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Abstract. The opinion dynamics model introduced by Deffuant and Weisbuch as wellas
the one by Hegselmann and Krause are rather similar. In both models individuals are as-
sumed to have opinions about an issue, they meet and discuss, and they mayadapt their
opinions towards the other agents’ opinions or may ignore each other if theirpositions are
too different. Both models differ with respect to the number of peers they meet at once. Fur-
thermore the model by Deffuant and Weisbuch has a convergence parameter that controls
how fast agents adapt their opinions. By defining the reversed parameter as a self-support
we can extend the applicability of this parameter to scenarios with more than one inter-
action partner. We investigate the effect of varying the number of peers met at one time,
which is done for different population sizes, and the effects of changing the self-support.
For describing the dynamics we look at different statistics, i.e. number of cluster, number
of major clusters, and Gini coefficient.
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1. Introduction

1.1 Opinion dynamic (OD) models describe the process of opinionformation in groups of individ-

uals. We focus on continuous opinion dynamics with compromising agents in a time-discrete

world. We assume that an opinion is a continuous value between zero and one. In every time

step, each agent adapts his opinion toward the opinions of a set of randomly selected other

agents, while the new opinion is between the minimum and maximum of the own and all per-

ceived opinions (compromising or averaging). A common feature among many models of con-

tinuous opinion dynamics is bounded confidence, which describes the fact that peers holding

opinions that are sufficiently different from an agent’s ownopinion do not exhibit any influence

on this agent. This idea reflects psychological concepts such as selective exposure. For a de-

tailed discussion of how models of the type we look at relate to social psychological theory see

the recent review by Mason et al. (2007).

1.2 Two models of continuous opinion dynamics have received significant attention, the model

introduced by Deffuant and Weisbuch (DW model) (Deffuant etal., 2001, Weisbuch et al.,

2001, Deffuant et al., 2002, Weisbuch et al., 2002) and the model introduced by Hegselmann

and Krause (HK model) (Hegselmann & Krause, 2002). A fundamental difference between

these two models is the number of agents that communicate. Ineach time step, in the DW

model two randomly chosen agents mutually perceive their opinions, while in the HK model all

agents perceive all other agents’ opinions. The same tendency toward extreme models regarding

the number of communicating agents can be found in the related literature on discrete opinion

dynamics (see for instance Schweitzer & Holyst, 2000 but also Fortunato, 2004).

1.3 The difference between the DW model and the HK model is in a dimension that we would label

the communication regime. Social reality may restrict the process of communication between

agents such that communication between all agents at the same time (as done in the HK model)
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but also communication between only two randomly chosen agents out of all possible agents

(as done by the DW model) appear as extreme cases.

1.4 In this article we want to investigate these rules about who is communicating with whom at what

time. We call such rules and restrictions thecommunication regimeof an opinion dynamics

model. We call it ’regime’ because it is independent of the agents’ opinions; it is a parameter

of the model. The communication regime includes the underlying social network but also how

this network may change over time. In a mathematical sense the communication regime is a

(temporal) sequence of networks of who perceives whose opinion. It can be treated as a module

of the opinion dynamic models.

1.5 Another module of opinion dynamic models is theupdating mechanism. The updating mecha-

nism introduces rules how agents adapt their opinions basedon a set of other agents’ opinions.

It models perceptual or information processing biases, e.g. bounded confidence or selective ex-

posure. By many parallel and sequential communications these biases are multiplied in a group

such that new and sometimes even more complex group dynamicscan be observed.

1.6 More and more, the updating mechanism is treated as a module of OD models independently

of the communication regimes. For instance, the updating mechanism of the basic DW model

is put on network structures (see Amblard & Deffuant, 2004; Stauffer et al., 2004), and the

HK model is developed with an updating mechanism that captures discrete opinions instead of

continuous opinions (see Fortunato, 2004).

1.7 Observing the different extensions of the HK model and the DWmodel, we present a model

that unifies these two models. As this requires an additionalparameter, the number of peers met

at once, we also investigate the effect that this parameter has on the dynamics.

1.8 In section 2 we introduce a model that contains the DW model aswell as the HK model as

special cases. As a prerequisite we unify the updating mechanism; thereby we redefine the con-

vergence parameterµ (now calledself-support) of the DW model and introduce this idea into
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the HK model. Section 4 summarizes simulations that show howthe difference in the commu-

nication regime, i.e. the number of individuals communicating at once, influences the dynamics

of the model. Thereby we compare the dynamics for smaller andlarger agent populations. We

also show that the impact of self-support is moderated by thecommunication regime. In order

to describe the aggregate dynamics we briefly discuss different aggregated measures (maximum

cluster size, number of clusters, number of large clusters,Herfindahl index, and Gini coefficient)

and show how they differ with respect to our simulations results.

2. Generalizing the DW and HK model

2.1 As motivated in the introduction, the DW model and the HK model are very much alike, but

differ mainly in the communication regime that determines who communicates with whom. In

this section we will introduce a model that comprises both mentioned models as special cases.

To find a parameterised model covering both, the DW model (with globally uniform uncer-

tainty and without relative agreement) and the HK model, we build on the distinction between

updating mechanism, which describes how individuals reactif they interact with others, and the

communication, which describes who is interacting with whom at what time.

2.2 However, before discussing the different modules of opinion dynamics, we briefly define what

this is all about. Consider a setn := {1, . . . , n} of agents. We call the vectorX(t) ∈ R
n

an opinion profile. Xi(t) for t ∈ N0 represents the opinion of agenti at time t. The initial

opinion profile is given byX(0). We assume that the initial opinions are equally distributed in

the opinion space, i.e.Xi(0) ∈ [0, 1].

2.3 A communication regime describes who communicates with whom at what time, or – more

general – who gets the information about the opinion of whom at what time. In the most general

case this can be represented for a specific time step by a network or its adjacency matrix. The

communication regime in its most general sense is then a sequence of networks or respectively
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their adjacency matrices.1

2.4 For the HK model the communication regime is a sequence of fully connected networks, so

that the adjacency matrices are completely filled with ones.In the DW model in every step two

randomly chosen agents interact. Hence, every adjacency matrix is a unit matrix plus a one at

one off-diagonal entry and a one at its corresponding entry on the other side of the diagonal.

So, a group of two agents is a fully connected network, while all others do not interact.

2.5 In this paper we extend to communication regimes where in each time stepm randomly chosen

agents communicate (2 ≤ m ≤ n, m = 2 is DW, m = n is HK). We call these communication

regimesrandomm-communication regimes. So, the adjacency matrix of a network in a random

m-communication regime is the unit matrix plus ones at all entriesij wherei, j form a set ofm

random agents.

2.6 The updating mechanism describes how individuals react to perceived opinions. While Jager

and Amblard (2004) allow for a divergence of opinions, usually some sort of averaging or con-

vergence between the interaction partners is modelled. A study of different averaging rules can

be found in Hegselmann and Krause (2004). Despite the tendency toward convergence, those

individuals that differ too much from the own opinion are ignored. This concept is usually called

bounded confidenceand it can be motivated by concepts like selective exposure (see Mowen &

Minor, 1998). Both above-mentioned models assume an averagerespectively a weighted aver-

age of the own and others’ opinions if the peers do not differ more than a given threshold. We

will call this thresholdε as done in the HK model. Although both models average, the details

differ. In the DW model the average is over two opinions, while there is a convergence parame-

ter that controls how fast an individual adapts toward the other opinion. In the HK model there

is an average over a set of opinions while the number of opinions in this set can vary because

it depends on how many opinions are within the bounded confidence range. Hence, in the HK

model there is not a fixed weight assigned to the own or to the other’s opinions, but the weights
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vary with the number of peers.

2.7 To be able to formulate an updating mechanism (an averaging rule) that is able to reproduce

both models, we introduce aself-supportµ into the HK updating mechanism. An individual

gives a weight ofµ to the own opinion and distributes1 − µ across all opinions (including

the own). The full weight assigned to the own opinion is the sum of the self-supportµ and the

proportion that every opinion receives when distributing the remaining1−µ across all opinions.

Parameterµ can be considered a lower limit of the weight assigned to the own opinion; it is the

self-support that is independent of the number of peers met at once. This specific mechanism is

sufficiently general to allow for a smooth transition between the DW updating mechanism and

the HK updating mechanism.

Definition (averaging with bounded confidence and self-support)

2.8 Let C(t) be the adjacency matrix of a network in a communication regime with cij(t) being the

indicator for an information flow from agenti to j at timet. LetX(t) be an opinion profile, and

0 < ε, µ ∈ [0, 1]. Then we define theaveraging ruleas follows. We first define the confidence

matrix A(X(t)) ∈ R
n×n, whereaij(X(t)) is the weight that agenti assigns to the opinion of

agentj at timet:

aij(X(t)) =











µ + 1−µ

|I(i,X(t))|
if j = i

1−µ

|I(i,X(t))|
if j ∈ I(i,X(t)) andj 6= i

0 otherwise

(1)

with I(i,X) := {j ∈ n, | cij = 1 and|Xi − Xj| ≤ ε}

The confidence matrix is nonnegative and each row sums up to one. The setI(i,X) is called

the confidence set of agenti. The new opinion profile is then computed as:

X(t + 1) = A(X(t))X(t) (2)

2.9 The Parameterµ is not the same as the parameterµ in the DW model (Deffuant et al., 2001). To
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distinguish them we label the original parameter of the DW model µD. If we setµ = 1 − 2µD

andm = 2, then our model equals the DW model. The assumption of0 < µD ≤ 0.5 that is

made in DW model corresponds to0 ≤ µ < 1 in our model.

2.10 All together we have presented a unified basic model of continuous opinion dynamics that

allows for the analysis of the impact of different numbers ofcommunicating agents. It includes

a special class of communication regimes that is independent of social networks or, in other

words, a communication regime that only has the fully connected network as its underlying

social network. It incorporates two important basic modelsthat are applied in many articles

on continuous opinion dynamics with compromising agents, i.e. the model by Deffuant and

Weisbuch and the model by Hegselmann and Krause. Actually both extremes happen in real

social structures. But also meetings withm = 3 or 4 or 10 or 50 people occur. Independent

variables of our model are the number of agentsn, the number of communicating agentsm, self-

supportµ, and the bounded confidence parameterε. The initial profileX(0) and the randomly

chosenm-communication regime matricesC(t) are also free variables of the model, but we will

treat them as endogenous random choices being equally distributed within the defined bounds.

Due to this randomness we are forced to run many simulations with different randomly chosen

X(0) andC(t).

3. Model analysis

3.1 In our model analysis we first show that the dynamics stabilize. Furthermore, we show that the

dynamics are mean preserving for isolated fully connect groups of agents, and that the dynamics

always reach a state where all agents are in isolated fully connected groups. Anisolated fully

connected groupis a set of agents, in which all agents within the same group have a distance

smaller thanε, while each agent outside the group has a distance larger than ε to each agent in

the group.2 These results enable us to implement simulations that finally calculate the long-term
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limit of the dynamics.

Stabilizing and stable states

3.2 Proposition Let X(0) ∈ R
n be an initial opinion profile,ε > 0 be a bound of confidence,

µ ∈ [0, 1] be a self-support, andm be the number of communication agents in each time-step.

Furthermore, letC(t) be a randomm-communication regime andX(t) be recursively defined

asX(t) = A(X(t − 1))X(t), the process of opinion dynamics. For this process, the following

holds:

1. It reaches a stable state.

2. In finite time it reaches a state where all agents are in isolated fully connected groups.

3. An isolated fully connected group never splits.

4. The mean opinion of agents in an isolated fully connected group remains stable.

3.3 Proof:

The stabilization theorem for continuous opinion dynamics(Lorenz, 2005) ensures the conver-

gence ofX(t) to a stable state when in each confidence matrix (i) the diagonal is positive, (ii)

confidence is mutual (aij > 0 ⇔ aji > 0), and (iii) there is a thresholdδ such that the lowest

positive entry is always greater thanδ. All three conditions are fulfilled in every confidence ma-

trix arising in the process: (i) Due to the fact that each agent is always closer thanε to himself

andµ + 1−µ

n
> 0, (ii) because all agents have the same bound of confidence, and (iii) because

every positive entry in a confidence matrix is always greaterthan 1−µ

n
. This proves 1.

3.4 In a stable state each two agents must either have the same opinion or have a distance larger than

ε. This is proved in Lorenz (2007, Section 3.3.5). It is trivial for the DW model and not totally

trivial for the HK model. The proof extends naturally from the HK model to communication
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regimes withm < n. Thus, in the stable state agents are in isolated fully connected groups that

have internal consensus. The distance between the two groups must be greater thanε, thus there

is a time stept such that all agents are connected to each agent in his isolated fully connected

group and has a distance of more thanε to all other agents. This proves 2.

3.5 The opinions in an isolated fully connected group can only take new opinions as average of the

opinions in their isolated fully connected group; thus, themaximal distance of opinions in a

fully connected group is by definition less thanε and cannot increase. This proves 3.

3.6 Consider that all agents in an opinion profileX(t) are in isolated fully connected groups. Then,

regardless of the selection of them communicating agents the confidence matrixA(X(t)) will

be symmetric (not only with mutual confidence). It is easy to see that in this case the mean of

all opinions remains stable.3

1

n

∞
∑

i=1

Xi(t) for all X(t + 1) = A(X(t))X(t) (3)

As this holds for the means within all isolated fully connected groups, this proves 4. ⊓⊔

3.7 Proposition 1 gives us a tool to optimize our simulations. First of all, if agents are in a state

that is characterized by fully connected groups, then the average opinions in these groups do

not change and thus, because fully connected groups do not split further, we can calculate the

long-term limit which these groups independently convergeto. Because the system reaches

such a state in a finite time, we can implement our simulationsas a process that simulates the

opinion dynamics and – from time to time – checks if groups arefully connected. If groups are

fully connected they can be collapsed such that all agents inthis group have the same opinion

given by the groups’ average opinion. We stop simulation if all groups are collapsed. In fact,

our results are equivalent to simulating the system for an infinitely long time.
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Comparing limit states

3.8 For comparing final states of opinion dynamics, ideally, we would look at the distribution of

clusters and agents within the opinion space. However, it isoften useful and common practice

to describe the final state by a one-dimensional value. Different measures are possible and

different measures were used. For defining them letSNC be the finalnumber of clustersand let

s1, s2 to sSNC
be the sizes of all clusters ordered by size such thati < j ↔ si ≥ sj. Let Oi be

the opinion of clusteri. The different statistics are defined as follows:

• Thenumber of clustersSNC is self-explaining. This measure is used by Urbig (2003). A

weakness of this statistic is the fact that it ignores information by not refering to the clus-

ter sizes. Thus, a single agent that is lost at the extreme counts as much as the remaining

population of agents that perhaps clustered around a mediumopinion. Such small mi-

norities appear systematically in systems that we look at; Ben-Naim et al. (2003) show

this especially form = 2.

• The maximum cluster sizeSMC = s1 is a measure of the power of the majority and is

used by Lorenz and Urbig (2007). It abstracts from minorities because only the largest

majority counts.

• The Herfindahl indexSHI is used in economic theory to describe the concentration of

markets. It is based on cluster sizes but does not take into account the opinions that clus-

ters are located at. Weisbuch et al. (2001) use it for describing limit states of opinion

dynamics.

SHI =

SNC
∑

i=1

(si

n

)2

(4)

• TheGini coefficientSGC is a measure of inequality and refers also to opinions of every
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single agent and thus takes cluster positions and indirectly the number of clusters into

account. It is mainly used in the social sciences and welfareeconomics.

SGC = 1 −

SNC
∑

i=1

SNC
∑

i=j

((Oj − Oi) · si · sj)

2 ·
SNC
∑

i=0

(si · Oi)

(5)

• The number of major clustersSNMC that excludes minorities could be interesting as

well. Deffuant et al. (2001) (in Figure 4) report such a statistic. However, they only

exclude small extreme clusters at the ends of the opinion space but not all minorities,

which probably did not appear that often. Based on our own simulation experience4 we

will exclude all cluster that have a size below1
2
· ε · n.

SNMC = arg max
i

(

si+1

∣

∣

∣

∣

si+1 <
1

2
· ε · n

)

(6)

4. Simulations

4.1 Our simulations explore three basic questions. First, we run a typical example for opinion dy-

namics and compare the different descriptions of final states. Second, we investigate the effect

that the number of individuals who met at one time, i.e. parameterm, has on the dynamics.

Thereby we also look at different population sizesn. Finally we look at the effect of the self-

supportµ and how it may interact withm. An analysis of variance sheds light on the impact

that these variables have.

Different descriptions of final states

4.2 For our first analysis we consider a population of 100 individuals and vary the bounded confi-

dence parameterε, while keeping the self supportµ constant at zero. Figure 1 plots the different

statistics on the final state for different values ofε and for the DW model (left,n = 100 and
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m = 2) and for the HK model (right,m = n = 100). The data points are adjusted such that they

all start at the lower left corner that represents the case with the smallest chance for consensus

and end in the upper right corner that represents the case with the largest chance for consensus.

Due to these transformations, the comparisons of the absolute values of these curves do not

have any meanings. However, we are able to compare the general shape of these curves.
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Figure 1. Statistics on the final states for varyingε for m = 2 (left) andm = 100 (right) with n = 100
andµ = 0.0

4.3 We observe that Gini coefficientSGC , Herfindahl indexSHI , and maximum cluster sizeSMC

behave rather similar and consistently over the two values of m. Either they measure the same

or what they measure is strongly correlated over these two settings. The maximum cluster

sizeSMC is closely related to the Herfindahl indexSHI . The latter includes more information,

while the first ignores all clusters besides the largest cluster. We do not want to get into a

longer discussion on the Gini coefficient, but we just want tomention that the Gini coefficient

increases with larger clusters, which makes it closely related to the Herfindahl index. However,

the Gini coefficient additionally incorporates information about the position of these clusters.

The cluster numberSNC and the number of majoritiesSNMC behave rather similar for the case
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m = n but differ in their shape form = 2. In fact, while Ben-Naim et al. (2003) show that

minorities (very small clusters) appear systematically for m = 2 (DW model) Lorenz (2007)

shows that minorities do not systematically appear for the casem = n (HK model), except that

a single central cluster might get relatively small. This occurrence of minorities is the reason

why SNC andSNMC closely follow each other form = n, but differ significantly form = 2.

This is also the reason why the Herfindahl index, Gini coefficient, and maximum cluster size

seem to differ slightly more form = 2 than form = n; they simply treat minorities slightly

different.

4.4 For the following analysis we focus on three statistics:SNC , SNMC , andSGC . We take the first

two statistics because they measure something partially uncorrelated. The third is chosen from

a group of three statistics that all seem to behave rather similar. To our knowledge, the Gini

coefficient has not been explored as a statistics for final states in opinion dynamics; thus, we

selected this statistic for our further analysis.

Changing the number of communicating agents

4.5 For exploring the effect of changing the number of communicating agents,m, we keep parame-

terµ constant at zero. Form = n the model reduces to the HK model and form = 2 we get the

DW model withµD = 0.5. The effect of changing parameterµ is explored later in this paper.

4.6 We run nine simulation to get an initial idea of howm influences the dynamics. Figure 2 shows

the nine processes of opinion dynamics,ε ∈ {0.1, 0.2, 0.3}, m ∈ {2, 20, 100}), and all with the

same initial profile of100 randomly chosen opinions. In each plot, thex-axis is time and the

y-axis represents the opinion space. For lowε the agents form several clusters. For higherε the

number of clusters decreases. With even higherε the agents find consensus. All models show

the same behaviour but it seems that the sameε causes slightly more clusters in the DW model.

4.7 To make the dynamics more visible let us consider a very simple example with three agents.
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Figure 2. Examples:100 agents with randomly chosen initial opinions forε from {0.1, 0.2, 0.3} and
for m = n (HK model),m = 20 andm = 2 (DW model)

Thereby we assume that for different numbers of agents the fundamental micro behaviours will

not change significantly. Consider three agents with opinions 0, 0.5, and1, all with ε = 0.5

and any self-supportµ < 1, e.g. µ = 0.0. For the DW model two clusters will emerge, either

with opinions0.0 and0.75 or with 0.25 and1.0 (depending on the first communications). If the

extreme agents communicate they ignore each other. If the middle agent communicates with an

extreme agent it will adapt to the extreme and leave the spacewhere the other extreme agent

could influence the middle agent. For the HK model one clusteremerges with opinion0.5. If

we further increaseε above0.5 then the probability to reach consensus increases for the DW



Urbig et al. (2008) / Opinion dynamics: The effect of the number of peers met at once 15

model until finally the probability reaches1. Between the extremes the particular patterns of

communication influence the probability of convergence to one cluster.

4.8 All together we can state our first hypothesis:The higher the number of communicating agents,

i.e. the largerm, the less the number of expected clusters.

4.9 This hypothesis is investigated by simulations, where the bounded confidence parameterε and

the number of agents who meet at oncem change systematically. Figure 3 visualizes our simu-

lation results using the number of clustersSNC , number of major clustersSNMC , and the Gini

coefficientSGC . The Figure plots the results forn ∈ {100, 500, 1000}. For each data point we

have at least 2.000 independent runs.

4.10 Let us first look at the number of major clustersSNMC . We observe that there is indeed a

general tendency that a largerm increases the tendency towards consensus and thus towards

less clusters. The effect remains stable also for increasing the population size.

4.11 If we look at the number of clustersSNC we observe two interesting effects. First, the effect is

large and gets larger for an increasing number of agents. However, for small values ofm the

number of clusters increases for an increasingm while after a specific threshold it decreases

again. Also interesting is the observation that the number of clusters is not monotonically

decreasing in the confidence thresholdε, especially for largen. We attribute this effect to

the occurrence of minorities. For the HK model the effect is rather small, because only one

minority, i.e. the central cluster, may appear or disappear.

4.12 The Gini coefficient reflects the effects similarly, but witha much smaller emphasis on small

clusters. While for small values ofε the Gini coefficient looks pretty much the same as the

number of major clusters, for large values ofε one can also observe the effect that an increasing

m first increases and finally decreases the Gini coefficient. Because this effect is almost invisible

when looking at the number of major clusters, it is obviouslyan effect due to the presence of

minorities. This observation also supports that the choiceof the threshold for the size that
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Figure 3. Number of clustersSNC , number of major clustersSNMC , and Gini coefficientSGC for
three populations sizes,n ∈ {100, 500, 1000} with µ = 0.0. The lines represent different levels ofm

(from blue over green and yellow to red, blue representsm = n and red representsm = 2).
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determines a major clusters was somewhat reasonable.

4.13 We can summarize our simulation results by stating that meeting more agents at once decreases

the number of major clusters and thus increases the tendencyfor consensus. The effect does not

disappear for larger populations, but might get even more pronounced.

Changing the self-support

4.14 For analysing the effect ofm we setµ to zero, because for this case both extremes,m = 2

andm = n, represent instances of the original DW model and HK model, respectively. If we

changeµ then form = n we do not have the original HK model anymore, because the HK

model is specified without a parameter describing how much agents adapt their opinions. We

end up with a model that incorporates self-support into the HK model. We now analyse how

changing this parameterµ affects the opinion dynamics.

4.15 Let us take a second look at the simple three-agent example introduced above. Consider the

example for the DW model andε bigger than0.5. The slower the middle agent moves, i.e. the

higher its self-support, the lower is the probability that it ”looses contact” to one of the extreme

agents. And the lower this probability the higher is the probability that the middle agent forces

the extreme agents to reach consensus. Hence we can hypothesize thatthere are cases where a

higher self-support decreases the expected number of clusters.

4.16 However, the slower the extreme agents move, the higher is the probability that the middle

agent looses contact to an extreme agent, because the extreme agents do not get closer to the

middle agent quickly enough. We thus might expect cases where an increase of the self-support

parameter increases the number of evolving clusters. Hence, we can also hypothesize thatthere

are cases where the number of clusters increases due to an increase in the self-supportµ.

4.17 To see that both effects are working see Figure 4, where we consider an example with a fixed

initial opinion profile of100 agents,m = 100 (remember that there is no randomness in the
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Figure 4. Examples for one initial opinion profileX(0) ∈ R
100, ε = 0.25 andµ = 0, 0.3, 0.6

n-random communication regime, i.e. the HK model),ε = 0.25, and three stages for the

parameterµ. We see that increasingµ from 0.0 to 0.3 takes the number of clusters from 2 to 1,

but increasingµ further from0.3 to 0.6 takes it back to 2 clusters. Many repeated simulations

will show how these contrary forces work together in general(see figure 5).

4.18 Figure 5 illustrates howµ affects on average the final state of the opinions dynamics inthe DW

model (m = 2), in the HK model (m = n), and in an intermediate case (m = 51), respectively.

We run simulations for30 stages ofε and30 stages forµ, while every setting was simulated at

least1.000 times with random initial opinion profiles.

4.19 We can see that for the DW model (m = 2) an increase ofµ decreases the number of clusters

SNC . For the HK model (m = n = 100) we recognize a different case. For smallε the direction

of the effect is the same as for the DW model (but the effect is much smaller); but for bigε it

is inverse (but still the effect is smaller than form = 2). In fact, an increase inµ for big ε

increases the average number of clusters. The same interaction effect withm can be observed

for the number of major clusters as well as for the Gini coefficient. However, the magnitude

of these effects is smaller. The reason can be found in the existence of minorities in the DW

model and the absence of them in the HK model. This is further supported by the fact that the

two plots for the overall number of clustersSNC , which gives a large weight to minorities, for
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Figure 5. Number of clustersSNC , number of major clustersSNMC , and Gini coefficientSGC for three
different numbers of peers met at onem ∈ {2, 51, 100} with n = 100. The lines represent different levels
of µ (from blue over green and yellow to red, blue representsµ = 0.9 and red representsµ = 0.0).



Urbig et al. (2008) / Opinion dynamics: The effect of the number of peers met at once 20

models withm < n, where minorities systematically appear, look structurally different from

the other plots.

Analysis of variance and ranking the factors

4.20 So far we have only looked at the averages of our simulation runs and have reasoned based on

visual inspection of the plots. We did some sample calculations and have found that due to the

large number of repetitions the differences between the extreme cases, i.e.m = 2 andm = n

as well as betweenµ = 0.0 andµ = 0.9 are mostly statistically significant. However, we now

have a more detailed look at the variances associated with different settings and we will look at

how much variance can be attributed to variations in different parameters.

4.21 We complement Figures 3 and 5 on the averages of our statistics with Figures 6 and 7 that plot

the standard deviation for all these different settings. When ignoring minorities (SNMC) the

pattern is very clear. Previous studies have shown that for specific values ofε opinion dynamics

there are characteristic values that the dynamics stabilize at. Variance significantly increases for

those parameters where the systems switches from one characteristic value to another one. The

plots again support that for largerm these characteristic thresholds are smaller. Thus, for larger

m less major clusters can be expected.

4.22 When we look at the case of the overall number of clustersSNC then we observe that the oc-

currence of minorities significantly destroys the clear pattern. First of all, we observe that for a

larger self-supportµ variance produced by the occurrence of minorities decreases. Furthermore,

there is a more complex interaction betweenm andε regarding the variance due to minorities.

4.23 In our previous analysis we have explained that some effectsare smaller and some are larger.

We now use an analysis of variance (ANOVA) to quantify this a bit more precisely.5

4.24 Tables 1 and 2 present the results showing what proportion ofthe overall variation can be at-

tributed to different factors and factor interactions. Thewithin-groups (WG) variation reduces
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Figure 6. Standard deviation of Number of clustersSNC , number of major clustersSNMC , and Gini
coefficientSGC for three populations sizes,n ∈ {100, 500, 1000} where the lines represent different
levels ofm (blue representsm = n and red representsm = 2). This Figure complements Figure 3.
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Figure 7. Standard deviation of Number of clustersSNC , number of major clustersSNMC , and Gini
coefficientSGC for three different numbers of peers met at onem ∈ {2, 51, 100} with n = 100. The
lines represent different levels ofµ (from blue over green and yellow to red, blue representsµ = 0.9 and
red representsµ = 0.0). This Figure complements Figure 5.
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with largern, which implies that the influence of the actual instantiation of the communication

regime (besidesm) and the initial opinion profile gets significantly smaller.The three param-

etersε, m, andµ explain an increasingly large share of the variation, i.e. the between-groups

(BG) variation. From both tables we can also conclude that thebounded confidence parameter

ε is the most important driver, followed by the number of peersmet at oncem. The self-support

µ is the least important driver. Looking at the proportions ofvariance attributed to changes

in these parameters one can see that the differences are hugeand that the ranking is therefore

very clear. However, for the number of clusters including the minorities,m gets more and more

important for largern. This can be explained by the fact that with largern, minorities appear

more often form = 2 but less often form = n. The effect ofε decreases inn for the number

of clusters but increases for major clusters and the Gini coefficient. The interaction effect be-

tweenε andm is small compared to the main effects but large compared to the effect ofµ, and

this interaction effect gets larger for larger values ofn. Compared to the main effect ofµ, the

interaction effect ofµ with m is comparatively large (similar size).

5. Conclusion and outlook

5.1 This article has three contributions to the literature on opinion dynamics. First we introduce

a model that unifies two frequently used models of opinion dynamics, namely the model by

Deffuant and Weisbuch and the model by Hegselmann and Krause. Furthermore we have shown

that the difference between these two models, i.e. the number of peers met at once, affects the

tendency towards consensus. More precisely, the more agents are met at once, the less major

clusters one can expect. However, for minor clusters this holds only for larger values ofm.

For smaller values ofm the total number of clusters might increase with an increasing m.

Additionally, we briefly discussed different statistics that could be used to describe final states

of opinion dynamics. We used three of them to analyse the unifying model.
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Number of Sum of Sources of variation in proportions of sum ofsquares

agentsn squares WG BG ε m ε * m

NC 100 3,151,083 0.2340 0.7660 0.6983 0.0535 0.0142

500 4,356,244 0.1806 0.8194 0.5993 0.1831 0.0370

1000 4,964,100 0.1475 0.8525 0.5785 0.2336 0.0404

NMC 100 1,862,348 0.1173 0.8827 0.8673 0.0074 0.0080

500 1,585,191 0.0860 0.9140 0.8983 0.0055 0.0102

1000 1,562,018 0.0726 0.9274 0.9098 0.0053 0.0124

GI 100 35,779 0.1325 0.8675 0.8485 0.0093 0.0097

500 32,460 0.0709 0.9291 0.9040 0.0089 0.0162

1000 31,585 0.0524 0.9476 0.9173 0.0093 0.0211

Table 1. Analysis of variance forµ = 0.0 and differentn regardingε andm

Sum of Sources of variation in proportions of sum of squares

squares WG BG ε m µ ε * m ε * µ m * µ ε * m * µ

NC 3,362,997 0.1486 0.8514 0.7716 0.0521 0.0034 0.0193 0.00120.0029 0.0009

NMC 2,643,892 0.1171 0.8829 0.8482 0.0177 0.0001 0.0154 0.00050.0005 0.0005

GI 47.040 0.1433 0.8567 0.8133 0.0187 0.0001 0.0218 0.0011 0.0008 0.0009

Table 2. Analysis of variance forn = 100 regardingε, m, andµ
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5.2 Regarding our analysis we can summarize our results. With larger population sizes the variance

driven by initial opinions and random elements in the communication regime reduces, i.e. they

get less and less important. With larger samples, minorities get more and more important for

m < n. On the number of major clusters, the bounded confidence parameterε has the largest

impact with distinction. Number of peers met at oncem and self-supportµ have a small impact

while the latter has the smallest impact. Largerm decrease the number of major clusters.
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Notes

1We stress the matrix formalism because it is very general andan important proposition
in the following part of the paper relies on it. Nevertheless, in this paper only randomm-
communication regimes are of interest.

2The term ’fully connected’ here is not the same as strongly connected in network theory.

3The HK model is not mean-preserving. For instance, withε = 0.3, µ = 0 and opinion
vector (0.2, 0.5, 0.7) one get(0.35, 0.46, 0.6) after one step, which increases the mean from
0.46 to 0.472. Since the HK model is a specific case of our model, also our model is not mean-
preserving.

4We have plotted the distribution of cluster sizes and there was a minimum between the
peaks of minorities and the peak of majorities that varied approximately as our chosen threshold
behaves.

5We are aware that given the previous plots on the standard deviation in different settings, a
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central assumption of ANOVA, i.e. the homogeneity of variances, is not fulfilled. Nevertheless,
the results of the analysis reveal sufficiently huge differences, such that it still sheds some light
on the model.
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