction

Ε	subscript indicating education (highest level of schooling) (E = $E1,,E7$)
ECOMP	educational composition of the population
ECOMP1	educational composition of the population in the absence of immigration
EMPLOY+	employment
ETA*	elasticity parameter relating to labour experience
ETOT+	total employment
F	general symbol used to denote a function
GDP	gross domestic product
GOV	total government expenditures
GOVC	government current expenditure on goods and services
GROSSDY	gross disposable income
НСАР	human capital of population of given sex and age
НСАРТОТ	total human capital
HOUSE+	number of households
HRSFW*	average weekly hours of full-time workers
HRSPW*	average weekly hours of part-time workers
IDUR	annual gross investment expenditure on consumer durables
IM	immigration
IMACH	annual gross investment expenditure on machinery and equipment
IMECOMP	educational composition of immigration
IMED	immigration by educational group
IMREL	fraction of immigration in educational group relative to corresponding fraction in rest of population
IMWT	relative weight associated with educational group in determining

educational distribution of immigration

INRES	annual gross investment expenditure on non-residential construction
INVENT	annual gross investment expenditure on inventory change
IRES	annual gross residential construction expenditure
ISAVING	annual gross saving for investment, including consumer durables
ITOT	annual gross investment expenditure, excluding consumer durables
KD	stock of consumer durables, by vintage
KDUR	aggregate stock of consumer durables
KM	stock of machinery and equipment, by vintage
КМАСН	aggregate stock of machinery and equipment
KNR	stock of non-residential construction, by vintage
KNRES	aggregate stock of non-residential construction
KR	stock of residential construction, by vintage
KRES	aggregate stock of residential construction
KT	capital stock, excluding consumer durables, by vintage
КТОТ	aggregate capital stock, excluding consumer durables
KW	capital stock by age of owner
KWEALTH	physical wealth (total fixed capital stock, including consumer durables)
LADJ1	employment adjustment factor, to make allowance for part-weeks and part-hours of work
LEX	labour force experience variable
LEXR	labour force experience relative to base period
LFTOT+	total labour force
LINPUT	effective labour input in aggregate production process

LF	labour force in age-sex-education group
LFPR	labour force participation rate for age-sex-education group
LWT1	productivity factor associated with cohort
LWT2	age-productivity profile, specified for each education level and each sex
LX	proportion of population surviving to given age (based on current mortality rates)
MPETOT	marginal product of labour (in the aggregate)
МРКТОТ	marginal product of capital (in the aggregate)
MPROD	marginal product of labour for age-sex-specific group
MPRODE	marginal product of labour for age-sex-education-specific group
NETWAGE	net wages, after allowance for taxes
NETY	net income, after allowance for taxes and depreciation
NETYK	net income from capital, after allowance for taxes and depreciation
NETYL	net income from labour, after allowance for taxes
PCD0	measure incorporating neutral technological progress, associated with Cobb-Douglas production function
PCD1*	parameter associated with Cobb-Douglas production function
PCD2*	parameter associated with Cobb-Douglas production function
PCES0	measure incorporating neutral technological progress, associated with CES production function
PCES1*	parameter associated with CES production function
PCES2*	parameter associated with CES production function
PCES3*	parameter associated with CES production function
PCES4*	parameter associated with CES production function
PCON1*	parameter in consumption function

PCON2*	parameter in consumption function
PDISC*	parameter representing proportionate adjustment of RN for calculation of human capital
PDUR*	parameter in consumer durable goods investment equation
PGB*	parameter indicating the proportion of government expenditure not financed by taxes
PGL0	measure incorporating neutral technological progress, associated with generalized Leontief production function
PGL1*	parameter associated with generalized Leontief production function
PGL2*	parameter associated with generalized Leontief production function
PGL3*	parameter associated with generalized Leontief production function
PGL4*	parameter associated with generalized Leontief production function
PGOVC*	parameter in government expenditure equation
PINVY*	parameter in inventory change equation
PKW	proportion of aggregate fixed wealth that is held by a particular group, based on life-cycle optimization model
PKWLC*	life-cycle value of parameter that allocates total fixed wealth to an age group
PL*	rate of labour-embodied technological change
PMACH*	parameter in machinery and equipment investment equation
PN*	rate of neutral technological change
PNRES*	parameter in non-residential construction investment equation
POP+	population
POPED	population by educational group
POPTOT+	total population
PPART*	proportion of employed labour force that works part-time

PRATE+	labour force participation rate
PRES*	parameter in residential construction investment equation
PRMAX	maximum labour force participation rate
PRTS	parameter indicating returns to scale
PSTATD*	parameter in statistical discrepancy equation
PTL0	measure incorporating neutral technological progress, associated with translog production function
PTL1*	parameter associated with translog production function
PTL2*	parameter associated with translog production function
PTL3*	parameter associated with translog production function
PTL4*	parameter associated with translog production function
PTRD*	parameter in trade balance equation
RDISC	annual rate of discount for calculation of human capital
RDISCF*	fixed value assigned to RDISC (at the option of a user of the model)
RG	gross rate of return on the aggregate capital stock, excluding consumer durables
RN	net (i.e., after depreciation) rate of return on the capital stock, excluding consumer durables
RWM	ratio of wage to marginal product
RWM1*	ratio of wage to marginal product, component associated with age
RWM2*	ratio of wage to marginal product, component associated with gender
RWM3*	ratio of wage to marginal product, component associated with education
S	subscript indicating sex (S=1 for male, S=2 for female)
SAVING	aggregate saving
SHAREA	labour income, calculated as that portion of GDP not accruing to capital

SHAREB	labour income, calculated as the summation of income accruing to each age-sex-education group
STATD	statistical discrepancy in the national accounts
SUM	operator indicating summation (e.g., SUM(E) indicates summation over E, SUM(S,A) indicates summation over A and S)
Т	subscript indicating time
TBASE	base year (1991)
TRADEBAL	aggregate trade balance (exports less imports)
TRATE	aggregate tax rate net of transfers
URATE+	unemployment rate
UFIX*	age-sex standardized unemployment rate (specified in MEDS-D)
WAGE	annual wage rate
WCFACT	adjustment factor, used to ensure that labour income, as allocated, is equal to total labour income available
WKSFY*	average weeks worked per year by part-time workers
WKSPY*	average weeks worked per year by full-time workers
XPROP	proportion of population excluded in calculating labour force source population
YRS	number of years in a given age group (e.g., 5 for 15-19 age group, 10 for 25-34 age group)

*Indicates parameters chosen by the user. +Indicates values provided by MEDS-D.

APPENDIX B:

SELECTED CANADIAN HISTORICAL SERIES

1991 - 2004

This appendix contains historical data back to 1981 for some selected series; the series shown here are of particular importance in framing assumptions for projections. The CANSIM identifier number is shown, where applicable.

Symbols not mentioned in Appendix A are defined as follows:

- BINV -- annual gross business investment expenditure on inventory change
- GINV -- annual gross government investment expenditure on inventory change
- EXPORT -- annual exports of goods and services
- IMPORT -- annual imports of goods and services

Appendix B: Selected Canadian Historical Series

CANSIN	1#			V19	92045	V	1992044		
Year	IRES	INRES	IMACH	ITOT	IDUR	ISAVING	CONEX	CDUR (CONSUM
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992	36904. 30532. 35618. 35661. 38726. 43462. 49784. 50876. 52903. 47434. 40572. 43365.	54894. 51525. 47529. 47276. 50818. 48026. 49559. 53287. 55654. 56768. 55562. 48792.	 33104. 28381. 27312. 29291. 32350. 35661. 40845. 48204. 52073. 50002. 49205. 48970. 	124902. 110438. 110459. 112228. 121894. 127149. 140188. 152367. 160630. 154204. 145339. 141127.	35132. 30926. 35202. 40371. 46236. 48966. 52245. 55793. 56347. 54739. 52367. 52604.	160034. 141364. 145661. 152599. 168130. 176115. 192433. 208160. 216977. 208943. 197706. 193731.	344779. 336080. 344897. 359502. 377329. 391399. 407702. 425265. 439855. 444920. 437916. 444643.	22277. 23562. 24299. 25389. 26887. 28822. 30836. 32977. 35259. 37368. 39105. 40431.	331924. 328716. 333994. 344520. 357980. 371255. 386293. 402449. 418767. 427549. 424654. 432470.
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	41715. 43351. 36887. 40458. 43765. 42212. 43725. 46014. 50832. 58103. 61689. 66803.	48504. 53100. 52532. 51973. 57587. 57251. 59334. 60329. 64855. 63247. 66117. 67374.	48070. 52271. 56047. 59319. 73489. 79653. 89179. 95100. 93244. 90584. 96940.	138289. 148722. 145466. 151750. 174841. 179116. 192238. 201443. 208931. 211934. 224746. 240153.	53303. 55852. 56942. 59405. 67988. 71404. 77547. 82492. 85913. 93252. 95189. 98119.	191592. 204574. 202408. 211155. 242829. 250520. 269785. 283935. 294844. 305186. 319935. 338272.	452569. 466296. 475880. 488155. 510695. 524807. 544753. 566664. 579513. 600701. 619401. 640630.	41648. 42814. 44118. 45400. 46801. 48919. 51168. 53806. 56674. 59598. 62964. 66186.	440914. 453258. 463056. 474150. 489508. 502322. 518374. 537978. 550274. 567047. 587176. 608697.

CANSIM #	V1992049	V1992057	V1992051		V1992060	V1992063		V1992066	V1992059
Year	GOVC	BINV	GINV	INVENT	EXPORT	IMPORT	TRADEBAL	STATD	GDP
1981	137226.	-524.	3119.	2595.	128879.	129473.	-594.	2533.	594082.
1982	139942.	169.	-22408.	-22239.	126858.	108616.	18242.	1134.	576744.
1983	142262.	-95.	-10180.	-10275.	134353.	119425.	14928.	-1280.	592684.
1984	143736.	41.	-134.	-93.	159088.	139824.	19264.	-1082.	626378.
1985	149892.	-128.	-494.	-622.	166749.	151482.	15267.	127.	660318.
1986	152597.	-67.	-1632.	-1699.	173904.	162412.	11492.	-766.	677802.
1987	154614.	-71.	-459.	-530.	179015.	171070.	7945.	-1661.	705701.
1988	161662.	118.	-257.	-139.	195014.	194083.	931.	2170.	740592.
1989	166112.	-2.	2459.	2457.	196924.	205490.	-8566.	463.	759821.
1990	171971.	122.	-4695.	-4573.	206121.	209664.	-3543.	30.	762381.
1991	177006.	-61.	-8576.	-8637.	209812.	214887.	-5075.	12.	747857.
1992	178729.	-67.	-9310.	-9377.	224857.	224920.	-63.	-1652.	754835.
1993	178796.	-5.	-2931.	-2936.	249226.	241458.	7768.	-2090.	772498.
1994	176570.	0.	314.	314.	280890.	260894.	19996.	-1233.	810016.
1995	175557.	49.	8877.	8926.	304727.	275871.	28856.	-859.	832138.
1996	173484.	-3.	2611.	2608.	321787.	289968.	31819.	-634.	845157.
1997	171756.	5.	8174.	8179.	348604.	331271.	17333.	-72.	882734.
1998	177277.	-26.	5964.	5938.	380407.	348095.	32312.	-386.	919000.
1999	181006.	-3.	6589.	6586.	421046.	375219.	45827.	86.	969242.
2000	186589.	23.	13353.	13376.	458574.	405715.	52859.	709.	1020258.
2001	193876.	13.	-2399.	-2386.	444986.	384894.	60092.	-409.	1036048.
2002	198828.	-40.	1800.	1760.	449305.	390744.	58561.	-627.	1068540.
2003	204593.	14.	11052.	11066.	439784.	406664.	33120.	-405.	1094278.
2004	210049.	19.	11517.	11536.	461675.	439619.	22056.	-493.	1130405.

Ratios:

	to ISAVING				to GDP				
Year	PRES	PNRES	PMACH	PDUR	PCON1			PTRD	PSTATD
1981	0.23060	0.34301	0.20686	0.21953	0.72654	0.23099	0.00437	-0.00100	0.00426
1982	0.21598	0.36448	0.20077	0.21877	0.75255	0.24264	-0.03856	0.03163	0.00197
1983	0.24453	0.32630	0.18750	0.24167	0.74151	0.24003	-0.01734	0.02519	-0.00216
1984	0.23369	0.30981	0.19195	0.26456	0.71382	0.22947	-0.00015	0.03075	-0.00173
1985	0.23033	0.30225	0.19241	0.27500	0.70134	0.22700	-0.00094	0.02312	0.00019
1986	0.24678	0.27270	0.20249	0.27803	0.70688	0.22514	-0.00251	0.01695	-0.00113
1987	0.25871	0.25754	0.21226	0.27150	0.70097	0.21909	-0.00075	0.01126	-0.00235
1988	0.24441	0.25599	0.23157	0.26803	0.69516	0.21829	-0.00019	0.00126	0.00293
1989	0.24382	0.25650	0.23999	0.25969	0.70534	0.21862	0.00323	-0.01127	0.00061
1990	0.22702	0.27169	0.23931	0.26198	0.72416	0.22557	-0.00600	-0.00465	0.00004
1991	0.20521	0.28103	0.24888	0.26487	0.74390	0.23668	-0.01155	-0.00679	0.00002
1992	0.22384	0.25185	0.25277	0.27153	0.75068	0.23678	-0.01242	-0.00008	-0.00219
1993	0.21773	0.25316	0.25090	0.27821	0.74265	0.23145	-0.00380	0.01006	-0.00271
1994	0.21191	0.25956	0.25551	0.27302	0.71554	0.21798	0.00039	0.02469	-0.00152
1995	0.18224	0.25954	0.27690	0.28132	0.70525	0.21097	0.01073	0.03468	-0.00103
1996	0.19160	0.24614	0.28093	0.28133	0.70592	0.20527	0.00309	0.03765	-0.00075
1997	0.18023	0.23715	0.30264	0.27998	0.68850	0.19457	0.00927	0.01964	-0.00008
1998	0.16850	0.22853	0.31795	0.28502	0.67724	0.19290	0.00646	0.03516	-0.00042
1999	0.16207	0.21993	0.33056	0.28744	0.65764	0.18675	0.00680	0.04728	0.00009
2000	0.16206	0.21247	0.33494	0.29053	0.64531	0.18288	0.01311	0.05181	0.00069
2001	0.17240	0.21996	0.31625	0.29138	0.65340	0.18713	-0.00230	0.05800	-0.00039
2002	0.19039	0.20724	0.29682	0.30556	0.65199	0.18607	0.00165	0.05480	-0.00059
2003	0.19282	0.20666	0.30300	0.29753	0.65998	0.18697	0.01011	0.03027	-0.00037
2004	0.19748	0.19917	0.31329	0.29006	0.66137	0.18582	0.01021	0.01951	-0.00044

APPENDIX C:

SELECTED OUTPUT OF MEDS-E SYSTEM

MEDS-E	TABLE 1:			AND ECONO OF 22/SEP		REGATES	DATE: 2	26SEP2005
YEAR	Popula- tion POPTOT			Gross Domestic Product GDP		-ment	Gov't Current Expend. GOVC	Fixed Capital Stock KTOT
				- levels	_			
2001 2006 2011 2026 2031 2036 2041 2046 2051	31021. 32509. 33899. 35237. 36472. 37531. 38342. 38888. 39208. 39359. 39400. Numbers of are in bil	19073. 19129. 19160. 19091. 18935.		1905.7 2042.1 2179.3 2311.7 2435.8 2552.4	1383.3	206.3 275.2 324.9 373.3 417.4 458.6 496.2 533.3 569.1 602.8 634.5	467.5 ± 489.9 ±	9150.4 10031.0 10900.7
MEDS-E	TABLE 2:	MAJOR DEM	OGRAPHIC			REGATES	DATE: :	26SEP2005
MEDS-E 	TABLE 2: Popula- tion POPTOT	MAJOR DEM ID: STAN Labour	OGRAPHIC DARD (AS 	AND ECONO	PT/05) Consump	Fixed Invest -ment	Gov't	Fixed Capital
	Popula- tion	MAJOR DEM ID: STAN Labour Force	OGRAPHIC DARD (AS Employ -ment ETOT	AND ECONO OF 22/SEP Gross Domestic Product	PT/05) Consump -tion CONSUM	Fixed Invest -ment ITOT	Gov't Current Expend.	Fixed Capital Stock
	Popula- tion POPTOT 4.8 4.3 3.9 3.5 2.9 2.2 1.4 .8 .4 .1	MAJOR DEMO ID: STANI Labour Force LFTOT 9.8 5.0 2.6 .2 3 1 .3	OGRAPHIC DARD (AS Employ -ment ETOT - per 9.8 5.0 2.6 .2 3 1 .3 .2 4 8	AND ECONO OF 22/SEI Gross Domestic Product GDP rcentage 9 16.8 16.1 13.3 10.3 8.6 7.2 6.7 6.1 5.4 4.8	Consump -tion CONSUM Growth ra 19.2 16.1 13.3 10.3 8.6 7.2 6.7 6.1 5.4 4.8	Fixed Invest -ment ITOT 	Gov't Current Expend. GOVC 19.8 16.1 13.3 10.3 8.6 7.2 6.7 6.1 5.4 4.8	Fixed Capital Stock KTOT 19.7 21.8 19.7 17.6 15.4 13.5 12.0 10.7 9.6 8.7

	TABLE 3:	RATIOS (ID: STA	OF AGGRI ANDARD	EGATE VI (AS OF I	ARIABLES 22/SEPT/C	5)	DAT	E: 26SEP200
	GDP/PC)PTOT	PTOT Percent of GDP					ктот
	index %	growth	CONSUM	ITOT	GOVC	TRADEBAL	(GDP
2001	100 0		53 1	199	18 7	58	7 2	2 6
2001	100.0 111.4 124.0	11 4	54 2	22 7	19 2	0.0	7.2	2.0
2011	124 0	11 3	54 2	23.1	19.2	.0	7 2	2.9
2016	135.1 144.0 152.0	9 0	54 2	23.5	19 2	.0	7 2	3 0
2021	144 0	5.0	54 2	23.8	19.2	.0	7 2	3.2
2021	152 0	56	54 2	23.0	19.2	.0	7 2	3 4
2031	159 5	4 9	54 2	24 3	19 2	.0	7 2	3.6
2036	167 8	5 2	54 2	24 5	19.2	.0	7 2	3.8
2041	176.6	5.2	54.2	24.6	19.2	.0	7.2	4.0
2046	159.5 167.8 176.6 185.3 194.0	5.0	54.2	24.7	19.2	. 0	7.2	4.1
2051	194.0	4.7	54.2	24.9	19.2	.0	7.2	4.3
	TABLE 4: G 	ID: STA	ANDARD	(AS OF	22/SEPT/C	95) K	DAT TOT/ETOT	E: 26SEP200
Year	 					 		
	1ndex 	% gro	vth :	index	% growth	index	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	wth
2001	100.0 106.3 117.6			100.0		100.0		•
2006	106.3	б	. 3	97.6	-2.4	109.0	9	.0
2011	117.6	10	.6	92.9	-4.8	126.5	16	.1
2016	129.8	10	. 4	87.9	-5.4	147.6 173.2	16	.7
2021	142.9	10	.1	82.5	-6.2	173.2	17	.3
2026	155.8 167.1 177.8	9	. 0	77.6	-5.9	200.6	15	.8
2031	167.1	7	. 3	73.3	-5.6	228.0	13	.7
2036	177.8	б	. 4	69.8	-4.7	254.6	11	.6
2041	188.3 199.1	5	. 9	66.9	-4.2	281.4	10	.5
2046	199.1	5	. 8	64.3	-3.9	309.6	10	.0
2051	210.4	5	. 6	62.0	-3.6	339.2	9	.6
Note:	The growth	rates s	show tot	tal gro	wth over	the prece	 dina 5 v	ears.

Note: The growth rates show total growth over the preceding 5 years.

	TABLE 5:	ID: STA	NDARD (A	S OF 22/9	SEPT/05)			26SEP2005
	КТОТ							ІМАСН
				- level	ls -			
2006 2011 2016 2021 2026 2031 2036 2041 2046	2744.3 3284.5 4002.2 4792.4 5633.9 6502.3 7382.4 8265.7 9150.4 10031.0 10900.7	1164.2 1381.5 1632.3 1909.7 2205.7 2514.2 2831.1 3154.5 3481.5	1297.3 1551.8 1843.5 2163.4 2501.5 2850.5 3205.8 3565.1 3925.4	823.0 1068.9 1316.6 1560.7 1795.2 2017.7 2228.8 2430.9 2624.1	275.2 324.9 373.3 417.4 458.6 496.2 533.3 569.1 602.8	69.7 82.2 94.5 105.7 116.1 125.6 135.0 144.1 152.6	102.2 117.4 131.3 144.3 156.1 167.8 179.0 189.6	118.9 140.4 161.4 180.4 198.2 214.5 230.5 246.0 260.6
Note:	Figures ar	e in bil	lions of	1997 dol	llars.			
	TABLE 6:	ID: STA	NDARD (A	S OF 22/S	SEPT/05)			26SEP2005
	ктот	KRES		KMACH	ITOT			
					e growth	rates -		
2011 2016 2021 2026 2031 2036 2041 2046	19.7 21.8 19.7 17.6 15.4 13.5 12.0 10.7 9.6 8.7	18.7 18.2 17.0 15.5 14.0 12.6 11.4 10.4	19.6 18.8 17.4 15.6 14.0 12.5 11.2 10.1	29.9 23.2 18.5 15.0 12.4 10.5 9.1 8.0	9.9 8.2 7.5 6.7 5.9	18.1 14.9 11.8 9.9 8.2 7.5 6.7 5.9	18.1 14.9 11.8 9.9 8.2 7.5 6.7 5.9	18.1 14.9 11.8 9.9 8.2 7.5 6.7 5.9

Note: The growth rates show total growth over the preceding 5 years.

	TABLE 7:	ID:	STANI	DARD (AS	OF 22/5	SEPT/05)			DATE: 26	SEP2005
		Me	dian	Aqe	Distrik	oution c	f KTO	г.in	Years (%)
	ктот	(ye	ars)	All age	es 10-	+ 20	+	30+	40+	50+
2001	2744.3 3284.5 4002.2	8 1	0.4	100.0	51.4	4 24.	3	11.0	4.9	1.9
2006	3284.5	5	9.7	100.0	49.2	2 25.	2	11.8	5.3	2.2
2011	4002.2	2	8.9	100.0	46.5	5 25.	4	12.4	5.7	2.5
2016	4792.4 5633.9 6502.3 7382.4 8265.7	<u> </u>	8.9	100.0	45.9	24.	2	12.8	6.1	2.7
2021	5633.9)	9.2	100.0	47.2	2 23. 7 22	4 .	13.3	6.6	3.0
2026	6502.3	5 I 1	9./	100.0	48.	/ 23. 1 25	8.	13.1 12 0	7.0	3.4
2031	/382.4	t⊥ ≀ 1	0.1	100.0	50.4	± ∠⊃.) ⊃6		13.0	7.0	3.8
2030	9150 4	L 1	1 0	100.0	53 4	1 20. 1 28	2	14 7	7.7	4.2
2011	10031 0) 1	1 5	100.0	53. 54 6	5 20.	8	15 9	83	4 8
2051	9150.4 10031.0 10900.7	, <u> </u>	1.9	100.0	55.8	3 31.	3	17.2	9.1	4.9
Note:	KTOT is	in bi	llions	s of 199'	/ dolla:	cs.				
MEDS-E	TABLE 8:	CONS	UMER I	URABLES	AND MEA	ASURES C	F CON	SUMPTI	ON	
		ID:	STANI	DARD (AS	OF 22/5	SEPT/05)			DATE: 26	SEP2005
									DATE: 26	SEP2005
	Stock c	of Con	sumer	Durables	s, KDUR				DATE: 26	SEP2005
	Stock c	of Con	sumer	Durables	s, KDUR					
	Stock c Me Total	of Con edian	sumer Age Di	Durable:	s, KDUR ion (%)	CONSUM			X CONSUM	
Year	Stock c Me Total (y	of Con edian . Age vears)	sumer Age Di 5+	Durables	s, KDUR ion (%) 15+	CONSUM	CDUR	CONE	X CONSUM POPTOT	CONSUM HOUSE
Year	Stock c Me	of Con edian . Age vears)	sumer Age Di 5+	Durables	s, KDUR ion (%) 15+	CONSUM	CDUR	CONE	X CONSUM POPTOT	CONSUM HOUSE
Year	Stock c Me Total (y	of Con edian Age rears)	sumer Age Di 5+	Durables	s, KDUR ion (%) 15+	CONSUM	CDUR	CONE	X CONSUM POPTOT 	CONSUM HOUSE
Year	Stock c Me Total (y	of Con edian Age rears)	sumer Age Di 5+	Durables	s, KDUR ion (%) 15+	CONSUM	CDUR	CONE	X CONSUM POPTOT 	CONSUM HOUSE
Year 2001 2006	Stock c Me Total 565.5 730.1	of Con edian Age zears) 4.6 4.4	sumer Age D 5+ 47.4 45.7	Durables	s, KDUR ion (%) 15+ 10.5 11.0	CONSUM 550.2 655.6	CDUR 56.6 73.0	CONE. 578. 694.	X CONSUM POPTOT 5 5 17.7 5 20.2	CONSUM HOUSE 45.0 49.8
Year 2001 2006 2011	Stock c Me Total 565.5 730.1 925.5	of Con edian Age rears) 4.6 4.4 4.6	sumer Age Di 5+ 47.4 45.7 46.6	Durables	s, KDUR ion (%) 15+ 10.5 11.0 10.1	CONSUM 550.2 655.6 760.9	CDUR 56.6 73.0 92.6	CONE 578. 694. 800.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4	CONSUM HOUSE 45.0 49.8 53.9
Year 2001 2006 2011 2016	Stock c 	of Con edian Age rears) 4.6 4.4 4.6 4.8	sumer Age D 5+ 47.4 45.7 46.6 48.7	Durables istribut: 10+ 24.1 21.7 21.3 22.7	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4	CONSUM 550.2 655.6 760.9 861.8	CDUR 56.6 73.0 92.6 112.3	CONE 578. 694. 800. 901.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5	CONSUM HOUSE 45.0 49.8 53.9 57.3
Year 2001 2006 2011 2016 2021	Stock c 	of Con edian Age rears) 4.6 4.4 4.6 4.8	sumer Age D 5+ 47.4 45.7 46.6 48.7	Durables istribut: 10+ 24.1 21.7 21.3 22.7	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4	CONSUM 550.2 655.6 760.9 861.8	CDUR 56.6 73.0 92.6 112.3	CONE 578. 694. 800. 901.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5	CONSUM HOUSE 45.0 49.8 53.9 57.3
Year 2001 2006 2011 2016 2021 2026	Stock c 	of Con edian Age rears) 4.6 4.4 4.6 4.8	sumer Age D 5+ 47.4 45.7 46.6 48.7	Durables istribut: 10+ 24.1 21.7 21.3 22.7	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4	CONSUM 550.2 655.6 760.9 861.8	CDUR 56.6 73.0 92.6 112.3	CONE 578. 694. 800. 901.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5	CONSUM HOUSE 45.0 49.8 53.9 57.3
Year 2001 2006 2011 2016 2021 2026 2031	Stock of Me Total 565.5 730.1 925.5 1123.0 1317.4 1503.3 1678.8	of Con edian Age vears) 4.6 4.4 4.6 4.8 5.1 5.3 5.4	sumer Age D 5+ 47.4 45.7 46.6 48.7 50.3 51.7 52.9	Durables istribut: 10+ 24.1 21.7 21.3 22.7 24.5 26.0 27.4	s, KDUR 15+ 10.5 11.0 10.1 10.4 11.4 12.7 13.8	CONSUM 550.2 655.6 760.9 861.8 950.7 1032.8 1106.7	CDUR 56.6 73.0 92.6 112.3 131.7 150.3 167.9	CONE 578. 694. 800. 901. 988. 1068. 1140.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5 6 26.1 9 27.5 5 28.9	CONSUM HOUSE 45.0 49.8 53.9 57.3 59.8 62.0 64.1
Year 2001 2006 2011 2016 2021 2026 2031 2036	Stock of Me Total 565.5 730.1 925.5 1123.0 1317.4 1503.3 1678.8 1844.9	of Con Age vears) 4.6 4.4 4.6 4.8 5.1 5.3 5.4 5.6	sumer Age D 5+ 47.4 45.7 46.6 48.7 50.3 51.7 52.9 53.7	Durables istribut: 10+ 24.1 21.7 21.3 22.7 24.5 26.0 27.4 28.4	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4 11.4 12.7 13.8 14.7	CONSUM 550.2 655.6 760.9 861.8 950.7 1032.8 1106.7 1181.1	CDUR 56.6 73.0 92.6 112.3 131.7 150.3 167.9 184.5	CONE 578. 694. 800. 901. 988. 1068. 1140. 1213.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5 6 26.1 9 27.5 5 28.9 4 30.4	CONSUM HOUSE 45.0 49.8 53.9 57.3 59.8 62.0 64.1 66.7
Year 2001 2006 2011 2016 2021 2026 2031 2036 2041	Stock of Me Total (y 565.5 730.1 925.5 1123.0 1317.4 1503.3 1678.8 1844.9 2003.8	of Con Age vears) 4.6 4.4 4.6 4.8 5.1 5.3 5.4 5.6 5.7	sumer 5+ 47.4 45.7 46.6 48.7 50.3 51.7 52.9 53.7 54.4	Durables istribut: 10+ 24.1 21.7 21.3 22.7 24.5 26.0 27.4 28.4 29.2	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4 11.4 12.7 13.8 14.7 15.4	CONSUM 550.2 655.6 760.9 861.8 950.7 1032.8 1106.7 1181.1 1252.8	CDUR 56.6 73.0 92.6 112.3 131.7 150.3 167.9 184.5 200.4	CONE 578. 694. 800. 901. 988. 1068. 1140. 1213. 1283.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5 6 26.1 9 27.5 5 28.9 4 30.4 8 32.0	CONSUM HOUSE 45.0 49.8 53.9 57.3 59.8 62.0 64.1 66.7 69.6
Year 2001 2006 2011 2016 2021 2026 2031 2036 2041 2046	Stock of Me Total 565.5 730.1 925.5 1123.0 1317.4 1503.3 1678.8 1844.9 2003.8 2155.7	of Con Age vears) 4.6 4.4 4.6 4.4 5.1 5.3 5.4 5.6 5.7 5.8	sumer Age D 5+ 47.4 45.7 46.6 48.7 50.3 51.7 52.9 53.7 54.4 54.9	Durables istribut: 10+ 24.1 21.7 21.3 22.7 24.5 26.0 27.4 28.4 29.2 29.8	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4 11.4 12.7 13.8 14.7 15.4 16.0	CONSUM 550.2 655.6 760.9 861.8 950.7 1032.8 1106.7 1181.1 1252.8 1320.1	CDUR 56.6 73.0 92.6 112.3 131.7 150.3 167.9 184.5 200.4 215.6	CONE 578. 694. 800. 901. 988. 1068. 1140. 1213. 1283. 1349.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5 6 26.1 9 27.5 5 28.9 4 30.4 8 32.0 5 33.5	CONSUM HOUSE 45.0 49.8 53.9 57.3 59.8 62.0 64.1 66.7 69.6 72.7
Year 2001 2006 2011 2016 2021 2026 2031 2036 2041	Stock of Me Total (y 565.5 730.1 925.5 1123.0 1317.4 1503.3 1678.8 1844.9 2003.8	of Con Age vears) 4.6 4.4 4.6 4.8 5.1 5.3 5.4 5.6 5.7	sumer Age D 5+ 47.4 45.7 46.6 48.7 50.3 51.7 52.9 53.7 54.4 54.9	Durables istribut: 10+ 24.1 21.7 21.3 22.7 24.5 26.0 27.4 28.4 29.2	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4 11.4 12.7 13.8 14.7 15.4 16.0	CONSUM 550.2 655.6 760.9 861.8 950.7 1032.8 1106.7 1181.1 1252.8	CDUR 56.6 73.0 92.6 112.3 131.7 150.3 167.9 184.5 200.4 215.6	CONE 578. 694. 800. 901. 988. 1068. 1140. 1213. 1283. 1349.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5 6 26.1 9 27.5 5 28.9 4 30.4 8 32.0 5 33.5	CONSUM HOUSE 45.0 49.8 53.9 57.3 59.8 62.0 64.1 66.7 69.6
Year 2001 2006 2011 2016 2021 2026 2031 2036 2041 2046	Stock of Me Total 565.5 730.1 925.5 1123.0 1317.4 1503.3 1678.8 1844.9 2003.8 2155.7	of Con Age vears) 4.6 4.4 4.6 4.4 5.1 5.3 5.4 5.6 5.7 5.8	sumer Age D 5+ 47.4 45.7 46.6 48.7 50.3 51.7 52.9 53.7 54.4 54.9	Durables istribut: 10+ 24.1 21.7 21.3 22.7 24.5 26.0 27.4 28.4 29.2 29.8	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4 11.4 12.7 13.8 14.7 15.4 16.0	CONSUM 550.2 655.6 760.9 861.8 950.7 1032.8 1106.7 1181.1 1252.8 1320.1	CDUR 56.6 73.0 92.6 112.3 131.7 150.3 167.9 184.5 200.4 215.6	CONE 578. 694. 800. 901. 988. 1068. 1140. 1213. 1283. 1349.	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5 6 26.1 9 27.5 5 28.9 4 30.4 8 32.0 5 33.5	CONSUM HOUSE 45.0 49.8 53.9 57.3 59.8 62.0 64.1 66.7 69.6 72.7
Year 2001 2006 2011 2016 2021 2026 2031 2036 2041 2046	Stock of Me Total (y 565.5 730.1 925.5 1123.0 1317.4 1503.3 1678.8 1844.9 2003.8 2155.7 2300.1 	of Con Age vears) 4.6 4.4 4.6 4.4 5.1 5.3 5.4 5.6 5.7 5.8 5.9 JSUM,	sumer Age D 5+ 47.4 45.7 46.6 48.7 50.3 51.7 52.9 53.7 54.4 54.9 55.3	Durables istribut: 10+ 24.1 21.7 21.3 22.7 24.5 26.0 27.4 28.4 29.2 29.8 30.4 and CONF	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4 11.4 12.7 13.8 14.7 15.4 16.0 16.5 EX are :	CONSUM 550.2 655.6 760.9 861.8 950.7 1032.8 1106.7 1181.1 1252.8 1320.1 1383.3	CDUR 56.6 73.0 92.6 112.3 131.7 150.3 167.9 184.5 200.4 215.6 230.0	CONE 578. 694. 800. 901. 988. 1068. 1140. 1213. 1283. 1349. 1411. f 1997	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5 6 26.1 9 27.5 5 28.9 4 30.4 8 32.0 5 33.5 2 35.1 	CONSUM HOUSE 45.0 49.8 53.9 57.3 59.8 62.0 64.1 66.7 69.6 72.7 75.9
Year 2001 2006 2011 2016 2021 2026 2031 2036 2041 2046 2051	Stock of Me Total (y 565.5 730.1 925.5 1123.0 1317.4 1503.3 1678.8 1844.9 2003.8 2155.7 2300.1	of Con Age vears) 4.6 4.4 4.6 4.4 5.1 5.3 5.4 5.6 5.7 5.8 5.9 JSUM, 0 Volvi	sumer Age D 5+ 47.4 45.7 46.6 48.7 50.3 51.7 52.9 53.7 54.4 54.9 55.3 CDUR, ng CON	Durables istribut: 10+ 24.1 21.7 21.3 22.7 24.5 26.0 27.4 28.4 29.2 29.8 30.4 and CONF	s, KDUR ion (%) 15+ 10.5 11.0 10.1 10.4 11.4 12.7 13.8 14.7 15.4 16.0 16.5 EX are :	CONSUM 550.2 655.6 760.9 861.8 950.7 1032.8 1106.7 1181.1 1252.8 1320.1 1383.3	CDUR 56.6 73.0 92.6 112.3 131.7 150.3 167.9 184.5 200.4 215.6 230.0	CONE 578. 694. 800. 901. 988. 1068. 1140. 1213. 1283. 1349. 1411. f 1997	X CONSUM POPTOT 5 17.7 5 20.2 4 22.4 2 24.5 6 26.1 9 27.5 5 28.9 4 30.4 8 32.0 5 33.5 2 35.1 	CONSUM HOUSE 45.0 49.8 53.9 57.3 59.8 62.0 64.1 66.7 69.6 72.7 75.9

MEDS-E	TABLI	g 9:	PROJ ID:	JECTEI STAI	D EDU(NDARD	CATIO (AS (N OF E DF 22/	OPULA SEPT,	ATION /05)		I	BOI DATE:	TH SEX 26SEP	ES 2005
YEAR				15+							20-24			
	E1	E2	E3	E4	E5	Еб	E7	E1	E2	E3	E4			
				sands						- thou				
2001 2006 2011 2016 2021 2026 2031 2036 2041 2046 2051	2048 1669 1310 1039 838 740 669 576 529	4342 4199 3909 3661 3536 3459 3220 2966 2612	5068 5188 5258 5250 5237 5079 4795 4354 3893	2562 2835 3105 3333 36322 39382 42692 46092 48822	7885 8655 9305 9912 10376 10775 11113 11283 11551	3286 3889 4496 5041 5427 5776 6201 6680 6989	2014 2353 2615 2814 2963 3122	34 33 35 34 35 37 40 42 43	253 255 232 224 228 231 231 221				170 177 179 164 160 164 168 170 168 165	22 24 27 29 30 33 35 37 39 39
Note: MEDS-E	schoo certi to ur TABLE	ol gra Lficat Divers E 10:	aduat: te or sity o PROU ID:	ion, H diplo degree JECTEI STAN	E4 to oma, 1 e or (D EDU(NDARD	some E6 to certi: CATIOI (AS (, E2 t post- compl ficate N OF E DF 22/	-secor eted abov POPULA SEPT,	ndary bache ve bac ATION /05)	, E5 t elor's chelo:	to pos s degi c's. I	st-sec ree, a BOI DATE:	ondar ind E7 TH SEX 26SEP	У ES 2005
YEAR				15+							20-24			
	E1	E2	E3	E4	E5	Еб	E7	E1	E2	E3	E4	E5	Еб	E7
							-							
2001 2006 2011 2016 2021 2026 2031 2036 2041 2046 2051	7.6 5.9 4.4 3.4 2.6	16.2 14.8 13.1 11.9 11.1 10.6 9.6 8.8 7.7	18.9 18.2 17.7 17.0 16.4 15.5 14.4 12.9 11.5	9.5 10.0 10.4 10.8 11.4 12.0 12.8 13.6 14.4	29.3 30.4 31.3 32.1 32.6 32.9 33.3 33.4 34.0	12.2 13.7 15.1 16.3 17.0 17.6 18.6 19.8 20.6		1.6 1.5 1.6 1.7 1.8 1.9 1.9 2.0 2.1	11.5 11.5 11.4 11.4 11.3 11.2 11.1 11.0 10.6	22.1 21.0 19.9	27.6 29.1 30.5 31.9 33.3 34.8 36.2 37.6 39.0	28.0 27.6 27.2 26.7 26.2 25.8 25.3 24.8 24.5	8.1 8.1 8.1	1.2 1.3
Note:	schoo certi	ol gra ificat	aduat: te or	ion, H diplo	E4 to oma, 1	some E6 to	, E2 t post- compl ficate	-secor .eted	ndary bache	, E5 t elor's	to pos s degi	st-sec	ondar	У

		AGGREGATE MEA ID: STANDARD	(AS OF 22/	SEPT/05)	DATI	E: 26SEP2005
Year	HCAP	HCAP/POPTOT	HCAP/ETOT	HCAP/GDP	HCAP/KTOT	RDISC
			- level			
2001	8510.	274.3	567.2	8.2	3.1	7.3
2006	10232.	314.8	621.0	8.5	3.1	6.8
2011	12413.	314.8 366.2	717.8	8.5 8.8	3.1	6.2
2016	14739.	418.3	830.5	9.3	3.1	5.6
2021	17169.	470.8	965.6	9.8	3.0	5.0
2026	19678.	524.3	1110.5	10.3	3.0	4.4
2031						4.0
2036	24488	577.4 629.7	1379.5	10.8 11.2	3.0	3.6
2041	26817.	684.0	1508.3	11.6		3.3
2046	29187.	684.0 741.5	1647.5	12.0	2.9	3.0
	31607	802.2	1798 7	12.4	2.9	2.8
2001	51007.	00212	1,00.,	12.1	2.9	2.0
		er; it is in b are in thousan				
	HCAP/KTOT a	are ratios; RD AGGREGATE MEA ID: STANDARD	ISC is a per SURES RELAT (AS OF 22/	rcent. ING TO HUMA SEPT/05)	N CAPITAL DATI	E: 26SEP2005
 Year	HCAP/KTOT a TABLE 13: 	AGGREGATE MEA ID: STANDARD HCAP/POPTOT	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT	rcent. ING TO HUMA SEPT/05) HCAP/GDP	N CAPITAL DATI HCAP/KTOT	E: 26SEP2005 RDISC
 Year	HCAP/KTOT a TABLE 13: 	AGGREGATE MEA ID: STANDARD HCAP/POPTOT	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT	rcent. ING TO HUMA SEPT/05) HCAP/GDP	N CAPITAL DATI HCAP/KTOT	E: 26SEP2005 RDISC
 Year 	HCAP/KTOT a TABLE 13: HCAP	AGGREGATE MEA ID: STANDARD HCAP/POPTOT	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT percentage	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat	N CAPITAL DATI HCAP/KTOT es -	E: 26SEP2005 RDISC
Year 2006	HCAP/KTOT a TABLE 13: HCAP	AGGREGATE MEA ID: STANDARD HCAP/POPTOT	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT percentage	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat	N CAPITAL DATI HCAP/KTOT es -	E: 26SEP2005 RDISC
Year 2006 2011	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT percentage 9.5 15.6	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5	N CAPITAL DATI HCAP/KTOT es - .5 4	E: 26SEP2005 RDISC
Year 2006 2011 2016	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3 18.7	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT percentage 9.5 15.6	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5	N CAPITAL DATI HCAP/KTOT es - .5 4	E: 26SEP2005 RDISC
Year 2006 2011 2016 2021	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3 18.7 16.5	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22/) HCAP/ETOT percentage 9.5 15.6 15.7 16.3	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5 4.8 5.6	N CAPITAL DATI HCAP/KTOT es - .5 4 8 9	E: 26SEP2005 RDISC
Year 2006 2011 2016 2021 2026	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3 18.7 16.5 14.6	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22// 	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5 4.8 5.6 5.5	N CAPITAL DATI HCAP/KTOT es - .5 4 8 9 7	E: 26SEP2005 RDISC
Year 2006 2011 2016 2021 2026 2031	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3 18.7 16.5 14.6	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22// 	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5 4.8 5.6 5.5	N CAPITAL DATI 	E: 26SEP2005 RDISC
Year 2006 2011 2016 2021 2026 2031 2036	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3 18.7 16.5 14.6 12.5 10.6	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT percentage 9.5 15.6 15.7 16.3 15.0 12.6 10.3	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5 4.8 5.6 5.5 5.0 3.6	N CAPITAL DATI 	E: 26SEP2005 RDISC
Year 2006 2011 2016 2021 2026 2031 2036 2041	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3 18.7 16.5 14.6 12.5 10.6	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT percentage 9.5 15.6 15.7 16.3 15.0 12.6 10.3	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5 4.8 5.6 5.5 5.0 3.6 3.2	N CAPITAL DATI 	E: 26SEP2005 RDISC
Year 2006 2011 2016 2021 2026 2031 2036 2041 2046	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3 18.7 16.5 14.6 12.5 10.6 9.5 8.8	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT percentage 9.5 15.6 15.7 16.3 15.0 12.6 10.3 9.3 9.2	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5 4.8 5.6 5.5 5.0 3.6 3.2 3.3	N CAPITAL DATI HCAP/KTOT 	E: 26SEP2005 RDISC
Year 2006 2011 2016 2021 2026 2031 2036 2041 2046	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3 18.7 16.5 14.6 12.5 10.6 9.5 8.8	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT percentage 9.5 15.6 15.7 16.3 15.0 12.6 10.3 9.3 9.2	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5 4.8 5.6 5.5 5.0 3.6 3.2 3.3	N CAPITAL DATI HCAP/KTOT 	E: 26SEP2005 RDISC
Year 2006 2011 2016 2021 2026 2031 2036 2041 2046	HCAP/KTOT a TABLE 13: HCAP 20.2 21.3 18.7 16.5 14.6 12.5 10.6 9.5 8.8	AGGREGATE MEA ID: STANDARD HCAP/POPTOT 	ISC is a per SURES RELAT (AS OF 22/ HCAP/ETOT percentage 9.5 15.6 15.7 16.3 15.0 12.6 10.3 9.3 9.2	rcent. ING TO HUMA SEPT/05) HCAP/GDP growth rat 3.0 4.5 4.8 5.6 5.5 5.0 3.6 3.2 3.3	N CAPITAL DATI HCAP/KTOT 	E: 26SEP2005 RDISC

MEDS-E	TABLE 1	7: AGE- ID:	SEX COMPO STANDARI		OF HUMAN 22/SEPT	CAPITAL /05)	DAT	MALES TE: 26SE	P2005
					AGE GRO	UP			
YEAR	TOTAL 15+	15-19	20-24	25-34	35-44	45-54	55-64	65-69	70+
				- p	er capit	a –			
2001	421.4	320.5	511.2	667.1	619.0	436.4	150.4	19.6	6.4
2006	450.2	350.0	547.5	727.7	685.5	476.7	188.0	29.9	8.1
2011	497.9	411.7	628.7	833.6	798.3	531.9	211.0	40.4	10.7
2016	549.1	487.3	726.2	957.0	914.6	600.6	234.0	48.8	13.8
2021	605.4	583.7	848.0	1107.4	1037.0	689.1	253.3	53.5	15.7
2026	662.7	691.6	981.5	1273.2	1169.0	770.3	275.6	56.8	16.5
2031	724.7	811.7	1127.3	1451.0	1311.6	842.2	312.3	62.8	17.0
2036	786.1	928.6	1268.0	1625.0	1445.2	912.4	340.7	70.7	18.4
2041	851.5	1045.5	1409.7	1802.5	1588.4	984.4	359.7	77.4	20.6
2046	923.6	1168.6	1560.0	1988.9	1738.3	1051.7	381.1	81.6	22.3
2051	1000.9	1297.4	1716.9	2185.6	1891.7	1133.9	404.7	86.6	23.2

Note: Figures are in thousands of 1997 dollars.

SEDAP RESEARCH PAPERS: Recent Releases

Number	Title	Author(s)
-2003		
No. 89:	The Wealth and Asset Holdings of U.SBorn and Foreign- Born Households: Evidence from SIPP Data	D.A. Cobb-Clark V. Hildebrand
No. 90:	Population Aging, Productivity, and Growth in Living Standards	W. Scarth
No. 91:	A Life-course Perspective on the Relationship between Socio- economic Status and Health: Testing the Divergence Hypothesis	S.G. Prus
No. 92:	Immigrant Mental Health and Unemployment	S. Kennedy
No. 93:	The Relationship between Education and Health in Australia and Canada	S. Kennedy
No. 94:	The Transition from Good to Poor Health: An Econometric Study of the Older Population	N.J. Buckley F.T. Denton A.L. Robb B.G. Spencer
No. 95:	Using Structural Equation Modeling to Understand the Role of Informal and Formal Supports on the Well-being of Caregivers of Persons with Dementia	 P. Raina C. McIntyre B. Zhu I. McDowell L. Santaguida B. Kristjansson A. Hendricks L.W. Chambers
No. 96:	Helping to Build and Rebuild Secure Lives and Futures: Intergenerational Financial Transfers from Parents to Adult Children and Grandchildren	J. Ploeg L. Campbell M. Denton A. Joshi S. Davies
No. 97:	Geographic Dimensions of Aging in Canada 1991-2001	E.G. Moore M.A. Pacey
No. 98:	Examining the "Healthy Immigrant Effect" in Later Life: Findings from the Canadian Community Health Survey	E.M. Gee K.M. Kobayashi S.G. Prus
No. 99:	The Evolution of High Incomes in Canada, 1920-2000	E. Saez M.R. Veall

SEDAP RESEARCH PAPERS: Recent Releases

Number	Title	Author(s)
No. 100:	Macroeconomic Implications of Population Aging and Public Pensions	M. Souare
No. 101:	How Do Parents Affect the Life Chances of Their Children as Adults? An Idiosyncratic Review	J. Ermisch
No. 102:	Population Change and Economic Growth: The Long-Term Outlook	F.T. Denton B.G. Spencer
No. 103:	Use of Medicines by Community Dwelling Elderly in Ontario	P.J. Ballantyne J.A. Marshman P.J. Clarke J.C. Victor
No. 104:	The Economic Legacy of Divorced and Separated Women in Old Age	L. McDonald A.L. Robb
No. 105:	National Catastrophic Drug Insurance Revisited: Who Would Benefit from Senator Kirby's Recommendations?	T.F. Crossley P.V. Grootendorst M.R. Veall
No. 106:	WAGES in CANADA: SCF, SLID, LFS and the Skill Premium	A.L Robb L. Magee J.B. Burbidge
No. 107:	A Synthetic Cohort Analysis of Canadian Housing Careers	T.F. Crossley Y. Ostrovsky
No. 108:	The Policy Challenges of Population Ageing	A. Walker
No. 109:	Social Transfers and Income Inequality in Old-age: A Multi- national Perspective	R.L. Brown S.G. Prus
No. 110:	Organizational Change and the Health and Well-Being of Home Care Workers	M. Denton I.U. Zeytinoglu S. Davies
No. 111:	Stasis Amidst Change: Canadian Pension Reform in an Age of Retrenchment	D. Béland J. Myles
No. 112:	Socioeconomic Aspects of Healthy Aging: Estimates Based on Two Major Surveys	N.J. Buckley F.T. Denton A.L. Robb B.G. Spencer

SEDAP RESEARCH PAPERS: Recent Releases
--

Number	Title	Author(s)
No. 113:	An Invitation to Multivariate Analysis: An Example About the Effect of Educational Attainment on Migration Propensities in Japan	A. Otomo K-L. Liaw
-2004		
No. 114:	The Politics of Protest Avoidance: Policy Windows, Labor Mobilization, and Pension Reform in France	D. Béland P. Marnier
No. 115:	The Impact of Differential Cost Sharing of Non-Steroidal Anti-Inflammatory Agents on the Use and Costs of Analgesic Drugs	P.V. Grootendorst J.K. Marshall A.M. Holbrook L.R. Dolovich B.J. O'Brien A.R. Levy
No. 116:	The Wealth of Mexican Americans	D.A. Cobb-Clark V. Hildebrand
No. 117:	Precautionary Wealth and Portfolio Allocation: Evidence from Canadian Microdata	S. Alan
No. 118:	Financial Planning for Later Life: Subjective Understandings of Catalysts and Constraints	C.L. Kemp C.J. Rosenthal M. Denton
No. 119:	The Effect of Health Changes and Long-term Health on the Work Activity of Older Canadians	D. Wing Han Au T.F. Crossley M. Schellhorn
No. 120:	Pension Reform and Financial Investment in the United States and Canada	D. Béland
No. 121:	Exploring the Returns to Scale in Food Preparation (Baking Penny Buns at Home)	T.F. Crossley Y. Lu
No. 122:	Life-cycle Asset Accumulation and Allocation in Canada	K. Milligan
No. 123:	Healthy Aging at Older Ages: Are Income and Education Important?	N.J. Buckley F.T. Denton A.L. Robb B.G. Spencer

-2005

SEDAP	RESEARCH	PAPERS: I	Recent Re	leases
-------	----------	-----------	-----------	--------

Number	Title	Author(s)
No. 124:	Exploring the Use of a Nonparametrically Generated Instrumental Variable in the Estimation of a Linear Parametric Equation	F.T. Denton
No. 125:	Borrowing Constraints, The Cost of Precautionary Saving, and Unemployment Insurance	T.F. Crossley H.W. Low
No. 126:	Entry Costs and Stock Market Participation Over the Life Cycle	S. Alan
No. 127:	Income Inequality and Self-Rated Health Status: Evidence from the European Community Household Panel	V. Hildebrand P. Van Kerm
No. 128:	Where Have All The Home Care Workers Gone?	M. Denton I.U. Zeytinoglu S. Davies D. Hunter
No. 129:	Survey Results of the New Health Care Worker Study: Implications of Changing Employment Patterns	I.U. Zeytinoglu M. Denton S. Davies A. Baumann J. Blythe Ann Higgins
No. 130	Does One Size Fit All? The CPI and Canadian Seniors	M. Brzozowski
lo. 131	Unexploited Connections Between Intra- and Inter-temporal Allocation	T.F. Crossley H.W. Low
No. 132	Grandparents Raising Grandchildren in Canada: A Profile of Skipped Generation Families	E. Fuller- Thomson
Jo. 133	Measurement Errors in Recall Food Expenditure Data	N. Ahmed M. Brzozowski T.F. Crossley
Io. 134	The Effect of Health Changes and Long-term Health on the Work Activity of Older Canadians	D.W.H. Au T. F. Crossley M Schellhorn
No. 135	Population Aging and the Macroeconomy: Explorations in the Use of Immigration as an Instrument of Control	F. T. Denton B. G. Spencer

Number	Title	Author(s)
No. 136	Users and Suppliers of Physician Services: A Tale of Two Populations	Frank T. Denton Amiram Gafni Byron G. Spencer
No. 137	MEDS-D USERS' MANUAL	Frank T. Denton Christine H. Feaver Byron G. Spencer
No. 138	MEDS-E USERS' MANUAL	Frank T. Denton Christine H. Feaver Byron G. Spencer