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Abstract

This paper analyses dynamic pricing in markets with network externalities. Net-

work externalities imply demand inertia, because the size of a network increases the

usefulness of the product for consumers. Since past sales increase current demand,

�rms have an incentive to set low introductory prices to be able to increase prices as

their networks grow. However, in reality we observe decreasing prices. This could

be due to other factors dominating the network e¤ects. We use an experimental

duopoly market with demand inertia to isolate the e¤ect of network externalities.

We �nd that experimental price dynamics are rather consistent with real world

observations than with theoretical predictions.
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1 Introduction

For many commodities, the individual utility of consumption depends on how many

other people also consume the commodity. In their seminal paper, Katz and Shapiro

(1985) refer to this phenomenon as network externalities. Such externalities may arise

due to direct physical e¤ects or indirect e¤ects, which they refer to as consumption

externalities. Examples for the direct physical e¤ect are communication networks, like

telephone or E-mail where the usefulness of having access obviously increases with the

number of people that can be reached through the network. The classic example of

indirect e¤ects are computer operating systems, where the number of people using a

particular system determines how many applications are written for it, which in turn

determines how useful it is for the consumer.

The existence of network externalities has crucial e¤ects on conduct in and the per-

formance of markets. Issues such as compatibility, co-ordination to technical standards

and e¤ects on pricing and quality of services create challenges for economic theory (Eco-

nomides, 1996). There is still some discussion about how signi�cant network externalities

are in producing market failures.1 However, the literature that explores the adoption of

technologies (Belle�amme, 1998; Kristiansen, 1996), standards and the lock-in of tech-

nologies (Witt, 1997; De Bijl and Goyal, 1995), compatibility issues (Baake and Boom,

2001), and product introduction (Katz and Shapiro, 1992) is extensive. We focus on

another, less researched, aspect of network externalities: dynamic pricing under demand

inertia.

In a market where at least two competing networks coexist, which are substitutes for

consumers, current network size is correlated with future demand. The larger a network

is today the higher is the demand tomorrow. Consequently, future demand is positively

correlated with sales today. Thus, network externalities imply demand inertia. An

1Katz and Shapiro (1994) make the case that network externalities have a high signi�cance, while in
the same journal and volume Liebowitz and Margolis (1994) argue that network externalities are rarely
a cause of market ine¢ ciencies.
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example of such coexisting networks is the market for game consoles. Currently there

are three non-compatible competing systems: Sony Playstation2, Microsoft Xbox, and

Nintendo GameCube (see Schilling 2003, for an analysis of the game console market).

Coexistence of at least two standards has been the rule in the game console market since

the late eighties (Sega Genesis and Nintendo SNES until 1994, Sony Playstation and

Nintendo 64 from 1996 to 1999, and the three currently competing systems since 2001).

Demand inertia due to network externalities, ceteris paribus, puts pressure on com-

peting �rms to introduce their products with very low prices in order to increase the

size of their network quickly. Cabral, Salant and Woroch (1999) explore the conditions

necessary for a low introductory price being optimal for a monopolist operating under

network externalities. We show that a low introductory price is also optimal in a duo-

poly with competing networks. For a monopolist it is optimal to increase its price over

time (Bensaid and Lesne, 1996). The same is true in our duopoly model. In fact, the

introductory price of the Xbox in November 2001 was quite low (US$ 299) and exactly

matched the price of the Playstation2. Estimates suggest that Microsoft lost between

US$ 100 and $ 125 per unit sold.2 However, contrary to the theoretical prediction, the

prices for Xbox and Playstation2 did not increase, but dropped further (Xbox: US $

149.99 on March 29, 2004; Playstation2: US $149 on May 4, 2004). Price cuts by one

of the two �rms were usually countered by a subsequent equivalent price cut of the

competitor.

There are many reasons why, �rms in reality, may decrease prices over time: inter-

temporal price discrimination; reduced costs due to learning by doing; or scale economies

are examples. The decreasing prices may be easily explained if these forces dominate the

incentives to increase prices over time created by demand inertia. However, due to the

multiple e¤ects at work, it not possible to evaluate the e¤ects of network externalities

alone by just looking at observed pricing behaviour. We use a laboratory experiment

2See Schilling (2003), p 16.
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to separate the e¤ect of demand inertia from other e¤ects. By eliminating the altern-

ative factors mentioned above, which alos play a role in dynamic pricing, we can be

sure that the remaining e¤ect is due to demand inertia or to idiosyncracies of oligopoly

markets. Experimental oligopoly markets typically show a certain degree of collusion

not explained by game theory. In order to separate the network e¤ect from ideosyncratic

collusion in a repeated oligopoly we run a control treatment with an identical market,

but without demand inertia. We can isolate the e¤ects of demand ineratia on dynamic

pricing by comparing prices in the demand-inertia treatment to the prices in the control

treatment.

Reinhard Selten (1965) was the �rst to develop a comprehensive model of oligopolistic

competition with demand inertia. We model demand inertia in a similiar way. However,

in Selten�s model there is no direct strategic interaction in any particular period, as

the period payo¤ does not depend on the prices of the competitors. The interaction is

only indirect as the future demand is in�uenced by past price di¤erences. Keser (1993,

2000) implements Selten�s model in the laboratory and compares the observed play with

the equilibrium prediction with the main objective of categorizing di¤erent patterns of

behaviour. Keser is less interested in evaluating the e¤ect of demand inertia, which in

any case is di¢ cult in her design, since the lack of immediate interaction does not allow

for a control treatment where �rms compete under the same conditions, but without

demand inertia.3 The ability to do so is crucial for our research question, as we want

to compare markets with demand inertia created by network externalities with markets

that do not have network characteristics, but are otherwise identical.

The remainder of the paper is structured as follows. In the next section we present

our model. Section 3 derives some equilibrium predictions for the model. Section 4

describes the experimental setup, while section 5 reports the main results. We conclude

3Another problem for the isolation of demand-inertia e¤ects is the inclusion of interest payments on
early periods to simulate discounting. The e¤ects of this design element and the inertia can not easily
be separated.
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in section 6. In the appendix we show how the demand function used can be derived

from simple consumption decisions for goods with network externalities.

2 The model

In this section we develop a simple model of a market with network externalities. We

reduce this market to its essentials and eliminate any other factor that could have an

in�uence on dynamic pricing. We use a multi-period Bertrand duopoly with di¤erenti-

ated products. Market demand in each period is perfectly inelastic with a total market

demand of a per period.4 The market has a lifetime of T periods. Network externalities

are captured by a state variable sti - the share of past sales in the industry - which

positively in�uences the individual period demand. The share of past sales is de�ned as

sti :=

Pt�1
k=1 q

k
i

[t� 1] a for t > 1; (1)

where i 2 f1; 2g denotes the �rm, t gives the actual period, and qki is the quantity sold in

period k by �rm i: Note that s1i cannot be de�ned by the expression above. So we need

an initial condition which may re�ect initial beliefs of the consumers about the quality

of �rms�products. Reputation, product reviews, and advertising may play a role.

The period sales of �rm i are de�ned as

qti := maxfstia+ ptj � pti; 0g i; j 2 f1; 2g; i 6= j; (2)

where ptj and p
t
i are the prices. Both �rms have the same degree of market power

stemming from the consumers�preferences for the di¤erent goods varieties. Di¤erences

in market power at time t only arise from di¤erent market shares sti; which only depend

on past sales. The market shares are capturing the relative size of the network. We

4This rather restrictive assumption is not crucial for the qualitative results of the model, but will
prove very useful for the identi�cation of treatment e¤ects in the experiment.
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chose to link the bene�ts from the size of the network to the market share rather than to

the absolute past sales for two reasons. Firstly, the marginal bene�t of today�s sales for

tomorrow�s market power is decreasing in the past sales. This re�ects that the marginal

bene�t for the consumers from increases in network size is believed to be decreasing.

Secondly, new consumers who decide in period t which brand to buy will put less weight

on the nominal di¤erences in network sizes if both networks are already large.

The current and future demand functions are common knowledge. So the two �rms

simultaneously choose prices pti; p
t
j in each period t after having learned the market

outcome in the previous period t� 1: They are fully aware of how the current sales will

in�uence their future market power.

We show in the appendix that the demand functions above can be derived from

consumer decisions for goods with network externalities, similar to the framework used

in Katz and Shapiro (1985).

3 Some equilibrium predictions

In this section we will establish some equilibrium predictions. We will see that in spite

of the simple structure of the model solving for the full equilibrium path is impractical.

Therefore we will establish some qualitative results only. Later on we will use a computer

algorithm to solve numerically for the equilibrium prices for the parameters used in the

experiment.

This extensive-form game has many Nash Equilibria. However, to rule out equilibria

that contain empty threats we add the requirement of subgame-perfectness. We therefore

use backward induction and begin with the �nal period. We have to determine the

optimal actions in the �nal period for both �rms and all possible histories. All-payo¤

relevant history is captured by the market share. Therefore, the �rms at period T will

maximize the period payo¤ for a given market share. The payo¤s are given by
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�Ti := p
T
i

�
asTi � pTi + pTj

�
i; j 2 f1; 2g; i 6= j:

Then the �rst-order conditions give the following best response functions:5

bi(p
T
j ) =

asTi + p
T
j

2
i; j 2 f1; 2g; i 6= j; (3)

which gives the optimal prices:6

pT�i =
a
�
1 + sTi

�
3

; (4)

pT�j =
a
�
2� sTi

�
3

: (5)

We now turn to the penultimate period. At period T � 1 the �rms foresee what

will happen in the last period depending on the prices they set in period T � 1: Put

di¤erently, arriving at period T � 1 the �rms know that their prices in T � 1 will cause

certain period outputs. They also know how these period outputs will in�uence their

market share in period T . As they anticipate how they and their competitors will behave

in the last period for market shares, they will set their prices such that the sum of the

pro�ts in periods T � 1 and T will be maximized. Firm i�s aggregate pro�t is given by

�T�1i +�Ti :=

TX
l=T�1

pli

h
asli � pli + plj

i
:

Using the anticipated equilibrium prices pT�i and pT�j for the last period we get

�T�1i +�Ti = p
T�1
i

h
asT�1i � pT�1i + pT�1j

i
+

�
a(1 + sTi )

3

�2
: (6)

5The second-order conditions are obviously satis�ed.
6Note that sTj = 1� sTi :

7



Recall the de�nition of the market share and write sTi as a function of q
T�1
i and sT�1i

sTi =

"
T�2X
l=1

qli + q
T�1
i

#,
a [T � 1] :

Using the demand de�nition from (2) for qT�1i and simplifying leads to

sTi = s
T�1
i +

pT�1j � pT�1i

a [T � 1] :

Replacing sTi in equation (6) and simplifying gives an expression for the aggreg-

ate pro�t, which includes the anticipated behaviour in the last period and which only

depends on the prices in period T � 1:

�T�1i +�Ti = pT�1i

h
asT�1i � pT�1i + pT�1j

i
(7)

+

24pT�1j � pT�1i + a
h
1 + sT�1i

i
[T � 1]

3 [T � 1]

352 :
We see that the anticipated pro�t for the last period (the second term of 7) depends

negatively on the price chosen in period T � 1. The �rst order condition is given by

�2pT�1i + pT�1j + asT�1i �
2
h
pT�1j � pT�1i + a

�
1 + sTi

�
[T � 1]

i
9 [T � 1]2

= 0;

which gives to the best response function

bi(p
T�1
j ) =

pT�1j [1� !] + asT�1i � a
h
1 + sT�1i

i
[T � 1]!

2� ! ; (8)

where

! =
2

9 [T � 1]2
:

Note that the reaction function taking into account the pro�t in the last period di¤ers
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from the reaction function a myopic �rm would have by ! being unequal to 0. The

myopic reaction function can be obtained by setting ! = 0. To see this take (8), set

! = 0; and compare it to the reaction function for the last period (3) where �rms play

myopically. They are identical up to the subscript of the market share.

Inspection of (8) shows that �rm i in equilibrium will set a price lower than the

myopic price pmi (s
T�1
i ) in period T � 1.

Proposition 1 In every subgame perfect equilibrium we have pT�1�i < pmi (s
T�1
i ) and

pT�1�j < pmj (s
T�1
i ):

Proof. Denote the best response functions for myopic players depending on the cur-

rent market share in T � 1 as bmi (pT�1j ) and bmj (p
T�1
i ); respectively. If we can show

that bmi (p
T�1
j ) < bi(p

T�1
j ) and bmj (p

T�1
i ) < bj(p

T�1
i ) hold for all sT�1i we can conclude

that our claim is true, since all best response functions are obviously non-decreasing

in the opponents price. As bmi (p
T�1
j ) = bi(p

T�1
j ) for ! = 0 and ! > 0 we must have

bmi (p
T�1
j ) > bi(p

T�1
j ) if @bi(pT�1j )=@! < 0 for all !, sT�1i , and pT�1j : Di¤erentiating (8)

and simplifying gives

@bi(p
T�1
j )

@!
=
�pT�1j + a

h
2� 2T + sT�1i [3� 2T ]

i
[2� !]2

< 0

for T � 2. Since the best response function of �rm j is obtained by swapping indices

only, the same holds for �rm j:

In the next step is we show that the equilibrium prices are smaller in T � 1 than

in T; independent of the initial market share and the duration of the market T . While

conceptually easy, this is tedious and does not create new insights. So we sketch the

proof in the appendix only.

Proposition 2 In every subgame perfect equilibrium we have pT�1�i � pTi and pT�1�j �

pTj 8sT�1i 2 [0; 1].
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Proof. See appendix

The two propositions above tell us that the price in the penultimate periode T � 1

is a) below the myopic price and b) below the price in the �nal period T . The logic

extends naturally to earlier periods, but the increased complexity of the algebra makes

it impractical to solve for the prices in earlier stages. We will do this using a computer

algorithm for the parameter values used in the experiment later on.

4 Experimental design

We conducted computerized laboratory experiments implementing markets with net-

work externalities as de�ned above.7 We also ran some control sessions of comparable

markets without network externalities in order to isolate the e¤ect network externalities

have on dynamic pricing decisions. We asked students enrolled in the second-year �Mi-

croeconomics 2�at the University of Adelaide to participate. All 112 students enrolled

in the course had the opportunity to participate, and 94 students attended the experi-

mental session. The students were rewarded with a grade bonus of up to 10 percent on

their �nal mark depending on the performance in the experiment. As �Microeconomics

2� is one of the more di¢ cult courses at Adelaide University the subjects were highly

motivated by the grade bonus. Subjects were trying hard to secure passing the course

or to get one of the few distinctions.

Using students from a single course couls be viewed as problematic since the sample

is not randomly drawn. However, most economic experiments cannot guarantee the

randomness of the sample. We can control for the background of students and their

knowledge of economics by using the students of one course.8 We are aware that this

selection gives rise to problems when generalizing the results obtained in the experi-

7We used the computer programme Z-Tree (Fischbacher, 1999) to conduct the experiment. The
Z-Tree code for the two treatments can be downloded from the authors web site.

8We know exactly which courses the students have taken, and are aware of their performance in these
courses.
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ment. On the other hand, we believe that using students from an economics course -

as opposed to students from di¤erent courses - does not have too severe drawbacks for

our experiment. Since in reality price decisions are taken by people with backgrounds in

commerce and economics we don�t see a major problem in restricting the subject pool to

students of a microeconomics course.9 However, the usual caveat about using students

as subjects applies.

Overall, 50 students played the duopoly market with network externalities (treatment

NE), and 44 students were assigned to the control treatment, the duopoly market without

network externalities (treatment No-NE). In both treatments the subjects played two

supergames of ten periods each. The subjects knew that they were paired with the same

opponent in both supergames.10 In every period the subjects had to enter their price

choice and a guess what price the opponent might choose. We restricted the valid prices

to the range between 0 and 10. After both subjects had chosen their actions, they were

informed about the market outcome (own price, opponent�s price, and quantities sold)

and their period pro�ts. In the NE treatment we also displayed the new market share

resulting from the actions taken.

In both treatments, the subjects were given detailed instructions containing payo¤

tables and examples of how to link choices and payo¤s. In the NE treatment, we provided

period-payo¤ tables for di¤erent market shares and explained how to extrapolate the

payo¤s for market shares between tabulated values. Additionally, we carefully explained

how the market share evolved, depending on previous price choices. The instructions,

which were both read aloud and given to the subjects in writing, can be found on the

author�s web page.

9We ran one session with graduate (Masters and Ph.D. students) in order to see if the degree of
economic education has an in�uence. We did not �nd any striking di¤erences in behaviour. However,
the number of observations is not large enough to draw statistical inferences.
10This partner treatment design was chosen in order to obtain the maximum number of independent

observations. The loss of control due to reputation e¤ects is regarded as not problematic for our research
question.
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4.1 Parametrization and theoretical predictions

Implementation of the underlying model structure required a choice of parameter values.

We set the total market demand a to 10. Additionally, we needed a starting value for

the market share for the NE treatment. We decided to use a symmetric setting where

the market shares are s1i = s1j = 1=2: Additionally, to avoid that the market share

reacts too strongly in the �rst period we chose to set past sales to 10 units each. We

can interpret this in two di¤erent ways. Firstly, we could say that there have been two

periods of competition before the start of our experiment. Secondly, we could interpret

this parameter choice as a re�ection of the reputation of the �rms, based on customers�

experience with other goods this �rm has produced.

The baseline duopoly - treatment No-NE - consisted of a market where the market

shares are constant at 1=2 and do not depend on past sales. Note that the strategic

situation in all periods of No-NE is identical to the situation in the last period of NE

with market shares of 1=2. Consequently, the predicted equilibrium prices for No-NE

and all periods are given by equations (4) and (5). For our our parameter values the

optimal prices �p�1; �p
�
2 are

�p�1 = �p�2 = 5

The derivation of the optimal price path for the NE treatment is much more complex.

In order to solve for the equilibrium path, we have to conduct backward induction over

10 periods or use a dynamic programming recursive approach in the spirit of Selten

(1965).11 We used a computer algorithm to solve for the equilibrium-price path, which

basically performs backward induction.12

Figure 1 shows the predicted equilibrium price path for the NE treatment together

11 In our model the dynamic programming approach is more complex than in Selten (1965), because
we have a duopoly market in each period. In Selten�s model the �rms are monopolists in each period
who have to care for their future demand potentials, which depend on the past sales of all �rms.

12The Mathematica code is available for downlod from the author�s web site.
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Game Theoretical Predictions
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Figure 1: Predicted price paths for the di¤erent treatments

with the prediction for No-NE. Note that the symmetric initial market shares lead to

a symmetric predicted price path, i.e. the competitors always choose the same price.

We see that under NE we expect the price to increase from 0 at the start to 5 in

the last period, which is the equilibrium price for the No-NE treatment. As play that

deviates from the equilibrium path may lead to market shares di¤erent from 0.5, it is

necessary to �nd a way of comparing play after a deviation from equilibrium with the

optimal continuation from such a point. Here the assumption of a perfectly inelastic

demand comes into play. Perfectly elastic demand has the implication that the average

equilibrium price is independent of the history of play. Observe that equations (4) and

(5) can be used to �nd the average price for the last period

�pT =
pT�i + pT�j

2
=
5
�
1 + sTi

�
3

+
5
�
2� sTi

�
3

= 5

The average price is independent of the history captured by the market share in period

T . This insight tells us that a pair of �rms in the NE treatment with an average price

13



below 5 prior to the �nal period is �ghting for market share. A pair with an average

price of 5 is playing myopically, while an average price above 5 can be interpreted as

collusion.

The logic of the equilibrium average price being independent of the current market

share in the NE treatment extends to earlier periods. This can be seen by investigating

the outcomes of the computer algorithm used to solve the supergame, or by using a

dynamic programming approach, which is contained in the appendix.

Proposition 3 The equilibrium prices have the form pt�i = 
t + �tsti resulting in an

average equilibrium price of �pt = 
t + �t=2; which is independent of the current market

share.

Proof. See appendix

Consequently, we can say that a pair in the NE treatment with an average price

higher than the calculated equilibrium price (for equal market shares) do not su¢ ciently

take the future pro�ts into account. This judgment can be made independently of

whether the previous play was on the equilibrium path or not. So market shares that

di¤er from the equilibrium market share due to prior o¤-equilibrium play, do not prevent

a judgement about how their prices compare to the equilibrium price level.

The independence of the average prices from the history of play makes the inter-

pretation of our results possible and enables us to compare prices between the No-NE

treatment, where market shares are �xed at 0.5, and the NE treatment, where market

shares other than 0.5 may occur due to o¤-equilibrium play.

5 Results

In what follows we present our main results. The three basic questions will be:

1. How do prices evolve over time compared to the theoretical prediction for di¤erent

treatments?

14



2. How do the prices di¤er among treatments?

3. How competitively do subjects behave under di¤erent treatments?

The �rst question is mainly concerned with the stylized fact that prices for com-

modities in the real world decrease after they are introduced, while a reduced model of

network externalities predicts increasing prices. The second question asks whether net-

work externalities have any in�uence on pricing behaviour at all, while the third question

asks if we can infer the impact of network externalities on the degree of competition from

the observed price choices.

5.1 Evolution of prices

The evolution of chosen prices does not even roughly approximate the game theoretical

prediction in both treatment.13 While the deviation from Nash Equilibrium in the non-

network treatment can be attributed to tacit collusion, it is not clear a priori why prices

do not follow the predicted path in the presence of network externalities. We shortly

comment on the evolution of the prices in the No-NE treatment, before discussing the

results for the NE treatment in more depth.

Treatment No-NE

Looking at the average prices in the standard Bertrand duopoly with di¤erentiated

products (Figure 2) we see that as in other experimental studies the average prices are

above the Nash Equilibrium prediction for the whole time.14 However, prices decrease

over time, illustrating slowly eroding tacit collusion. Note that although play (partic-

ularly in early periods) exhibits considerable tacit collusion, the subjects by no means

come close to the joint pro�t maximizing outcome, which required both players to choose

the maximum price of 10. A remarkable result in our No-NE treatment, which is also
13The raw data and the stata programmes for data analysis can be downloded from the author�s web

site.
14See Huck, Normann and Oechssler (2000) for an example.
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Average Prices without N-Externalities
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Figure 2: Price paths in the No-NE treatment

observed in repeated social dilemma experiments, is the existence of a restart e¤ect. As

the subject pairs stay the same for both 10-period supergames and the individual peri-

ods are independent, the whole experiment is theoretically equivalent to 20 independent

periods of duopolistic competition. However, subject perceive the game di¤erently. After

the �rst 10 periods of play, the announcement of the beginning of a new 10-period game

causes the average price return to the level of the �rst period in game 1.15 This can

be interpreted as the restart acting as a cue for the subjects to newly try to establish

co-operation. With the experience from the �rst game, the subjects are more successful

in sustaining tacit collusion in game 2. The average prices in game 2 are higher than in

game 1. For the �rst 5 periods of game 2 the average prices stay at the restart level (or

even slightly above) before the typical erosion of cooperation occurs, with a particularly

strong end e¤ect experienced.

15Their is no statisticly signi�cant di¤erence of average prices within pairs between the period 1 prices
in games 1 and 2. However pairs increase their prices signi�cantly between the last stage of game 1 and
the �rst stage of game 2 (one-sided Wilcoxon matched-pairs signed-ranks test, p < :01):
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In order to test that the trend of declining prices is not only present in the aggregate,

but occurs also within individual pairs, we used a Wilcoxon matched-pairs signed-ranks

test. For both games the average price per pair is signi�cantly higher in period 1 than

in period 6 (one-sided Wilcoxon matched-pairs signed-ranks test, p < :01 for game 1

and p < :04 for game 2). The average prices per pair are signi�cantly higher in period 6

than in period 10 in game 1 (p < :03), while the di¤erence in game 2 shows only weak

signi�cance (p < :09).

Result 1 In the Bertrand duopoly without network externalities, we �nd some tacit

collusion, which is eroding partially over time. Cooperation is stronger in game 2 and

the erosion of collusion is weaker and starts later than in game 1.

Treatment NE

Prices in the experimental markets with network externalities are very di¤erent from

the prediction as Figure (3) shows. Prices in the early rounds are much higher than

subgame-perfection predicts. However, prices are never above 5, which documents the

absence of tacit collusion in the stage games. Additionally, in early periods for both

supergames, prices decline rather than increase. This is in strong contrast to the pre-

diction. In game 1 the average price of pairs in period 1 is signi�cantly higher than in

period 6 (p < :01) and in period 10 (p < :01). Between periods 6 and 10 there is no

statistically signi�cant change. In game 2 the increased experience does not change the

decreasing prices in the early periods. Pairs set signi�cantly higher prices in period 1

than in period 6 (p < :04). For later periods the competitors seem to increase prices a

bit. The di¤erence shows only weak signi�cance, though (p < :09).

Result 2 In contrast to the theoretical prediction, in the NE treatment the average price

per pair decreases in the �rst half of both supergames. Average prices in early periods

are close to the myopic Bertrand Equilibrium.
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Average Prices with N-Externalities
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Figure 3: Price paths in the NE treatment

Our interpretation of this observed behaviour is the following. As humans are not

able to perform backward induction over a many stages (e.g. Selten, 1978 or Brandts

and Figueras, 2003) and our supergame is quite complex, the subjects in game 1 start

o¤ near the stage game equilibrium and use a rule of thumb. This rule of thumb seems

to consist of a heuristic that balances the trade-o¤ between increasing the market share

and forgoing short-term pro�t. The model prediction that a higher present market share

should increase the price chosen is turned into the opposite by the subjects. A subject

that puts a higher value on the market share in its heuristic will play more aggressively

independent of the present market share and will choose a lower price. However, the

market share depends negatively on the past prices. So if our interpretation of subjects

using heuristics is correct we should observe a negative correlation between current

market share and price chosen for a given expected price of the opponent. It is important

to take the opponent�s expected action into account because without doing this we may

misinterpret a relatively high price as myopic, while - given the expectation that the

opponent will set a very high price - it is in fact intended to be very aggressive. In order
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to test this we created a variable that measures the deviation from the myopic best

response to the guessed price of the competitor. This variable captures the intention of

a player. The lower this variable is the more aggressively the subject intends to behave.

Period 2 3 4 5 6 7 8 9 10
Game 1 ��� � �� + � �� ���� �� ���
Game 2 ���� ���� � ���� ���� �� ��� � �
* 10% level, ** 5% level, *** 1% level

Table 1: Correlation between intention to �ght and market share

Table 1 shows that the correlation between the deviation from the myopic best re-

sponse to the guessed price and the market share is signi�cantly negative for many

periods and never signi�cantly positive. Put di¤erently, subjects who have obtained a

high market share already try to increase their market share further, instead of cash-

ing in on their market power, as gamer theory would predict. Over all the sign of the

correlation coe¢ cient is only positive for period 5 in game 1 (highly insigni�cant with

p = :39). Note that in the �rst supergame the motive of �ghting for market share is

even dominant in the �nal period, where this cannot be explained by any future pro�t

consideration. This illustrates that subjects persued gaining a high market share as a

goal per se rather than doing so to increase future pro�t opportunities.

The period 10 average prices in the NE treatment are below the myopic average

price of 5 for both supergames (4.12 in game 1 and 4.28 in game 2). In sharp contrast

to this the average prices in the No-NE treatment lie above 5 (5.58 in game 1 and 6.02

in game 2). The picture becomes even clearer when we look at the intended play. In the

No-NE treatment subjects choose prices close to the best response to the anticipated

price of the opponent in period 10. On average the chosen prices are .11 below the best

response in game 1 and only .05 below the best response in game 2. In the NE treatment

the intended play shows that subjects were still �ghting for market share in the �nal
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period. In game 1 the chosen prices were on average .64 below the best response to

the anticipated price of the opponent. The di¤erence in game 2 was smaller, but still

substantial, with average prices being .46 below the best response.

Result 3 Subjects use a heuristic that puts certain weights on short-term pro�t and

on market share rather than backward induction as a behavioural rule. The deviation

from the myopic best responses to the opponent�s expected price are negatively correlated

with the current market share. This is consistent with a heuristic and incompatible with

backward induction.

5.2 Network externalities and competitiveness

Figures 4 and 5 compare the average prices in the treatments for game 1 and 2. It is

obvious that the prices in the treatment with network externalities are consistently lower

than in the No-NE treatment (p < :01 for periods 1 to 18 and p < :025 for the remaining

two periods, one-sided Mann-Whitney U-test). We observe that the price di¤erences are

greater in game 1 (roughly 1:7) than in game 2 (between 1:8 and 3).

Average Prices in Game 1
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4.5

5

5.5

6

6.5

7

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

N-Externalities
Independence
Fight Line

Figure 4: Price di¤erences game 1
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Average Prices in Game 2
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Figure 5: Price di¤erences in games 2

Result 4 Average prices in the No-NE treatment are signi�cantly higher than in the NE

treatment for both games. The price di¤erences among treatments are greater in game 1

than in game 2..

The setting in the No-NE treatment is relatively collusion friendly, while in the NE

treatment the network externalities introduce an additional competitive element - the

struggle for market share. So the result that competition is more �erce in a market with

modest network externalities than in one without is not surprising. More surprising is

that the price di¤erence in the market does not strongly decrease, the closer we get to

the end of the product lifetime.16

An interesting question is to compare the predicted average e¤ects network external-

ities have on the distribution of rents with the experimental outcome. Are the consumers

getting a relatively better deal out of the additional competition due to network extern-

alities in theory or in the experiment? A measure is the relative bene�t of the network

16There is an end e¤ect in game two. The price di¤erence shrinks in the last round. However, in early
periods where we expect the gap to narrow with a high rate, the gap increases.
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externalities in the experimental sessions compared with the theoretical bene�t. As we

used a perfectly inelastic demand we cannot use consumer surplus as a measure.17 How-

ever, we can compare the pro�ts the �rms make in theory and experimental practice.

Since the quantities in theory and in the experiment are constant for all rounds, we

can use the average price per round as an indication of how much potential consumer

surplus the �rms were able to transform into pro�ts. Table 2 shows the average prices

over all rounds and �rms. We see that the absolute bene�t for consumers (the average

price di¤erence between No-NE and NE) is in the same range for theory and the two

experimental games (2.27 versus 2.0 and 2.53, respectively); but in the No-NE treatment

collusion with high average prices mean that the relative bene�t of increased competition

is smaller in the experimental NE market than theory predicts.

Theory Game 1 Game 2
No-NE 5:00 6:30 6:64
NE 2:73 4:30 4:11
Bene�t of NE absolute 2:27 2:00 2:53
Bene�t of NE relative 45:5% 31:8% 38:1%

Table 2: Average prices over all rounds

Result 5 Increased competition due to network externalities reduces average prices ap-

proximately by the amount the theory predicts. The relative price-reduction is smaller in

the experimental markets.

6 Conclusion

Markets with network externalities are characterized by demand inertia. This demand

inertia creates an incentive for �rms producing competing products to set low introduct-

17Note that in our model due to the perfectly inelastic demand collusion does not cause any e¢ ciency
loss.
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ory prices for their products as they seek to increase the size of their network. Optimal

prices increase when the market matures as the incentive to �ght for market share gets

weaker as the market gets to the end of the product cycle. In reality we regularly do

not observe increasing prices when markets with network externalities mature. However,

this could be the result of more dominant countervailing e¤ects, such as intertemporal

price discrimination, increasing returns to scale due to learning by doing, or decreas-

ing demand. In order to be able to determine the e¤ect of demand inertia created by

network externalities on dynamic prices we conducted a laboratory experiment. Our

experimental setup was designed to isolate the e¤ects of demand inertia by removing

all other in�uence factors. As a benchmark we ran a control treatment where network

externalities were absent. This set up enabled us to isolate the e¤ect of demand inertia

on dynamic pricing.

We found that as theory predicts, the average prices are lower if network externalities

are present. However, average prices under network externalities in accordance with the

real world decrease if subjects are not experienced. Theory predicts increasing prices.

Even if subjects gain some experience prices still decrease over time in young markets.

They only increase slightly when markets mature. We attribute this deviation from

the theoretical prediction to the inability of subjects to conduct backward induction

over a long and rather complicated supergame. We suggest that subjects instead use

a rule of thumb that mitigates the trade-o¤ between current pro�t and future pro�t

potential depending on the market share. This rule of thumb seems to be surprisingly

stable over time. Intended aggressiveness of play is positively correlated with the market

share throughout the supergame. This means that people who play aggressively at the

beginning of the game do not cash in on their obtained high market share in later periods,

but stick to their rule of thumb and continue to play aggressively. This suggests that

people are not only not able to perform backward induction, but have also problems to

at least intuitively follow the logic of intertemporal pro�t maximization.
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A Derivation of the inverse demand function

In this appendix we demonstrate how the speci�c demand function used in the text can

be derived from simple (speci�c) preferences for di¤erentiated goods and network sizes.

For comparable preferences we get similar results for the inverse demand functions. We

chose this speci�c setting to keep the inverse demand functions as simple as possible.

Assume that consumers purchase one unit of the good per period. Every period a

consumers are active in the market. They decide which brand to buy by comparing the

net surplus the goods are creating. As the goods are not homogeneous the consumers

ceteris paribus prefer one of the brands. Denote the surplus a certain consumer k derives

from consuming the product of �rm i as �ki . De�ne the additional surplus � for consumer

from the network of product i as half the average sales of good i per past period:

�i :=
t�1X
l=1

qti

,
2(t� 1)

This can be interpreted in two ways:

1. The consumer learns some quality aspects of the good from the number of previous

sales.

2. The consumer cares only for number of sales in the actual period (valued at 1/2
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monetary unit each) and forms expectations according to the average past sales.18

Then the total net surplus of consuming good i is given by:

CSki := �
k
i + �

k
i � pi

So consumer k will purchase good i whenever CSki > CS
k
j or

��k > pi � pj �
t�1X
l=1

�
qti � qtj

�,
2[t� 1]

where ��k is given by �ki � �kj : Suppose that the di¤erences between values ��k for the

di¤erentiated products is distributed uniformly on the interval [�a=2; a=2]. Then for

given prices and network sizes the number of consumers buying good j is given by

qtj = aF

 
pi � pj �

t�1X
l=1

�
qti � qtj

�,
2[t� 1]

!
=

= �1=2a+ pi � pj �
t�1X
l=1

�
qti � qtj

�,
2[t� 1]

Recall that
Pt�1
l=1 q

t
i = at �

Pt�1
l=1 q

t
j ; since past total sales of all brands are equal to ta.

Replacing
Pt�1
l=1 q

t
i gives

qtj = pi � pj +
1

t� 1

t�1X
l=1

qtj =

= astj + pi � pj ;

which is the inverse demand function we use. The demand for �rm i is just a � qtj =

ast1 + pj � pi:
18 In the equilibrium of a symmetric duopoly these expectations are rational and we have a rational

expectation eqilibrium as both �rms sell a=2 in every period.
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B Proof of proposition 1

This proof is conceptually easy, but quite tedious. We only sketch the proof and omit

some intermediate calculations.

Proof. We use the best response functions (2) in order to compute the equilibrium

prices in the penultimate stage. This gives the following equilibrium price for player i :

pT�1�i = a
�41 + 3sT�1i [T � 1]2 [9T � 11] + 3T [41 + T [9T � 35]]

3 [T � 1] [23 + 27T [T � 2]]

Note that pT�1�j is found by just replacing the index. Using those equilibrium prices and

the law of motion for the market share we can compute the equilibrium price in the �nal

period as a function of the market share in period T � 1 and subtract the equilibrium

price obtained above:

pT�1�i � pT�i =
a

3

24 1

T � 1 �
6
h
2sT�1i � 1

i
[T � 1]

23 + 27T (T � 2)

35
Further inspection shows that this converges to 0 when T approaches in�nity. Addition-

ally, the roots for T are all smaller than 2 (T1=2 = 1� 2=
q
33� 12sT�1i ). As T 2 [2;1)

we know that pT�1�i �pT�i � 0 for all sT�1i if we �nd a valid T such that pT�1�i �pT�i > 0

holds. For T = 2 we get pT�1�i � pT�i = a
h
29� 12sT�1i

i
=69 > 0.

C Dynamic programming approach to prove proposition 2

In this section we outline the dynamic programming solution of the NE-game. We assume

functional forms for prices and continuation payo¤ and show that these assumptions are

correct. The derivation of the average price in the main text uses these functional forms.

Step 1: solve the last stage. Optimal prices are
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pT�i =
a
�
1 + sTi

�
3

(9)

pT�j =
a
h
1 + sTj

i
3

(10)

Stage payo¤s are

�T�i =
�
pT�i
�2
=

"
a
�
1 + sTi

�
3

#2
(11)

�T�i =
�
pT�j
�2
=

24a
h
1 + sTj

i
3

352 (12)

Step 2: The law of motion for the state variable

st+1i = sti +
ptj � pti
a [1 + t]

(13)

Step 3: Guessing functional forms for the recursion

pt�i = �tsti + 

t (14)

�̂ti = �t
�
sti
�2
+ �tsti + �

t (15)

The functional forms proposed do de�nitively work for the last round:
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�T =
a

3


T =
a

3

�T =
ha
3

i2
�T =

2a

3

�T =
ha
3

i2
Step 4: Bellman equation

�̂ti = �
t
i + �̂

t+1
i (16)

Di¤erentiating (16) with respect to pi and using (13) gives:

@�̂ti
@pti

= �2pti + ptj + asti +
@st+1i

@pti

@�̂t+1i

@st+1i

=

= �2pti + ptj + asti �
1

a [1 + t]

@�̂t+1i

@st+1i

(17)

We can use the recursion relation from (15) to write the �rst-order conditions (17) as

@�̂ti
@pti

= �2pti + ptj + asti �
2�t+1

h
sti +

ptj�pti
a[1+t]

i
+ �t+1

a [1 + t]
= 0

Step 5: Solving for the prices By solving for the parameters of the optimal

prices we �nd:
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pt�i = sti
Y t+1

�
aY t+1 � 2�t+1

�
3Y t+1 � 4�t+1 +

2a�t+1Y t+1 +
�
2�t+1 + 3�t+1

� �
Y t+1

�2
4�t+1Y t+1 � 3 [Y t+1]3

+
�a
�
Y t+1

�3 � 4�t+1 ��t+1 + �t+1�
4�t+1Y t+1 � 3 [Y t+1]3

(18)

where Y t = at and recursively

Y t = Y t+1 � a: (19)

The proposed functional form is correct, since pt�i is an a¢ ne function of the market

share. We can get the coe¢ cient for the optimal price from (18):

�t =
Y t+1

�
aY t+1 � 2�t+1

�
3Y t+1 � 4�t+1 (20)


t =
2a�t+1Y t+1+

�
2�t+1 + 3�t+1

� �
Y t+1

�2
4�t+1Y t+1 � 3 [Y t+1]3

+
�a
�
Y t+1

�3 � 4�t+1 ��t+1 + �t+1�
4�t+1Y t+1 � 3 [Y t+1]3

(21)

Note that by de�nition from equation (14) the average price �pt is independent from

the current market share if our functional forms are correct:

�pt = �t=2 + 
t (22)

Step 6: The equilibrium motion for the market share from equations (13)

and (14) we can derive the equilibrium market share recursively:

st+1i = sti +

�
1� 2sti

�
�t

Y t+1
(23)

This tells us that the game has a steady state at a market share of 1/2.
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Step 7: Check the functional form for the pro�ts Note that the future pro�t

only depends on the market share. So we have to �nd out how the future pro�t varies

with the market share. Di¤erentiating the total future pro�t at time t from (16) with

respect to sti gives:

@�̂ti
@sti

=
@�ti
@sti

+
@�ti
@pti

@pti
@sti

+
@�ti
@ptj

@ptj
@sti

+
@�̂t+1i

@st+1i

@st+1i

@sti

Using our previous results and assumptions about functional forms from (14), (15), and

(23) makes it possible to develop the previous equation

@�̂ti
@sti

= apti +
�
�3pti + ptj + asti

�
�t +

@�̂t+1i

@st+1i

�
1� 2�t

�
=

= apti +
�
�4�tsti + �t � 2
t + asti

�
�t +

@�̂t+1i

@st+1i

�
1� 2�t

�
=

=
�
�4�tsti + �t � 2
t + 2asti

�
�t + a
t +�

1� 2�t
� �
2�t+1st+1i + �t+1

�
=

�
�4�tsti + �t � 2
t + 2asti

�
�t + a
t +�

1� 2�t
� �
2�t+1

�
sti +

�
1� 2sti

�
�t
�
+ �t+1

�
(24)

Our result from (24) is linear in sti. So we can see that integration leads to the form

we proposed. We get the following recursive relationships:

�t =
�
1 + 4

�
�t � 1

�
�t
�
�t+1 + a�t � 2

�
�t
�2

(25)

�t =
�
1� 2�t

�
�t+1 + a
t + �t

�
�t + 2�t+1 � 4�t�t+1 � 2
t

�
(26)

With the recursive relations (20), (21), (19), (23), (25), and (26) we have de�ned the

subgame-perfect equilibrium-behaviour of the �rms. Furthermore, we have shown that

the functional forms assumed are correct and the average price (de�ned in 22) is inde-
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pendent from the current market share.
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