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Abstract. The opinion dynamics model introduced by Deffuant and Weisbuch asawell
the one by Hegselmann and Krause are rather similar. In both models iral&iae as-
sumed to have opinions about an issue, they meet and discuss, and thegapayheir
opinions towards the other agents’ opinions or may ignore each other ifpbsiions are
too different. Both models differ with respect to the number of peers theyaheace. Fur-
thermore the model by Deffuant and Weisbuch has a convergenamgtarathat controls
how fast agents adapt their opinions. By defining the reversed paraaseteself-support
we can extend the applicability of this parameter to scenarios with more than tene in
action partner. We investigate the effect of varying the number of peeratname time,
which is done for different population sizes, and the effects of chantiie self-support.
For describing the dynamics we look at different statistics, i.e. number sfecjunumber
of major clusters, and Gini coefficient.
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1. Introduction

Opinion dynamic (OD) models describe the process of opifeomation in groups of individ-
uals. We focus on continuous opinion dynamics with compsamgi agents in a time-discrete
world. We assume that an opinion is a continuous value betwes and one. In every time
step, each agent adapts his opinion toward the opinions et afsandomly selected other
agents, while the new opinion is between the minimum and maxi of the own and all per-
ceived opinions (compromising or averaging). A commontfeaamong many models of con-
tinuous opinion dynamics is bounded confidence, which desetthe fact that peers holding
opinions that are sufficiently different from an agent’s asginion do not exhibit any influence
on this agent. This idea reflects psychological conceptls ascselective exposure. For a de-
tailed discussion of how models of the type we look at relatgocial psychological theory see
the recent review by Mason et al. (2007).

Two models of continuous opinion dynamics have receivedifsigint attention, the model
introduced by Deffuant and Weisbuch (DW model) (Deffuantlket 2001, Weisbuch et al.,
2001, Deffuant et al., 2002, Weisbuch et al., 2002) and thdaniatroduced by Hegselmann
and Krause (HK model) (Hegselmann & Krause, 2002). A fundaaiedifference between
these two models is the number of agents that communicateadh time step, in the DW
model two randomly chosen agents mutually perceive themaps, while in the HK model all
agents perceive all other agents’ opinions. The same tepdeward extreme models regarding
the number of communicating agents can be found in the celaézature on discrete opinion
dynamics (see for instance Schweitzer & Holyst, 2000 but Btstunato, 2004).

The difference between the DW model and the HK model is in a&dsron that we would label
the communication regime. Social reality may restrict thecpss of communication between

agents such that communication between all agents at the tsaa (as done in the HK model)
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but also communication between only two randomly chosemtageut of all possible agents
(as done by the DW model) appear as extreme cases.

In this article we want to investigate these rules about wltmmmunicating with whom at what
time. We call such rules and restrictions tt@mmunication regimef an opinion dynamics
model. We call it regime’ because it is independent of therdg' opinions; it is a parameter
of the model. The communication regime includes the undeglgocial network but also how
this network may change over time. In a mathematical seresedmmunication regime is a
(temporal) sequence of networks of who perceives whosearpitt can be treated as a module
of the opinion dynamic models.

Another module of opinion dynamic models is tingdating mechanisnirhe updating mecha-
nism introduces rules how agents adapt their opinions basedset of other agents’ opinions.
It models perceptual or information processing biases mgnded confidence or selective ex-
posure. By many parallel and sequential communicationgthieses are multiplied in a group
such that new and sometimes even more complex group dynaamdse observed.

More and more, the updating mechanism is treated as a moti@® onodels independently
of the communication regimes. For instance, the updatinghar@sm of the basic DW model
is put on network structures (see Amblard & Deffuant, 200egu8er et al., 2004), and the
HK model is developed with an updating mechanism that captdiscrete opinions instead of
continuous opinions (see Fortunato, 2004).

Observing the different extensions of the HK model and the DW@del, we present a model
that unifies these two models. As this requires an additipaameter, the number of peers met
at once, we also investigate the effect that this parameteoh the dynamics.

In section 2 we introduce a model that contains the DW modeVelsas the HK model as
special cases. As a prerequisite we unify the updating nmestmathereby we redefine the con-

vergence parameter (now calledself-support of the DW model and introduce this idea into
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the HK model. Section 4 summarizes simulations that showthevdifference in the commu-
nication regime, i.e. the number of individuals communiggat once, influences the dynamics
of the model. Thereby we compare the dynamics for smallelagér agent populations. We
also show that the impact of self-support is moderated bygdmemunication regime. In order
to describe the aggregate dynamics we briefly discuss differggregated measures (maximum
cluster size, number of clusters, number of large cluskgesjndahl index, and Gini coefficient)

and show how they differ with respect to our simulations ltssu

2. Generalizing the DW and HK model

As motivated in the introduction, the DW model and the HK mnagle very much alike, but
differ mainly in the communication regime that determindsovcommunicates with whom. In
this section we will introduce a model that comprises botmtm@ed models as special cases.
To find a parameterised model covering both, the DW modeh(gitbally uniform uncer-
tainty and without relative agreement) and the HK model, wéllon the distinction between
updating mechanism, which describes how individuals né#lwty interact with others, and the
communication, which describes who is interacting with vahext what time.

However, before discussing the different modules of opirdgnamics, we briefly define what
this is all about. Consider a set:= {1,...,n} of agents. We call the vectox (t) € R"
anopinion profile X;(t) for t € Ny represents the opinion of agenat time¢. The initial
opinion profile is given byX (0). We assume that the initial opinions are equally distritute
the opinion space, i.€X;(0) € [0, 1].

A communication regime describes who communicates withrwlab what time, or — more
general —who gets the information about the opinion of whowlet time. In the most general
case this can be represented for a specific time step by ametwids adjacency matrix. The

communication regime in its most general sense is then aegeqLof networks or respectively
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their adjacency matricés.

For the HK model the communication regime is a sequence of é@dnnected networks, so
that the adjacency matrices are completely filled with ofrethe DW model in every step two
randomly chosen agents interact. Hence, every adjacentrixnsaa unit matrix plus a one at
one off-diagonal entry and a one at its corresponding ermirthe other side of the diagonal.
So, a group of two agents is a fully connected network, whilethers do not interact.

In this paper we extend to communication regimes where ih gae stepn randomly chosen
agents communicate € m < n, m = 2 is DW, m = n is HK). We call these communication
regimesrandomm-communication regimes$o, the adjacency matrix of a network in a random
m-~-communication regime is the unit matrix plus ones at altieat;j wherei, j form a set ofin
random agents.

The updating mechanism describes how individuals reacetogived opinions. While Jager
and Amblard (2004) allow for a divergence of opinions, ugusdme sort of averaging or con-
vergence between the interaction partners is modelledudysif different averaging rules can
be found in Hegselmann and Krause (2004). Despite the tegdeward convergence, those
individuals that differ too much from the own opinion areéged. This conceptis usually called
bounded confidenand it can be motivated by concepts like selective exposae lowen &
Minor, 1998). Both above-mentioned models assume an aveeagectively a weighted aver-
age of the own and others’ opinions if the peers do not differenthan a given threshold. We
will call this thresholds as done in the HK model. Although both models average, thaldet
differ. In the DW model the average is over two opinions, whiiere is a convergence parame-
ter that controls how fast an individual adapts toward ttebpinion. In the HK model there
is an average over a set of opinions while the number of op#ino this set can vary because
it depends on how many opinions are within the bounded caméeleange. Hence, in the HK

model there is not a fixed weight assigned to the own or to therstopinions, but the weights
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vary with the number of peers.

To be able to formulate an updating mechanism (an averagie{ that is able to reproduce
both models, we introduce self-support., into the HK updating mechanism. An individual
gives a weight ofu to the own opinion and distributels— . across all opinions (including
the own). The full weight assigned to the own opinion is the g the self-support: and the
proportion that every opinion receives when distributimg temaining — x across all opinions.
Parameter: can be considered a lower limit of the weight assigned to e @pinion; it is the
self-support that is independent of the number of peers tregtee. This specific mechanism is
sufficiently general to allow for a smooth transition betwélee DW updating mechanism and

the HK updating mechanism.
Definition (averaging with bounded confidence and self-suppt)

Let C(t) be the adjacency matrix of a network in a communication regivith ¢;;(¢) being the
indicator for an information flow from agento j at timet. Let X (¢) be an opinion profile, and
0 < e,u € ]0,1]. Then we define thaveraging ruleas follows. We first define the confidence
matrix A(X (¢)) € R™*", wherea;;(X(t)) is the weight that agentassigns to the opinion of

agentj at timet:

17/‘ . -
pt mexmy 1=t

a;(X(t) = Ty ifd € 16, X(t) andj # i (1)
0 otherwise
with I(i, X) :== {j € n, [¢;; = 1 and|X; — X < ¢}

The confidence matrix is nonnegative and each row sums upetoTme set/ (i, X) is called

the confidence set of agentThe new opinion profile is then computed as:
X(t+1) = AX(@))X(1) (2)

The Parametex is not the same as the parameten the DW model (Deffuant et al., 2001). To
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distinguish them we label the original parameter of the DWdela . If we sety =1 — 2up
andm = 2, then our model equals the DW model. The assumption af .p < 0.5 that is
made in DW model corresponds@o< p < 1 in our model.

All together we have presented a unified basic model of coatis opinion dynamics that
allows for the analysis of the impact of different numbers@ihmunicating agents. It includes
a special class of communication regimes that is indepdmafesocial networks or, in other
words, a communication regime that only has the fully cotegoetwork as its underlying
social network. It incorporates two important basic modki are applied in many articles
on continuous opinion dynamics with compromising ageneés, the model by Deffuant and
Weisbuch and the model by Hegselmann and Krause. Actuatly é&sxdremes happen in real
social structures. But also meetings with= 3 or 4 or 10 or 50 people occur. Independent
variables of our model are the number of agenthe number of communicating agentsself-
supporty, and the bounded confidence parameterhe initial profile X (0) and the randomly
chosenn-communication regime matricégt) are also free variables of the model, but we will
treat them as endogenous random choices being equallyjpdtstt within the defined bounds.
Due to this randomness we are forced to run many simulatiaimsdiferent randomly chosen

X (0) andC(t).

3. Model analysis

In our model analysis we first show that the dynamics stabiliurthermore, we show that the
dynamics are mean preserving for isolated fully conneatigs®f agents, and that the dynamics
always reach a state where all agents are in isolated futipected groups. Arsolated fully
connected groujs a set of agents, in which all agents within the same growup hadistance
smaller thare, while each agent outside the group has a distance larget ttteeach agent in

the group? These results enable us to implement simulations thatyinaltulate the long-term
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limit of the dynamics.

Stabilizing and stable states

Proposition Let X(0) € R™ be an initial opinion profilee > 0 be a bound of confidence,
w € [0,1] be a self-support, anah be the number of communication agents in each time-step.
Furthermore, let’(¢) be a randomn-communication regime and (¢) be recursively defined
asX(t) = A(X(t — 1))X(t), the process of opinion dynamics. For this process, theatig
holds:

1. Itreaches a stable state.
2. Infinite time it reaches a state where all agents are imatedIfully connected groups.
3. Anisolated fully connected group never splits.

4. The mean opinion of agents in an isolated fully connectedgremains stable.

Proof:

The stabilization theorem for continuous opinion dynanfiasrenz, 2005) ensures the conver-
gence ofX (¢) to a stable state when in each confidence matrix (i) the delgsmpositive, (ii)
confidence is mutuakf; > 0 < a;; > 0), and (iii) there is a threshold such that the lowest
positive entry is always greater thanAll three conditions are fulfilled in every confidence ma-
trix arising in the process: (i) Due to the fact that each agealways closer thanto himself
andyu + % > 0, (i) because all agents have the same bound of confidenddjigiecause
every positive entry in a confidence matrix is always greﬂ{tanl’T“. This proves 1.

In a stable state each two agents must either have the sameropi have a distance larger than
e. This is proved in Lorenz (2007, Section 3.3.5). It is trii@ the DW model and not totally

trivial for the HK model. The proof extends naturally fronetklK model to communication



3.5

3.6

3.7

Urbig et al. (2008) / Opinion dynamics: The effect of the nandf peers met at once 9

regimes withm < n. Thus, in the stable state agents are in isolated fully cctedegroups that
have internal consensus. The distance between the twognoust be greater thanthus there

is a time steg such that all agents are connected to each agent in hisaddiaty connected
group and has a distance of more théao all other agents. This proves 2.

The opinions in an isolated fully connected group can oritg taew opinions as average of the
opinions in their isolated fully connected group; thus, thaximal distance of opinions in a
fully connected group is by definition less thaand cannot increase. This proves 3.
Consider that all agents in an opinion profiét) are in isolated fully connected groups. Then,
regardless of the selection of thecommunicating agents the confidence mattX (¢)) will

be symmetric (not only with mutual confidence). It is easyde that in this case the mean of

all opinions remains stabfe.

LS Xi(t) forall X(t+1) = AX(1)X(2) 3)
n
=1
As this holds for the means within all isolated fully conreztgroups, this proves 4. O

Proposition 1 gives us a tool to optimize our simulationgstFof all, if agents are in a state
that is characterized by fully connected groups, then tlegame opinions in these groups do
not change and thus, because fully connected groups do litdusiiner, we can calculate the
long-term limit which these groups independently convdme Because the system reaches
such a state in a finite time, we can implement our simulataana process that simulates the
opinion dynamics and — from time to time — checks if groupsfaltg connected. If groups are
fully connected they can be collapsed such that all agerttssrmgroup have the same opinion
given by the groups’ average opinion. We stop simulationl ifeoups are collapsed. In fact,

our results are equivalent to simulating the system for &nitaly long time.
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Comparing limit states

For comparing final states of opinion dynamics, ideally, weuld look at the distribution of
clusters and agents within the opinion space. Howeveroften useful and common practice
to describe the final state by a one-dimensional value. Riffemeasures are possible and
different measures were used. For defining theny let be the finahumber of clusterand let
s1, 52 10 sg,,, be the sizes of all clusters ordered by size suchithatj < s; > s;. LetO, be

the opinion of clustei. The different statistics are defined as follows:

e Thenumber of cluster$y¢ is self-explaining. This measure is used by Urbig (2003). A
weakness of this statistic is the fact that it ignores infation by not refering to the clus-
ter sizes. Thus, a single agent that is lost at the extremets@s much as the remaining
population of agents that perhaps clustered around a meaojpinion. Such small mi-
norities appear systematically in systems that we look at-Baim et al. (2003) show

this especially forn = 2.

e The maximum cluster siz8,,c = s, IS a measure of the power of the majority and is
used by Lorenz and Urbig (2007). It abstracts from minaitiecause only the largest

majority counts.

e The Herfindahl indexSy; is used in economic theory to describe the concentration of
markets. It is based on cluster sizes but does not take ictmat the opinions that clus-
ters are located at. Weisbuch et al. (2001) use it for desgrilimit states of opinion

dynamics.

sur=3 (%) @

e The Gini coefficientSqc is a measure of inequality and refers also to opinions ofyever
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single agent and thus takes cluster positions and indyréefl number of clusters into

account. It is mainly used in the social sciences and wedaomomics.

2

Snc S
2
=1 1

C
2. 2. (05 =0i)-si-s5)
Sec =1--

o (5)

e The number of major cluster$y,;c that excludes minorities could be interesting as
well. Deffuant et al. (2001) (in Figure 4) report such a stati However, they only
exclude small extreme clusters at the ends of the opinionespat not all minorities,
which probably did not appear that often. Based on our own Isition experiencewe

will exclude all cluster that have a size be|(§W5 -n.

2

1
5i+1<_'5'n> (6)

Snmc = arg max (Si+1
K3

4. Simulations

Our simulations explore three basic questions. First, weartypical example for opinion dy-
namics and compare the different descriptions of final steecond, we investigate the effect
that the number of individuals who met at one time, i.e. pat@mm, has on the dynamics.
Thereby we also look at different population sizesFinally we look at the effect of the self-
supporti, and how it may interact witle. An analysis of variance sheds light on the impact

that these variables have.

Different descriptions of final states

For our first analysis we consider a population of 100 indieid and vary the bounded confi-
dence parametet while keeping the self suppartconstant at zero. Figure 1 plots the different

statistics on the final state for different values=adnd for the DW model (left, = 100 and
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m = 2) and for the HK model (right;» = n = 100). The data points are adjusted such that they
all start at the lower left corner that represents the casie tve smallest chance for consensus
and end in the upper right corner that represents the cabkehwitargest chance for consensus.
Due to these transformations, the comparisons of the aleseflues of these curves do not

have any meanings. However, we are able to compare the ¢ishapee of these curves.

normalized tendency towards consensus
normalized tendency towards consensus

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 04 05
€ €

Figure 1. Statistics on the final states for varyinigr m = 2 (left) andm = 100 (right) with n = 100
andy = 0.0

We observe that Gini coefficiefi;-, Herfindahl indexSy;, and maximum cluster siz&,,¢
behave rather similar and consistently over the two val@ies.cEither they measure the same
or what they measure is strongly correlated over these twmge. The maximum cluster
size Sy;c is closely related to the Herfindahl indé¥;;. The latter includes more information,
while the first ignores all clusters besides the largestteiusWe do not want to get into a
longer discussion on the Gini coefficient, but we just waninention that the Gini coefficient
increases with larger clusters, which makes it closelyteel#o the Herfindahl index. However,
the Gini coefficient additionally incorporates informatiabout the position of these clusters.

The cluster numbes - and the number of majoritiesy , behave rather similar for the case
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m = n but differ in their shape forn = 2. In fact, while Ben-Naim et al. (2003) show that
minorities (very small clusters) appear systematicallyrfo= 2 (DW model) Lorenz (2007)
shows that minorities do not systematically appear for #sea = n (HK model), except that
a single central cluster might get relatively small. Thisurcence of minorities is the reason
why Syc and Syae closely follow each other fom = n, but differ significantly form = 2.
This is also the reason why the Herfindahl index, Gini coeffiti and maximum cluster size
seem to differ slightly more fom = 2 than form = n; they simply treat minorities slightly
different.

For the following analysis we focus on three statisti€§-, Sy, andSgc. We take the first
two statistics because they measure something partiatigreglated. The third is chosen from
a group of three statistics that all seem to behave rathelasinTo our knowledge, the Gini
coefficient has not been explored as a statistics for finéésta opinion dynamics; thus, we

selected this statistic for our further analysis.

Changing the number of communicating agents

For exploring the effect of changing the number of commumggagents;n, we keep parame-
ter . constant at zero. Forn. = n the model reduces to the HK model and for= 2 we get the
DW model withup = 0.5. The effect of changing paramefeis explored later in this paper.
We run nine simulation to get an initial idea of hewinfluences the dynamics. Figure 2 shows
the nine processes of opinion dynamics; {0.1,0.2,0.3}, m € {2,20,100}), and all with the
same initial profile ofl00 randomly chosen opinions. In each plot, thaxis is time and the
y-axis represents the opinion space. For tathie agents form several clusters. For highdre
number of clusters decreases. With even highttye agents find consensus. All models show
the same behaviour but it seems that the sagsuses slightly more clusters in the DW model.

To make the dynamics more visible let us consider a very smghmple with three agents.
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€ = 0.1, n—communication € = 0.2, n—communication € = 0.3, n—communication
1 \ 1 1
0.5 0.5 0.5
2 4 6 8 2 4 6 8 2 4 6 8
€ =0.1, random 20—communication € = 0.2, random 20—communication € = 0.3, random 20—communication
1 1 1

0.5

0 % 0= 0
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
€ =0.1, random 2-communication €= 0.2, random 2-communication € = 0.3, random 2-communication

1 i

0.5

2000 4000 6000 8000 1000 2000 3000 4000 1000 2000 3000 4000

Figure 2. Examplesi00 agents with randomly chosen initial opinions fofrom {0.1,0.2,0.3} and
for m = n (HK model),m = 20 andm = 2 (DW model)

Thereby we assume that for different numbers of agents tiaaimental micro behaviours will
not change significantly. Consider three agents with opsiipr.5, and1, all with e = 0.5
and any self-suppoyt < 1, e.g. . = 0.0. For the DW model two clusters will emerge, either
with opinions0.0 and0.75 or with 0.25 and1.0 (depending on the first communications). If the
extreme agents communicate they ignore each other. If tHdlenagent communicates with an
extreme agent it will adapt to the extreme and leave the spheee the other extreme agent
could influence the middle agent. For the HK model one clusteerges with opiniof.5. If

we further increase above(.5 then the probability to reach consensus increases for the DW
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model until finally the probability reachds Between the extremes the particular patterns of
communication influence the probability of convergencerte oluster.

All together we can state our first hypothesi$ie higher the number of communicating agents,
i.e. the largerm, the less the number of expected clusters

This hypothesis is investigated by simulations, where thended confidence parameteand

the number of agents who meet at omeehange systematically. Figure 3 visualizes our simu-
lation results using the number of clustétg-, number of major clusterSy ¢, and the Gini
coefficientSsc. The Figure plots the results fare {100, 500, 1000}. For each data point we
have at least 2.000 independent runs.

Let us first look at the number of major cluste¥s,;,c. We observe that there is indeed a
general tendency that a larger increases the tendency towards consensus and thus towards
less clusters. The effect remains stable also for incrgdbmpopulation size.

If we look at the number of clustersy- we observe two interesting effects. First, the effect is
large and gets larger for an increasing number of agents.eMenwfor small values of: the
number of clusters increases for an increasingvhile after a specific threshold it decreases
again. Also interesting is the observation that the numlberiusters is not monotonically
decreasing in the confidence thresheldespecially for large:. We attribute this effect to
the occurrence of minorities. For the HK model the effectaher small, because only one
minority, i.e. the central cluster, may appear or disappear

The Gini coefficient reflects the effects similarly, but wahmuch smaller emphasis on small
clusters. While for small values afthe Gini coefficient looks pretty much the same as the
number of major clusters, for large valuesaine can also observe the effect that an increasing
m firstincreases and finally decreases the Gini coefficientaB&ethis effect is almost invisible
when looking at the number of major clusters, it is obvioustyeffect due to the presence of

minorities. This observation also supports that the choicthe threshold for the size that
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Figure 3. Number of clusterSy¢c, number of major cluster§yasc, and Gini coefficientSqe for
three populations sizes, € {100,500, 1000} with 1 = 0.0. The lines represent different levels af
(from blue over green and yellow to red, blue represents n and red represenis = 2).
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determines a major clusters was somewhat reasonable.
We can summarize our simulation results by stating thatimgetore agents at once decreases
the number of major clusters and thus increases the tend@noynsensus. The effect does not

disappear for larger populations, but might get even masagunced.

Changing the self-support

For analysing the effect of» we setu to zero, because for this case both extremess: 2
andm = n, represent instances of the original DW model and HK modslpectively. If we
changeu then form = n we do not have the original HK model anymore, because the HK
model is specified without a parameter describing how muem@gadapt their opinions. We
end up with a model that incorporates self-support into therkbdel. We now analyse how
changing this parameteraffects the opinion dynamics.

Let us take a second look at the simple three-agent exampteluted above. Consider the
example for the DW model andbigger thar).5. The slower the middle agent moves, i.e. the
higher its self-support, the lower is the probability thdtooses contact” to one of the extreme
agents. And the lower this probability the higher is the piality that the middle agent forces
the extreme agents to reach consensus. Hence we can hypetiadthere are cases where a
higher self-support decreases the expected number oectust

However, the slower the extreme agents move, the higheripibbability that the middle
agent looses contact to an extreme agent, because the exdgants do not get closer to the
middle agent quickly enough. We thus might expect casesendreimcrease of the self-support
parameter increases the number of evolving clusters. Harmecean also hypothesize thhere
are cases where the number of clusters increases due to aasein the self-suppopit

To see that both effects are working see Figure 4, where wsid@nan example with a fixed

initial opinion profile of 100 agents;n = 100 (remember that there is no randomness in the
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£€=0.25 =0 €=0.25 1=0.3 €=0.251=0.6

20 40 20

Figure 4. Examples for one initial opinion profil(0) € R!%, ¢ = 0.25 andy = 0,0.3,0.6

n-random communication regime, i.e. the HK model)= 0.25, and three stages for the
parametey:.. We see that increasingfrom 0.0 to 0.3 takes the number of clusters from 2 to 1,
but increasing: further from0.3 to 0.6 takes it back to 2 clusters. Many repeated simulations
will show how these contrary forces work together in gengeé figure 5).

Figure 5 illustrates how affects on average the final state of the opinions dynamitisibW
model (n = 2), in the HK model {» = n), and in an intermediate case (= 51), respectively.
We run simulations foB0 stages ot and30 stages foy:, while every setting was simulated at
least1.000 times with random initial opinion profiles.

We can see that for the DW modeh (= 2) an increase ofi: decreases the number of clusters
Snc. Forthe HK model{: = n = 100) we recognize a different case. For smaihe direction

of the effect is the same as for the DW model (but the effectusmsmaller); but for big it

is inverse (but still the effect is smaller than for = 2). In fact, an increase ip for big
increases the average number of clusters. The same imberaffiect withm can be observed
for the number of major clusters as well as for the Gini coiffit However, the magnitude
of these effects is smaller. The reason can be found in ttetegxdie of minorities in the DW
model and the absence of them in the HK model. This is furtbppsrted by the fact that the

two plots for the overall number of clustefs,, which gives a large weight to minorities, for



Urbig et al. (2008)/Opinion dynamics: The effect of the nandf peers met at once 19

SNC SNMC SGC
5 0.3t
41\ \
0.25
4 \|
o , 0.2 X
I N \
£3 0.15 |
N\ ) \ 0.1 \
2 \
\ 0.05 \
L v _ 1 \ 0 o
01 02 03 04 05 01 02 03 04 05 01 02 03 04 05
€ € €
4 ‘ 0.3}
4 350 0.250 \
3
o 0.2
w3 25 \ 0.15
£
2 : 0.1
2
1.5 0.05
1 1 ' 0
01 02 03 04 05 01 02 03 04 05 01 02 03 04 05
€ € €
4
4 i 0.3+
3.5 \ 35 0.25
34 :
g 30 \ 0.2
) 25 2.5 0.15
E \ 2 0.1
1.5 \ 15 * 0.05
1 1 : 0
01 02 03 04 05 01 02 03 04 05 01 02 03 04 05
€ € €

Figure 5. Number of clustersy ¢, number of major clusterSy s, and Gini coefficienbg¢ for three
different numbers of peers met at anec {2,51, 100} with n = 100. The lines represent different levels
of i (from blue over green and yellow to red, blue represgnts0.9 and red represenis = 0.0).
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models withm < n, where minorities systematically appear, look structyrdifferent from

the other plots.

Analysis of variance and ranking the factors

So far we have only looked at the averages of our simulatios and have reasoned based on
visual inspection of the plots. We did some sample calaatand have found that due to the
large number of repetitions the differences between theew cases, i.en = 2 andm = n

as well as between = 0.0 andu = 0.9 are mostly statistically significant. However, we now
have a more detailed look at the variances associated vigneaht settings and we will look at
how much variance can be attributed to variations in difieparameters.

We complement Figures 3 and 5 on the averages of our statigitic Figures 6 and 7 that plot
the standard deviation for all these different settings. Vigmoring minorities §¢c) the
pattern is very clear. Previous studies have shown thapfgiBc values of opinion dynamics
there are characteristic values that the dynamics stalatizVariance significantly increases for
those parameters where the systems switches from one tdréstc value to another one. The
plots again support that for larger these characteristic thresholds are smaller. Thus, fgetar
m less major clusters can be expected.

When we look at the case of the overall number of clustgrs then we observe that the oc-
currence of minorities significantly destroys the cleatgrat First of all, we observe that for a
larger self-support variance produced by the occurrence of minorities decee&sathermore,
there is a more complex interaction betweemnds regarding the variance due to minorities.
In our previous analysis we have explained that some eftgetsmaller and some are larger.
We now use an analysis of variance (ANOVA) to quantify thistariore precisely.

Tables 1 and 2 present the results showing what proportidheobverall variation can be at-

tributed to different factors and factor interactions. Tithin-groups (WG) variation reduces
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Figure 6. Standard deviation of Number of clust8rg~, number of major clusterSyasc, and Gini
coefficientS; ¢ for three populations sizes, € {100,500,1000} where the lines represent different
levels ofm (blue represents, = n and red representa = 2). This Figure complements Figure 3.
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Standard deviation of Number of clust8rg-, number of major clusterSy /¢, and Gini

coefficientSg ¢ for three different numbers of peers met at enec {2, 51, 100} with » = 100. The
lines represent different levels af(from blue over green and yellow to red, blue represgnts0.9 and
red represents = 0.0). This Figure complements Figure 5.
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with largern, which implies that the influence of the actual instantiatd the communication
regime (besides) and the initial opinion profile gets significantly small@he three param-
eterse, m, andyu explain an increasingly large share of the variation, ihe lietween-groups
(BG) variation. From both tables we can also conclude thabthaded confidence parameter
¢ is the most important driver, followed by the number of peeest at oncen. The self-support
1 is the least important driver. Looking at the proportionsvafiance attributed to changes
in these parameters one can see that the differences arahddkat the ranking is therefore
very clear. However, for the number of clusters includingithinorities,m gets more and more
important for largem. This can be explained by the fact that with largeminorities appear
more often form = 2 but less often forn = n. The effect ofc decreases in for the number
of clusters but increases for major clusters and the Ginfficaant. The interaction effect be-
tweene andm is small compared to the main effects but large comparedeteffiect ofu, and
this interaction effect gets larger for larger valuesiofCompared to the main effect pf the

interaction effect of: with m is comparatively large (similar size).

5. Conclusion and outlook

This article has three contributions to the literature omigm dynamics. First we introduce
a model that unifies two frequently used models of opinionadyics, namely the model by
Deffuant and Weisbuch and the model by Hegselmann and Kr&usthnermore we have shown
that the difference between these two models, i.e. the nuoflgeers met at once, affects the
tendency towards consensus. More precisely, the more sagemimnet at once, the less major
clusters one can expect. However, for minor clusters thidshonly for larger values ofn.
For smaller values ofn the total number of clusters might increase with an increpsi.
Additionally, we briefly discussed different statisticatltould be used to describe final states

of opinion dynamics. We used three of them to analyse theimgiimodel.



Number of Sum of Sources of variation in proportions of sum ofsquares
agentsn squares WG BG € m e*m
NC 100 3,151,083 0.2340 0.7660 0.6983 0.0535 0.0142
500 4,356,244 0.1806 0.8194 0.5993 0.1831 0.0370
1000 4,964,100 0.1475 0.8525 0.5785 0.2336 0.0404
NMC 100 1,862,348 0.1173 0.8827 0.8673 0.0074 0.0080
500 1,585,191 0.0860 0.9140 0.8983 0.0055 0.0102
1000 1,562,018 0.0726 0.9274 0.9098 0.0053 0.0124
Gl 100 35,779 0.1325 0.8675 0.8485 0.0093 0.0097
500 32,460 0.0709 0.9291 0.9040 0.0089 0.0162
1000 31,585 0.0524 0.9476 0.9173 0.0093 0.0211
Table 1. Analysis of variance for = 0.0 and differentn regardings andm
Sum of Sources of variation in proportions of sum of squares
squares WG BG m 1 e*m e* 1 m*uy e*m*p
NC 3,362,997 0.1486 0.8514 0.7716 0.0521 0.0034 0.0193 0.000D029 0.0009
NMC 2,643,892 0.1171 0.8829 0.8482 0.0177 0.0001 0.0154 0.000%005 0.0005
Gl 47.040 0.1433 0.8567 0.8133 0.0187 0.0001 0.0218 0.0011008.0 0.0009

Table 2. Analysis of variance for = 100 regardings, m, andp
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Regarding our analysis we can summarize our results. Wigletgropulation sizes the variance
driven by initial opinions and random elements in the comitation regime reduces, i.e. they
get less and less important. With larger samples, minerget more and more important for
m < n. On the number of major clusters, the bounded confidenceredess has the largest
impact with distinction. Number of peers met at ome@nd self-support. have a small impact

while the latter has the smallest impact. Largedecrease the number of major clusters.

Acknowledgments

This article is a substantial extension of a work presenteti@Second Conference of the
European Social Simulation AssociatilBSSA), September 16-19, 2004, Valladolid, Spain.
We want to thank participants of this conference as well as awonymous reviewers, who
gave critical comments that finally improved the paper veacm We want to thank Aljoscha

Kaplan for comments that finally improved the language. &fhaining errors remain ours.

Notes

We stress the matrix formalism because it is very generalaanamportant proposition
in the following part of the paper relies on it. Neverthelessthis paper only randonm-
communication regimes are of interest.

2The term 'fully connected’ here is not the same as stronghneated in network theory.

3The HK model is not mean-preserving. For instance, with 0.3,z = 0 and opinion
vector (0.2,0.5,0.7) one get(0.35,0.46,0.6) after one step, which increases the mean from
0.46 t0 0.472. Since the HK model is a specific case of our model, also ouretisdhot mean-
preserving.

“We have plotted the distribution of cluster sizes and theas & minimum between the
peaks of minorities and the peak of majorities that variggt@gmately as our chosen threshold
behaves.

SWe are aware that given the previous plots on the standaidtibevin different settings, a
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central assumption of ANOVA, i.e. the homogeneity of vacies) is not fulfilled. Nevertheless,
the results of the analysis reveal sufficiently huge diffiees, such that it still sheds some light
on the model.
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