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Abstract

Starting from her home, a service provider visits several customers, following a prede-
termined route, and returns home after all customers are visited. The problem is to �nd
a fair allocation of the total cost of this tour among the customers served. A transferable-
utility cooperative game can be associated with this cost allocation problem. We introduce
a new class of games, which we refer as the �xed-route traveling salesman games with ap-
pointments. We study the Shapley Value in this class and show that it is in the core. Our
�rst characterization of the Shapley value involves a property which requires that spon-
sors do not bene�t from mergers, or splitting into a set of sponsors. Our second theorem
involves a property which requires that the cost shares of two sponsors who get connected
are equally e�ected. We also show that except for our second theorem, none of our results
for appointment games extend to the class of routing games (Potters et al, 1992).
Keywords : �xed-route traveling salesman games, routing games, appointment games,

the Shapley value, the core, transferable-utility games, merging and splitting proofness,
equal impact, networks, cost allocation.

1 Introduction

Finding the least-costly route that visits a given set of locations and returns to the starting
location, the so called \traveling salesman problem (TSP)" is one of the most well-known
combinatorial optimization problems in operations research. A vide variety of problems can
be modelled as a TSP or one of its extensions.1 In several of these problems, the cost of
the tour has to be allocated among the customers visited (sponsors). This kind of a cost
allocation problem in a TSP was �rst investigated by Fishburn and Pollack (1983). Some
examples where a cost allocation problem arises include a salesman (repairman, cable guy,
parcel delivery guy etc.) visiting his customers, a professor invited by several universities for

�The �rst draft of this paper was written when I was a Ph.D student in the University of Rochester. I am
grateful to William Thomson for his guidance and advice.

ySchool of Economics, the University of Adelaide, Adelaide, SA 5005, Australia; e-mail:
duygu.yengin@adelaide.edu.au.

1For instance, location routing, closed-loop material ow system design in production settings, sequencing
jobs in a exible manufacturing environmet, post box collection, stochastic vehicle routing, grocery shopping,
scheduling of home deliveries of online shopping, robotic travel problems like soldering or drilling operations
on printed circuit boards, sequencing local genome maps to produce a global map, planning the order in which
a satellite interferometer studies a sequence of stars, seriation problems in archeology, etc.
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seminars, passengers using shuttle buses or car-pooling, and distribution planning situations
such as delivery of supplies to grocery stores by a manufacturer.2

In some of the above examples, the traveler may need to follow a route that is not neces-
sarily the least costly one. We study the so called \�xed-route traveling salesman problems"
where the route is �xed according to the restrictions in the agenda of the traveler. Here,
starting from her home (main o�ce, factory, or depot), a service provider visits several cus-
tomers, following a predetermined route, and returns home after all customers are visited.
Each customer is to be visited exactly once but home can be visited more than once, which
may be necessary, for instance, when the service provider needs to replenish her supplies after
visiting a group of customers and before visiting the rest. Another reason may be that the
traveler has appointments to meet with the customers and there is a considerable waiting time
between two consecutive appointments. Then, in between those appointments, she would go
home and wait there.

Various factors other than the cost may a�ect the route. Some of the sponsors may need
to be visited before the others due to the urgency of their needs, their higher priority status,
or the availability of their free times for a visit. For example, a professor may have to visit
several universities in the order speci�ed by their available seminar dates or a service provider
has to visit her customers according to their appointments. In some cases, it is not possible
to visit a location before visiting certain others. For instance, an employer may need to pick
up some �les from some o�ces and submit them to other o�ces to get them signed and there
is an authority structure according to which signatures must be collected. Other examples
include a communication network where the ow of information has to follow the speci�ed
network structure3 or a product which has to be processed in several departments in a �rm
according to the stage of its development (e.g. it can not be sent to the marketing department
before quality control).

Our goal is to �nd a fair distribution of the total cost generated in a �xed-route TSP
among the sponsors. One way to solve this distribution problem is to associate a cooperative
game with transferable utilities (TU-game) with the cost allocation problem. A TU-game is a
pair (N; v) where N is a �nite set of agents and v : 2N ! R is a characteristic function which
assigns to each coalition S � N; a value v(S) such that v(;) = 0: In the current context,
v(S) represents the cost of the tour in which only the members of S are served by the service
provider. Potters, Curiel, and Tijs (1992) formulate a TU-game associated with a �xed-route
TSP as follows: for each coalition S � N; v(S) is de�ned as the cost of the original route
restricted to S; where the salesman visits the members of S in the same order as they were
visited in the original route over N , skipping all agents in NnS:4 They refer to these games
as routing games. Note that if the salesman and all sponsors live along the coast of an island
and the travel costs are proportional to the Euclidean distances, then the least costly tour for

2For a case study of the cost allocation problem concerning the transportation of gas and gas oil to the
customers of Norsk Hydro, see Engevall et al (1998).

3For example, consider a network in which a central o�ce sends information (or papers/products to be
processed) to several satellite o�ces which need to send back the processed information. There is a �xed order
of satellite o�ces that must be respected: o�ce i's information has to be obtained by the central o�ce before
o�ce i+1: Each satellite o�ce i can only communicate with the central o�ce and o�ce i+1. Hence, she can
send the information to the central o�ce via the o�ce next to her.

4Potters et al (1992) also studied TSPs where the route is not �xed. They introduced the traveling salesman
games, where the value of a coalition is the cost of a least costly tour over the members of that coalition. The
salesman is allowed to visit any agent more than once and he is free to visit the agents in a coalition in any
order he wishes as long as the cost of the trip is minimized. See [3], [8], [12], [14].
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a subset of sponsors is the one speci�ed in a routing game (Derks and Kuipers, 1997).
We introduce a new class of games which we refer as the class of �xed-route traveling

salesman games with appointments (here after, appointment games). Consider the case in
which each sponsor in N makes an appointment to meet the traveler at a speci�ed time.
After all the appointments are made, suppose the members of S � N decide to hire the
traveler without cooperating with the sponsors in NnS: That is, the members of S together
will pay v(S) to the traveler. This can be thought as if all the sponsors in NnS cancel their
appointments. The permissible route over S is the one where the traveler still visits the
sponsors in S according to their original appointments. So, the traveler follows the original
route, skipping the sponsors who are not in S; and when she skips a sponsor, she goes home
from where she goes to the next unvisited sponsor in S:5 The value of a coalition S; is the cost
of this permissible route over S:

Our formulation of permissible routes over coalitions makes sense in several TSPs where
the service provider makes appointments with the customers which can not be changed in
a short notice of time. Hence, if some appointments are cancelled, the remaining ones can
not be rescheduled. Also, suppose that when a traveler visits a sponsor, she has to spend
a considerable period of time to complete her service for that sponsor. In that case, if an
appointment is cancelled, then the traveler has to wait a lengthy period of time till the next
appointment. Hence, it is not feasible for the traveler to go to the next sponsor immediately.
Hence, when the traveler skips a sponsor, she goes home where she waits till it is time for
the next appointment. For instance, consider a professor who wants to visit universities in
di�erent cities at speci�c dates as a visiting professor. When she visits a university, suppose
she has to stay there for a few weeks. If a university cancels its appointment, instead of
visiting the next university in the route right away, the professor goes back to her home and
waits there until the appointed date for the next university arrives.

Several papers discuss the \core" in traveling salesman games and routing games (see
[2], [4], [19], [20], [21]). Here, we study another well-known solution, the \Shapley value"
(Shapley, 1971). In general, the Shapley value is computationally complex. However, in
appointment games, we show that this is not the case. We also show that under a mild
condition on the costs, the class of appointment games is convex, hence, in this class, the
Shapley value is in the core. Moreover, the Shapley value may be an appealing alternative to
core since it is always non-empty, single-valued, and is the unique solution satisfying certain
desirable properties. Characterizations of the Shapley value in general networks are provided
by Myerson (1997) and Jackson and Wolinsky (1996). Kar (2002) characterizes the Shapley
value in minimum cost spanning tree games. Shapley value has also been characterized in
sequencing and queuing problems (Maniquet, 2003; Chun, 2004, 2006; Moulin, 2007, 2008).

For the TSP games with appointments, we present two sets of characterizations of the
Shapley value. The �rst set of results involves several variations of a strategic property called
merging and splitting proofness which requires that a set of sponsors who follow each other on a
route should not gain by merging or a sponsor should not gain by splitting into several sponsors
located next to each other. Our second set of results involves a property which requires that
when two sponsors get connected, they are e�ected equally. This characterization is in the
same spirit of Kar's characterization of the Shapley value in minimum cost spanning tree
games and Myerson's characterization in general networks.

We also analyze the Shapley value in the class of routing games. Not all results for

5Note that an appointment game would coincide with a routing game if for each pair of sponsors fi; jg; the
cost of traveling between i and j is equal to cost of traveling from i to home and from home to j:
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appointment games carry over to routing games. For instance, in the class of routing games,
the calculation of the Shapley value is complex unlike in appointment games. We also show
that our �rst set of results doesn't extend to the routing games. However, we extend our
second set of results to this class. Potters et al (1992) speci�ed the conditions which ensure
that the core of routing games is non-empty (these conditions are stronger than our condition
that ensures the convexity of appointment games). However, we show that these conditions do
not guarantee the convexity of the routing games. Hence, we can not guarantee that Shapley
value is in the core whenever it is non-empty.

In Section 2, the model is described. The results for the appointment games are presented
in Section 3. Section 4 presents the results for the routing games. All proofs are in the
Appendix.

2 The Model

2.1 The Economy

Let N = f1; :::; ng with jN j = n � 2 be an ordered list of sponsors and 0 be home. Without
loss of generality, we assume that the sponsors are visited in the same order as they appear
in N: Let N0 � N [ f0g and for each S � N; let S0 � S [ f0g: A route r = (i1; i2; :::; iM ) is
an ordered list of the agents (sponsors and home) to be visited by a \traveler" such that

(i) the route starts from home and ends at home (i.e. i1 = iM = 0);
(ii) each sponsor is visited exactly once,
(iii) home can be visited more than once,
(iv) after sponsor i 2 N is visited, either home or sponsor i + 1 is to be visited (i.e. the

relative order of the sponsors in r respect their order in N):

For each pair fi; jg � N0; i is connected to j on a route r (denoted as i �r j), if after i;
the next agent visited is j : r = (0; :::; i; j; :::; 0).

For each fi; jg � N0; let ci;j � 0 be the cost of traveling between agents i and j: Let
ci � c0;i be the cost of traveling between home and sponsor i: The cost of a route r is
c(r) =

P
fi;jg�N0: i�rj

ci;j :

Let c = fci;j : fi; jg � N0g. An economy is given by e = hN; c;ri : Let the domain of all
economies be E :

A sponsor set S = fl; l + 1; :::;m � 1;mg � N is a connected set on r if and only if
0 �r l �r l+ 1 �r ::: �r m� 1 �r m �r 0: Let Se be the set of all connected sets in economy
e:

In order to visualize the problem, we can associate a graph with each e = hN; c;ri 2 E :
The elements of N0 are called nodes, 0 being the source. A link between nodes i and j
(denoted as lij) is a direct path between them: Let li � l0i be the link between home and i:
Let L = flij : fi; jg � N0g be the set of all links between all agents. A graph g over N0 is
a subset of L: The graph associated with e = hN; c;ri 2 E is g(e) = flij : fi; jg � N0 and
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i �r jg where each link lij in g(e) is associated with weight ci;j :
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Example 1. Let e = hN; c;ri with r = (i1; i2; i3; :::; i7) = (0; 1; 0; 2; 3; 4; 0): The route r de-
scribes a trip where starting from 0 (home); the traveler visits sponsor 1, then goes back
home: From home; she visits sponsors 2, 3; and 4, in that order, and returns home and
completes the tour.
Here, the connected sets are S = f1g and S0 = f2; 3; 4g: Hence, Se = fS; S0g: The cost of the
route is c(r) = 2c1 + c2 + c2;3 + c3;4 + c4: The associated graph g(e) is as in Figure 1.

2.2 Appointment Games

Let e = hN; c;ri 2 E and S � N: Let the permissible route over S (denoted as rS) be as
follows:

Starting from home, the traveler �rst visits the smallest numbered sponsor in S; let us call
this sponsor j1: Suppose, in the original route r; after visiting sponsor j1; the traveler visits
agent (home or a sponsor) i 2 N0 (i.e. j1 �r i). If i 2 S0; then in route rs; the traveler goes
to i right after visiting j1 (i.e. j1 �rS j2 � i): If i =2 S; then it is as if i has cancelled her
appointment. In this case, in rS ; after visiting j1, the traveler goes home and she waits there
till it is time to attend the next outstanding appointment with the sponsors in Snfj1g: That
is, if j1 �r i and i =2 S; then j1 �rS 0 �rS l where l = minfk : k 2 S and k > j1g). A similar
procedure is followed until all the sponsors in S are visited, then the traveler returns home.
Note that each time after the traveler visits home, the next agent she visits is the smallest
numbered agent in S that has not been visited so far.

Formally, for some T � jSj; let rS = (0; j1; j2; :::; jT ; 0) be such that:

(i) for each t 2 f1; ::; Tg; jt 2 S0; and for each i 2 S; there is a unique t 2 f1; ::; Tg such that
i � jt on rS ;
(ii) j1 = min

i2S
i and jT = max

i2S
i;

(iii) for each jt 2 S with t 2 f1; 2; ::; Tg and each i 2 N such that jt �r i; if i 2 S0; then
jt �rS jt+1 � i; otherwise jt �rS jt+1 � 0; and
(iv) for each jt � 0 with t 2 f2; ::; T � 1g; we have jt �rS minfk : k 2 S and k > jt�1g:

Let e = hN; c;ri 2 E : For each S � N; let cS= fci;j � 0 : fi; jg � S0g: The economy
restricted to S with respect to rS is eS = hS; cS ;rSi 2 E :

For each e = hN; c;ri 2 E , the �xed-route traveling salesman game with appointments (in
short, appointment game) associated with e is Ve = (N; ve) where ve : 2

N ! R+ is such that
for each S � N; ve(S) = c(rS): Let VE = fVe : e 2Eg be the class of appointment games:
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Note that ve(N) = c(r) and for each S 2 Se; ve(S) = c(rS): Since c(r) =
P
S2Se

c(rS),

ve(N) =
P
S2Se

ve(S):

Example 2. Let e = hN; c;ri where r = (0; 1; 0; 2; 3; 4; 5; 0; 6; 0; 7; 8; 9; 0): Let S =
f1; 4; 5; 6; 7; 9g: Then, rS = (0; 1; 0; 4; 5; 0; 6; 0; 7; 0; 9; 0): Here, 7 �r 8 but 8 =2 S (i.e. 8
cancelled her appointment). Thus, after visiting 7, the traveler goes home from where she
goes to sponsor 9:
The graphs g(e) and g(eS) = flij : fi; jg � S0 and i �rS jg are as in Figures 2a and 2b.

0

1

2

3
4 5

6
7

9

8

c 1

c 2

c 7
c6c 5

0

1

2

3
4 5

6
7

9

8

0

1

2

3
4 5

6
7

9

8

c 1

c 2

c 7
c6c 5

0

1

2

3
4 5

6
7

9

8

c 1

c 2

c 7
c 6c 5

0

1

2

3
4 5

6
7

9

8

0

1

2

3
4 5

6
7

9

8

c 1

c 2

c 7
c 6c 5

C3,4

C2,3

C4,5

C7,8

C8,9

C9

0

1

2

3
4 5

6
7

9

8

c 1

c 2

c 7
c6c 5

0

1

2

3
4 5

6
7

9

8

0

1

2

3
4 5

6
7

9

8

c 1

c 2

c 7
c6c 5

0

1

2

3
4 5

6
7

9

8

c 1

c 2

c 7
c 6c 5

0

1

2

3
4 5

6
7

9

8

0

1

2

3
4 5

6
7

9

8

c 1

c 2

c 7
c 6c 5

C3,4C3,4

C2,3C2,3

C4,5C4,5

C7,8C7,8

C8,9C8,9

C9C9

Figure 2a : g(e)
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2.3 The Shapley Value

For each e = hN; c;ri 2 E ; to determine a cost allocation vector x =(x1; x2; :::; xn) 2 Rn withP
i2N
xi = c(r), we have two options. First option is to de�ne a rule that selects an allocation

for each economy directly. Second one is to associate a TU-game with each economy, and
de�ne a rule that selects an allocation for the TU-game. In this paper, we follow the later
approach.6

Let V = (N; v) be a TU-game where v : 2N ! R+ is a characteristic function such that
v(;) = 0: A solution F is a mapping that associates with each V = (N; v); an allocation vector
x =(x1; x2; :::; xn) 2 Rn where

P
i2N
xi = v(N):

7 An example of a solution is the Shapley value,

SV: for each V = (N; v) and each i 2 N;

SVi(V ) =
X

S�Nnfig

jSj!(n� jSj � 1)!
n!

[v(S [ fig)� v(S)]:

In general, the Shapley value is computationally complex since we need to calculate the
marginal contribution of each agent to each possible coalition. But, for appointment games,
it turns out that the Shapley value has a simple form (see the Appendix for the derivation of
the Shapley Value). Let e = hN; c;ri 2 E , i 2 N; and Si 2 Se be the connected set such that
i 2 Si:
� If Si = fig; then

SVi(Ve) = 2ci:

6Examples of other cost allocation problems where cooperative game theory is used include airplane landing
fees [15], water resource planning [18], telephone billing rates [1], investment in electric power [6], minimum
cost spanning trees [11].

7Note that we de�ne solutions to apply for general TU-games and not for only TU-games associated with
TSPs.
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� If Si \ fi� 1; i+ 1g = j; then

SVi(Ve) =
3ci + ci;j � cj

2
:

� If fi� 1; i+ 1g � Si; then

SVi(Ve) =
1

2
(2ci + ci�1;i + ci;i+1 � ci�1 � ci+1):

That is, for each sponsor i 2 Si, her Shapley value in an appointment game is the average
of her marginal contribution to the coalition of sponsors that are in the same connected set as
her and precede her in the route (ve(fj 2 Si : j � ig)� ve(fj 2 Si : j < ig)) and her marginal
contribution to the coalition of sponsors that are in the same connected set as her and come
after her in the route (ve(fj 2 Si : j � ig)� ve(fj 2 Si : j > ig)).

Note that in the appointment games, the Shapley value of a sponsor only depends on the
cost of traveling from herself to home, and to the sponsors that are connected to her. A
change in the cost of a sponsor to connect home a�ects only herself and the sponsors who
are connected to her. Also, a change in the cost of traveling between two sponsors only e�ect
those sponsors and e�ect them equally.

3 Characterizations of the Shapley Value in Appointment

Games

3.1 The Core and the Shapley value

In a cost allocation problem, the core of a TU-game V = (N; v) is the set of vectors x 2 Rn
such that for each S � N;

P
i2S
xi � v(S) and

P
i2N
xi = v(N): If an allocation x 2 Rn+ is

in the core of a game V; then no coalition of sponsors has an incentive to leave the grand
coalition N: In general, the core can be empty. Potters et al (1992) state that in the class of
routing games, if the route r chosen for the grand coalition is a least-costly tour and triangle
inequalities hold for all the agents (i.e. for each triple fi; j; kg � N0; ci;j + cj;k � ci;k), then
the core is non-empty.

In appointment games, a much weaker condition is su�cient for the core to be non-empty.
First of all, we do not need that r be a least costly tour for N: Second, we only need that
given a route, for each pair of connected sponsors, the sum of their costs of connecting to
home is greater than the cost of connecting to each other: Formally, for each r and each pair
fi; jg � N such that i �r j; ci + cj � ci;j . Let ET be the set of economies in which this
condition holds. Let VET be the class of appointment games associated with economies in
ET : Actually, on ET ; we achieve more than the non-emptiness of the core. Here, we also have
the convexity of the appointment games8 and hence, by Theorem 7 of Shapley (1971), the
Shapley value is an element of the core.

Proposition 1. On the domain ET ; appointment games are convex and the Shapley value is
in the core.

8In a cost allocation problem, a TU-game V = (N; v) is convex if for each i 2 N and S � T � Nnfig;
v(S [ fig)� v(S) � v(T [ fig)� v(T ).
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In the rest of the paper, unless stated otherwise, the results hold on both of the domains
E and ET :

Let us present other axioms that compare the cost shares of sponsors with the values of
coalitions in di�erent situations.

Although, the core compares, for each coalition, the sum of the cost shares of the sponsors
in the coalition with the value of that coalition, the following two axioms are concerned with
only the grand coalition N and singleton coalitions, respectively.

E�ciency: For each V=(N; v);
P
i2N
Fi(V ) = v(N):

Individual Rationality: For each V=(N; v); Fi(V ) � v(fig):

Note that the Shapley value satis�es Individual Rationality only on VET : To see this,
let e = hfi; jg; c;ri with i �r j and suppose that ci + cj < ci;j (i.e. e =2ET ): Then, since
SVi(Ve) = 1=2(3ci + ci;j � cj) and v(fig) = 2ci; SVi(Ve) > v(fig):

The following axiom states that in each connected set, the sponsors should together pay
the value of that set. Hence, connected sets should not cross-subsidize each other.9

Respect of Connected Sets: For each e = hN; c;ri 2 E and each connected set S 2 Se;X
i2S
Fi(Ve) = ve(S):

We also consider the following weakening of Respect of Connected Sets where for each
connected set S, the sum of the cost shares of the sponsors in S sum up to an amount that
depends on the value of S: Hence, instead of the cost of visiting all the sponsors in S; the
traveler collects an amount from S which is a function of this cost. For instance, the service
provider may charge a at fee to each connected set, regardless of the cost of visiting them or
may use markup pricing. Let � : R+ ! R.

Weak Respect of Connected Sets with respect to � : For each e = hN; c;ri 2 E and
each connected set S 2 Se; X

i2S
Fi(Ve) = �(ve(S)):

Consider the di�erence between the value of a coalition consisting of only one sponsor
and the cost share of this sponsor in the grand coalition. This di�erence measures how much
a sponsor bene�ts from cooperating with the other sponsors rather than being alone. The
following fairness axiom requires that in a two-sponsor TU-game, the sponsors should equally
bene�t from cooperation. In a sense, in two-sponsor games, we require the sponsors to have
equal bargaining powers when it comes to sharing the bene�ts from cooperation.

Equal Bene�t: For each V=(fi; jg; v),

v(fig)� Fi(V )=v(fjg)� Fj(V ):

Hart and Mas-Colell (1989) call a solution F \standard for two-person games" if it satis-
�es E�ciency and Equal Bene�t. For each V=(fi; jg; v), such a solution divides the surplus

9Note that we de�ne some of the axioms (such as E�ciency) for any TU-game where as some (such as
Respect of Connected Sets) are de�ned only for those TU-games associated with TSPs.
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v(fi; jg)�v(fig)�v(fjg) equally among the sponsors.10 Most solutions satisfy this require-
ment, one of them being the Shapley value.

Remark 1. A solution F satis�es E�ciency in two-sponsor TU-games and Equal Bene�t if
and only if for each V = (N; v) with n = 2; and each i 2 N;

Fi(V )=v(fig) +
1

2
[v(N)�v(fig)�v(Nnfig)] = SVi(V ):

3.2 Mergers and the Shapley value

Manipulation of solutions by collusion has been analyzed in several di�erent contexts including
problems of bargaining (Harsanyi, 1977), rationing and bankruptcy (Banker 1981; Moulin,
1987; Ju, 2003), cost sharing (Sprumont, 2005), quasi-linear social choice (Moulin, 1985;
Chun, 2000), queuing and scheduling (Maniquet, 2003; Chun, 2004, 2006; Moulin, 2007,
2008) Merging and splitting proofness leads to characterizations of the Proportional rule in
rationing problems, the egalitarian division of surplus in the quasi-linear social choice model,
and the Aumann-Shapley rule in the cost sharing problem with variable demands (for a survey,
see Ju et al, 2005). In the deterministic scheduling model, Moulin (2007) introduces two rules
which correspond to the Shapley value of two di�erent games that can be associated to the
scheduling problem. He analyzes these rules with respect to their merge proofness and split
proofness properties.

There are several ways in which agents can collude. In the context of TU-games, two
approaches can be noticed: either a new game with the same player set evolves when agents
make binding agreements (Haller, 1994) or a group of agents merge into one player so that the
set of players for the new game is reduced (Lehrer, 1988; Derks and Tijs, 2000, Knudsen and
�sterdal, 2005). In some of the papers, only bilateral agreements/amalgamations are studied
(e.g. Lehrer, 1988; Haller, 1994) or there is a given partition of the agent set that dictates
which coalitions can merge (Derks and Tijs, 2000).

In our context, we consider mergers which result in a reduced player set. Also, instead
of any group of sponsors, we allow only those sponsors who follow each other on a route
to merge. This requirement is intuitive especially when we think that sponsors can only
e�ectively communicate and merge with their neighbors in the network (for instance, when
the sponsors do not follow each other on a route, they may not be able to collude due to
the geographical distance between them or the traveler may easily detect such mergers and
prohibit them).

Suppose a group of consecutive sponsors K = fk; k + 1; k + 2; :::; lg for some fk; lg � N ,
form a coalition and act as a single sponsor k 2 K (i.e. K merge into k).11 Note that K
does not have to be a connected set, the traveler may visit home in between visiting any two
sponsors in K: However, the traveler does not visit any sponsor outside K in between visiting
any two sponsors in K:

If K merges and acts like a single sponsor k 2 K; then we assume that as a group, K
is willing to pay the traveler up to v(K): Also, after the merger, no subset of K can behave
on its own and form coalitions with sponsors outside K; however all the sponsors in K; as a
group, can cooperate with other sponsors: Hence, in e�ect, by requiring K to act as a single

10Hart and Mas-Colell (1989) introduce the concept of "preservation of di�erences" which can be regarded
as a generalization of the "equal division of the surplus" idea for two-person problems.
11Note that the choice of k as the representative of K is arbitrary, K can merge into any i 2 K:
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entity, we are imposing restrictions on which coalitions can form. The resulting TU-game can
be de�ned as follows.

Let e = hN; c;ri 2 E and K � N be such that K = fk; k + 1; k + 2; :::; lg for some
1 � k < l � n. Let bv : 2(NnK)[fkg ! Rn�jKj+1+ be such that

� bv(fkg) = ve(K);
� for each S � NnK; bv(S) = ve(S); and
� for each S � NnK; bv(S [ fkg) = ve(S [K):

We refer bV = ((NnK) [ fkg; bv) as the TU-game obtained from Ve = (N; ve) when K
merges into a single sponsor k:

The following axiom states that no group of consecutive sponsors can change the total
cost its members pay by a merger.

Merging and Splitting Proofness: For each e = hN; c;ri 2 E , each K = fk; k + 1; k +
2; :::; lg with 1 � k < l � n; and each bV as described above,

Fk(bV ) =X
i2K
Fi(Ve):

We can strengthen Merging and Splitting Proofness by allowing for the possibility that
there may be more than one merger at the same time. In this case, for each of the merging
groups, the total cost its members pay should remain unchanged. Although, the Shapley value
would satisfy this stronger requirement as well12, for our results, we only need a much weaker
(but less intuitive) version of this requirement: Suppose the grand coalition is partitioned into
two groups and each of these groups merge into a single sponsor. Then, none of these two
groups should change their total cost share by these mergers. Formally, let e = hN; c;ri 2 E
and fK;K 0g � 2N be such that K = f1; 2; :::; kg and K 0 = fk + 1; k + 2; :::; ng for some
1 � k < n. Let ev : 2fk;k0g ! R2+ be such that ev(fkg) = ve(K), ev(fk0g) = ve(K

0); andev(fk; k0g) = ve(N): Let eV = (fk; k0g; ev) be the TU-game obtained from Ve = (N; ve) when K
merges into a single sponsor k and K 0 merges into a single sponsor k0 2 K 0:

Merging and Splitting Proofness-2: For each e = hN; c;ri 2 E , each fK;K 0g � 2N ; and
each eV as described above,

Fk(eV ) =X
i2K
Fi(Ve) and Fk0(eV ) = X

i2K0

Fi(Ve):

Another variable population property is concerned with departures from the original econ-
omy in the following way. Let S be a connected set in e = hN; c;ri. Now, suppose all the
sponsors which do not belong to S leave after paying their cost shares. Note that since S
is a connected set, the cost of visiting the sponsors in S is same both before and after the
departure of sponsors in NnS. Hence, fairness may require that whether the sponsors in S
cooperate with the grand coalition or not should not e�ect their cost shares. In other words,
the sponsors in S should not be a�ected when the other sponsors leave the economy. Let
eS = hS; cS ;rSi 2 E be the reduced economy after the departure of NnS:
Consistency over Connected Sets: For each e = hN; c;ri 2 E , each S 2 Se, and each
i 2 S;

Fi(Ve) = Fi(VeS ):

12Our proofs will also work with this stronger requirement.
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Between the axioms stated so far, certain (sometimes rather obvious) logical relations hold
as the following remark presents.

Remark 2. a) If a solution satis�es Weak Respect of Connected Sets with respect to � for
some � : R+ ! R, Merging and Splitting Proofness-2, and Equal Bene�t, then � is an identity
function (i.e. the solution satis�es Respect of Connected Sets).

b) E�ciency and Merging and Splitting Proofness together imply Merging and Splitting
Proofness-2.

c) E�ciency, Individual Rationality, and Merging and Splitting Proofness together imply
Respect of Connected Sets.

d) E�ciency in two-sponsor TU-games,Merging and Splitting Proofness-2, and Equal Bene�t
together imply Respect of Connected Sets.

e) Core implies Respect of Connected Sets which in turn implies E�ciency in two-sponsor
TU-games.13

f) E�ciency and Consistency over Connected Sets together imply Respect of Connected Sets.

By Remark 1, E�ciency in two-sponsor TU-games and Equal Bene�t characterize the
Shapley value for two sponsor TU-games. By Remark 2d, we also have Respect of Connected
Sets. This axiom and Merging and Splitting Proofness-2 lifts the characterization from two
sponsor games to larger economies as stated in our main theorem, next.

Theorem 1. The Shapley value is the only solution which satis�es E�ciency in two-sponsor
TU-games, Merging and Splitting Proofness-2, and Equal Bene�t.

Several alternative combinations of axioms still characterize the Shapley value in appoint-
ment games due to the logical relations stated in Remark 2. For instance, by Remark 2e and
Theorem 1, the Shapley value is also the only solution that satis�es Respect of Connected
Sets, Merging and Splitting Proofness-2, and Equal Bene�t. Moreover, by Remark 2a, we can
weaken Respect of Connected Sets and still obtain the Shapley value. The other result in the
next corollary is due to Remark 2b.

Corollary to Theorem 1

a) A solution F satis�es Weak Respect of Connected Sets with respect to � for some
� : R+ ! R, Merging and Splitting Proofness-2, and Equal Bene�t if and only if F = SV:

b) The Shapley value is the only solution which satis�es E�ciency, Merging and Splitting
Proofness, and Equal Bene�t.

One may argue that only those sponsors that belong to the same connected set can e�ec-
tively communicate and hence can merge into a single sponsor. That is, the network structure
does not permit sponsors in di�erent connected sets to merge. We can weaken Merging and

13In general, Respect of Connected Sets in appointment games does not imply E�ciency in general TU-games
with more than 2 agents. For instance, consider V=(f1; 2; 3g; v) such that v(f1g) = 1; v(f2g) = 5; v(f3g) = 3;
v(f1; 2g) = 4; v(f2; 3g) = 6; v(f1; 3g) = 3: Here, there is no route r such that for e = hf1; 2; 3g; c;ri ; we can
have ve = v: To see this, if r = (0; i; j; k; 0) (we can add 0 in between i&j and/or j&k); then ve(fi; kg) =
ve(fig) + ve(fkg) which is not satis�ed by v for any fi; kg � f1; 2; 3g:
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Splitting Proofness-2 to take into account this argument by requiring that we can only apply
the axiom when the agent set is a connected set.14

Weak Merging and Splitting Proofness-2: For each e = hN; c;ri 2 E , if jSej = 1; then
for each fK 0

;K
00g � 2N such that N = K 0 [K 00 and K 0 \K 00 = ;, if eV = (fk0; k00g; ev) is the

TU-game obtained from Ve = (N; ve) when K
0 merges into a single sponsor k0 2 K 0 and K 00

merges into a single sponsor k00 2 K 00; then

Fk0(eV ) = X
i2K0

Fi(Ve) and Fk00(eV ) = X
i2K00

Fi(Ve):

If we use this weaker axiom in Theorem 1, to obtain a characterization result, we also
need Consistency over Connected Sets.

Proposition 2. The Shapley value is the only solution which satis�es E�ciency in two-
sponsor TU-games, Weak Merging and Splitting Proofness-2, Equal Bene�t, and Consistency
over Connected Sets.15

Hart and Mas-Colell (1989) characterize the Shapley value in general TU-games using
E�ciency in two-sponsor TU-games, Equal Bene�t, and a consistency property which, if
adapted to our setting, is stronger than Consistency over Connected Sets since it allows the
departure of any set of agents (not only the sponsors that are outside a given connected set)
after paying their cost shares. Theorem 1 indicates that in appointment games, instead of
consistency, we can use Merging and Splitting Proofness-2 and still obtain the Shapley value.
Also, comparison of Proposition 2 to Hart and Mas-Colell's result shows that we can weaken
their consistency idea to Consistency over Connected Sets while using a supplementary axiom
Weak Merging and Splitting Proofness-2 and still obtain the Shapley value.

In almost all characterizations of the Shapley value, E�ciency (or Respect of Connected
Sets) is used. In Theorem 1, we weakened E�ciency so that it is only required to hold in
two-sponsor TU-games. To see how far we would move away from the Shapley value when we
drop the requirement that the traveler collects the cost of visiting sponsors, let us consider
Weak Respect of Connected Sets with respect to � for some � : R+ ! R: Remark 2a states
that if � : R+ ! R is an arbitrary function and not necessarily the identity function, then
Weak Respect of Connected Sets with respect to �, Merging and Splitting Proofness-2, and
Equal Bene�t are incompatible. For instance, if the traveler wants to use markup pricing or
a at fee, she can not use a solution which satis�es Merging and Splitting Proofness-2 and
Equal Bene�t. The proof of this incompatibility result requires using economies with at least
three connected sets. Let VE2 be the class of appointment games associated with economies
with at most two connected sets. If F is de�ned on VE2 ; then F can satisfy the aforementioned
three axioms and yet � does not have to be an identity function. The interesting point is
that F would still be closely related to the Shapley value: in economies where it is de�ned,

14Note that the Shapley value also satis�es the following stronger requirement: For each e = hN; c;ri 2 E ,
S 2 Se; and fS0;S00g � 2S such that S = S0 [ S00 and S0 \ S00 = ;, if eV = ((NnS) [ fs0; s00g; ev) is the TU-game
obtained from Ve = (N; ve) when S

0 merges into a single sponsor s0 2 S0 and S00 merges into a single sponsor
s00 2 S00; then Fs0(eV ) = P

i2S0
Fi(Ve) and Fs00(eV ) = P

i2S00
Fi(Ve): For the proof, see Appendix 8 in the working

version of our paper.
15Note that the same result can be obtained if we replacedWeak Merging and Splitting Proofness-2 with the

following stronger but more intuitive requirement: there may be more than one merger at the same time but
only the sponsors that belong to the same connected set are allowed to merge, then, for each of the merging
groups, the total cost its members pay should remain unchanged.
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F coincides with the Shapley value for each sponsor i 2 N that is connected to both i � 1
and i + 1: Hence, weakening Respect of Connected Sets only e�ects the cost shares of the
�rst and the last sponsors to be visited in any connected set: This result shows that, on VE2 ,
the traveler can be exible in her pricing strategy and still not move too far away from the
Shapley value in appointment games.

Proposition 3. Let F be solution de�ned on VE2. Let � : R+ ! R:
a) Solution F satis�es Weak Respect of Connected Sets with respect to �, (Weak) Merging
and Splitting Proofness-2, and Equal Bene�t if and only if for each e = hN; c;ri 2 E such that
jSej = 1 and each i 2 N;

Fi(Ve) = 1
2(�(ve(N)) + ve(fig)� ve(Nnfig)); if i 2 f1; ng;

= SVi(Ve); if i =2 f1; ng:

b) Solution F satis�es Weak Respect of Connected Sets with respect to �, (Weak) Merging
and Splitting Proofness-2, Equal Bene�t, and Consistency over Connected Sets if and only if
for each e = hN; c;ri 2 E such that jSej = 2; each i 2 N and Si 2 Se with i 2 Si;

Fi(Ve) = �(ve(fig)); if jfi� 1; i+ 1g \ Sij = 0;
= 1

2(�(ve(fSig)) + ve(fig)� ve(Sinfig)); if jfi� 1; i+ 1g \ Sij = 1;
= SVi(Ve); if jfi� 1; i+ 1g \ Sij = 2:

3.3 Changes in the route and the Shapley value

Consider the following two economies where the only di�erence between them is that there
are two sponsors i and i + 1 such that the service provider visits them consecutively in
one economy, and via home in the other. In such a situation, one may require that other
things being equal, when two sponsors become connected, their cost shares should be a�ected
equally. This requirement is similar to the \equal-gains principle" of Myerson (1977) and
\equal bargaining power" of Jackson and Wolinsky (1996).

Formally, let fe; e0g � E where e = hN; c;ri and e0= hN; c;r0i be such that there exists
i 2 Nnfng where
(i) i �r 0 �r i+ 1 and i �r0 i+ 1; and
(ii) for each j 2 N0nfig and k 2 N0nfi+ 1g; j �r k if and only if j �r0 k.

Equal Impact : For each pair fe; e0g � E and each fi; i+ 1g � N as described above,

Fi(Ve)�Fi(Ve0)=Fi+1(Ve)�Fi+1(Ve0):

The next result states that requiring no-cross subsidization between connected sets and
equal treatment of sponsors when they get connected is also enough to characterize the Shapley
value.

Theorem 2. The Shapley value is the only solution which satis�es Respect of Connected Sets
and Equal Impact.

Theorem 2 shows that Myerson's characterization of the Shapley value in general networks
can be adapted to TSPs. Note that in a general network, each node on the graph is an agent
and the total value generated in the graph is distributed to all the agents. However, in TSPs,
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home, although being a node in the graph, does not get a share of the total cost generated
by the TSP network.

Theorem 2 also resembles Kar's (2002) characterization of the Shapley value in minimum
cost spanning tree games. However, Kar uses more axioms and his \Equal treatment" axiom
di�ers from our Equal Impact in the sense that while we consider a change on the route
keeping the cost structure same, he considers a change in the cost of the link between two
sponsors which will lead to a change in the graph.

Note that, in the class of appointment games, the Shapley value actually also satis�es
a stronger version of Equal Impact which allows for the possibility that, besides the link
between i and i+1; there may be other changes in the respective routes in the two economies.
However, there should be no change on the links between i� 1 and i; and i+1 and i+2: For
instance, either i� 1 and i are connected in both economies, or they are unconnected in both
economies.16

Formally, if fe; e0g � E with e = hN; c;ri and e0= hN; c;r0i are such that there exists
i 2 Nnfng where i �r i + 1 and i �r0 0 �r0 i + 1; i � 1 �r i if and only if i � 1 �r0 i; and
i+ 1 �r i+ 2 if and only if i+ 1 �r0 i+ 2; then SVi(Ve)�SVi(Ve0)=SVi+1(Ve)�SVi+1(Ve0):

The following corollary to Theorem 2 is obtained by using Remark 2:

Corollary to Theorem 2

a) On VET ; the Shapley value is the only solution which satis�es E�ciency, Individual Ratio-
nality, Merging and Splitting Proofness, and Equal Impact.

b) The Shapley value is the only solution which satis�es E�ciency, Consistency over Con-
nected Sets, and Equal Impact.

3.4 Summary of results for appointment games

Characterizing one solution as the only one which satis�es a set of axioms is not always
good news since adding other axioms to this set may lead to impossibility, as Thomson
(2001) states \...more often than we would like, impossibilities are precipitated by relatively
short lists of properties". Fortunately, in our setting, the Shapley value satis�es a great
variety of requirements one may expect from a solution. Indeed, our results show that several
combinations of axioms characterize the Shapley value. The fact that the Shapley value is also
in the core of appointment games (on VET ) adds to its desirability. Table 1 below summarizes
the di�erent ways that the Shapley value is characterized.

E� E�-2 WRCS RCS MSP MSP-2 CSMSP-2 CCS EB IR EI

Thm1 X X X
Cor1a X X X
Cor1b X X X
Prop 2 X X X X
Thm2 X X
Cor2a (on VET ) X X X X
Cor2b X X X

Table 1

16Note that the Shapley value would not satisfy this stronger requirement in general networks.
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E�: E�ciency, E�-2: E�ciency in 2-sponsor TU-games, WRCS: Weak Respect of Connected Sets, RCS: Respect

of Connected Sets, MSP: Merging and Splitting Proofness, MSP-2: Merging and Splitting Proofness-2, CSMSP-2:

Connected-Set Merging and Splitting Proofness-2, CCS: Consistency over Connected Sets, EB: Equal Bene�t, IR: Indi-

vidual Rationality, EI: Equal Impact.

4 Characterization of the Shapley Value in Routing Games

Potters et al (1992) introduced the routing games to analyze the cost allocation problem in
�xed-route TSPs, and they studied the Core in these games. Here, we analyze the Shapley
value in routing games.

Let e = hN; c;ri 2 E and S � N: The permissible route over S in a routing game is the
one where the traveler follows the original route r; skipping all the sponsors who are absent in
S: Let r�S be the resulting route over S: The routing game associated with e is V

�
e = (N; v

�
e)

where v�e : 2
N ! R+ is such that for each S � N; v�e(S) = c(r�S):

Example 3. Let e = hN; c;ri where r = (0; 1; 0; 2; 3; 4; 5; 0; 6; 0; 7; 8; 9; 0): Let S =
f1; 4; 5; 6; 7; 9g: Then, r�S = (0; 1; 0; 4; 5; 0; 6; 0; 7; 9; 0) and v�e(S) = 2c1 + c4 + c4;5 + c5 +
2c6 + c7 + c7;9 + c9:

The axioms in Section 3 can be stated for routing games just by replacing all Ve with V
�
e ;

ve(:) with v
�
e(:); rS with r

�
S ; etc.

Not all of the results we derived in Section 3 carry over to the class of routing games. First
of all, in the class of routing games, the Shapley value doesn't reduce into a simple formula as
it does in the class of appointment games. Moreover, Theorem 1 no longer holds in the class
of routing games since the Shapley value violates Merging and Splitting Proofness.

Proposition 4. In the class of routing games, the Shapley value violates Merging and Split-
ting Proofness and Merging and Splitting Proofness-2.

The good news is that Theorem 2 extends to the class of routing games.

Theorem 3. In the class of routing games, the Shapley value is the only solution which
satis�es Respect of Connected Sets and Equal Impact.

In routing games, the Shapley value satis�es a stronger version of Equal Impact as well:
let fe; e0g � E where e = hN; c;ri and e0= hN; c;r0i be such that there exists i 2 Nnfng where
(i) i �r i+ 1 and i �r0 0 �r0 i+ 1; and
(ii) for Si 2 Se with i 2 Si; for each k 2 Sinfig and l 2 Sinfi+1g; k �r l if and only if k �r0 l.

Hence, besides the change on the link between i and i + 1; there may be other changes
between the routes r and r0; as long as those changes only concern the sponsors that do not
belong to Si where Si is the connected set that includes i and i + 1 in economy e: That is,
the links between the sponsors in other connected sets are allowed to change. In this case, we
have SVi(V

�
e )�SVi(V �e0)=SVi+1(V �e )�SVi+1(V �e0):

It is easy to see that, in the class of routing games, the Shapley value still satis�es E�ciency
and Consistency over Connected Sets17. Hence, Corollary to Theorem 2b extends to the
routing games:

17This is because for each i 2 N; each Si 2 Se such that i 2 Si; and each S � Nnfig; the marginal
contribution of i to the value of a coalition S is equal to the marginal contribution of i to the value of
S \ (Sinfig): That is, v�e(S [ fig)� v�e(S) = v�e(S \ (Sinfig) [ fig)� v�e(S \ (Sinfig)):
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Corollary to Theorem 3 In the class of routing games, the Shapley value is the only solution
which satis�es E�ciency, Consistency over Connected Sets, and Equal Impact

Potters et al (1992) state that in the class of routing games, if the route r chosen for
the grand coalition is a least-costly tour and triangle inequalities hold for all the agents (i.e.
for each triple fi; j; kg � N0; ci;j + cj;k � ci;k), then the core is non-empty. Let E�T be
the set of economies in which these conditions hold: Note that to ensure the convexity of
appointment games (which also implies the non-emptiness of the core), we only needed the
triangle inequalities to hold for those sponsors who are connected rather than all sponsors
and we did not need the route r be a least-costly route for the economy. Hence, ET is a larger
set of economies than E�T :

We know that if a class of TU-games is convex, then the Shapley value is an element of the
core. In general, routing games are not convex. Here, we show that even under the conditions
Potters et al (1992) specify for the non-emptiness of the core, the routing games are still
not convex. Hence, we do not know for sure that Shapley value is in the core whenever it
is non-empty. It is an open question to characterize the conditions under which the Shapley
value is in the core of routing games.

Proposition 5. On the domain E�T ; the routing games are not convex.

5 Appendix

5.1 Derivation of the Shapley Value in Appointment Games

Let e = hN; c;ri 2 E , i 2 N; and Si � N be the connected set such that i 2 Si: For each
S � N; let jSj = s and f(s) = s!(n�s�1)!

n! :

� If Si = fig; then since for each S � Nnfig; ve(S [ fig)� ve(S) = ve(fig) = 2ci; we have

SVi(Ve) = 2ci:

� If Si \ fi� 1; i+ 1g = j; then since
for each S � Nnfig such that j 2 S; ve(S [ fig)� ve(S) = ci + ci;j � cj ; and
for each S � Nnfig such that j =2 S; ve(S [ fig)� ve(S) = 2ci; we have

SVi(Ve) =
X

S�Nnfig
f(s) (ve(S [ fig)� ve(S))

=
X

S�Nnfig:j2S
f(s) (ci + ci;j � cj) +

X
S�Nnfi;jg

f(s) (2ci)

= (ci + ci;j � cj)
n�1X
s=1

�
n� 2
s� 1

�
f(s) + 2ci

n�2X
s=0

�
n� 2
s

�
f(s)

= (ci + ci;j � cj)
1

2
+ (2ci)

1

2

=
3ci + ci;j � cj

2
:

Here,
�
n�2
s�1
�
is the number of (s � 1)-combinations from the set Nnfi; jg: It gives us the

number of subsets of Nnfig that contains j and has s number of sponsors: to �nd such subsets,
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we need to pick s� 1 sponsors from the set Nnfi; jg: Similar interpretation applies to
�
n�2
s

�
and all other binomial coe�cients from now on.

� If fi� 1; i+ 1g � Si; then since
for each S � Nnfig such that fi�1; i+1g � S; ve(S[fig)�ve(S) = ci�1;i+ci;i+1�ci�1�ci+1;
for each S � Nnfig such that S \fi� 1; i+1g = fjg; ve(S [fig)� ve(S) = ci+ ci;j � cj ; and
for each S � Nnfig such that S \ fi� 1; i+ 1g = ;; ve(S [ fig)� ve(S) = 2ci; we have

SVi(Ve) =
P

S�Nnfig:fi�1;i+1g�S
f(s) (ci�1;i + ci;i+1 � ci�1 � ci+1)

+
P

S�Nnfig:fi�1;i+1g\S=fi�1g
f(s) (ci + ci�1;i � ci�1)

+
P

S�Nnfig:fi�1;i+1g\S=fi+1g
f(s) (ci + ci;i+1 � ci+1) +

P
S�Nnfig:fi�1;i+1g\S=;

f(s) (2ci)

= (ci�1;i + ci;i+1 � ci�1 � ci+1)
n�1P
s=2

�
n�3
s�2
�
f(s) + (ci + ci�1;i � ci�1)

n�2P
s=1

�
n�3
s�1
�
f(s)

+ (ci + ci;i+1 � ci+1)
n�2P
s=1

�
n�3
s�1
�
f(s) + 2ci

n�3P
s=0

�
n�3
s

�
f(s)

= (ci�1;i + ci;i+1 � ci�1 � ci+1) 13+(ci + ci�1;i � ci�1)
1
6+(ci + ci;i+1 � ci+1)

1
6+(2ci)

1
3

= 1
2(2ci + ci�1;i + ci;i+1 � ci�1 � ci+1):

5.2 Proofs of the Results in Section 3

Proof of Proposition 1: Let e = hN; c;ri 2 ET and i 2 N: Let K = fj 2 Nnfig : either
i �r j or j �r ig:18 Note that on ET ; for each j 2 K;

ci + cj � ci;j : (1)

We need to show that19 for each S � T � Nnfig;

ve(S [ fig)� ve(S) � ve(T [ fig)� ve(T ): (2)

There are 6 possible cases. We will show that in each case, (2) holds.

1. K \ S = ;. Then, ve(S [ fig)� ve(S) = 2ci:
a) K \ T = ;: Then, ve(T [ fig)� ve(T ) = 2ci: Hence, (2) holds.
b) K \ T = fjg: Then, ve(T [ fig)� ve(T ) = cj;i + ci � cj : Hence, by (1), (2) holds.
c) K \ T = fi� 1; i+ 1g: Then, ve(T [ fig)� ve(T ) = ci�1;i + ci;i+1 � ci�1 � ci+1: Hence, by
(1), (2) holds.

2. K \ S = fjg. Then, ve(S [ fig)� ve(S) = cj;i + ci � cj :
18If 0 �r i �r 0; then K = ;: If i� 1 �r i �r 0; then K = fi� 1g: If 0 �r i �r i+ 1; then K = fi+ 1g: If

i� 1 �r i �r i+ 1; then K = fi� 1; i+ 1g:
19Since ve(S) measures the cost that coalition S generates as opposed to the bene�t it can ensure, the

convexity of the game requires inequality (2) to hold.
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a) K \ T = fjg. Then, ve(T [ fig)� ve(T ) = cj;i + ci � cj : Hence, (2) holds.
b) K \ T = fi� 1; i+ 1g: Then, ve(T [ fig)� ve(T ) = ci�1;i + ci;i+1 � ci�1 � ci+1: Hence, by
(1), (2) holds.

3. K \ S = K \ T = fi � 1; i + 1g: Then, ve(S [ fig) � ve(S) = ve(T [ fig) � ve(T ) =
ci�1;i + ci;i+1 � ci�1 � ci+1: Hence, (2) holds. 2

Proof of Remark 1: Let F satisfy E�ciency in two-sponsor TU-games and Equal Bene�t.
Let V = (N; v) be such that n = 2: Then, for each i 2 N and j = Nnfig; by Equal Bene�t,
(I) Fi(V )�Fj(V )=v(fig)� v(fjg); and by E�ciency, (II) v(N) = Fi(V )+Fj(V ): By (I) and
(II), for each i 2 N; Fi(V )=1

2 [v(N)+v(fig)�v(fjg)] = SVi(V ): 2

Proof of Remark 2:

a) Let � : R+ ! R and F satisfy the �rst 3 axioms listed in Remark 2a. We need to show
that for each a 2 R+; �(a) = a: Let e = hN; c;ri 2 E be such that jSej � 3 and there is S 2 Se
with S = fl; l + 1; :::;mg for some 1 < l � m < n and ve(S) = a: Let K1 = fi 2 N : i < lg
and K2 = fi 2 N : i > mg:
Let K1 and S merge into a single sponsor denoted by k1 2 K1 and K2 merge into a single
sponsor denoted by n. Let V 1 = (fk1; ng; v1) be the TU-game obtained from Ve by these
mergers: Thus, v1(fk1g) = ve(K1[S) = ve(K1)+ve(S); v1(fng) = ve(K2); and v1(fk1; ng) =
ve(N) = ve(K1) + ve(S) + ve(K2):

Since V 1 is a two-sponsor TU-game, by Equal Bene�t,

Fk1(V
1)� Fn(V 1)=v1(fk1g)� v1(fng) = ve(K1) + ve(S)� ve(K2): (3)

By Merging and Splitting Proofness-2, Fk1(V
1) =

P
i2K1

Fi(Ve) +
P
i2S
Fi(Ve) and Fn(V

1) =P
i2K2

Fi(Ve): These equalities and (3) together imply

X
i2K1

Fi(Ve) +
X
i2S
Fi(Ve)�

X
i2K2

Fi(Ve)=ve(K1) + ve(S)� ve(K2): (4)

Note that K1 is a union of connected sets and so is K2: Let �(K1) =
P

S0�K1:S02Se
�(ve(S

0))

and �(K2) =
P

S0�K2:S02Se
�(ve(S

0)). By Weak Respect of Connected Sets and (4),

�(ve(S)) = �(K2)� �(K1) + ve(K1) + ve(S)� ve(K2): (5)

Now, let K2 and S merge into a single sponsor denoted by k2 2 K2 and K1 merge into a
single sponsor denoted by 1. Let V 2 = (f1; k2g; v2) be the TU-game obtained from Ve by these
mergers: Again, by Equal Bene�t, (I) Fk2(V

2)�F1(V 2)=ve(K2)+ve(S)�ve(K1): ByMerging
and Splitting Proofness-2, (II) Fk2(V

2) =
P
i2K2

Fi(Ve) +
P
i2S
Fi(Ve) and F1(V

2) =
P
i2K1

Fi(Ve):

By (I), (II), and Weak Respect of Connected Sets,

�(ve(S)) = �(K1)� �(K2) + ve(K2) + ve(S)� ve(K1): (6)

By (5) and (6),
�(K2)� ve(K2) = �(K1)� ve(K1): (7)
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Since ve(S) = a; substituting (7) into (5), �(a) = a: Since we can repeat this procedure for
any a 2 R+; � is the identity function. Therefore, F satis�es Respect of Connected Sets.

b) Let F satisfy the �rst two axioms in Remark 1b. Let e = hN; c;ri 2 E and fK;K 0g � 2N
be such that K = f1; 2; :::; kg and K 0 = fk + 1; k + 2; :::; ng for some 1 � k < n. LetbV = (fkg [K 0; bv) be the TU-game obtained from Ve = (N; ve) when K merges into a single
sponsor k: By E�ciency, Fk(bV ) = bv(fkg[K 0)�

P
i2K0

Fi(bV ) and P
i2K
Fi(Ve) = ve(N)�

P
i2K0

Fi(Ve):

Since bv(fkg [K 0) = ve(N) and by Merging and Splitting Proofness; Fk(bV ) = P
i2K
Fi(Ve); we

have (I)
P
i2K0

Fi(bV ) = P
i2K0

Fi(Ve):

Now, let eV = (fk; k0g; ev) be the TU-game obtained from bV when K 0 merges into a single
sponsor k0 2 K 0: By Merging and Splitting Proofness; Fk0(eV ) = P

i2K0
Fi(bV ): This equality and

(I) together imply (II) Fk0(eV ) = P
i2K0

Fi(Ve): Also, by E�ciency, Fk0(eV ) = ev(fk; k0g)� Fk(eV )
and

P
i2K0

Fi(Ve) = ve(N) �
P
i2K
Fi(Ve): Since ev(fk; k0g) = ve(N), by (II), Fk(eV ) = P

i2K
Fi(Ve):

This equality and (II) together imply that F satis�es Merging and Splitting Proofness-2.

c) Let F satisfy the �rst 3 axioms listed in Remark 2c. Suppose, by contradiction, that F does
not satisfy Respect of Connected Sets. Then, there are e = hN; c;ri 2 ET and fS0; S00g � Se
such that

P
i2S00

Fi(Ve) < ve(S
00) and (I)

P
i2S0

Fi(Ve) > ve(S
0): Such S0 and S00 exist since by

E�ciency,
P
S2Se

�P
i2S
Fi(Ve)

�
= ve(N) =

P
S2Se

ve(S):

Now, let S0 merge into a single sponsor denoted by s0 2 S0: Let bV = ((NnS0) [ fs0g; bv) be
the TU-game obtained from Ve by this merger. Thus, (II) bv(fs0g) = ve(S

0): By Merging
and Splitting Proofness, (III) Fs0(bV ) = P

i2S0
Fi(Ve): By Individual Rationality, (IV) Fs0(bV ) �bv(fs0g): By (II), (III), and (IV), P

i2S0
Fi(Ve) � ve(S0) which contradicts (I).

d) Let F satisfy the �rst 3 axioms listed in Remark 2d. Let e = hN; c;ri 2E and
Se = fS1; S2; :::; ST g for some T � n: The proof is by induction.
�Base Step: Let S1 merge into a single sponsor denoted by 1 and NnS1 merge into a single
sponsor denoted by n: Let V 1 = (f1; ng; v1) be the TU-game obtained from Ve by these
mergers. Thus, v1(f1g) = ve(S1); v

1(fng) = ve(NnS1); and v1(f1; ng) = ve(N): Note that
since S1 is a connected set, ve(N) = ve(S1) + ve(NnS1): These equalities and Remark 1
together imply

F1(V
1) = 1

2

�
v1(f1; ng) + v1(f1g)�v1(fng)

�
;

= ve(S1):
(8)

By Merging and Splitting Proofness-2, F1(V
1) =

P
i2S1

Fi(Ve): This equality and (8) together

imply
P
i2S1

Fi(Ve) = ve(S1):

�Induction Step: Let k < T: Assume that for each t < k;
P
i2St

Fi(Ve) = ve(St): We will prove

that
P
i2Sk

Fi(Ve) = ve(Sk):
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Let fS1; S2; :::; Skg merge into a single sponsor denoted by k; and fSk+1; ::; ST g merge into
a single sponsor denoted by n: Let V k = (fk; ng; vk) be the TU-game obtained from Ve by

these mergers. Thus, vk(fkg) = ve(
k
[
t=1
St) =

kP
t=1
ve(St); v

k(fng) = ve(
T
[

t=k+1
St) =

TP
t=k+1

ve(St);

and vk(fk; ng) = ve(N) =
kP
t=1
ve(St) +

TP
t=k+1

ve(St):

These equalities and Remark 1 together imply

Fk(V
k) = ve(Sk) +

k�1P
t=1
ve(St): (9)

By Merging and Splitting Proofness-2, Fk(V
k) =

P
i2Sk

Fi(Ve) +
k�1P
t=1

P
i2St

Fi(Ve): This equality,

(9), and the induction hypothesis together imply
P
i2Sk

Fi(Ve) = ve(Sk):

�Conclusion Step: By the Base and the Induction steps, for each t < T ,
P
i2St

Fi(Ve) = ve(St):

Now, consider V T�1 = (fT � 1; ng; vT�1) obtained from Ve when ST merges into a single
sponsor denoted by n and NnST merge into a single sponsor denoted by T � 1: Similar to
the argument in the Base step, we have

P
i2ST

Fi(Ve) = ve(ST ): Therefore, F satis�es Respect

of Connected Sets.

e) For each e = hN; c;ri 2 E ; let F (Ve) be in the Core of Ve: Then,
P
S2Se

P
i2S
Fi(Ve) = ve(N) and

for each S 2 Se;
P
i2S
Fi(Ve) � ve(S): Since ve(N) =

P
S2Se

ve(S); for each S 2 Se;
P
i2S
Fi(Ve) =

ve(S) and F satis�es Respect of Connected Sets.

Now, let F satisfy Respect of Connected Sets. Let V=(fi; jg; v) be a two-sponsor TU-game.
Let e = hfi; jg; c;ri be such that ci = v(fig)=2; cj = v(fjg)=2; ci + ci;j + cj = v(fi; jg); and
r = (0; i; j; 0): By Respect of Connected Sets, (I) Fi(Ve) + Fj(Ve) = ve(fi; jg): Since for each
S � fi; jg; ve(S) = v(S); we have V � Ve: This equivalency and (I) together imply that F
satis�es E�ciency in two-sponsor TU-games.

f) Let e = hN; c;ri 2 E and S 2 Se: Consider eS= hS; cS ;rSi 2 E : By E�ciency,
(I)

P
i2S
Fi(VeS ) = veS (S): By Consistency over Connected Sets, for each i 2 S; (II)

Fi(Ve) = Fi(VeS ): Note that by de�nition, ve(S) = c(rS) = veS (S): Hence, by (I) and (II),P
i2S
Fi(Ve) = ve(S): That is, F satis�es Respect of Connected Sets. �

Lemma 1: The Shapley value satis�es E�ciency, (on VET ) Individual Rationality, Respect
of Connected Sets, Equal Bene�t, Consistency over Connected Sets, Merging and Splitting
Proofness, and Equal Impact.

Proof of Lemma 1:
It is easy to see that the Shapley value satis�es the �rst �ve axioms listed in Lemma 1. Now,
we will show that it satis�es the rest of the axioms in Lemma 1.

� Merging and Splitting Proofness:
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Let e = hN; c;ri 2 E andK � N be such thatK = fk; k+1; k+2; :::; lg for some 1 � k < l � n.
Let bV = ((NnK) [ fkg; bv) be the TU-game obtained from Ve when K merges into k:

Note that K may involve some connected sets. For some 1 � M � jKj; let PK =
fK1;K2; :::;KMg be the partitioning of K such that

� for each m 2 f1;M � 1g; each i 2 Km; and each j 2 Km+1; we have i < j;
� for each m 2 f1;Mg; Km � S for some S 2 Se; and
� for each m =2 f1;Mg; Km 2 Se:
For example, if r = (0; 1; 2; 3; 4; 0; 5; 6; 0; 7; 0; 8; 9; 0) and K = f3; 4; ::; 8g, then
PK = ff3; 4g; f5; 6g; f7g; f8gg:

Note that there are n � jKj + 1 agents in the game bV : For each S � N; let jSj = s and

g(s) = s!(n�jKj�s)!
(n�jKj+1)! : For each 1 � m � M; let Km = fkm; km + 1; :::; lmg: The following four

cases are possible.

1) PK � Se : That is, for each 1 � m �M; Km is a connected set. Then, for each S � NnK;

bv(S [ fkg)� bv(S) = bv(fkg) = ve(K) = MX
m=1

ve(Km) =
MX
m=1

(ckm +

lm�1X
t=km

ct;t+1 + clm): (10)

Hence, SVk(bV ) = bv(fkg). By Respect of Connected Sets, for each Km 2 PK ; P
i2Km

SVi(Ve) =

ve(Km): These equalities and (10) together imply that SVk(bV ) = MP
m=1

P
i2Km

SVi(Ve) =P
i2K
SVi(Ve):

2) PKnSe = fK1g and either M � 2 or l = n: That is, except for K1; each Km 2 PK is a
connected set. Then, for each S � NnK such that k1� 1 =2 S; (10) holds. For each S � NnK
such that k1 � 1 2 S;

bv(S [ fkg)� bv(S) = ck1�1;k1 + (ve(K)� ck1)� ck1�1: (11)

Then,

SVk(bV ) = P
S�NnK:k1�12S

g(s)(bv(S [ fkg)� bv(S)) + P
S�NnK:k1�1=2S

g(s)(bv(S [ fkg)� bv(S))
=
n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s)[ck1�1;k1 + (ve(K)� ck1)� ck1�1] +

n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s)ve(K):

Note that
n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s) =

n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s) = 1

2 :
20 Hence,

SVk(bV ) = ve(K) + 1
2(ck1�1;k1 � ck1 � ck1�1)

= 1
2(2cl1 + 2

l1�1P
t=k1

ct;t+1 + ck1�1;k1 + ck1 � ck1�1) +
MP
m=2

ve(Km)

=
P
i2K1

SVi(Ve) +
MP
m=2

P
i2Km

SVi(Ve)

20For the calculation of these values, see Appendix 7 in the working version of our paper on
http://www.adelaide.edu.au/directory/duygu.yengin.
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=
P
i2K
SVi(Ve):

3) PKnSe = fKMg and either M � 2 or k = 1: That is, except for KM ; each Km 2 PK is a
connected set. Then, for each S � NnK such that lM +1 =2 S; (10) holds. For each S � NnK
such that lM + 1 2 S;

bv(S [ fkg)� bv(S) = (ve(K)� clM ) + clM ;lM+1 � clM+1: (12)

Then,

SVk(bV ) = n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s)[(ve(K)� clM ) + clM ;lM+1� clM+1] +

n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s)ve(K)

= ve(K) +
1
2(clM ;lM+1 � clM � clM+1)

= 1
2(2ckM + 2

lM�1P
t=kM

ct;t+1 + clM ;lM+1 + clM � clM+1) +
M�1P
m=1

ve(Km)

=
P

i2KM

SVi(Ve) +
M�1P
m=1

P
i2Km

SVi(Ve)

=
P
i2K
SVi(Ve):

4) PKnSe = fK1;KMg: That is, except for K1 and KM ; each Km 2 PK is a connected set.
Note that this case covers the possibility that K = K1 = KM and K =2 Se:
Then, for each S � NnK such that fk1 � 1, lM + 1g \ S = ;; (10) holds. For each S � NnK
such that k1 � 1 2 S and lM + 1 =2 S; (11) holds. For each S � NnK such that lM + 1 2 S
and k1 � 1 =2 S; (12) holds. For each S � NnK such that fk1 � 1, lM + 1g � S;

bv(S [ fkg)� bv(S) = ck1�1;k1 + (ve(K)� ck1 � clM ) + clM ;lM+1 � ck1�1 � clM+1:
Then,

SVk(bV ) = n�jKj�2P
s=0

�
n�jKj�2

s

�
g(s)ve(K)+

n�jKj�1P
s=1

�
n�jKj�2
s�1

�
g(s)[ck1�1;k1+(ve(K)�ck1)�ck1�1]+

n�jKj�1P
s=1

�
n�jKj�2
s�1

�
g(s)[(ve(K)�clM )+clM ;lM+1�clM+1]+

n�jKjP
s=2

�
n�jKj�2
s�2

�
g(s)[ck1�1;k1+(ve(K)�

ck1 � clM ) + clM ;lM+1 � ck1�1 � clM+1]

Note that
n�jKj�2P
s=0

�
n�jKj�2

s

�
g(s) =

n�jKjP
s=2

�
n�jKj�2
s�2

�
g(s) = 1

3 and
n�jKj�1P
s=1

�
n�jKj�2
s�1

�
g(s) = 1

6 :

Hence,

= ve(K) +
1
2(ck1�1;k1 � ck1�1 � ck1 + clM ;lM+1 � clM � clM+1)

= 1
2(2cl1+2

l1�1P
t=k1

ct;t+1+ck1�1;k1+ck1�ck1�1)+
M�1P
m=2

ve(Km)+
1
2(2ckM +2

lM�1P
t=kM

ct;t+1+clM ;lM+1+

clM � clM+1)

=
P
i2K1

SVi(Ve) +
M�1P
m=2

P
i2Km

SVi(Ve) +
P

i2KM

SVi(Ve)

=
P
i2K
SVi(Ve):
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In all the possible cases, we showed that SVk(bV ) = P
i2K
SVi(Ve). Therefore, the Shapley value

satis�es Merging and Splitting Proofness.

� Equal Impact:

Let fe; e0g � E where e = hN; c;ri and e0= hN; c;r0i be such that there exists i 2 Nnfng where
(i) i �r 0 �r i+ 1 and i �r0 i+ 1; and
(ii) i� 1 �r0 i if and only if i� 1 �r i; and
(ii) i+ 1 �r0 i+ 2 if and only if i+ 1 �r i+ 2:

(Note that the proof would not change, if we assumed the stronger requirement stated in the
de�nition of Equal Impact, namely, for each j 2 N0nfig and k 2 N0nfi + 1g; j �r k if and
only if j �r0 k.)

There are four cases to consider:
Case 1: i� 1 �r i �r 0 �r i+ 1 �r i+ 2: Then, SVi(Ve) = 1

2(3ci + ci�1;i � ci�1); SVi(Ve0) =
1
2(2ci + ci�1;i + ci;i+1 � ci�1 � ci+1); SVi+1(Ve) =

1
2(3ci+1 + ci+1;i+2 � ci+2); and SVi+1(Ve0) =

1
2(2ci+1 + ci;i+1 + ci+1;i+2 � ci � ci+2): Hence,

SVi(Ve)�SVi(Ve0)=
1

2
(ci + ci+1 � ci;i+1) = SVi+1(Ve)�SVi+1(Ve0): (13)

Case 2: 0 �r i �r 0 �r i+ 1 �r i+ 2: Then, SVi(Ve) = 2ci; SVi(Ve0) = 1
2(3ci + ci;i+1 � ci+1);

and SVi+1(Ve) and SVi+1(Ve0) are as in Case 1. It is easy to check that equality 13 still holds
in Case 2.

Case 3: 0 �r i �r 0 �r i + 1 �r 0: Then, SVi(Ve) and SVi(Ve0) are as in Case 2; and
SVi+1(Ve) = 2ci+1; SVi+1(Ve0) =

1
2(3ci+1 + ci;i+1 � ci): Hence, again equality 13 holds.

Case 4: i � 1 �r i �r 0 �r i + 1 �r 0: Then, SVi(Ve) and SVi(Ve0) are as in Case 1; and
SVi+1(Ve) and SVi+1(Ve0) are as in Case 3. Hence, equality 13 still holds. �

Proof of Theorem 1:

By Lemma 1 the Shapley value satis�es E�ciency, Merging and Splitting Proofness, and
Equal Bene�t. By Remark 2b, it satis�es Merging and Splitting Proofness-2.

Now, we show that the Shapley value is the only solution that satis�es the axioms listed in
Theorem 1.
Let F satisfy those axioms and e = hN; c;ri 2 E : We will show that for each S 2 Se and each
i 2 S; Fi(Ve) = SVi(Ve):

If n = 2; by Remark 1, F = SV: Let n > 2: By Remark 2d, F satis�es Respect of Connected
Sets. Hence, for each fig 2 Se; Fi(Ve) = ve(fig) = SVi(Ve):

Now, let S 2 Se be such that jSj � 2 and S = fl; l + 1; :::;mg for some fl;mg � N: Let
K1 = fi 2 N : i < lg and K2 = fi 2 N : i > mg:21

The proof is by induction.

21If l = 1; then K1 = ; and if m = n; then K2 = ;: Note that K1 is a union of connected sets and so is K2:
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�Base Step: Let K1 and flg merge into a single sponsor denoted by l. Let K2 and fl +
1; l+2; :::;mg merge into a single sponsor denoted by n: Let V l = (fl; ng; vl) be the TU-game
obtained from Ve by these mergers: Thus,

vl(flg) = ve(f1; :::; lg) = ve(K1) + 2cl;

vl(fng) = ve(fl + 1; :::; ng) = cl+1 +
m�1P
t=l+1

ct;t+1 + cm + ve(K2) = (ve(S)� cl � cl;l+1 + cl+1) +

ve(K2); and

vl(fl; ng) = ve(N) = ve(K1) + ve(S) + ve(K2):
These equalities and Remark 1 together imply

Fl(V
l) = 1

2

�
vl(fl; ng) + vl(flg)�vl(fng)

�
;

= ve(K1) +
1
2(3cl + cl;l+1 � cl+1):

(14)

By Respect of Connected Sets,X
i2K1

Fi(Ve) = ve(K1);
X
i2S
Fi(Ve) = ve(S); and

X
i2K2

Fi(Ve) = ve(K2): (15)

By Merging and Splitting Proofness-2;

Fl(V
l) =

X
i2K1

Fi(Ve) + Fl(Ve): (16)

By equalities (14), (15), and (16),

Fl(Ve) =
1

2
(3cl + cl;l+1 � cl+1) = SVl(Ve): (17)

�Induction Step: Let l < k � m: Assume that, for each l < i < k; Fi(Ve) = SVi(Ve): We will
prove that Fk(Ve) = SVk(Ve):

Let K1 and S1 = fl; l + 1; ::; kg merge into a single sponsor denoted by k: Let K2 and SnS1
merge into a single sponsor denoted by n: Let V k = (fk; ng; vk) be the TU-game obtained
from Ve by these mergers.

If k < m; then

vk(fkg) = ve(f1; :::; kg) = ve(K1) + cl +
k�1P
t=l

ct;t+1 + ck;

vk(fng) = ve(fk + 1; :::; ng) = (ve(S)� cl �
kP
t=l

ct;t+1 + ck+1) + ve(K2); and

vk(fk; ng) = ve(N) = ve(K1) + ve(S) + ve(K2):
These equalities and Remark 1 together imply

Fk(V
k) = 1

2

�
vk(fk; ng) + vk(fkg)�vk(fng)

�
;

= ve(K1) +
1
2(2cl + 2

k�1P
t=l

ct;t+1 + ck + ck;k+1 � ck+1):
(18)

By Merging and Splitting Proofness-2;

Fk(V
k) =

X
i2K1

Fi(Ve) +

k�1X
i=l

Fi(Ve) + Fk(Ve): (19)
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Note that
k�1P
i=l

SVi(Ve) =
1
2(2cl + 2

k�2P
t=l

ct;t+1 + ck�1 + ck�1;k � ck): Hence, by the induction

hypothesis and equalities (15), (18), and (19),

F
k
(Ve) = (2ck + ck�1;k + ck;k+1 � ck�1 � ck+1) =2 = SVk(Ve):

If k = m; then

vm(fmg) = ve(f1; :::;mg) = ve(K1) + ve(S);
vm(fng) = ve(fm+ 1; :::; ng) = ve(K2); and
vm(fm;ng) = ve(N) = ve(K1) + ve(S) + ve(K2):
These equalities and Remark 1 together imply

Fm(V
m) = 1

2 [v
m(fm;ng) + vm(fmg)�vm(fng)] ;

= ve(K1) + ve(S):
(20)

By Merging and Splitting Proofness-2;

Fm(V
m) =

X
i2K1

Fi(Ve) +
m�1X
i=l

Fi(Ve) + Fm(Ve): (21)

Hence, by the induction hypothesis and equalities (15), (20), and (21),

Fm(Ve) = (3cm + cm�1;m � cm�1) =2 = SVm(Ve):

This concludes the induction step.

�Conclusion Step: By the Base and the Induction steps, for each l � k � m; we have Fk(Ve) =
SVk(Ve):

By repeating the induction proof for each S 2 Se; we obtain that for each i 2 S;
Fi(Ve) = SVi(Ve): This completes the proof. �

Proof of Proposition 2: Let F satisfy the axioms listed in Proposition 2. Let
e = hN; c;ri 2 E : For each S 2 Se; consider eS= hS; cS ;rSi : Since jSeS j = 1; we can use
Weak Merging and Splitting Proofness-2 instead of Merging and Splitting Proofness-2 in the
induction proof of Theorem 1 (taking K1 = ; and K2 = ; in that proof), and show that
for each i 2 S; Fi(VeS ) = SVi(VeS ): Since both F and SV are Consistent over Connected
Sets, for each i 2 S; Fi(VeS ) = Fi(Ve) and SVi(VeS ) = SVi(Ve): Hence, for each i 2 S;
Fi(Ve) = SVi(Ve): Repeating this procedure for each S 2 Se; we have for each i 2 N;
Fi(Ve) = SVi(Ve): �

Proof of Proposition 3:

Let � : R+ ! R: Let E2 = fe 2 E : jSej � 2g and VE2 be the class of appointment games
associated with economies in E2: Let F be de�ned on VE2 :
a) Let F satisfy Weak Respect of Connected Sets with respect to �, Weak Merging and
Splitting Proofness-2, and Equal Bene�t. Let e = hN; c;ri 2 E2 be such that jSej = 1:
First, suppose that i 2 f1; ng: Let Nnfig merge into a single sponsor denoted by j 2 Nnfig:
Let V i = (fi; jg; vi) be the TU-game obtained from Ve by this merger: Thus, vi(fig) = ve(fig);
vi(fjg) = ve(Nnfig); and vi(fi; jg) = ve(N):
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Since V i is a two-sponsor TU-game, by Equal Bene�t, (I) Fi(V
i)�Fj(V i)=ve(fig)�ve(Nnfig):

ByWeak Merging and Splitting Proofness-2; (II) Fi(V
i) = Fi(Ve) and Fj(V

i) =
P

l2Nnfig
Fl(Ve):

By (I) and (II), we have (III) Fi(Ve)�
P

l2Nnfig
Fl(Ve) = ve(fig)� ve(Nnfig):

By Weak Respect of Connected Sets, (IV) Fi(Ve) +
P

l2Nnfig
Fl(Ve) = �(ve(N)): By (III) and

(IV),

Fi(Ve)=
1

2
[�(ve(N))+ve(fig)� ve(Nnfig)] : (22)

Now, we will show that for each i 2 f2; ::; n� 1g; Fi(Ve)=SVi(Ve): The proof is by induction.

�Base Step: Let f1; 2g merge into a single sponsor denoted by 2 and Nnf1; 2g merge into a
single sponsor denoted by n: Let V 2 = (f2; ng; v2) be the TU-game obtained from Ve by these
mergers: Similarly, V 2 is a two-sponsor TU-game. Hence, by Equal Bene�t,

F2(V
2)� Fn(V 2)=ve(f1; 2g)� ve(Nnf1; 2g): (23)

By Weak Merging and Splitting Proofness-2; (I) F2(V
2) =

P
i2f1;2g

Fi(Ve) and Fn(V
2) =P

i2Nnf1;2g
Fi(Ve):

By Weak Respect of Connected Sets, (II)
P

i2f1;2g
Fi(Ve) +

P
i2Nnf1;2g

Fi(Ve) = �(ve(N)): By (I),

(II), and (23) X
i2f1;2g

Fi(Ve)=
1

2
[�(ve(N))+ve(f1; 2g)�ve(Nnf1; 2g)] :

This equality and (22) together imply

F2(Ve)=
1

2
[ve(f1; 2g)�ve(Nnf1; 2g)� ve(f1g)+ve(Nnf1g)] :

Note that ve(f1; 2g)�ve(f1g)=c2 + c1;2 � c1 and ve(Nnf1g)�ve(Nnf1; 2g) = c2 + c2;3 � c3:
Hence, F2(Ve)=

1
2 [2c2 + c1;2 + c2;3 � c1 � c3] = SV2(Ve):

�Induction Step: Let 1 < k < n: Assume that for each 1 < j < k; Fj(Ve)=SVj(Ve): That is,
for each j < k;

P
i2f1;::;jg

Fi(Ve)=
1
2 [�(ve(N))+ve(f1; :::; jg)�ve(Nnf1; :::; jg)] :

Let f1; ::; kg merge into k and fk+1; ::; ng merge into n: Let V k = (fk; ng; vk) be the TU-game
obtained from Ve by these mergers: Since V

k is a two-sponsor TU-game, by Equal Bene�t,
(I) Fk(V

k)� Fn(V k)=ve(f1; ::; kg)� ve(Nnf1; ::; kg):

By Weak Merging and Splitting Proofness-2; (II) Fk(V
k) =

P
i2f1;::;kg

Fi(Ve) and Fn(V
k) =P

i2Nnf1;::;kg
Fi(Ve):
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By Weak Respect of Connected Sets, (III)
P

i2f1;::;kg
Fi(Ve) +

P
i2Nnf1;::;kg

Fi(Ve) = �(ve(N)): By

(I), (II), and (III),X
i2f1;::;kg

Fi(Ve)=
1

2
[�(ve(N))+ve(f1; ::; kg)�ve(Nnf1; :::; kg)] :

This equality and the induction hypothesis together imply

Fk(Ve)=
1

2
[ve(f1; ::; kg)�ve(Nnf1; :::; kg)� ve(f1; ::; k � 1g)+ve(Nnf1; :::; k � 1g)] :

Since ve(f1; ::; kg) � ve(f1; ::; k � 1g)=ck + ck�1;k � ck�1 and ve(Nnf1; :::; k � 1g) �
ve(Nnf1; :::; kg) = ck + ck;k+1 � ck+1; we have

Fk(Ve)= =
1

2
[2ck + ck�1;k + ck;k+1 � ck�1 � ck+1] = SVk(Ve):

�Conclusion Step: By the Base and the Induction steps, for each i 2 f2; ::; n � 1g;
Fi(Ve)=SVi(Ve):

b) Let F satisfy Weak Respect of Connected Sets with respect to �, Weak Merging and
Splitting Proofness-2, Equal Bene�t, and Consistency over Connected Sets. Let e = hN; c;ri 2
E2 be such that jSej = 2; i 2 N; and Si 2 Se with i 2 Si:

If jfi � 1; i + 1g \ Sij = 0; that is Si = fig; then by Weak Respect of Connected Sets,
Fi(Ve) = �(ve(fig)):

Now, suppose that jfi � 1; i + 1g \ Sij � 1: Let Si = fl; l + 1; :::;mg for some fl;mg � N:
Consider eSi = hSi; cSi ;rSii 2 E2:

If jfi � 1; i + 1g \ Sij = 1; that is i 2 fl;mg; then by part (a),
Fi(VeSi )=

1
2 [�(ve(Si))+ve(fig)� ve(Sinfig)] and by Consistency over Connected Sets

Fi(VeSi )=Fi(Ve):

If jfi� 1; i+ 1g \ Sij = 2; that is i 2 fl + 1; ::;m� 1g; then by part (a), Fi(VeSi )=SVi(VeSi )
and by Consistency over Connected Sets Fi(VeSi )=Fi(Ve) and SVi(VeSi )=SVi(Ve): This
concludes the proof. �

Proof of Theorem 2:

By Lemma 1, the Shapley value satis�es the axioms listed in Theorem 2.

Now, we show that the Shapley value is the only solution which satis�es the axioms in Theorem
2.
Let F satisfy those axioms and e = hN; c;ri 2 E : We will show, by induction on t; that for
each connected set St 2 Se such that jStj = t; 1 � t � n; and each i 2 St; Fi(Ve) = SVi(Ve):

For each i < n such that i �r i + 1; let ei = hN; c;rii be such that i �ri 0 �ri i + 1; and for
each k 2 Nnfig and l 2 Nnfi + 1g; k �ri l if and only if k �r l: That is, the only change
between e and ei is that i and i+ 1 are connected in e but not in ei.

Step 1: For each S1 2 Se such that S1 = fig for some i 2 N; by Respect of Connected Sets,
Fi(Ve) = SVi(Ve) = 2ci:
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Step 2: Suppose S2 2 Se is such that S2 = fi; i+ 1g for some i 2 Nnfng:

By Equal Impact,
Fi(Ve)� Fi+1(Ve) = Fi(Vei)� Fi+1(Vei):

This equality and Step 1 together imply

Fi(Ve)� Fi+1(Ve) = SVi(Vei)� SVi+1(Vei): (24)

Since SV satis�es Equal Impact,

SVi(Ve)� SVi+1(Ve) = SVi(Vei)� SVi+1(Vei): (25)

Equalities (24) and (25) together imply that there is a real number S(e) such that

Fi(Ve)� SVi(Ve) = Fi+1(Ve)� SVi+1(Ve) = S2(e):

By Respect of Connected Sets, Fi(Ve) + Fi+1(Ve) = SVi(Ve) + SVi+1(Ve) = ve(fi; i + 1g):
Hence, [Fi(Ve) � SVi(Ve)] + [Fi+1(Ve) � SVi+1(Ve)] = 2S2(e) = 0: Thus, S2(e) = 0 and
Fi(Ve) = SVi(Ve):

Let 2 < T � n:
Step T: Assume that for each t < T; each St 2 Se; and each i 2 St; Fi(Ve) = SVi(Ve): We
will show that for each ST 2 Se and each i 2 ST ; Fi(Ve) = SVi(Ve):

Let ST 2 Se: For each fi; i+ 1g � ST ; by Equal Impact,

Fi(Ve)� Fi+1(Ve) = Fi(Vei)� Fi+1(Vei): (26)

Note that in ei; i and i + 1 belong to connected sets with less than T sponsors. That is,
there are fS; S0g � Sei such that S [ S0 = ST ; max(jSj; jS0j) < T; and i = argmaxfj 2 Sg
and i + 1 = argminfj 2 S0g. Hence, by the induction hypothesis, Fi(Vei) = SVi(Vei) and
Fi+1(Vei) = SVi+1(Vei): These equalities and (26) together imply

Fi(Ve)� Fi+1(Ve) = SVi(Vei)� SVi+1(Vei): (27)

Since SV satis�es Equal Impact,

SVi(Ve)� SVi+1(Ve) = SVi(Vei)� SVi+1(Vei): (28)

By (27) and (28),
Fi(Ve)� SVi(Ve) = Fi+1(Ve)� SVi+1(Ve): (29)

Since (29) is true for each fi; i + 1g � ST , there is 
ST
(e) 2 R such that for each i 2 ST ;

Fi(Ve) � SVi(Ve) = 
ST
(e): By Respect of Connected Sets,

P
i2ST

Fi(Ve) =
P
i2ST

SVi(Ve) =

ve(S
T ): Hence, X

i2ST
[Fi(Ve)� SVi(Ve)] = T 

ST
(e) = 0:

Thus, 
ST
(e) = 0 and for each i 2 ST ; Fi(Ve) = SVi(Ve): This concludes the proof. �
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5.3 Independence of Axioms

Independence of the axioms in Theorem 1
� The following Dictatorial solution satis�es E�ciency in two-sponsor TU-games andMerging
and Splitting Proofness-2, but not Equal Bene�t.
For each e = hN; c;ri 2 E and each i 2 N; if Se = fNg; then

Di(Ve) =

�
ve(N) if i = argminfj 2 Ng;
0 otherwise.

if jSej > 1; then Fi(Ve) = SVi(Ve):

� Solution F � characterized in Proposition 2 satis�es Merging and Splitting Proofness-2 and
Equal Bene�t, but not E�ciency in two-sponsor TU-games.

� The following solution satis�es E�ciency in two-sponsor TU-games and Equal Bene�t, but
not Merging and Splitting Proofness-2.
For each e = hN; c;ri 2 E ; each i 2 N; and each Si 2 Se with i 2 Si;

Fi(Ve) =

8<: SVi(Ve) if n � 2;
ciP

j2Si
cj
ve(Si) if n > 2.

Independence of the axioms in Theorem 2
� The following solution satis�es Respect of Connected Sets but not Equal Impact.
For each e = hN; c;ri 2 E ; each i 2 N; and each Si 2 Se with i 2 Si;

Pi(Ve) =
ciP

j2Si
cj
ve(Si):

� The following solution satis�es Equal Impact but not Respect of Connected Sets.
Let � � 0: For each e = hN; c;ri 2 E and each i 2 N;

F �i (Ve) = SVi(Ve)� �:

5.4 Proof of the Result in Section 4

Proof of Proposition 4: First, we demonstrate the calculation of the Shapley value for a
3-sponsor economy. Suppose N = f1; 2; 3g and r = (0; 1; 2; 3; 0): For each S � N , let jSj = s
and f(s) = s!(n�s�1)!

n! : Then,

f(s) S : 1 =2 S v�e(S [ f1g)� v�e(S) S : 2 =2 S v�e(S [ f2g)� v�e(S) S : 3 =2 S v�e(S [ f3g)� v�e(S)
2=6 ; 2c1 ; 2c2 ; 2c3
1=6 f2g c1 + c1;2 � c2 f1g c2 + c1;2 � c1 f1g c3 + c1;3 � c1
1=6 f3g c1 + c1;3 � c3 f3g c2 + c2;3 � c3 f2g c3 + c2;3 � c2
2=6 f2; 3g c1 + c1;2 � c2 f1; 3g c1;2 + c2;3 � c1;3 f1; 2g c3 + c2;3 � c2
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Since SVi(V
�
e ) =

P
S�Nnfig

f(s)[v�e(S [ fig)� v�e(S)]; we have

SV1(V
�
e ) =

4

3
c1 �

1

2
c2 �

1

6
c3 +

1

2
c1;2 +

1

6
c1;3

SV2(V
�
e ) = c2 �

1

6
c1 �

1

6
c3 +

1

2
c1;2 �

1

3
c1;3 +

1

2
c2;3

SV3(V
�
e ) =

4

3
c3 �

1

2
c2 �

1

6
c1 +

1

6
c1;3 +

1

2
c2;3:

Let e = hN; c;ri 2 E where c1 = 30; c2 = 6; c3 = 15; c1;2 = 25; c1;3 = 16; c2;3 = 20;
and r = (0; 1; 2; 3; 0): Note that e 2 ET : We have SV1(V �e ) = 149

3 ; SV2(V
�
e ) =

47
3 ; and

SV3(V
�
e ) =

74
3 :

Let sponsors 1 and 2 merge into a single sponsor denoted by k: Let bV = ((Nnf1; 2g)[fkg; bv)
be the TU-game obtained from V �e by this merger: Thus, bv(fkg) = c1 + c1;2 + c2;bv(fk; 3g)� bv(f3g) = c1+ c1;2+ c2;3� c3: Then, SVk(bV ) = 1

2(2c1+ c2� c3+2c1;2+ c2;3) =
121
2 :

Since, SVk(bV ) 6= SV1(V �e ) +SV2(V �e ); SV is not Merging and Splitting Proof or Merging and
Splitting Proof-2. �

Proof of Theorem 3:
� Let F satisfy the axioms in Theorem 3. Then, by the same argument in the proof of Theorem
2, F = SV:

� Now, we show that the Shapley value satis�es the axioms listed in Theorem 3.

Respect of Connected Sets:

Let e = hN; c;ri 2 E : Note that for each i 2 N; each Si 2 Se such that i 2 Si; and each
S � Nnfig; the marginal contribution of i to the value of a coalition S is equal to the
marginal contribution of i to the value of S \ (Sinfig): That is,

v�e(S [ fig)� v�e(S) = v�e(S \ (Sinfig) [ fig)� v�e(S \ (Sinfig)): (30)

Let bS 2 Se and be= hN;bc;ri be such that for each j 2 NnbS and each l 2 Nnfjg; bcj = 0 andbcj;l = 0:
By 30, for each i 2 bS and each S � Nnfig; v�e(S[fig)�v�e(S) = v�be(S[fig)�v�be(S) and hence,
SVi(V

�
e ) = SVi(V

�be ): Also, by 30, for each j 2 NnbS and each S � Nnfjg; v�be(S[fjg)�v�be(S) =
0 and hence, SVj(V

�be ) = 0: By E�ciency,
P
i2N
SVi(V

�be ) = P
i2bSSVi(V

�be ) = bc(r) = v�be(bS): All
together,

P
i2bSSVi(V

�
e ) = v

�be(bS): Hence, the Shapley value satis�es Respect of Connected Sets.
Equal Impact:

Let fe; e0g � E where e = hN; c;ri and e0= hN; c;r0i be such that there exists i 2 Nnfng where
(i) i �r i+ 1 and i �r0 0 �r0 i+ 1; and
(ii) for Si 2 Se with i 2 Si; for each k 2 Sinfig and l 2 Sinfi+1g; k �r l if and only if k �r0 l.
Let S = fi; i+ 1g: For each S � NnS and each j 2 S;

v�e(S [ fjg) = v�e0(S [ fjg) and v�e(S) = v�e0(S): (31)
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By (31),
P

S�NnS
f(s)[(v�e(S [ fjg)� v�e(S))� (v�e0(S [ fjg)� v�e0(S))] = 0: Hence,

SVj(V
�
e )�SVj(V �e0) =

X
S�NnS

f(s)[(v�e(S [ fj; lg)� v�e(S [ flg))� (v�e0(S [ fj; lg)� v�e0(S [ flg))]

=
X

S�NnS

f(s)[v�e(S [ S)� v�e0(S [ S)]:

Therefore, SVi(V
�
e )�SVi(V �e0) =

P
S�NnS

f(s)[v�e(S [ S)� v�e0(S [ S)] = SVi+1(V �e )�SVi+1(V �e0)

and the Shapley value satis�es Equal Impact. �

Proof of Proposition 5:
Let e = hf1; 2; 3; 4g; c;ri 2 E�T be such that r� = (0; 1; 2; 3; 4; 0) and c1 = c1;2 = c3;4 = c4 = 5;
c2 = c3 = c2;3 = 3; c1;4 = 10; and c1;3 = c2;4 = 6: Note that triangle inequalities hold among
all agents and r is a least costly route for e. Let i = 2; S = f1; 4g; and T = f1; 3; 4g: Since,
v�e(S [ fig)� v�e(S) = 1 and v�e(T [ fig)� v�e(T ) = 2; and 1 < 2; V �e is not convex.
In general, let e = hN; c;ri 2 E�T be such that there is Si 2 Se with jSij � 4 and
fi � 1; i; i + 1; i + 2g � Si for some i 2 N where ci;i+2 + ci�1;i+1 < ci�1;i+2 + ci;i+1: Note
that this inequality is compatible with a cost vector satisfying triangle inequalities (as in the
example in the previous paragraph). Let S = fi� 1; i+2g and T = fi� 1; i+1; i+2g: Then,
v�e(S [ fig)� v�e(S) < v�e(T [ fig)� v�e(T ) and V �e is not convex. �
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7 Appendix for referees

Here, we depict the calculation of Shapley values we used in the proof of Theorem 1 where
we showed the Shapley value is merging and splitting proof.

In part (b) and (c), we used the following expressions whose simpli�cations are as follows:

�
n�jKjP
s=1

�
n�jKj�1
s�1

�
g(s) =

n�jKjP
s=1

(n�jKj�1)!
(s�1)!(n�jKj�s)!

s!(n�jKj+1�s�1)!
(n�jKj+1)! =

n�jKjP
s=1

s
(n�jKj+1)(n�jKj)

= 1
(n�jKj+1)(n�jKj)

(n�jKj)(n�jKj+1)
2 = 1=2

�
n�jKj�1P
s=0

�
n�jKj�1

s

�
g(s) =

n�jKj�1P
s=0

(n�jKj�1)!
(s)!(n�jKj�s�1)!

s!(n�jKj�s)!
(n�jKj+1)!

=
n�jKj�1P
s=0

(n�jKj�s)
(n�jKj+1)(n�jKj) =

n�jKj�1P
s=0

1
(n�jKj+1) �

1
(n�jKj+1)(n�jKj)

n�jKj�1P
s=0

s

= (n�jKj)
(n�jKj+1) �

1
(n�jKj+1)(n�jKj)

(n�jKj�1)(n�jKj)
2 = 2(n�jKj)�(n�jKj�1)

2(n�jKj+1) = 1=2

In part (d), we used the following expressions:
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n�jKj�2P
s=0
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(n�jKj+1)(n�jKj)(n�jKj�1)f[
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8 Appendix 8

Connected-Set Merging and Splitting Proofness-2: For each e = hN; c;ri 2 E , S 2 Se;
and fS0;S00g � 2S such that S = S0 [ S00 and S0 \ S00 = ;, if eV = ((NnS) [ fs0; s00g; ev) is the
TU-game obtained from Ve = (N; ve) when S

0 merges into a single sponsor s0 2 S0 and S00
merges into a single sponsor s00 2 S00; then

Fs0(eV ) =X
i2S0

Fi(Ve) and Fs00(eV ) = X
i2S00

Fi(Ve):

Let e = hN; c;ri 2 E , S 2 Se; and fS0;S00g � 2S be such that S = S0 [S00 and S0 \S00 = ;. LeteV = ((NnS)[ fs0; s00g; ev) be the TU-game obtained from Ve = (N; ve) when S
0 merges into a

single sponsor s0 2 S0 and S00 merges into a single sponsor s00 2 S00:
For each S � N; let jSj = s and g(s) = s!(n�jSj+2�s�1)!

(n�jSj+2)! : Note that for each S � fs00g[NnS; if
s00 =2 S; then ev(S[fs0g)�ev(S) = ve(S0); and if s00 2 S; then ev(S[fs0g)�ev(S) = ve(S)�ve(S00):
Then,

SVs0(eV ) = P
S�NnS

g(s)(ev(S [ fs0g)� ev(S)) + P
S�fs00g[NnS:s002S

g(s)(ev(S [ fs0g)� ev(S))
= ve(S

0)
n�jSjP
s=0

�
n�jSj
s

�
g(s) + (ve(S)� ve(S00))

n�jSj+1P
s=1

�
n�jSj
s�1

�
g(s)

= 1
2(ve(S

0) + ve(S)� ve(S00)) =
P
i2S0

SVi(Ve):

Similarly, we can show that SVs00(eV ) = P
i2S00

SVi(Ve): Therefore, the Shapley value satis�es

Connected-Set Merging and Splitting Proofness-2.
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