SEDAP

A PROGRAM FOR RESEARCH ON

SOCIAL AND ECONOMIC DIMENSIONS OF AN AGING POPULATION

Inter-CMA Migration of the Immigrants in Canada: 1991-1996 and 1996-2001

Lei Xu

SEDAP Research Paper No. 195

For further information about SEDAP and other papers in this series, see our web site: http://socserv.mcmaster.ca/sedap

> Requests for further information may be addressed to: Secretary, SEDAP Research Program Kenneth Taylor Hall, Room 426 McMaster University Hamilton, Ontario, Canada L8S 4M4 FAX: 905 521 8232 e-mail: sedap@mcmaster.ca

Inter-CMA Migration of the Immigrants in Canada: 1991-1996 and 1996-2001

Lei Xu

SEDAP Research Paper No. 195

May 2007

The Program for Research on Social and Economic Dimensions of an Aging Population (SEDAP) is an interdisciplinary research program centred at McMaster University with co-investigators at seventeen other universities in Canada and abroad. The SEDAP Research Paper series provides a vehicle for distributing the results of studies undertaken by those associated with the program. Authors take full responsibility for all expressions of opinion. SEDAP has been supported by the Social Sciences and Humanities Research Council since 1999, under the terms of its Major Collaborative Research Initiatives Program. Additional financial or other support is provided by the Canadian Institute for Health Information, the Canadian Institute of Actuaries, Citizenship and Immigration Canada, Indian and Northern Affairs Canada, ICES: Institute for Clinical Evaluative Sciences, IZA: Forschungsinstitut zur Zukunft der Arbeit GmbH (Institute for the Study of Labour), SFI: The Danish National Institute of Social Research, Social Development Canada, Statistics Canada, and participating universities in Canada (McMaster, Calgary, Carleton, Memorial, Montréal, New Brunswick, Queen's, Regina, Toronto, UBC, Victoria, Waterloo, Western, and York) and abroad (Copenhagen, New South Wales, University College London).

INTER-CMA MIGRATION OF THE IMMIGRANTS IN CANADA: 1991-1996 AND 1996-2001

Lei Xu

Abstract:

Based on the tabulations of the IMDB, I characterized, explained and compared the 1991-1996 and 1996-2001 inter-CMA migration of the immigrants in Canada. The spatial and temporal patterns were consistent with the neoclassical economic theory and the ethnic enclave theory. In making their decisions on departure and destination choices, the immigrants (both the 1991 landing cohort and 1996 cohort) were responsive to income and employment incentives, as well as the retaining and attracting powers of ethnic communities. This research also discovered an interesting temporal pattern -- while the inter-CMA migration of immigrants accentuated the over representation of the immigrants in Toronto and Vancouver in the 91-96 period, the rise of the "secondary" CMAs led to a spatial dispersal of the immigrants in the 96-01 period. This "new" finding supplements the existing literature on internal migration of Canadian immigrants, which discovered little evidence of an increased dispersion of immigrants over time.

Keywords: internal migration, immigrants, Canada, Census Metropolitan Area (CMA)

JEL classification: R230, F220, O150, J110

Résumé :

En nous appuyant sur les tableaux de l'*IMDB*, nous avons caractérisé, expliqué et comparé la migration inter-métropolitaine des immigrants au Canada de 1991 à 1996 et de 1996 à 2001. La distribution géographique et temporelle s'accorde avec la théorie néo-classique économique et la théorie des enclaves ethniques. En choisissant leurs destinations d'arrivée et de départ, les immigrants (de la cohorte initiale de 1991 ainsi que de celle de 1996) apparaissent sensibles aux facteurs comme le revenu et l'emploi, et aussi au pouvoir d'attraction et de rétention des communautés ethniques. Cette recherche a également mis à jour une distribution temporelle intéressante – alors que la migration inter-métropolitaine des immigrants accentuait la surreprésentation des immigrants à Toronto et Vancouver entre 1991 et 1996, l'avènement de zones métropolitaines « secondaires » a entraîné une dispersion géographique des immigrants de 1996 à 2001. Cette « nouvelle » conclusion apporte un élément nouveau à la littérature antérieure sur la migration interne des immigrants Canadiens, qui n'a pas jamais vraiment montré l'existence d'une dispersion accrue des immigrants au cours du temps.

1. Introduction

Canada is a country of immigrants. Immigration plays an important role in not only the demographic traits of the Canadian population, but also the geographical distribution of the population. In comparison to Canadian born individuals, immigrants are more likely to settle in Canadian cities, and are particularly concentrated in large metropolitan areas. Based on the 2001 census, the three largest metropolitan areas (namely, Toronto, Montreal and Vancouver) shared 62.3% of the immigrants compared to 27.0% of the Canadian born population (Table 1). Toronto and Vancouver, in particular, attracted a very large proportion of immigrants, and their attraction to immigrants was increasingly strong from 1991 to 2001. For example, Toronto's share of immigrants increased from 33.8% in 1991 to 35.7% in 1996, and then to 37.3% in 2001. For Vancouver, its share of immigrants grew from 11.0% in 1991 to 12.7% in 1996, and further to 13.6% in 2001 (Table 1). In comparison, the share of the Canadian born individuals by the two metropolitan areas hardly changed during 1991-2001.

The increasing attractiveness of Toronto and Vancouver was mainly due to the large inflows of recently arrived immigrants. For instance, 31.8% of the pre-1981 arrivals resided in Toronto in 2001, whereas 43.4% the 1991-1995 arrivals and 43.1% of the 1996-2001 arrivals lived in Toronto. While Toronto and Vancouver have increased their share of immigrants over the immigrant arrival cohorts, this share was rather stable for Montreal, has declined slightly for the total of other metropolitan areas, and it has declined significantly for the non-metropolitan areas. Consequently,

the non-metropolitan population comprises 41.1 percent of the Canadian born population in 2001 but only 5.9 percent of immigrant arrivals of the period 1991-1995 and 1996-2001 (Table 1).

The large impact of immigration on population distribution in Canada has triggered debates on the merits of a more balanced geographic distribution of immigrants (CIC, 2001a). In order to direct immigrants to spread around, policy makers may focus on two spatial processes: initial destination choices of immigrants to Canada, and their post-landing relocations within Canada. In the first spatial process, landing immigrants initially choose a destination with better economic opportunities and/or with a large co-ethnic population (Xu and Liaw, 2003). After initial settlement, immigrants may have better access to information on employment and income opportunities and relocate themselves as a response to changes in the spatial economy of Canada (Liaw and Xu, 2005). In this chapter, we particularly investigate the migratory trends of immigrants after initial settlement and the factors accounting for the patterns of the post-immigration relocations. We hope that the findings of our analysis can serve as useful information for designing immigration policies for a more balanced geographic distribution of immigrants. The results of our research can also provide background information for policies makers to provide timely and effective services to immigrants and promote affordable public housing programs for them.

With few exceptions (e.g. Shaw, 1985; Liaw, Kanaroglou and Moffett., 1986; Trovato, 1988; Moore and Rosenberg, 1995), most Canadian migration studies have

3

used the provinces as the basic geographical units. Comprehensive research on internal migration at the metropolitan level is hampered by the lack of appropriate data. With the longitudinal data system IMDB (Immigration Data Base), which provides large amount of information at the level of Census Metropolitan Areas (CMAs), we are able to investigate the detailed patterns of inter-CMA migration made by the newly landed immigrants.¹

The main purpose of this chapter is to gain insights into the 5-year post-landing inter-CMA migration of immigrants and how the migration pattern changed over time between 1991-1996 and 1996-2001 periods. Based on two sets of multidimensional tabulations with origin-to-destination information, we are able to not only characterize but also explain the inter-CMA migration patterns of the immigrants during the two periods. The origins and destinations in the migration system are specified as the 27 CMAs for the 1996-2001 period and 25 CMAs for the 1991-1996 period². The explanatory variables include both place attributes such as

¹ We use the CMAs rather than the provinces as our geographical units due to the following reasons. First, most of Canadian immigrants live in CMAs. In 2001, 94% of the immigrants who had arrived in Canada over the previous 10 years resided in a CMA while only 6% resided in smaller cities or towns or in rural areas. Almost half of the immigrants who arrived in Canada in 2000 settled in the Toronto CMA and over three-quarters were located in the three largest CMAs - Montreal, Toronto and Vancouver (CIC, 2001b). These centers, especially Toronto and Vancouver, are the major gateways for immigration to Canada. Second, metropolitan areas are a good representation of labor market areas, thus are a good research unit for studying the impact of the changing labor market conditions on the migration behaviors of the immigrants. By focusing on CMAs as the geographic units, we have a better chance of discovering the detailed patterns of the immigrants' sensitivity to the spatial changes in economic opportunities among different CMA labor markets.

² The CMA system in Canada contains 27 CMAs: St. John's, Halifax, Saint John, Chicoutimi – Jonquiere, Quebec, Sherbrooke, Trois-Rivieres, Montreal, Ottawa - Hull, Kingston, Oshawa, Toronto, Hamilton, St. Catharines – Niagara, Kitchener, London, Windsor, Sudbury, Thunder Bay, Winnipeg, Regina, Saskatoon, Calgary, Edmonton, Abbotsford, Vancouver,

income, employment size, relative size of co-ethnic population as well as personal attributes such as immigration class (i.e. family class, business class, skilled workers, and refugees), educational attainment and country of birth (i.e., Hong Kong, China, India, Lebanon, Philippine, Vietnam)³.

The chapter is organized as follows. The data and statistical model are specified in section 2. The major theoretical perspectives that guided our study are described in section 3. The empirical findings are presented in section 4. Finally, the concluding points are discussed in section 5.

2. Data and Statistical Model

The major data source for our study of the 1991-1996 and 1996-2001 inter-CMA migration of immigrants are two sets of customized multidimensional tabulations created by Statistics Canada from a longitudinal data system called IMDB (Immigration Data Base). The IMDB was created by linking (1) the official landing records of immigrants kept by Citizenship and Immigration Canada (CIC) with (2) the records of their annual income tax returns filed to Revenue Canada.⁴ The multidimensional tabulations cover all individuals in the IMDB who landed in one of the CMAs in 1991 and 1996, respectively, and filed an income tax return in one of the

Victoria. Note that Abbotsford was not a CMA as of 1991 and therefore was not in the IMDB multidimensional tabulation for the 1991-1996 period. To limit the cost and to reduce errors due to the legally required rounding of cell frequencies, Thunder Bay CMA (which is believed to have very few newly landed immigrants) was also excluded from our request for the 1991-1996 tabulation.

³ Hong Kong is clearly not a "country", but it is listed separately in the IMDB system. In this research we regard Hong Kong as a place of birth for a distinctive group of immigrants.

⁴ The IMDB system covers all immigrants who landed in Canada since January 1, 1980, filed at least one income tax return, and were aged 15 or over in the tax year.

CMAs in 1996 and 2001, respectively. In total, there were 108,500 such immigrants in the 1991-1996 period and 105,400 immigrants in the 1996-2001 period⁵.

In addition to the IMDB multidimensional tabulations, we also use the 1991, 1996, and 2001 Canadian Census Profile Tables at census tract level⁶ to generate various economic and social indicators for the CMAs (discussed in section 3). Because some CMAs have changes in boundary across censuses, we have made necessary adjustments on the data so that the economic and social measurements are consistent in terms of the CMA geographic scope throughout our study periods.

We use various descriptive indices to characterize and compare the overall patterns of the inter-CMA migration for the two periods. Both volumes (in persons) and rates (in percentage) are used for measuring in-, out- and net migration of the immigrants. We also employed departure rates to reveal insights on variations in out-migration propensity for immigrants with different personal attributes. Furthermore, we use destination choice proportions to investigate a CMA's ability to attract relocating immigrants from specific origins.

After the characterization and comparison of inter-CMA migration patterns for the 91 and 96 landing cohorts, we proceed to a multivariate analysis to explain the observed patterns. Our multivariate statistical model is a two-level nested logit model formulated in the following way. For a potential migrant with personal attributes s and residing in CMA i, we specify that the migration behaviour depends on (1) a

 $^{^{5}}$ Note all data we received from Statistics Canada were randomly rounded so that the last digit becomes 0 or 5.

⁶ The Census Profile Tables were obtained via Canadian Census Analyser at CHASS (Computing in the Humanities and Social Sciences, University of Toronto).

departure probability P(s, i) at the upper level, and (2) a set of destination choice probabilities, P(j | s, i) for all j not equal to i, at the lower level. Based on a set of reasonable assumptions, these probabilities then become functions of observable explanatory variables in the following two sub-models (Kanaroglou, Liaw and Papageorgiou, 1986; Liaw, 1990).

Destination Choice Sub-model:

$$P(j|i,s) = \frac{\exp(b'x[j,i,s])}{\sum_{k \neq i} \exp(b'x[k,i,s])} \qquad j \neq i$$
(1)

where x[j, i, s] is a column-vector of observable explanatory variables; b' is a row-vector of unknown coefficients.

Departure Sub-model:

$$P(i,s) = \frac{\exp(d+c' \, y[i,s] + u * I[i,s])}{1 + \exp(d+c' \, y[i,s] + u * I[i,s])} \tag{2}$$

where y[i, s] is another column-vector of observable explanatory variables; *d*, *c*' and *u* are unknown coefficients, with *u* being bounded between 0 and 1; and I[i, s] is the so-called inclusive variable defined as:

$$I[i,s] = Ln\left(\sum_{k \neq i} \exp(b'x[k,i,s])\right)$$
(3)

Assuming that the migration behaviours of all persons in the same cell of the multidimensional migration tabulations depend on the same set of P(i, s) and P(j/i, s), we estimate the unknown coefficients in equations (1) and (2) sequentially by the

maximum quasi-likelihood method (McCullagh 1983; Liaw and Ledent 1987).

The best specification of the model is defined as the specification with all the explanatory variables statistically significant (i.e. those whose t-ratios have a magnitude of at least 2.0) and substantively sensible.

The goodness of fit of a given specification of a sub-model is to be measured by

$$Rho-square = 1 - L_g / L_o, \tag{4}$$

where L_g is the maximum quasi-log-likelihood of the given specification and L_o is the corresponding null model⁷. Because the actual ceiling of Rho-square is much less than 1.0, a value of about 0.2 may indicate a very good fit (McFadden, 1974). Note that the Rho-square may not be comparable, as the upper bounds may vary between the levels of the choice framework.

In order to evaluate the relative importance of one subset of explanatory variables (e.g. labor market variables) against another subset (e.g. variables representing ethnic similarity), we can delete the two subsets of variables in turn from the best specification and then compare the resulting decreases in Rho-square: the greater the decrease, the more important the deleted subset of variables. The decrease in Rho-square resulting from the deletion of a subset of explanatory variables is called *marginal contribution in Rho-square*.

When conducting selective deletions, we use 1) the fix-coefficient method in which the estimated coefficients of the remaining variables remain unchanged and 2)

⁷ The null model is the sub-model where the coefficients of all explanatory variables are set to zero (i.e. the destination choice sub-model with b' = 0 or the departure sub-model with c' = 0).

the maximizing method in which the coefficients of the remaining variables are changed to maximize the log of quasi-likelihood (Xu and Liaw, 2006). The use of both methods is important in examining and understanding the relative explanatory power of subsets of variables, especially when two explanatory subsets overlap substantially in their explanatory powers.

3. Theoretical Perspectives

There are two theoretical perspectives that are useful in explaining the post-landing relocations of the newly arrived immigrants. First, the neoclassical economic theory (Sjaastad, 1962; Todaro, 1985; Massey et al, 1993) assumes that migration is a form of investment to increase an individual's productivity of human resources, and to maximize the perceived utility, measured by the present value of future income stream. According to this perspective, newly arrived immigrants would decide to stay in their initial destination or migrate to places with the greatest expected net return. The expected net return is associated with the labor market conditions (particularly income and employment opportunities) at both origin and potential destination⁸. Therefore the CMAs, as good representation of labor market areas, are expected to have a strong power in retaining their immigrants and attracting relocating immigrants if they offer relatively high employment income, rapid

⁸ The expected net return also considers costs of movement including actual cost of transportation and social cost of movement as well as the difference in cost of living. We employ average house-owner's major *payments* at destination to represent cost of living.

employment growth, large employment base, and/ or low unemployment rate (Edmonston, 1996). In order to examine the responsiveness of the immigrants to labor market changes, we include in our analysis the explanatory factors of *average employment income* (for full-time full-year workers), *5-year employment growth rate* and *unemployment rate* of the CMAs. Moreover, the assessment of the effects of the place attributes can not be properly conducted without controlling for the effect of CMA size or labor market size. In this chapter, the size of CMA is represented by the log of *employment size*.

The second theoretical perspective is based on the theories of ethnic communities and social capital (Portes, 1995). Social structures such as the personal networks of family, kinship, and friendship ties can facilitate and ease the adaptation of immigrants in the host country. Ethnic communities can provide not only useful job search networks, but also opportunities to run profitable ethnic specific businesses (e.g., ethnic restaurants). Furthermore, ethnic communities may offer monetary or emotional support and hold ethnic activities and events according to the cultural traditions. This theoretical perspective implies CMAs with relatively large ethnic population would have a strong power in retaining co-ethnic immigrants and in attracting culturally similar immigrants from other CMAs. To examine the role of ethnic attraction in the inter-CMA migration of the immigrants during the 1991-1996 and 1996-2001 periods, we pay special attention to *ethnic similarity* as an explanatory factor. The ethnic similarity for ethnic group e in CMA_i is defined in terms of "ethnic quotient" - the ratio of the share of ethnics e by CMA_i to the share of total population

by CMA_i^9 . A value of ethnic similarity bigger than 1 means a more than "fair" share of the ethnics indicating the possible existence of large, well-established ethnic communities.

In addition to the two theoretical perspectives, empirical studies have guided us to use some additional explanatory factors in investigating inter-CMA migration of immigrants. In line with the idea of distance decay, information on a distant place is less likely to be complete and reliable. The cost of collecting information and the cost of movement itself tend to be higher as distance increases (Newbold, 1996). Therefore we employ the conventional *distance* factor, defined as the natural log of distance between the origin CMA and destination CMA. It is expected to have a negative sign in the destination choice sub-model. *Coldness*¹⁰ may affect migration decision as well (Frey, et al, 1996). *Coldness* can serve as the proxy of environmental amenity and is thus expected to show a positive sign in the departure sub-model and a negative sign in the destination choice sub-model. We also use a set of dummy variables representing specific CMAs. *Montreal*, for example, is expected to attract immigrants

 P_i = Population of CMA_i

⁹ More specifically, *ethnic similarity* is calculated in the following way:

 $S_{e,i} = \left(p_{e,i}/p_e\right) / \left(P_i/P\right)$

Where $S_{e,i} =$ ethnic similarity for ethnic group e in CMA_i

 $P_{e,i}$ = Population of ethnic group e of CMA_i

 p_e = Total population of ethnic group e of the CMA system

P = Total population of the CMA system

For *ethnic similarity*, a value of 1 or bigger indicates a more than "fair" share of co-ethnic population, probably networked into large ethnic communities.

 $^{^{10}}$ The variable *coldness* is defined in terms of the average annual number of degree days below 18°C.

with French cultural background (Kaplan, 1995; Liaw et al, 2002) while *Toronto* and *Vancouver* may have strong attracting and retaining power for business immigrants.

Since the effects of the place attributes defined above can have selective effects on immigrants with different personal attributes, we let them interact with various dummy variables representing immigrants' personal backgrounds (e.g. country of birth, age, educational attainment, immigration class, language ability). For example, the interactions of employment income with the dummy variables representing levels of educational attainment can discover the different sensitivity of immigrants to spatial changes in labor market conditions. If better educated immigrants are more responsive than are those with less educational attainment to economic opportunities, as suggested by Bartel (1989) and Nogle (1994), then the relevance of the neoclassical economic theory can be further supported.

4. Empirical Findings

4.1 Overall Migration Patterns

4.1.1 Out-migration

According to the IMDB, there were 108,500 immigrants who landed in one of the CMAs in 1991 and filed a 1996 income tax return in one of the CMAs (called the 91 cohort for brevity, see Table 2) and there were 105,400 immigrants landed in 1996 and filed an income tax return in 2001 (the 96 cohort, Table 3). Among the 91 cohort, there were 17,215 inter-CMA migrants, implying a 5-year out-migration rate of 15.9%. With respect to the 96 cohort, there were 21,175 inter-CMA migrants,

indicating a higher out-migration rate of 20.1%. The relatively high mobility of the 96 cohort might be largely due to the better labor market conditions across the CMAs in the 1996-2001 period than the 1991-1996 period. On the one hand, nearly all CMAs had a positive employment growth rate in the latter period. Relatively high employment growth rates were observed particularly in smaller CMAs such as London, St. Catharines-Niagara Falls, and Kingston, where the employment growth rates were negative in the early period (Appendix Table 1). The vitality of the overall economy and the employment opportunities all over the CMA system might serve as a stimulus for the 96 cohort to actively relocate themselves. On the other hand, employment income variation among the CMAs was much slighter in the later period than the early period. For example, the difference in males' average employment income between Toronto and the nearby Hamilton CMA was \$2,770 in the early period, but only \$377 in the later period. Similarly, the income difference between Vancouver and the regional "secondary" CMA Victoria decreased from \$1,849 to \$328 (Appendix Table 1). The relative increase in income opportunities in smaller CMAs opened up more choices for newly arrived immigrants.

In both periods, economically weak CMAs in the Atlantic region and the Prairies had the highest out-migration rates. In the case of St. John's, 80.3% of the 91 cohort immigrants relocated themselves towards other CMAs, and as large as 89.5% of the 96 cohort immigrants outmigrated within 5 years after landing. Not surprisingly, with large economic bases and well-functioning ethnic communities, Toronto and Vancouver had the strongest retaining power for both cohorts. However, Vancouver had the lowest out-migration rate (5.9%) in the earlier period whereas Toronto had the lowest out-migration rate (13.5%) in the later period. This shift probably resulted from the changing spatial economy in the CMA system. In the early 1990s, Vancouver's economy was booming, while Toronto suffered from a serious recession. During the second half of the 1990s, Toronto recovered its economy with the 5-year employment growth rate increasing from 1.1% to 3.4%. In sharp contrast, Vancouver was subject to the negative impacts of the Asian Financial Crisis in the late 1990s: its 5-year employment growth rate dropped substantially from 11.6% to 1.9% (Appendix Table 1).

Immigrants' propensity to out-migrate varied not only among individual CMAs, but also across personal attributes such as educational attainment, immigration class, and ethnicity. By examining the departure rates¹¹ for immigrants with certain personal attributes, we have identified three salient features for both cohorts. First, consistent with previous empirical findings (Bartel, 1989; Nogle, 1994), the immigrants showed educational selectivity in their post-landing relocations. The overall departure rate differed significantly among the four groups of educational attainment (see Table 4 for the 91 cohort and Table 5 for the 96 cohort). From the lowest educational level (0-9 years of schooling) to the highest level (Bachelor's degree or higher), the departure rate increased monotonically from 13.4% to 21.4% for the 91 cohort and from 16.0% to 28.0% for the 96 cohort. With just a few

¹¹ The departure rate is used to measure the level of migration out of CMA_i for a group of immigrants with personal attribute t. It is defined as $Q_{i,t} = S_{i,t}/K_{i,t}$, where $S_{i,t}$ is the relevant numbers of out migrants and $K_{i,t}$ is the corresponding at-risk population.

irregularities, this contrast also appeared in the individual CMAs. For example, in the case of Toronto, the out-migration propensity for the 91 cohort took on a very low value of 5.5% for the least educated and a much higher value of 12.2% for the best educated (Table 4). The corresponding departure rate for the 96 cohort ranged from 9.5% to 21.3% in Toronto (Table 5). Those with the highest level of education had the highest propensity to migrate among the CMAs as they tended to have the widest information field and the best chance to catch economic opportunities all over the entire CMA system. It is also very interesting to note that the educational selectivity is particularly strong for Chinese immigrants -- the departure rate increased monotonically from 12.8% (12.0%) for the least educated to 30.9% (43.5%) for the best educated for the 91 (96) cohort. This finding implied that educational attainment played a vital role in migration behavior among Chinese immigrants.

Second, the departure rates varied markedly in terms of immigration class. For both periods, business class immigrants showed the highest propensities of out-migration. The overall departure rate of the business class individuals was 32.5% for the 91 cohort and 31.0% for the 96 cohort (Table 6). This pattern was exacerbated in smaller CMAs such as Saskatoon, St. John's, Sherbrooke, and Thunder Bay, where virtually all business immigrants landed in 1996 departed within 5 years. The exceptionally strong desire to out-migrate was partly due to their high sensitivity to spatial changes in business opportunities. Some of them, particularly those from Hong Kong and China might have used an immigration strategy in which they firstly chose an economically weak CMA as the "intended" destination in order to get their application approved easily and quickly, and secondly moved to a CMA that fitted their real preference (Liaw and Xu, 2005; Xu and Liaw, 2003). In addition to business immigrants, refugees had a higher-than-average overall departure rate – 24.7% for the 91 cohort and 22.7% for the 96 cohort. Refugees were not given the opportunity to select their initial destinations in Canada. Government-assisted refugees were initially settled in places selected by the government whereas privately-sponsored refugees were located near the location of the sponsorship organizations (Orr, 2004). After initial settlement, refugees were likely to relocate themselves in response to the attractions of economic opportunities and co-ethnic communities elsewhere (Simich, 2003). Not surprisingly, family class immigrants, sponsored by their close family members, had the lowest propensity of out-migration. Their settlement tended to be rather stable as they needed substantial material and emotional supports from their sponsors, at least in the short-run. Our more detailed examination found clear evidence of the above selectivity by immigration class for each individual educational group and for each country of birth.

Third, the overall departure rate also differed significantly among countries of birth. Immigrants from Hong Kong, China, and Vietnam showed higher-than-average departure rates in the early period and only immigrants from China had well above-average departure rates in the later period¹² (Table 6). This pattern is

¹² Although immigrants from China had a much higher overall departure rate than other immigrant groups, their propensities of out-migration from Toronto were extremely low. For example, only 8.9% and 5.9% of the Chinese left Toronto and Vancouver respectively in 1991-1996. This pattern is partly associated with the strong retaining power of the thriving Chinese ethnic enclaves in these two CMAs.

substantially related to the factors of educational attainment and immigration class. For example, many of the immigrants from China were skilled workers with relatively high levels of education, and thus had a strong tendency to relocate. The high departure rates of the immigrants from Hong Kong and Vietnam largely stemmed from the very high proportions of immigrants in the business and refugee classes, respectively. It is worth noting that immigrants from the Philippines had the lowest propensity of out-migration. For both periods, they were less than half as migratory as those from China. The large proportion of the Filipino immigrants by family class helped explained their low departure rates. Another possible reason is that many of the Filipinos came to Canada as live-in care givers or nurses, who were largely concentrated in Winnipeg. The large well-developed Filipino communities provide a broad range of cultural services and the nanny and nurse job market there helped established a niche for the Filipinos so that there was little incentive for them to out-migrate (Liaw and Xu, 2005).

4.1.2 In-migration

While out-migration patterns can reflect a CMA's power in retaining immigrants, the patterns of in-migration can indicate the attractiveness of a CMA. For both periods, Toronto had the highest in-migration rate¹³. For example, among the

¹³ In-migration volume, rate, and ratio for each CMA can be found in Table 2 and 3. Note that we compute both an in-migration *ratio* (by using the number of immigrants landed in a given CMA as the denominator) and an in-migration *rate* (by using the number of immigrants landed in the rest of CMA system as the denominator). The former reflects the impact of the inflow of the relocating immigrants on the CMA's immigrant stock, whereas the latter represents the immigrants' propensity in the rest of the system to move into the CMA under consideration. In

55,040 immigrants who landed in the rest of the CMA system in 1996, as many as 12.0% (or 6,560) became residents of Toronto five years after landing (Table 3). With the second highest in-migration rate (4.1% in 1991-1996 and 5.7% in 1996-2001), Vancouver attracted the second largest number of relocating immigrants (Table 2 and 3). With some well-established immigrant communities and being the second largest labor market in the CMA system, Montreal received substantial in-migrants as well. Its in-migration rate jumped from the 4th highest in 1991-1996 to the 3rd highest in 1996-2001. In addition, Ottawa-Hull, and Calgary also had relatively strong power in attracting relocating immigrants, although their ranks in terms of in-migration rate changed a bit over the two periods.

The economically weak CMAs in the Atlantic region and the Prairie generally had very low in-migration rates. CMAs in the non-Montreal part of Quebec also had a very weak ability to attract relocating immigrants. Within economically strong Ontario, Sudbury (plus Thunder Bay for the 96 cohort) had a much lower in-migration rate than the CMAs in the southern part of the province. This pattern is largely due to the decline of the mining industry in Sudbury and the steady decline of both the transportation and forestry workforces in Thunder Bay. Note these two CMAs were the only ones with negative employment growth rates during 1996-2001 (Appendix Table 1).

this study, we mainly focus on in-migration *rate* (rather than in-migration *ratio*) as an indicator of a CMA's attractiveness.

In addition to in-migration rates and volumes, we also used destination choice proportions to examine a CMA's ability to attract relocating immigrants from specific origins. If a CMA was a popular destination and received a large proportion of immigrants from other CMAs, then the CMA can be considered as an in-migration "magnet" or "core". Table 7 and Table 8 show the overall origin-specific destination choice pattern (with the top 3 destination choices) for the 91 and 96 cohort respectively. With very few exceptions, Toronto, Vancouver and Montreal served as the three major in-migration "magnets" for both periods. On the one hand, proximity, or more precisely accessibility, played an important role to a large extent. For both cohorts, Toronto attracted the largest shares of relocating immigrants from the CMAs in Ontario, ranging from 34% (Ottawa-Hull) to as high as 85% (Oshawa) in 1991-1996. Most immigrants from Quebec chose Montreal as the destination. For example, 62% of the 300 relocating immigrants from Quebec City ended up with settling in Montreal in 1996. Similarly, large shares of those from the Prairies and British Columbia migrated into Vancouver. These patterns indicate that most relocating immigrants from small CMAs chose to move into proximate magnets rather than distant ones, probably because of more exposure to employment opportunities nearby and lower costs of relocation (e.g. transportation spending, cost of collecting reliable information). However, mostly lacking French language ability, most relocating immigrants from the CMAs in the Atlantic region showed much stronger preference for Toronto than for Montreal. For immigrants originating from one of the magnets, the effect of proximity or accessibility was lessened. Vancouver

was the largest destination choice for those from Toronto, although Vancouver is much farther away from Toronto than Montreal. Among the relocating immigrants from Vancouver and Montreal, about half of them selected Toronto in both periods (Table 7 and 8).

When investigating the second and third best choice of relocating immigrants, we found that both the effect of proximity and the strong attraction of the magnets came into play. For instance, 10% of the 91 cohort immigrants from Toronto chose Montreal and 9% moved to nearby Hamilton. During 1991-1996 period, the second best destination for relocating immigrants from Hamilton was the neighboring Kitchener CMA (15%), and the third choice was the magnet of Vancouver (12%).

4.1.3 Net migration

With a net gain of 3,710 and 1,670 relocating immigrants in 1991-1996 and 1996-2001 respectively, Vancouver was the largest net gainer (Table 2 and Table 3). In the first period, it also had the highest net migration rate (30.6%). However, Vancouver was surpassed by a few CMAs in Ontario as well as Calgary in terms of net migration rate in the second period.¹⁴ Interestingly, the share of immigrants by Vancouver at the time of landing was much higher in 1996 (20%) than in 1991

¹⁴ With much smaller shares of the immigrants at landing than that of Vancouver, these CMAs had very high net migration rates (e.g., 58.2% for Oshawa), implying that post-landing inter-CMA migration had a greater relative impact on them than on Vancouver.

(11%).¹⁵ However, Vancouver experienced an economic stagnation in the late 1990s, which could help explain its sharp decline of net migration rate.

During the period of 1991-1996, Toronto had a net gain of 1,700 relocating immigrants (less than half of Vancouver's net gain) and a moderate net migration rate (3.6%, Table 2). This pattern was likely due to the markedly reduced job creation capacity of Toronto's economy in the first half of the 1990s. Unexpectedly, as Toronto's economy recovered and strongly strengthened in the second half of the decade,¹⁶ it turned out to be a slight net loser of relocating immigrants with a net migration rate of -0.5%! In the meanwhile, the attractiveness of the "secondary" CMAs in Ontario improved substantially. CMAs such as Hamilton, London, St. Catharines-Niagara Falls, and Kingston stood out markedly as they switched from net losers of relocating immigrants in 1991-1996 to net gainers in 1996-2001. For example, the net migration volume for Hamilton increased from -70 to 380 and the corresponding net migration rate increased sharply from -3.1% to 24.6%. Furthermore, "secondary" CMAs that had already been net gainers in the first period (namely, Ottawa-Hull, Oshawa, Kitchener, and Windsor) further increased their net migration volumes and net migration rates in the second period.¹⁷

¹⁵ Compared with the 91 cohort, the 96 cohort immigrants might have more complete information on Vancouver's economic opportunities and co-ethnic communities before their landing. Note that in the first half of the 1990s, Vancouver's economy was prosperous while its "rival" Toronto experienced a serious recession.

¹⁶ For example, Toronto's 5-year employment growth rate increased sharply from 1.1% in the first half of the 1990s to 3.4% in second half of the 1990s.

¹⁷ Note that in the second period, Ottawa-Hull improved its net migration rate only and Oshawa increased its net migration volume only.

This change of relative attractiveness between big "magnet" Toronto and its surrounding "secondary" CMAs might be associated with the increased employment opportunities in the secondary CMAs. As Toronto enjoyed a quite high employment growth during 1996-2001 (Appendix Table 1), its booming economy helped the expansion of its diversified industries, particularly service industries into surrounding areas. Actually all CMAs in southern Ontario (except Kitchener and Windsor) experienced a higher employment growth rate in 1996-2001 than in 1991-1996. With strengthened job creation capacity of the economy as well as great accessibility, secondary CMAs such as Hamilton, London, and Oshawa became relatively attractive for the relocating immigrants from Toronto and other CMAs in the second period than in the first period.

With an expanding energy industry, Calgary achieved a net gain of relocating immigrants. Its net migration rate was further strengthened over the two periods from 1.3% to 12.8% (Table 2 and 3). Except for Calgary, all CMAs in the Atlantic region, Quebec, and the Prairie turned out to be net losers of the relocating immigrants for both periods. Montreal had the largest net loss of migrants, whereas St. John's had the most negative net migration rates in both periods. The comparison of the two periods revealed that the net migration of Montreal improved (from -3,760 or -15.4% in 1991-1996 to -1,255 or -9.5% in 1996-2001), while that of St. John's worsened - its net loss amounted to 71.4% of its 91 cohort immigrants and as large as 86.0% of the 96 cohort. In general, the patterns of the inter-CMA net transfers of the recent immigrants found in this analysis were highly consistent with the pattern of the

interprovincial net transfers of 1980-1992 immigrants revealed in an earlier study (Liaw and Xu, 2005). However, by focusing on CMAs as the geographic units, we discovered substantial intra-provincial changes that were invisible in the previous study.

4.2 Multivariate Analysis

To achieve further insights, we apply a two-level nested logit model to investigate how explanatory factors jointly shaped those migration patterns revealed in sub-section 4.1. As presented in section 2, the inter-CMA migration process is conceptualized into two separate processes: 1) a departure process at the upper level, formulated by a departure sub-model, and 2) a destination choice process at the lower level, expressed by a destination choice sub-model (Liaw, 1990). In order to test the relevance of the ethnic enclave theoretical perspective as well as make comparison of the two periods more meaningful, we focus on immigrants from six origins (i.e. Hong Kong, China, India, Lebanon, Philippines, Vietnam) for both periods in our multivariate analysis¹⁸.

4.2.1 Estimation Results of the Destination Choice Model

For each period, the best model fits the data very well, with a high value of Rho-square (0.4912 for the 91-96 period and 0.4970 for the 96-01 period, Table 9 -

¹⁸ Note that for the 1991-1996 period, Abbotsford and Thunder Bay are not in the IMDB multidimensional table and therefore not considered as potential departure points/ destinations in our multivariate analysis.

Panel A and B). In general, the inter-CMA relocating immigrants had a strong tendency to choose a destination with good labor market conditions: a relatively high income level and employment growth, together with relatively low unemployment rate. Note that for both periods, the *average employment income* and *5-year employment growth rate* had positive coefficients associated with very large t-ratios while the variable of *unemployment rate* showed a significant negative sign (Table 9). We also found educational selectivity in terms of the attraction of income for the 96 cohort. The positive effect of employment income was stronger for those with 13 or more years of schooling and the strongest for those with Bachelor's degree or higher educational attainment. Consistent with our expectation, the effect of *employment size* was positive for both cohorts, indicating that the immigrants were generally more prone to going to a larger labor market. As a representation of cost of living, house-owner's *payments* showed a negative sign for the 96-01 period, but turned out to be insignificant for the 91-96 period.

With respect to the attraction of ethnic enclaves, we find that both the 91 and 96 cohort immigrant were prone to going to CMAs with large ethnic communities and well-developed co-ethnic social networks. The positive coefficients of the interactions between ethnic similarity and the dummy variables representing each of the six ethnic groups were associated with large magnitudes of the t-ratios (Table 9). The sharp difference in the magnitudes of the six estimated coefficients indicates that the impact of a unit increase in "ethnic quotient" on destination choice propensity differed substantially among the ethnic groups. The impact was particularly strong for immigrants from Hong Kong and Philippines in both periods and Vietnam in the second period. It is noteworthy that the effects of ethnic similarity were selective with respect to educational attainment, age and immigration class. Take the 91 cohort Chinese for example, those aged 40 or over and those with less than 12 years of schooling were more strongly subject to the attractions of co-ethnic communities. However, the skilled-worker Chinese were less subject to the effect of ethnic attraction. In fact, those better educated Chinese skilled workers aged 39 or younger displayed a negative coefficient (0.2431 - 0.3293 = - 0.0862)! It seemed that this group of immigrants were not willing to reside in ethnic communities but were eager to assimilate into the mainstream not only economically but also socially.

As expected, distance and coldness had significant negative effects on destination choices of the relocating immigrants in both periods. The climate effect was somewhat stronger on older immigrants (aged 40 or over) than the younger ones in the 91-96 period. In light of the cultural distinctiveness of Quebec, the interaction between *Montreal* and *French language ability* had a positive coefficient. Moreover, immigrants from smaller CMAs in Quebec were more likely to select Montreal as the destination. In addition, *Toronto* and *Vancouver* were particularly attractive for business immigrants. Lastly, we found that immigrants from Toronto had a special tendency to choose the nearby CMA Oshawa (for both immigration cohorts) and those from Vancouver were particularly attracted by the adjacent Abbotsford (for the 96 cohort only). This finding is in line with the increasing attractiveness of the "secondary" CMAs discussed in section 4.1.3.

With respect to the relative importance of the explanatory factors, the set of labor market factors had the greatest explanatory power. Based on the fix-coefficient method, the marginal contribution in Rho-square was as large as 0.2484 for the 91-96 period and 0.3092 for the 96-01 period. For comparison, the explanatory factor of ethnic similarity had a much smaller marginal contribution in Rho-square: 0.0376 and 0.0837, respectively (Table 9).¹⁹ When the maximizing method was applied for both periods, the differences in marginal explanatory contributions between the two sets of factors were not large. This implies that the labor market factors and ethnic similarity factor overlap substantially in their explanatory powers.²⁰

In sum, the destination choice model yielded meaningful results with respect to both theoretical perspectives presented earlier. On the one hand, we have found substantial evidence that the destination choices of the inter-CMA migrants were highly consistent with the neoclassical economic theory: they were highly responsive to income and employment incentives. The labor market factors also made the largest contribution to the explanatory power of the destination choice model. On the other hand, the estimated results also support the theoretical perspective of ethnic communities and social capital. Immigrants from each individual country of birth were all subject to the attraction of ethnic enclaves in both periods. Of particular

¹⁹ We also examined the relative explanatory powers of other factors such as *coldness and distance*. Their marginal explanatory contributions were rather small and thus not listed in the tables.

 $^{^{20}}$ For a more detailed discussion on the strength and weakness of the fix-coefficient method and maximizing method, see Xu and Liaw (2006).

interest is the stronger effect for the less educated and the relatively old immigrants from China and Hong Kong.

4.2.2 Estimation Results of the Departure Model

The best specification of the departure model for each period is reported in Table 10 – Panel A and B. The multivariate findings are summarized as follows. First, dummy variables representing personal attributes displayed selectivities in terms of age, education and immigration class. As expected, for both periods, older immigrants (aged 30 or over) were less likely to move after initial settlement (Moore and Rosenberg, 1995). For the 91-96 period, the propensity to depart varied significantly among the three educational groups: very high for those with best educational qualifications (Bachelor's degree or higher), moderately high for those with 13 or more years of schooling, and low for the less educated. Largely consistent with our findings from the descriptive analysis on departure rates (in section 4.1.1), estimated coefficients from the departure model indicated differential mobility levels among different immigration classes: among the four major classes of immigrants, business class immigrants were the most migratory, whereas family class immigrants were the least migratory.

Second, labor market factors had important effects on the propensity of departure. For both periods, the coefficients of employment income and employment growth rate were negative and statistically significant, implying that immigrants had a low propensity to leave CMAs with relatively high income levels and rapid employment growth. During the 96-01 period in particular, the effect of income varied among the educational groups: stronger for the better educated and weaker for the poorer educated. Not surprisingly, unemployment rate had a positive effect on the propensity of relocation. As expected, size of labor market, represented by CMA's employment size, had a very strong retaining power. For example, the estimated coefficient (-0.596) was associated a very large magnitude of t-ratio of -8.3 for the 91 cohort.

Third, the factor of ethnic and cultural similarity played an important role in retaining immigrants. For both periods, the interactions between ethnic similarity and the dummy variables representing each ethnicity acquired theoretically proper and statistically significant negative coefficients. While initial settlement in ethnic communities of culturally similar individuals generally reduced geographical mobility, the negative effect of ethnic similarity on departure propensities varied among different ethnicities: relatively strong for Lebanese, Filipinos and Vietnamese and relatively weak for immigrants from Hong Kong, China and India. Among the Chinese, the skilled-worker immigrants were less responsive to the retaining power by co-ethnics than other classes in 1996-2001. The less educated Chinese, however, were more strongly subject to the retaining effect of ethnic enclaves than the better educated in both periods (Table 10).

Fourth, the propensity to depart from a CMA was positively affected by the attractiveness in the rest of the CMA system (the inclusive variable) and the coldness

at origin²¹. Immigrants with French language ability were less likely to move out of Montreal in both periods. Finally, we found that business immigrants residing in Vancouver and Toronto had a very weak tendency of relocation. This is consistent with the finding of an early study on interprovincial relocation of immigrants (Liaw and Xu, 2005).

We applied both the fix-coefficient and maximizing methods to examine the relative importance of the explanatory factors in departure model. Based on the fix-coefficient method, the top four explanatory contributors for the 91-96 period were labor market factors, ethnic similarity, immigration class, and the attractiveness of the rest of the system (Table 10). For example, upon deletion of the variables representing labor market opportunities, the goodness of fit of the model declined substantially, resulting in a marginal contribution in Rho-squre of 0.0478 (29% of the Rho-square in the best specification). For the 96-01 period, however, immigration class showed the largest marginal contribution in Rho-squre of 0.0883, accounting for 46% of the Rho-square in the best specification. The other major explanatory contributors in order of relative importance were ethnic similarity, labor market factors, and the attractiveness of the rest of the system. As in the case of destination choice model, the maximizing method resulted in small variations in marginal explanatory contributions

²¹ The pushing effect of coldness was revealed in the 91-96 period only. In the 96-01 period, the effect was not statistically significant.

among different explanatory factors, implying that the explanatory powers of the factors also overlap substantially in the departure model.

With respect to theoretical relevance, the estimation results from the departure model are consistent with the neoclassical economic theory in the sense that an immigrant's propensity to depart from a CMA was negatively affected by income level, employment growth, as well as labor market size, and positively affected by unemployment rate. The educational selectivity further supports this theory. The findings are also consistent with the theoretical perspective of ethnic communities in the sense that a CMA with large and well-established immigrant ethnic enclaves tends to have a strong power to retain its immigrants. In both periods, ethnic similarity helped account for a large part of the variations in departure rates.

5. Concluding Discussion

In this research, we studied the inter-CMA migration of the immigrants from two dimensions. The first dimension investigated both the departure process and destination choice process to understand inter-CMA migration. We described the patterns of the two processes using various descriptive measures (e.g. out-, in- and net migration rates, departure rates, destination choice proportions) and then explained the observed patterns by applying a two-level nested logit model. The characterization and explanation showed how the two processes jointly shape the overall net transfer of immigrants among the CMAs. The second dimension of our research was to examine the evolution of mobility behavior over time by comparing the migration pattern of the 91-96 period with that of the 96-01 period. The comparison helped us gain insights into the temporal pattern of the inter-CMA migration.

Research from the two dimensions revealed substantial evidence supporting the relevance of two theoretical perspectives. First, the spatial and temporal patterns of inter-CMA migration were highly consistent with the neoclassical economic theory. In making their decisions on departure and destination choices, immigrants were highly responsive to income and employment incentives. CMAs with relatively high income and employment growth, relatively low unemployment rate, and/or large labor market base tended to have a strong retaining and attracting power for the immigrants, especially the better educated. Furthermore, immigrants' responsiveness to economic opportunities was clearly shown from cohort to cohort. Second, the spatial and temporal trends were also consistent with the theoretical perspective of ethnic enclaves. In both departure and destination choice processes, immigrants from each of six origins were subject to the retaining and attracting powers of large, cohesive ethnic communities, a finding that held in both the 91-96 and 96-01 periods. Of particular interest was the stronger effect of ethnic similarity for the less educated Chinese immigrants in both periods.

In line with the two theoretical perspectives, the effect of labor market conditions and the effect of ethnic similarity are both important in explaining inter-CMA migration. However, we found that the relative explanatory power of economic factors was generally stronger than that of ethnic factor.²² To a large extent, the migration patterns of immigrants follow the spatial changes in the economy, particularly the changing labor market conditions across the CMA system. Because of the growth of the service economy and employment opportunities, some "secondary" CMAs such as Calgary and those in southern Ontario sharply increased their net gains of relocating immigrants across the two periods. In the 91-96 period, the inter-CMA migration of newly landed immigrants accentuated the over representation of the immigrants in Toronto and Vancouver. However, in the 96-01 period the rise of the "secondary" CMAs led to a spatial dispersal of the immigrants! This finding is the most interesting because earlier studies on immigrant relocation yielded little evidence of an increased dispersion of immigrants over time (Beaujot, 2003; Edmonston, 1996; Newbold, 1996; Liaw and Xu, 2005)²³.

It is worth noting that this newly observed spatial dispersal of relocating immigrants is not an ephemeral phenomenon. Our preliminary investigation of the 2001-2003 inter-CMA migration pattern for immigrants landed in 2001 revealed that Toronto continued to be a (slight) net loser of relocating immigrants while CMAs in the rest of Ontario had net gains. These net gainers included not only the "secondary" (medium-sized) CMAs in southern Ontario (e.g., Hamilton, Oshawa) but also

 $^{^{22}}$ An exception is that for the 96-01 period, the effect of immigration class was more important in the departure decision than ethnic effect, which was in turn slightly stronger than economic effects.

²³ Earlier empirical studies mainly focused on interprovincial migration of Canadian immigrants, therefore patterns of migration among CMAs within a province could not be discovered. In general, researchers found substantial evidence on the further concentration of immigrants into Ontario and British Columbia (Edmonston, 1996; Newbold, 1996; Liaw and Xu, 2005).

small-sized CMAs in northern Ontario (e.g. Sudbury). In addition, Vancouver's net gain continued to decline while Montreal's net loss reduced substantially during 2001-2003. Although this dispersion pattern is somewhat consistent with the widespread spatial dispersal of immigrants in the U.S. since the 1990s²⁴ (Passel and Zimmermann, 2001; Fix and Passel, 2003; Frey, 2004 and 2006), the dispersion is unlikely to reach the small CMAs and non-CMA areas in economically weak Atlantic region, Quebec and the Prairies in the foreseeable future, due to immigrants' responsiveness to changing labor market conditions. Therefore, policies for a more balanced geographic redistribution of immigrants should focus on measures to induce a greater dispersal of employment opportunities in those peripheral CMAs and non-CMA areas.

Nevertheless, it seems that the reinforcement of concentration of immigrants in Toronto and Vancouver via post-landing relocation no longer exists, at least for the later period of our study. To get a better understanding of the temporal trend, more detailed research on the 2001-2003 inter-CMA migration is needed²⁵. Just as previous immigrants moved from the Prairies to the large industrial cities in Ontario and B.C. in response to the structural change in economy from agriculture to manufacturing, recent immigrants may migrate towards secondary and even small CMAs in response to the switch of the economy from manufacturing to services.

²⁴ The marked dispersal of immigrants (particularly low-skilled Hispanic immigrants) in the U.S. was partly induced by the demand of low-skilled workers to fill in injury-prone and menial jobs in non-metropolitan areas (Gozdziak and Bump, 2004; Kandel and Parrado, 2005).

²⁵ The IMDB system is updated on an ongoing basis with the lag times of a few years. As of year 2006, the most recent data available in the system is up to year 2003.

References

- Bartel, A.P. 1989. "Where Do the New U.S. Immigrants Live?" Journal of Labor Economics 7 (4): 371-391.
- Beaujot, R. 2003. "Effect of Immigration on Demographic Structure". Canadian Immigration Policy for the 21st Century. C. Beach, A. Green, and J. Reitz (eds.). Montreal: McGill-Queen's University Press. Pp.49-91.
- CIC (Citizenship and Immigration Canada). 2001a. Towards a More Balanced Geographic Distribution of Immigrants. Catalogue No. CI51-109/4-2002E.
 Ottawa: Minister of Public Works and Government Services Canada.
- CIC (Citizenship and Immigration Canada). 2001b. *Facts and Figures, 2000: Immigration Overview*. Ottawa: Citizenship and Immigration Canada.
- Edmonston, B. 1996, "Interprovincial Migration of Canadian Immigrants". Paper presented at the meetings of the Population Association of America, New Orleans, May 1996.
- Fix, M.and J. S. Passel. 2003. U.S. Immigration– Trends & Implications for Schools, Publication ID#410654, The Urban Institute, Washington, D. C. (www.urban.org)
- Frey, W.H. 2006. "Diversity Spreads Out: Metropolitan Shifts in Hispanic, Asian, and Black Populations since 2000". *Brookings Census 2000 Series*, Washington DC: Brookings Institution Metropolitan Policy Program (March, 2006).

- Frey, W. H. 2004. "Immigration, domestic migration and US metropolitan changes: Contrasting the 1990s with the 1980s", presented at the 2004 Annual Meeting of the Population Association of America, Boston.
- Frey, W. H., Liaw, K. L., Xie, Y., and Carlson, M. 1996. "Interstate Migration by the US Poverty Population: Immigration 'Pushes' and Welfare Magnet 'Pull'". *Population and Environment*, 17 (6): 491-536.
- Gozdziak, E. M. and M. N. Bump. 2004. "Poultry, Apples, and New Immigrants in the Rural Communities of the Shenandoah Valley: An Ethnographic Case Study". *International Migration*, 42: 149-164.
- Kanaroglou, P., Liaw, K.L. and Papageorgiou, Y.Y. 1986. "An Analysis of Migratory Systems: II. Operational Framework". *Environment and Planning A*, 18: 1039-1060.
- Kandel, E. W. and E. A. Parrado. 2005. "Restructuring of the US Meat Processing Industry and New Hispanic Migrant Destinations". *Population and Development Review*, 31: 447-471.
- Kaplan, D. 1995. "Differences in Migration Determinants for Linguistic Groups in Canada". *The Professional Geographer*, 47: 115-125.
- Liaw, K. L. and L. Xu. 2005. "Problematic Post-Landing Interprovincial Migration of the Immigrants in Canada: From 1980-1983 through 1992-1995". *Journal of Population Studies* (Taiwan), 31:105-152.
- Liaw, K.L., Xu, Lei, and Qi, M.Z. 2002. "Quebec's Lackluster Performance in Interprovincial Migration and Immigration: How, Why, and What Can Be

Done?" SEDAP (Social and Economic Dimensions of an Aging Population) Research Paper Series No. 87; QSEP (Research Institute for Quantitative Studies in Economics and Population) Report Series No. 378, McMaster University.

- Liaw, K.L. 1990. "Joint Effects of Personal Factors and Ecological Variables on the Interprovincial Migration Pattern of Young Adults in Canada: A Nested Logit Analysis", *Geographical Analysis*, 22: 189-208.
- Liaw, K. L. and J. Ledent. 1987. "Nested Logit Model and Maximum Quasi-Likelihood Method: A Flexible Methodology for Analyzing Interregional Migration Patterns". *Regional Science and Urban Economics*, 17: 67-88.
- Liaw, K.L., P. Kanaroglou, and P. Moffett. 1986. "Metropolitan Outmigration pattern of Canadian Labour Force Entrants, 1971-1976". *The Canadian Geographer* 30 (3): 229-242.
- Massey, D.S., J. Arango, G. Hugo, A. Kouaouci, A. Pellegrino, and J. E. Taylor. 1993."Theories of International Migration: A Review and Appraisal". *Population* and Development Review, 19: 431-468.
- McCullagh, P. 1983. "Quasi-likelihood Functions," *The Annals of Statistics*, 11: 59-67.
- McFadden, 1974. "Conditional Logit Analysis of Qualitative Choice Behavior" Pp. 105-142 in P. Zarembka (ed.) *Frontiers in Economics*. New York: Academic Press.

- Moore, E.G. and M.W. Rosenberg. 1995. Modelling Migration Flows of Immigrant Groups in Canada. *Environment and Planning A* 27(5): 699-714.
- Newbold, K.B. 1999. "Spatial Distribution and Redistribution of Immigrants in the Metropolitan United States, 1980 and 1990". *Economic Geography* 75 (3): 254-271.
- Newbold, K.B. 1996. "Internal Migration of the Foreign-born in Canada." International Migration Review 30: 728-747.
- Nogle, J.M. 1994. "Internal Migration for Recent Immigrants to Canada." International Migration Review 28:31-48.
- Orr, B. (2004) Resettlement: A durable solution, *Canadian Issues* (March edition sponsored by the Metropolis Project): 22-24.
- Passel, J. S. and W. Zimmermann. 2001. "Are immigrants leaving California?
 Settlement patterns of immigrants in the late 1990s", *Research Report*, Pub.
 ID#410287, The Urban Institute, Washington, D.C.
- Portes, A. 1995. "Economic Sociology and the Sociology of Immigration: A Conceptual Overview", in A. Portes (ed.) *The Economic Sociology of Immigration*. NY: Russell Sage Foundation. pp. 1-41.
- Shaw, R.P. 1985. Intermetropolitan Migration in Canada: Changing Determinants over Three Decades. Toronto: NC Press.
- Simich, L. 2003. "Negotiating Boundaries of Refugee Resettlement: A Study of Settlement Patterns and Social Support". Canadian Review of Sociology and Anthropology, 40 (5): 575-591.

- Sjaastad, L.A. 1962. "The costs and returns of human migration". *Journal of Political Economy*, 70S: 80-93.
- Todaro, M. P. 1985. *Economic Development in the Third World*. New York: Longman.
- Trovato, Frank. 1988. "The Interurban Mobility of the Foreign Born in Canada, 1976-1981". International Migration Review, 22: 59-86.
- Xu, L. and K. L. Liaw. 2006. Xu, Lei and Liaw, Kao-Lee. 2006. "Initial Destination Choices of Skilled-worker Immigrants from South Asia to Canada: Assessment of the Relative Importance of Explanatory Factors." *Canadian Journal of Regional Science*, forthcoming.
- Xu, L. and K. L. Liaw. 2003. "Explanation of Initial Destination Choices of Skilled Immigrants from Hong Kong, China and Taiwan to Canada: 1983 – 1999". *Journal of Population Studies* (Taiwan), 26: 26-70.

			mmigrants	6			Immi	grants					mmigrants		
CMA name	born	Total	Before	1981-1991	canadian - born	Total	Before	1981-1990	1991-1996	Canadian - born	Total	Before	1981-1990	1991-1995	1996-2001
			1981				1981					1981			
		Censu	s 1991			Ŭ	ensus 199	9				Census	\$ 2001		
Toronto	10.2	33.8	31.6	39.4	10.3	35.7	31.5	40.0	42.4	10.7	37.3	31.8	40.6	43.4	43.1
Montreal	11.3	12.0	11.2	14.0	11.4	11.8	11.0	12.8	12.9	11.4	11.4	10.8	12.3	11.6	11.9
Vancouver	4.9	11.0	10.2	12.9	4.9	12.7	10.4	13.7	18.3	5.0	13.6	10.5	13.7	17.9	17.6
Sub-total	26.4	56.8	53.0	66.2	26.6	60.2	52.9	66.4	. 73.7	27.0	62.3	53.1	66.6	72.9	72.6
Other CMAs	31.0	27.9	28.9	25.4	31.2	26.1	28.7	24.7	20.5	31.9	25.5	28.7	24.8	21.2	21.5
Other	42.7	15.3	18.1	8.4	42.2	13.7	18.4	8.6	5.9	41.1	12.2	18.2	8.6	5.9	5.9
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 1. Distribution of Canadian Born Individuals and Immigrants by Arrival Cohorts among Census Metropolitan Areas (CMAs) in 1991, 1996, and 2001.

Source: 1991, 1996, and 2001 Census Profile Tables from Canadian Census Analyzer at CHASS (Computing in the Humanities And Social Sciences, University of Toronto).

Table 2. The 1991-1990	6 Inter-CMA Mi	igration of the	e Immigrants i	n Canada.					
	Population Size		In-Migration		Out-Migration		Net Migration		In-migration
CMA	1991	1996	Volume	Ratio	Volume	Rate	Volume	Rate	Rate
	(Fersons)	(Fersons)	(Fersons)	(%)	(Fersons)	(%)	(Fersons)	(%)	(%)
St. John's	215	60	20	8.9	170	80.3	-150	-71.4	0.02
Halifax	495	285	60	12.3	275	55.2	-210	-42.8	0.05
Saint John	60	40	£	11.5	30	45.9	-20	-34.4	0.01
Chicoutimi - Jonquière	40	15	S	7.3	30	68.3	-25	-61.0	0.00
Québec	635	400	110	17.6	345	54.5	-235	-36.9	0.09
Sherbrooke	155	80	30	17.9	105	66.0	-75	-48.1	0.02
Trois-Rivières	40	30	15	32.5	25	57.5	-10	-25.0	0.01
Montréal	24,435	20,675	1,155	4.7	4,915	20.1	-3,760	-15.4	1.22
Ottawa - Hull	4,240	4,845	1,515	35.7	910	21.4	605	14.3	1.32
Kingston	220	190	06	41.0	120	54.5	-30	-13.5	0.08
Oshawa	410	520	295	72.8	185	45.1	115	27.7	0.25
Toronto	46,820	48,515	5,650	12.1	3,955	8.4	1,695	3.6	7.79
Hamilton	2,225	2,155	680	30.6	750	33.7	-70	-3.1	0.58
St. Catharines - Niagara	755	069	210	27.6	275	36.2	-65	-8.6	0.18
Kitchener	1,525	1,650	540	35.5	415	27.3	125	8.2	0.46
London	1,910	1,630	395	20.6	670	35.2	-280	-14.6	0.34
Windsor	1,270	1,360	375	29.4	285	22.3	06	7.1	0.32
Sudbury	85	85	40	44.2	40	45.3	0	-1.2	0.03
Winnipeg	2,665	1,935	150	5.6	880	33.0	-735	-27.5	0.13
Regina	380	215	35	9.2	205	53.3	-170	-44.1	0.03
Saskatoon	430	260	55	12.7	225	52.1	-170	-39.4	0.05
Calgary	3,235	3,275	720	22.3	680	21.0	40	1.3	0.62
Edmonton	3,570	3,125	420	11.7	865	24.2	-445	-12.5	0.36
Vancouver	12,140	15,850	4,430	36.5	720	5.9	3,710	30.6	4.14
Victoria	545	615	215	39.4	145	26.8	70	12.7	0.18
Total	108,500	108,500	17,215	15.9	17,215	15.9	0	0.0	

Note: The in-, out-, and net migration volumes are rounded independently so thatnet migration needed not be exactly equal to the difference between in-and out-migration.

	Population Size		In-Migration		Out-Migration		Net Migration		In-migration
CMA	1996	2001	Volume	Ratio	Volume	Rate	Volume	Rate	Rate
	(Persons)	(Persons)	(Persons)	(%)	(Persons)	(%)	(Persons)	(%)	(%)
St. John's	230	30	10	3.5	205	89.5	-195	-86.0	0.01
Halifax	1,245	435	105	8.4	915	73.6	-810	-65.2	0.10
Saint John	20	40	10	14.1	45	60.6	-35	-46.5	0.01
Chicoutimi - Jonquière	30	25	5	23.3	15	46.7	-5	-23.3	0.01
Québec	200	350	100	14.0	450	64.2	-350	-50.2	0.09
Sherbrooke	315	160	60	19.2	215	68.7	-155	-49.5	0.06
Trois-Rivières	45	35	15	37.8	30	62.2	-10	-24.4	0.02
Montréal	13,165	11,910	1,910	14.5	3,165	24.0	-1255	-9.5	2.07
Ottawa - Hull	2,830	3,275	1,385	48.9	945	33.3	440	15.6	1.35
Kingston	115	140	110	94.0	85	72.6	25	21.4	0.10
Oshawa	245	385	265	108.6	125	50.4	140	58.2	0.25
Toronto	50,365	50,110	6,560	13.0	6,815	13.5	-255	-0.5	11.92
Hamilton	1,540	1,915	975	63.2	595	38.7	380	24.6	0.94
St. Catharines - Niagara	430	525	255	59.3	160	36.7	95	22.6	0.24
Kitchener	1,030	1,380	670	65.1	325	31.4	350	33.7	0.64
London	785	006	415	52.6	300	38.1	115	14.5	0.40
Windsor	975	1,445	750	76.6	280	28.9	465	47.7	0.72
Sudbury	20	50	25	38.0	50	70.4	-25	-32.4	0.03
Thunder Bay	20	45	15	21.4	40	57.1	-25	-35.7	0.01
Winnipeg	1,840	1,385	185	10.0	640	34.7	-455	-24.7	0.18
Regina	310	140	35	11.5	205	66.0	-170	-54.5	0.03
Saskatoon	360	205	70	19.4	225	62.9	-155	-43.5	0.07
Calgary	3,525	3,980	1,450	41.1	962	28.3	450	12.8	1.42
Edmonton	2,595	2,280	555	21.4	870	33.5	-315	-12.1	0.54
Abbotsford	805	875	280	34.6	210	25.9	20	8.7	0.27
Vancouver	21,270	22,935	4,770	22.4	3,105	14.6	1665	7.8	5.67
Victoria	430	450	190	44.4	170	39.8	20	4.6	0.18
Total	105,400	105,400	21,175	20.1	21,175	20.1	0	0.0	

			0		,
-	All	0-9 Years of Schooling	10-12 Years of Schooling	13+ Years of Schooling	Bachelor's Degree or Higher
All	16.3	13.4	15.7	16.8	21.4
Selected CMAs					
Montreal	18.4	15.5	19.8	18.0	21.6
Ottawa - Hull	26.1	21.6	22.0	31.9	30.5
Toronto	7.7	5.5	7.1	8.1	12.2
Calgary	21.9	21.7	20.8	21.4	24.4
Vancouver	6.6	6.2	6.4	6.5	7.9
Country of Birth					
Hong Kong	23.0	24.7	24.4	19.6	23.1
China	20.2	12.8	15.8	21.8	30.9
Lebanon	12.3	10.4	11.7	12.0	16.5
India	15.1	12.1	13.8	18.2	17.7
Phillipines	8.9	8.4	6.5	9.0	11.7
Vietnam	19.8	22.5	18.3	11.8	14.3
Other	16.6	12.7	16.5	17.4	22.3

Table 4. 1991-1996 CMA Departure Rates of the Immigrants: Educational Selectivity.

Table 5. 1996-2001 CMA Departure Rates of the Immigrants: Educational Selectivity.

		0-9 Years of	10-12 Years of	13+ Years of	Bachelor's Degree
	All	Schooling	Schooling	Schooling	
All	20.2	16.0	17.1	20.1	28.0
Selected CMAs					
Montreal	37.7	38.3	38.8	34.5	38.5
Ottawa - Hull	38.6	27.6	34.7	35.8	47.3
Toronto	13.7	9.5	9.9	13.7	21.3
Calgary	29.5	21.4	23.9	28.5	43.4
Vancouver	13.7	11.0	11.4	13.5	19.7
Country of Birth					
Hong Kong	20.9	21.6	20.9	20.2	21.3
China	25.2	12.0	15.5	24.8	43.5
Lebanon	18.7	12.1	12.4	19.6	33.5
India	18.7	15.9	17.4	18.6	23.4
Phillipines	9.8	6.8	5.4	8.6	17.1
Vietnam	11.9	11.2	11.5	13.8	20.9

Table 6. 1991-1996 and 1996-2001 CMA Departure Rates of the Immigrants:By Immigration Class and Country of Birth

				Country o	f Birth		
Immigration Class	All	Hong Kong	China	Lebanon	India	Phillipines	Vietnam
Panel A: 1991-1996 Period							
All	16.3	23.0	20.2	12.3	15.1	8.9	19.8
Family Class	10.1	17.3	11.1	8.3	12.1	6.2	6.3
Business Class	32.5	31.8	31.6	25.0	54.6	15.4	
Skilled Workers	16.3	22.0	24.4	12.6	19.1	10.6	10.7
Refugees	24.7		23.3	15.2			38.7
Panel B: 1996-2001 Period							
All	20.2	20.9	25.2	18.7	18.7	9.8	11.9
Family Class	10.5	8.0	8.6	11.2	13.4	3.4	11.3
Business Class	31.0	27.4	28.2	36.4	37.9	30.0	50.0
Skilled Workers	27.6	20.9	41.4	31.5	25.3	21.9	13.4
Refugees	22.7			9.9	42.0		15.8

Note: The rates for cells with small frequencies are suppressed.

			D	D			
Origin	Best Destination	Share	2nd Best Destination	share	3rd Best Destination	Share	Joint Share
		(%)		(%)		(%)	(%)
St. John's	Toronto	33.3	Ottawa-Hull	30.0	Vancouver	16.7	80.0
Halifax	Toronto	27.7	Vancouver	19.2	Ottawa-Hull	14.9	61.7
Saint John	Toronto	33.3	Ottawa-Hull	33.3	Vancouver	33.3	100.0
Chicoutimi - Jonquière	Montreal	75.0	Ottawa-Hull	12.5	Kitchener	12.5	100.0
Quebec	Montreal	61.7	Ottawa-Hull	11.7	Toronto	11.7	85.0
Sherbrooke	Montreal	61.1	Ottawa-Hull	16.7	Toronto	11.1	88.9
Trois-Rivières	Montreal	100.0		0.0		0.0	100.0
Montreal	Toronto	50.3	Vancouver	22.1	Ottawa-Hull	13.6	85.9
Ottawa-Hull	Toronto	34.1	Montreal	26.9	Vancouver	19.8	80.8
Kingston	Toronto	42.4	Ottawa-Hull	21.2	Vancouver	12.1	75.8
Oshawa	Toronto	85.7	Hamilton	4.8	Kitchener	2.4	92.9
Toronto	Vancouver	35.7	Montreal	10.1	Hamilton	9.3	55.1
Hamilton	Toronto	54.8	Kitchener	15.3	Vancouver	12.1	82.2
St. Catharines - Niagara	Toronto	54.2	Hamilton	11.9	Edmonton	6.8	72.9
Kitchener	Toronto	48.9	Vancouver	14.9	Montreal	7.5	71.3
London	Toronto	56.5	Vancouver	10.9	Hamilton	5.8	73.2
Windsor	Toronto	62.5	Vancouver	12.5	Kitchener	5.4	80.4
Sudbury	Toronto	50.0	Ottawa-Hull	33.3	Vancouver	16.7	100.0
Winnipeg	Vancouver	43.6	Toronto	28.5	Calgary	8.7	80.8
Regina	Vancouver	31.6	Toronto	26.3	Winnipeg	7.9	65.8
Saskatoon	Toronto	26.4	Vancouver	24.5	Calgary	13.2	64.2
Calgary	Vancouver	42.1	Toronto	29.3	Edmonton	9.0	80.5
Edmonton	Vancouver	42.5	Toronto	21.3	Calgary	19.0	82.8
Vancouver	Toronto	53.2	Victoria	11.5	Calgary	9.4	74.1
Victoria	Vancouver	70.4	Ottawa-Hull	7.4	Windsor	7.4	85.2

Table 7. Destination Choices of the 1991-1996 Inter-CMA Migration of the Immigrants.

			0	D			
ORIGIN	Best Destination	Share	2nd Best Destination	share	3rd Best Destination	Share	Joint Share
		(%)		(%)		(%)	(%)
St. John's	Toronto	40.2	Hamilton	8.8	Ottawa-Hull	8.3	57.4
Halifax	Toronto	46.4	Vancouver	21.3	Montreal	10.5	78.2
Saint John	Vancouver	44.2	Toronto	27.9	Edmonton	7.0	79.1
Chicoutimi - Jonquière	Montreal	64.3	Quebec	14.3	Sherbrook	14.3	92.9
Quebec	Montreal	50.4	Toronto	14.2	Kitchener	9.1	73.8
Sherbrooke	Montreal	32.6	Toronto	18.1	Hamilton	14.4	65.1
Trois-Rivières	Montreal	53.6	Toronto	25.0	Quebec	10.7	89.3
Montreal	Toronto	49.6	Vancouver	22.5	Ottawa-Hull	8.9	81.1
Ottawa-Hull	Toronto	52.8	Montreal	18.1	Vancouver	12.3	83.2
Kingston	Toronto	41.2	Ottawa-Hull	28.2	Montreal	16.5	85.9
Oshawa	Toronto	86.2	Vancouver	5.7	Montreal	3.3	95.1
Toronto	Vancouver	35.2	Montreal	13.3	Ottawa-Hull	8.8	57.3
Hamilton	Toronto	62.4	Vancouver	6.2	Montreal	5.4	74.0
St. Catharines - Niagara	Toronto	62.0	Hamilton	10.8	Vancouver	5.7	78.5
Kitchener	Toronto	59.0	Vancouver	9.6	Hamilton	9.0	77.5
London	Toronto	57.7	Vancouver	8.0	Windsor	7.7	73.3
Windsor	Toronto	53.9	Vancouver	11.7	Montreal	7.5	73.1
Sudbury	Toronto	42.0	Montreal	18.0	Hamilton	10.0	70.0
Thunder Bay	Toronto	40.0	Vancouver	12.5	Montreal	10.0	62.5
Winnipeg	Toronto	36.2	Vancouver	24.5	Calgary	8.5	69.1
Regina	Toronto	29.6	Vancouver	21.4	Calgary	12.6	63.6
Saskatoon	Toronto	21.6	Calgary	13.2	Windsor	12.8	47.6
Calgary	Vancouver	40.7	Toronto	38.4	Edmonton	5.4	84.6
Edmonton	Vancouver	32.0	Toronto	31.3	Calgary	18.3	81.5
Abbotsford	Vancouver	50.0	Toronto	22.6	Calgary	20.7	93.3
Vancouver	Toronto	53.0	Calgary	13.3	Abbotsford	6.7	73.0
Victoria	Vancouver	63.4	Toronto	7.6	Calgary	6.4	77.3

Table 8. Destination Choices of the 1996-2001 Inter-CMA Migration of the Immigrants.

		ANEL A:	1991-1996	4	ANEL B :	1996-2001	
Rho-Square	0.4912			0.4970			
	Best Specificati	on	Marginal Contribution in Rho-square	Best Specificatio	uo	Marginal Cont in Rho-square	ribution
			fix- coefficient maximizing			tix- coefficient m	aximizing
	Coefficient	t-ratio	method method	Coefficient	t-ratio	method m	lethod
1. Economic Factors			0.2484 0.0917			0.3092	0.0532
Income	0.0919	7.9		0.0736	5.2		
Income * 13+ Years of Schooling	1	ł		0.0640	4.3		
Income * Bachelor's Degree or Above	0.1137	22.9		0.0869	6.9		
Employment Growth Rate				0.0417	7.9		
Unemployment Rate	-0.1307	-7.0		-0.2016	-10.5		
Employment Size	1.1419	39.4		1.1693	41.6		
Payment				-0.0027	-8.1		
2. Ethnic Similarity			0.0376 0.0253			0.0837	0.0295
Ethnic Similarity * Hong Kong	0.4875	11.6		1.1037	32.0		
Ethnic Similarity * Hong Kong * Aged 40+	0.3400	3.8		-	ł		
Ethnic Similarity * China	0.2431	3.9		0.7925	14.9		
Ethnic Similarity * China * Aged 40+	0.2820	4.2		1			
Ethnic Similarity * China * 12- Years of Schooling	0.2119	3.6		0.2027	4.3		
Ethnic Similarity * China * Skilled-worker	-0.3293	-5.5		-0.4108	-8.0		
Ethnic Similarity * Iindia	0.4194	6.7		0.5410	12.1		
Ethnic Similarity * India * 12- Years of Schooling	0.4432	5.1		0.3900	7.0		
Ethnic Similarity *Lebanon	0.4685	10.6		0.6624	9.3		
Ethnic Similarity * Lebanon * Aged 40+	0.2290	2.8			1		
Ethnic Similarity * Lebanon * 12- Years of Schooling	0.1720	2.8		•	1		
Ethnic Similarity * Philippines	0.7254	15.0		0.8823	17.1		
Ethnic Similarity * Vietnam	0.4251	2.7		1.2016	4.9		
3. Other Factors and Interaction Terms							
Ln (Distance)	-0.3990	-27.9		-0.3034	-27.5		
Coldness	-0.0002	-5.5		-0.0004	-12.6		
Coldness * Aged 40+	-0.0003	-4.7		-	1		
Vancouver to Abbotsford	1	1		1.5118	10.8		
Toronto to Oshawa	1.5623	3.3		1.1273	2.5		
Montreal * French Language Ability	1.4396	8.8		1.5946	7.5		
Rest of Quebec to Montreal	1.5963	7.8		2.0813	7.3		
Vancouver * Business Class	0.7487	5.8		0.4838	4.4		
Toronto * Business Class	0.9965	8.3		0.4894	5.0		
Note: For brevity, marginal contribution in Rho-squre is	s only reported fo	or factors w	ith relatively large contribut	ion.			

Table 9. Estimation Results of the Destination Model of the Inter-CMA Migration of the Immigrants in Canada.

	Ъ	ANEL A :	1991-1996	0	d	ANEL B :	1996-2001	
Rho-Square	0.1673				0.1912			
			Marginal C	ontribution			Marginal Co	ontribution
	Best Specificat	ion	in Rho-squ	are	Best Specificat	ion	in Rho-squa	re
			fix-				fix-	
	Coefficient	t-ratio	coefficient	maximizing	Coefficient	t_ratio	coefficient method	maximizing
1. Personal Factors	COGHICIGHT	1-1au0	memor	noment	COGINCIENT	1-1 4110	mana	mainai
Constant	-2.571	-8.2			-0.701	-3.4		
Aged 30+	-0.135	-4.0			-0.07	-2.7		
13+ Years of Schooling	0.156	3.7				1		
Bachelor's Degree or Above	0.381	8.7						
Immigration Class			0.026	0.0200			0.0883	0.0590
Family Class	-0.805	-11.9			0.425	5.9		
Business Class	0.882	9.8			2.225	17.9		
Skilled Workers	-0.276	-4.2			1.766	24.2		
Refugees	0.215	2.5			1.384	14.4		
2. Labor Market Factors			0.0478	8 0.0194			0.0469	0.0295
Income	-0.016	4.1			-0.022	-6.3		
Income * 13+ Years of Schooling		1			-0.011	-4.8		
Income * Bachelor's Degree or Above		1			-0.010	-3.2		
Employment Growth Rate	-0.074	-13.5			-0.031	-7.6		
Unemployment Rate	0.066	4.6			0.118	6.6		
Employment Size	-0.596	-22.9			-0.446	-17.5		
3. Ethnic Similarity			0:0300	0.0246			0.0478	0.0341
Ethnic Similarity * Hong Kong	-0.132	-3.5			-0.621	-27.7		
Ethnic Similarity * China	-0.087	-2.2			-0.502	-13.3		
Ethnic Similarity * China * 12- Years of Schooling	-0.132	-3.0			-0.230	-6.7		
Ethnic Similarity * China * Skilled-worker					0.301	8.2		
Ethnic Similarity * Iindia	-0.129	-3.5			-0.495	-19.7		
Ethnic Similarity *Lebanon	-0.558	-20.2			-0.670	-10.8		
Ethnic Similarity * Philippines	-0.495	-17.0			-0.854	-26.9		
Ethnic Similarity * Vietnam	-0.445	-6.6			-0.967	-11.0		
3. Other Factors and Interaction Terms								
Coldness	0.200	7.4						
Attractiveness of the Rest of the System	0.239	7.0	0.006	0.0014	0.214	5.6	0.0159	0.0008
Montreal * French Language Ability	-0.235	-2.8			-1.006	-5.8		
Quebec * Business Class	-				0.976	5.8		
Vancouver * Business Class	-1.303	-7.8			-0.753	-5.4		
Toronto * Business Class	-0.893	-6.8			-0.517	-4.2		
Note: For hrevity marginal contribution in Rho-source	is only reporte	d for factor	s with relativ	elv large contril	nution			

CMA NAME Employment Income 5-year Unemploy- Employment Income				1991-1996					1996-2001		
Size Male* Female* Employment ment Rate Size Male* Female* Sixuhn's 75190 28144 16639 -0.35 16.0 74930 41788 5128 Sixubin's 55310 29144 16631 -0.34 11.3 63306 41.285 16.510 Sixubinis 55310 29161 15610 131 63306 41.285 17.205 Sinubini 55310 29208 17.212 -0.43 90 316045 40.743 18.37 Chicoutimi-Jonquiere 64945 29205 17.212 -0.43 19.3 55390 41.535 16.510 Sinubinic 54345 28111 14281 1.43 17.328 40.743 18.37 Mingston 50346 17651 -2.234 7.25 67737 41.444 15.812 Mingston 68455 3165 16.510 36.55 20.66 17.208 20.748 Mingston 203086 <t< th=""><th>CMA NAME</th><th>Employment</th><th>Income -</th><th>Income -</th><th>5-year</th><th>Unemploy-</th><th>Employment</th><th>Income -</th><th>Income -</th><th>5-year</th><th>Unemploy-</th></t<>	CMA NAME	Employment	Income -	Income -	5-year	Unemploy-	Employment	Income -	Income -	5-year	Unemploy-
Growth Rate (%) Growth Rate (%) St.John's T-5190 St.John's T-5190 St.John's T-5190 St.John's		Size	Male *	Female*	Employment	ment Rate	Size	Male *	Female*	Employment	ment Rate
St.Johnris 75190 28146 16639 -0.35 16.0 74930 41,788 15,128 Halifax 163515 30221 17556 -0.29 9.1 168160 40,357 16,510 Salut 55310 29196 15,5261 -3.47 11.3 533005 41,232 17,208 Chicoutimi-Jonquiere 64945 29205 17272 -0.43 9.0 315045 40,743 18,979 Chicoutimi-Jonquiere 57440 28010 41,420 29202 177,028 80,43 15,614 19,557 Chicoutimi-Jonquiere 57445 29202 17702 -0.23 40,493 80,793 16,743 19,557 Chicoutimi-Jonquiere 57445 29106 17,43 13,33 11,6 15,723 40,493 50,743 15,815 Ottawa-Hull 603455 31165 18,447 20,718 85,246 71,038 87,532 46,743 15,815 Ottawa-Hull 603455 216665					Growth Rate	(%)				Growth Rate	(%)
Halifax 163515 30821 17656 0.22 9.1 168160 40.357 16.510 SaintJohn 55310 29196 15261 -3.47 11.3 53390 41.292 17.205 Chicoutimi-Jonquiere 64345 28173 15016 -1.60 13.1 63905 41.537 41.532 71.205 Chicoutimi-Jonquiere 64340 28103 15683 37.504 17.302 0.0438 8.697 00.4985 0.743 18.979 Sherbrooke 64440 28101 14281 1.43 13.2 56870 40,448 20.094 Trois-Rivieres 57845 21165 18563 31.65 48.147 20.718 Montreal 1516430 25048 217651 0.23 37.504 17.428 17.438 17.43 18.975 Montreal 1516430 25048 217651 0.23 21761 20.93 17.43 17.43 17.43 17.43 17.43 17.44 15.17	St.John's	75190	28146	16639	-0.35	5 16.0	74930	41,788	15,128	1.36	14.2
SaintJohn 55310 29196 15.261 -3.47 11.3 53390 41,292 17,202 Chicoutimi-Jonquiere 64945 28873 15016 -1.60 13.1 633905 41,535 18,947 Chicoutimi-Jonquiere 64945 28873 15016 -1.60 13.1 633905 41,7328 18,840 Sherbrooke 64440 28103 15815 -1.60 13.1 63305 41,531 19,915 Montreal 15712 2912 17722 20,43 20,094 17,928 17,928 Montreal 15716 23105 15854 23115 16814 14,281 14,412 20,719 Montreal 15701 35349 19690 5.05 85 167370 41,447 20,718 Montreal 18674 33504 17,828 8.5 126865 48,147 20,718 Montreal 186740 35346 21,835 35,04 13,836 30,05 30,526 <tr< th=""><th>Halifax</th><th>163515</th><th>30821</th><th>17656</th><th>-0.29</th><th>9.1</th><th>168160</th><th>40,357</th><th>16,510</th><th>1.70</th><th>8.6</th></tr<>	Halifax	163515	30821	17656	-0.29	9.1	168160	40,357	16,510	1.70	8.6
Chicoutimi-Jonquiere 64945 29873 15016 -1.60 13.1 63905 41,536 18,840 Quebec 316405 29205 17272 -0.43 9.0 315045 40,743 18,979 Shertrooke 64440 25845 2161 14281 1.43 13.2 58670 41,643 20,03 Shertrooke 64440 25920 177951 1.43 13.2 58670 41,643 20,03 Shertrooke 57845 31165 18545 31767 20.33 11.6 15.63 20,093 Montreal 50340 35546 21767 -0.27 7.2 496220 47,009 18,545 Kinspen 105570 35546 21767 -0.27 7.2 495220 47,009 18,545 Kinspen 2033805 35779 21855 1.07 8.5 20,745 20,745 20,775 Hamilton 2033805 31696 18826 <th1.08< th=""> 1.17 21255<th>SaintJohn</th><th>55310</th><th>29196</th><th>15261</th><th>-3.47</th><th>7 11.3</th><th>53390</th><th>41,292</th><th>17,205</th><th>0.93</th><th>13.1</th></th1.08<>	SaintJohn	55310	29196	15261	-3.47	7 11.3	53390	41,292	17,205	0.93	13.1
Quebec 316405 29205 17272 -0.43 9.0 315045 40,743 18,973 Sherbrooke 64440 26108 15683 3.42 10.8 67355 3.504 17,328 Trois-Riveres 57845 28111 14281 1.43 13.2 568670 40,498 20,094 Montreal 1516430 35046 21767 -0.27 7.2 496220 47,009 18,546 Montreal 1570410 5504 2.234 7.5 66737 41,444 15,812 Oshawa 12070 35349 19090 5.05 8.5 20061615 44,048 20,073 Conton 12070 35340 17900 5.05 8.5 2061615 44,444 15,812 Conton 203805 35779 21866 0.13 8.8 20,733 19,652 Hamilton 203805 35779 21864 -2.08 9.5 156865 44,064 18,266 <t< th=""><th>Chicoutimi-Jonquiere</th><th>64945</th><th>29873</th><th>15016</th><th>-1.60</th><th>13.1</th><th>63905</th><th>41,536</th><th>18,840</th><th>0.51</th><th>13.4</th></t<>	Chicoutimi-Jonquiere	64945	29873	15016	-1.60	13.1	63905	41,536	18,840	0.51	13.4
Sherbrooke 64440 26108 15683 3.42 10.8 67635 37,504 17,928 Trois-Rivieres 57845 28111 14281 1,43 13.2 56870 40,498 20,094 Trois-Rivieres 57845 28111 14281 1,43 13.2 56870 40,498 20,094 Ommtreal 1516430 35046 21767 -0.27 7.2 466220 47,009 15,65 Kingston 68455 31165 18546 -2.34 7.5 67370 41,447 20,778 Oshawa 120770 35349 19090 5.05 8.5 126865 48,447 20,778 Oshawa 120770 35349 13806 17900 5.05 8.5 2061615 48,498 20,778 Oshawa 12070 35349 13806 17900 5.05 8.5 2061615 48,498 20,778 Hamilton 2038165 319300 17800 0.13 8.5	Quebec	316405	29205	17272	-0.43	9.0	315045	40,743	18,979	1.82	10.4
Trois-Rivieres 57845 28111 14281 1.43 13.2 58670 $40,498$ $20,094$ Montreal 1516430 29202 17961 -0.33 11.6 1502380 $41,674$ $19,557$ Montreal 1516430 29202 17767 -0.27 7.2 4962230 $47,009$ $18,546$ Kindston 68455 31165 18845 -2.34 7.5 67370 $41,444$ $15,812$ Kindston 68455 33009 5166 2.3485 2.3309 51864 -2.038 8.5 2061615 $48,498$ $20,075$ Denoto 2033805 35779 21855 1.07 8.5 2061615 $48,498$ $20,075$ Conto 2033805 35779 21856 1.07 8.5 2061615 $48,498$ $20,075$ Hamilton 203382 33009 18180 0.113 8.8 294225 $46,795$ $19,622$ Kitchener 182665 31980 17790 5.14 9.0 192632 $42,940$ $18,208$ Vindor 117725 31438 17645 2.08 9.5 16623 $42,664$ $20,986$ Vindor 117725 31438 16523 $42,6795$ $47,054$ $20,988$ Undor 133615 31696 18226 $41,064$ $18,266$ Vindor 117725 31438 $16,273$ $32,4745$ $39,324$ $16,391$ Vindor 325800 42662 33396 <t< th=""><th>Sherbrooke</th><th>64440</th><th>26108</th><th>15683</th><th>3.42</th><th>2 10.8</th><th>67635</th><th>37,504</th><th>17,928</th><th>2.17</th><th>10.3</th></t<>	Sherbrooke	64440	26108	15683	3.42	2 10.8	67635	37,504	17,928	2.17	10.3
Montreal 1516430 29920 17961 -0.93 11.6 1502380 41,674 19,557 Kingston 68445 31165 18845 -0.27 7.2 496220 47,009 18,546 Kingston 68445 31165 18845 -0.27 7.2 496220 47,009 18,546 Kingston 68445 31165 18845 -0.27 7.2 496220 47,009 18,546 Contuo 08445 31165 18845 -0.27 7.2 496225 44,441 15,812 Parinton 203805 35779 21855 1.07 8.5 2061615 48,498 20,775 Hamiton 203820 31696 18866 -1.166 8.5 166925 44,064 18,265 Kitchener 182665 31980 17700 514 13,475 47,275 20,742 Windsor 117725 31438 17645 18,464 18,866 44,064 18,866	Trois-Rivieres	57845	28111	14281	1.43	3 13.2	58670	40,498	20,094	0.78	12.0
Ottawa-Hull 503410 35046 21767 -0.27 7.2 496220 47,009 18,546 Kingston 68455 31165 18545 -2.34 7.5 67370 41,444 15,812 Oshawa 120770 35349 19990 5.05 8.5 126685 48,147 20,773 Toronto 2033805 35779 21865 1.07 8.5 2061615 48,498 20,075 Hamilton 293850 33009 18180 0.13 8.5 294225 46,795 16,843 St.Catharines-Niagara 168740 30382 15864 -2.08 9.5 19607 43,942 16,944 18,866 Kitchener 182665 31490 17706 31488 17645 11.7 134585 44,064 18,866 Undon 137725 31438 17645 11.08 11.7 134585 48,095 22,679 Windsor 117725 31438 17645 32,327	Montreal	1516430	29920	17961	0.0-	3 11.6	1502380	41,674	19,557	2.35	11.2
Kingston684553116518545-2.347.56737041,44415,812Oshawa12077035349190905.058.512686548,14720,718Toronto203380535779218551.078.512686548,14720,778Hamilton203380535779218551.078.5206161548,49820,075Hamilton203385033009181800.138.5206161548,49820,075Kitchener1207703332215864-2.089.516523042,94018,866Kitchener182665319801764511.0811.71345848,06420,783Kitchener117725314381764511.0811.71345848,09522,679Kitchener117725314381764511.0811.71345848,09520,742London117725314381764511.0811.71345848,09520,742Kitchener117725314381764511.0811.71345848,09520,742Kitchener117725314381764517.0811.71345848,0952.6773Kitchener117725314381764517.2935.26776743,94216,995Kitchener110811.7134587.29.69.64.66420,988Kitchener9.016.208.79.09.0<	Ottawa-Hull	503410	35046	21767	-0.27	7.2	496220	47,009	18,546	2.65	8.8
Oshawa 120770 35349 19090 5.05 8.5 126865 48,147 20,718 Toronto 2033805 35779 21855 1.07 8.5 2061615 48,498 20,075 Hamilton 2033805 35779 21855 1.07 8.5 2061615 48,498 20,075 Hamilton 293850 33009 18180 0.13 8.8 294225 46,795 19,622 Kitchener 182665 31980 17900 5.14 9.0 192055 44,064 18,866 Kitchener 182665 31438 17645 11.08 11.7 134585 26,795 26,795 Windsor 117725 31438 17645 11.08 11.7 134585 48,095 22,679 Windsor 74270 32314 46,04 20,983 46,095 22,679 Windsor 72415 31438 17645 17,045 33,34 16,301 Windsor 97260	Kingston	68455	31165	18545	-2.3	t 7.5	67370	41,444	15,812	1.09	9.4
Toronto 2039805 35779 21855 1.07 8.5 2061615 48,498 20,075 Hamilton 293850 33009 18180 0.13 8.8 294225 46,795 19,622 St.Catharines-Niagara 168740 30382 15864 -2.08 9.5 165230 42,940 18,208 Kitchener 182665 31980 17900 5.14 9.0 192055 44,064 18,866 Vindsor 117725 31438 17645 11.08 11.7 134585 48,095 22,679 Sudbury 74270 32790 16843 -5.52 8.5 72415 47,275 20,742 Vinnipeg 32580 28287 17229 -0.35 8.5 72415 47,275 20,742 Vinnipeg 32580 28287 17229 -0.35 8.5 324745 39,334 16,301 Regina 103220 28785 16802 722 96400 47,377 10,452<	Oshawa	120770	35349	19090	5.05	5 8.5	126865	48,147	20,718	3.76	9.0
Hamilton 293850 33009 18180 0.13 8.8 294225 46,795 19,622 St.Catharines-Niagara 168740 30382 15864 -2.08 9.5 165230 42,940 18,208 Kitchener 182665 31980 17900 5.14 9.0 192055 44,064 18,866 Undor 193615 31696 18826 -1.66 8.5 198970 43,942 16,934 Windsor 117725 31438 17645 11.08 11.7 134585 48,095 22,679 Sudbury 74270 32790 16843 -5.52 8.5 72415 47,275 20,742 UnnderBay 325880 28287 17229 -0.35 8.5 324745 39,334 16,301 Regina 372 96400 42,051 17,045 33,334 16,301 Saskatoon 103220 28287 17229 -0.08 7.2 96400 42,051 17,045 <t< th=""><th>Toronto</th><th>2039805</th><th>35779</th><th>21855</th><th>1.07</th><th>8.5</th><th>2061615</th><th>48,498</th><th>20,075</th><th>3.41</th><th>9.1</th></t<>	Toronto	2039805	35779	21855	1.07	8.5	2061615	48,498	20,075	3.41	9.1
St.Catharines-Niagara 168740 30382 15864 -2.08 9.5 165230 42,940 18,208 Kitchener 182665 31980 17900 5.14 9.0 192055 44,064 18,866 London 193615 31696 18826 -1.66 8.5 198970 43,942 16,984 Windsor 117725 31438 17645 11.08 11.7 134585 48,095 22,679 Windsor 177725 31438 17645 11.08 11.7 134585 48,095 22,679 Sudbury 74270 32790 16843 -5.52 8.5 72415 47,275 20,742 ThunderBay 325880 28287 17229 -0.35 8.5 324745 39,334 16,301 Regina 37265 18245 -0.88 7.2 96400 42,051 17,045 Saskatoon 103220 28785 18245 -0.88 7.2 96400 42,051 17,045 Saskatoon 436015 343366 16602 3.80 8.6	Hamilton	293850	33009	18180	0.13	8.8	294225	46,795	19,622	2.15	8.1
Kitchener 182665 31980 17900 5.14 9.0 192055 44,064 18,866 London 193615 31696 18826 -1.66 8.5 198970 43,942 16,984 Vindsor 117725 31438 17645 11.08 11.7 134585 48,095 22,679 Sudbury 74270 32790 16843 -5.52 8.5 72415 47,275 20,742 Sudbury 74270 32790 16843 -5.52 8.5 72415 47,674 73,052 Sudbury 722 96400 47,675 20,742 76,983 Winnipeg 325880 28287 17229 -0.35 8.5 324745 39,334 16,301 Regina 97260 30765 18245 -0.88 7.2 96400 42,051 17,045 Saskatoon 103220 28785 18.76 8.76 9441575 47,337 19,673 Calgary 436015 <t< th=""><th>St.Catharines-Niagara</th><th>168740</th><th>30382</th><th>15864</th><th>-2.08</th><th>3 9.5</th><th>165230</th><th>42,940</th><th>18,208</th><th>1.8</th><th>i 9.9</th></t<>	St.Catharines-Niagara	168740	30382	15864	-2.08	3 9.5	165230	42,940	18,208	1.8	i 9.9
London 193615 31696 18826 -1.66 8.5 198970 43,942 16,984 Windsor 117725 31438 17645 11.08 11.7 134585 48,095 22,679 Sudbury 74270 32790 16843 -5.52 8.5 72415 47,275 20,742 Sudbury 74270 32790 16843 -5.52 8.5 72415 47,275 20,742 Sudbury 722 325880 28287 17229 -0.35 8.5 324745 39,334 16,301 Winnipeg 97260 30765 18245 -0.88 7.2 96400 42,051 17,045 Saskatoon 103220 28785 16602 3.80 8.6 107150 39,963 16,923 Calgary 436015 34396 19331 8.76 8.72 96400 42,651 17,045 Calgary 436015 34396 19331 8.76 8.72 96400 42,65	Kitchener	182665	31980	17900	5.14	t 9.0	192055	44,064	18,866	2.92	8.1
Windsor 117725 31438 17645 11.08 11.7 134585 48,095 22,679 Sudbury 74270 32790 16843 -5.52 8.5 72415 47,275 20,742 Sudbury 74270 32790 16843 -5.52 8.5 72415 47,275 20,742 ThunderBay 325880 28287 17229 -0.35 8.5 324745 39,334 16,301 Winnipeg 97260 30765 18245 -0.88 7.2 96400 42,051 17,045 Regina 97260 30765 18245 -0.88 7.2 96400 42,051 17,045 Saskatoon 103220 28785 16602 3.80 8.6 107150 39,963 16,923 Calgary 406015 34396 19391 8.76 8.06 44,1575 47,337 19,673 Edmonton 434250 31931 -0.05 8.2 434020 42,581 18,349 <th>London</th> <th>193615</th> <th>31696</th> <th>18826</th> <th>-1.66</th> <th>3 8.5</th> <th>198970</th> <th>43,942</th> <th>16,984</th> <th>1.68</th> <th>9.3</th>	London	193615	31696	18826	-1.66	3 8.5	198970	43,942	16,984	1.68	9.3
Sudbury 74270 32790 16843 -5.52 8.5 72415 47,275 20,742 ThunderBay ThunderBay 5.52 8.5 72415 47,275 20,742 ThunderBay 325880 32781 17229 -0.35 8.5 324745 39,334 16,301 Winnipeg 37260 30765 18245 -0.36 8.5 324745 39,334 16,301 Regina 97260 30765 18245 -0.88 7.2 96400 42,051 17,045 Saskatoon 103220 28785 16602 3.80 8.6 107150 39,963 16,923 Calgary 436015 34396 19391 8.76 8.0 441575 47,337 19,673 Abbotsford 8.76 8.0 10.55 8.2 434020 42,561 18,349 Abbotsford 8.76 8.76 8.76 8.73 19,673 16,923 Abbotsford 8.76 9.05 9.1 908320 44,4575 47,337 19,673 60645 42,230	Windsor	117725	31438	17645	11.08	3 11.7	134585	48,095	22,679	2.26	8.1
ThunderBay 58260 44,664 20,988 Winnipeg 325880 28287 17229 -0.35 8.5 324745 39,334 16,301 Winnipeg 37260 30765 18245 -0.35 8.5 324745 39,334 16,301 Regina 97260 30765 18245 -0.88 7.2 96400 42,051 17,045 Saskatoon 103220 28785 16602 3.80 8.6 1077150 39,963 16,923 Saskatoon 436015 34396 19391 8.76 8.0 441575 47,337 19,673 Calgary 434250 30952 17931 -0.05 8.2 434020 42,581 18,743 Abbotsford 8.76 9.05 8.2 434020 42,530 19,673 Vancouver 814070 32820 19499 11.58 9.1 908320 46,487 20,918 Vancouver 814070 32820 19499 11.58	Sudbury	74270	32790	16843	-5.52	2 8.5	72415	47,275	20,742	-0.52	12.0
Winnipeg 325880 28287 17229 -0.35 8.5 324745 39,334 16,301 Regina 97260 30765 18245 -0.88 7.2 96400 42,051 17,045 Regina 97260 30765 18245 -0.88 7.2 96400 42,051 17,045 Saskatoon 103220 28785 16602 3.80 8.6 107150 39,963 16,923 Calgary 406015 34396 19391 8.76 8.0 441575 47,337 19,673 Edmonton 434250 30952 17931 -0.05 8.2 434020 42,581 18,349 Abbotsford 814070 32820 19499 11.58 9.1 908320 46,487 20,918 Vancouver 814070 32820 19499 11.58 9.1 908320 46,487 20,918	ThunderBay						58260	44,664	20,988	-0.41	10.7
Regina 97260 30765 18245 -0.88 7.2 96400 42,051 17,045 Saskatoon 103220 28785 16602 3.80 8.6 107150 39,963 16,923 Saskatoon 103220 28785 16602 3.80 8.6 107150 39,963 16,923 Calgary 406015 34396 19391 8.76 8.0 441575 47,337 19,673 Edmonton 434250 30952 17931 -0.05 8.2 434020 42,581 18,349 Abbotsford 814070 32820 19499 11.58 9.1 908320 46,487 20,918 Vancouver 814070 32820 19499 11.58 9.1 908320 46,487 20,918	Winnipeg	325880	28287	17229	-0.35	5 8.5	324745	39,334	16,301	1.29	7.9
Saskatoon 103220 28785 16602 3.80 8.6 107150 39,963 16,923 Calgary 406015 34396 19391 8.76 8.0 441575 47,337 19,673 Calgary 406015 34396 19391 8.76 8.0 441575 47,337 19,673 Edmonton 434250 30952 17931 -0.05 8.2 434020 42,581 18,349 Abbotsford 814070 32820 19499 11.58 9.1 908320 46,487 20,918 Vancouver 814070 32820 19499 11.58 9.1 908320 46,487 20,918	Regina	97260	30765	18245	-0.88	3 7.2	96400	42,051	17,045	0.82	1.3
Calgary 406015 34396 19391 8.76 8.0 441575 47,337 19,673 Edmonton 434250 30952 17931 -0.05 8.2 434020 42,581 18,349 Abbotsford 814070 32820 19499 11.58 9.1 908320 46,487 20,918 Vancouver 814070 32820 19499 11.58 9.1 908320 46,487 20,918	Saskatoon	103220	28785	16602	3.80	8.6	107150	39,963	16,923	1.39	7.5
Edmonton 434250 30952 17931 -0.05 8.2 434020 42,581 18,349 Abbotsford 8.2 60645 42,230 19,353 60645 42,230 19,353 Vancouver 8.14070 32820 19499 11.58 9.1 908320 46,487 20,918 Viscation 9000 7.6 40000 7.6 40000 7.6 40.05	Calgary	406015	34396	19391	8.76	8.0	441575	47,337	19,673	4.47	6.6
Abbotsford 60645 42,230 19,353 Vancouver 814070 32820 19499 11.58 9.1 908320 46,487 20,918 Viscasion 40000 7.6 410000 46,487 20,918	Edmonton	434250	30952	17931	-0.05	5 8.2	434020	42,581	18,349	3.20	8.2
Vancouver 814070 32820 19499 11.58 9.1 908320 46,487 20,918	Abbotsford						60645	42,230	19,353	2.73	10.0
Viiitaiia 19046E 20074 188E0 E.O. 7.E. 148800 10.14E	Vancouver	814070	32820	19499	11.58	3 9.1	908320	46,487	20,918	1.92	8.6
VICIONA 1.0 14003U 42,103 13,443	Victoria	139165	30971	18859	6.96	7.6	148890	42,105	19,445	0.92	7.7

Data source: 1996, 2001 Canadian census profile (Census Tract level) @ Canadian Census Analyser Note: the data have been adjusted for boundary changes of some CMAs. * Average employment income (full time full year) in Canadian Dollars

47

Number	Title	Author(s)
(2005)		
No. 124:	Exploring the Use of a Nonparametrically Generated Instrumental Variable in the Estimation of a Linear Parametric Equation	F.T. Denton
No. 125:	Borrowing Constraints, The Cost of Precautionary Saving, and Unemployment Insurance	T.F. Crossley H.W. Low
No. 126:	Entry Costs and Stock Market Participation Over the Life Cycle	S. Alan
No. 127:	Income Inequality and Self-Rated Health Status: Evidence from the European Community Household Panel	V. Hildebrand P. Van Kerm
No. 128:	Where Have All The Home Care Workers Gone?	M. Denton I.U. Zeytinoglu S. Davies D. Hunter
No. 129:	Survey Results of the New Health Care Worker Study: Implications of Changing Employment Patterns	I.U. Zeytinoglu M. Denton S. Davies A. Baumann J. Blythe A. Higgins
No. 130:	Does One Size Fit All? The CPI and Canadian Seniors	M. Brzozowski
No. 131:	Unexploited Connections Between Intra- and Inter-temporal Allocation	T.F. Crossley H.W. Low
No. 132:	Grandparents Raising Grandchildren in Canada: A Profile of Skipped Generation Families	E. Fuller-Thomson
No. 133:	Measurement Errors in Recall Food Expenditure Data	N. Ahmed M. Brzozowski T.F. Crossley
No. 134:	The Effect of Health Changes and Long-term Health on the Work Activity of Older Canadians	D.W.H. Au T. F. Crossley M Schellhorn

Title Number Author(s) No. 135: Population Aging and the Macroeconomy: Explorations in the F. T. Denton Use of Immigration as an Instrument of Control B. G. Spencer Users and Suppliers of Physician Services: A Tale of Two No. 136: F.T. Denton A. Gafni **Populations** B.G. Spencer No. 137: F.T. Denton MEDS-D USERS' MANUAL C.H. Feaver B.G. Spencer No. 138: MEDS-E USERS' MANUAL F.T. Denton C.H. Feaver B.G. Spencer Socioeconomic Influences on the Health of Older Canadians: No. 139: N.J. Buckley Estimates Based on Two Longitudinal Surveys F.T. Denton (Revised Version of No. 112) A.L. Robb B.G. Spencer No. 140: Developing New Strategies to Support Future Caregivers of J. Keefe the Aged in Canada: Projections of Need and their Policy J. Légaré Y. Carrière Implications No. 141: Les Premiers Baby-Boomers Québécois font-ils une Meilleure L. Mo Préparation Financière à la Retraite que leurs Parents? J. Légaré Revenu, Patrimoine, Protection en Matière de Pensions et Facteurs Démographiques No. 142: Welfare Restructuring without Partisan Cooperation: M. Hering The Role of Party Collusion in Blame Avoidance No. 143: Ethnicity and Health: An Analysis of Physical Health S. Prus Differences across Twenty-one Ethnocultural Groups in Z. Lin Canada No. 144: The Health Behaviours of Immigrants and Native-Born People J.T. McDonald in Canada No. 145: Ethnicity, Immigration and Cancer Screening: Evidence for J.T. McDonald Canadian Women S. Kennedy No. 146: Population Aging in Canada: Software for Exploring the F.T. Denton Implications for the Labour Force and the Productive Capacity C.H. Feaver of the Economy B.G. Spencer

SEDAP RESEARCH PAPERS: Recent Releases

Number	Title	Author(s)
-2006		
No. 147:	The Portfolio Choices of Hispanic Couples	D.A. Cobb-Clark V.A. Hildebrand
No. 148:	Inter-provincial Migration of Income among Canada's Older Population:1996-2001	K.B. Newbold
No. 149:	Joint Taxation and the Labour Supply of Married Women: Evidence from the Canadian Tax Reform of 1988	T.F. Crossley S.H. Jeon
No. 150:	What Ownership Society? Debating Housing and Social Security Reform in the United States	D. Béland
No. 151:	Home Cooking, Food Consumption and Food Production among the Unemployed and Retired Households	M. Brzozowski Y. Lu
No. 152:	The Long-Run Cost of Job Loss as Measured by Consumption Changes	M. Browning T.F. Crossley
No. 153:	Do the Rich Save More in Canada?	S. Alan K. Atalay T.F. Crossley
No. 154:	Income Inequality over the Later-life Course: A Comparative Analysis of Seven OECD Countries	R.L. Brown S.G. Prus
No. 155:	The Social Cost-of-Living: Welfare Foundations and Estimation	T.F. Crossley K. Pendakur
No. 156:	The Top Shares of Older Earners in Canada	M.R. Veall
No. 157:	Le soutien aux personnes âgées en perte d'autonomie: jusqu'où les baby-boomers pourront-ils compter sur leur famille pour répondre à leurs besoins ?	J. Légaré C. Alix Y. Carrière J. Keefe
No. 158:	Les générations X et Y du Québec, vraiment différentes des précédentes ?	J. Légaré P.O. Ménard
No. 159: French	La diversification et la privatisation des sources de revenu de retraite au Canada	L. Mo J. Légaré L. Stone
No. 159: English	The Diversification and the Privatization of the Sources of Retirement Income in Canada	L. Mo J. Légaré L. Stone
No. 160:	Evaluating Pension Portability Reforms: The Tax Reform Act of 1986 as a Natural Experiment	V. Andrietti V.A. Hildebrand

SEDAP RESEARCH PAPERS: Recent Releases

Number	Title	Author(s)
No. 161:	Estimating a Collective Household Model with Survey Data on Financial Satisfaction	R. Alessie T.F. Crossley V.A. Hildebrand
No. 162:	Physician Labour Supply in Canada: A Cohort Analysis	T.F. Crossley J. Hurley S.H. Jeon
No. 163:	Tax Incentives and Household Portfolios: A Panel Data Analysis	S. Alan S. Leth-Petersen
No. 164:	The Healthy Immigrant Effect and Immigrant Selection: Evidence from Four Countries	S. Kennedy J.T. McDonald N. Biddle
No. 165:	Well-Being Throughout the Senior Years: An Issues Paper on Key Events and Transitions in Later Life	M. Denton K. Kusch
No. 166:	Satisfied Workers, Retained Workers: Effects of Work and Work Environment on Homecare Workers' Job Satisfaction, Stress, Physical Health, and Retention	I.U. Zeytinoglu M. Denton
No. 167:	Contrasting Inequalities: Comparing Correlates of Health in Canada and the United States	H. Armstrong W. Clement Z. Lin S. Prus
-2007		
No. 168:	Health human resources planning and the production of health: Development of an extended analytical framework for needs- based health human resources planning	S. Birch G. Kephart G. Tomblin-Murphy L. O'Brien-Pallas R. Alder A. MacKenzie
No. 169:	Gender Inequality in the Wealth of Older Canadians	M. Denton L. Boos
No. 170:	The Evolution of Elderly Poverty in Canada	K. Milligan
No. 171:	Return and Onwards Migration among Older Canadians: Findings from the 2001 Census	K.B. Newbold
No. 172:	Le système de retraite américain: entre fragmentation et logique financière	D. Béland

Number	Title	Author(s)
No. 173:	Entrepreneurship, Liquidity Constraints and Start-up Costs	R. Fonseca PC. Michaud T. Sopraseuth
No. 174:	How did the Elimination of the Earnings Test above the Normal Retirement Age affect Retirement Expectations?	PC. Michaud A. van Soest
No. 175:	The SES Health Gradient on Both Sides of the Atlantic	J. Banks M. Marmot Z. Oldfield J.P. Smith
No. 176:	Pension Provision and Retirement Saving: Lessons from the United Kingdom	R. Disney C. Emmerson M. Wakefield
No. 177:	Retirement Saving in Australia	G. Barrett YP. Tseng
No. 178:	The Health Services Use Among Older Canadians in Rural and Urban Areas	H. Conde J.T. McDonald
No. 179:	Older Workers and On-the-Job Training in Canada: Evidence from the WES data	I.U. Zeytinoglu G.B. Cooke K. Harry
No. 180:	Private Pensions and Income Security in Old Age: An Uncertain Future – Conference Report	M. Hering M. Kpessa
No. 181:	Age, SES, and Health: A Population Level Analysis of Health Inequalitites over the Life Course	S. Prus
No. 182:	Ethnic Inequality in Canada: Economic and Health Dimensions	E.M. Gee K.M. Kobayashi S.G. Prus
No. 183:	Home and Mortgage Ownership of the Dutch Elderly: Explaining Cohort, Time and Age Effects	A. van der Schors R.J.M. Alessie M. Mastrogiacomo
No. 184:	A Comparative Analysis of the Nativity Wealth Gap	T.K. Bauer D.A. Cobb-Clark V. Hildebrand M. Sinning
No. 185:	Cross-Country Variation in Obesity Patterns among Older Americans and Europeans	P.C. Michaud A. van Soest T. Andreyeva

SEDAP RESEARCH PAPERS: Recent Releases

Number	Title	Author(s)
No. 186:	Which Canadian Seniors Are Below the Low-Income Measure?	M.R. Veall
No. 187:	Policy Areas Impinging on Elderly Transportation Mobility: An Explanation with Ontario, Canada as Example	R. Mercado A. Páez K. B. Newbold
No. 188:	The Integration of Occupational Pension Regulations: Lessons for Canada	M. Hering M. Kpessa
No. 189:	Psychosocial resources and social health inequalities in France: Exploratory findings from a general population survey	F. Jusot M. Grignon P. Dourgnon
No. 190:	Health-Care Utilization in Canada: 25 Years of Evidence	L.J. Curtis W.J. MacMinn
No. 191:	Health Status of On and Off-reserve Aboriginal Peoples: Analysis of the Aboriginal Peoples Survey	L.J. Curtis
No. 192:	On the Sensitivity of Aggregate Productivity Growth Rates to Noisy Measurement	F.T. Denton
No. 193:	Initial Destination Choices of Skilled-worker Immigrants from South Asia to Canada: Assessment of the Relative Importance of Explanatory Factors	L. Xu K.L. Liaw
No. 194:	Problematic Post-Landing Interprovincial Migration of the Immigrants in Canada: From 1980-83 through 1992-95	L. Xu K.L. Liaw
No. 195:	Inter-CMA Migration of the Immigrants in Canada: 1991- 1996 and 1996-2001	L. Xu