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WHEN ARE VOLUNTARY EXPORT
RESTRAINTS VOLUNTARY?: A DIFFERENTIAL

GAME APPROACH∗

KENJI FUJIWARA
Kwansei Gakuin University

We revisit voluntariness of voluntary export restraints (VERs) in a differential game

model of duopoly with sticky prices. We show that a VER set at the free trade level

has no effect on equilibrium under open-loop strategies while the same policy results in

a smaller profit for the exporting firm, i.e. it is involuntary under a non-linear feedback

strategy. Moreover, we prove an extended proposition of Dockner and Haug (1991) on

voluntariness of VERs under a linear feedback strategy.
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I. INTRODUCTION

Voluntary export restraints (VERs) have been adopted as a popular trade policy since

they are expected to mitigate resisting pressures in the exporting country. According to

the website of the World Trade Organization (WTO), ‘The WTO Safeguards Agreement

broke new ground in prohibiting ‘grey area’ measures and setting time limits (‘sunset

clause’) on all safeguard actions.’ That is, VERs are in principle prohibited, but they

have still been observed around the world. A recent example is China’s VER imposed

on fibre exports to the United States the deadline of which was postponed to the end of

2008.

There are considerable works studying effects of VERs. In a seminal work, Harris

(1985) proves that a VER set at the free trade level is voluntary in the sense that it gives

rise to higher profits for both the home firm and foreign firms. Applying a conjectural

variations approach, Mai and Hwang (1988) find that a VER raises (resp. lowers) the

exporting firm’s profit if the pre-VER equilibrium is more competitive (resp. collusive)

than Cournot.1 On the other hand, if the pre-VER equilibrium is Cournot, namely, the

conjectural variations are zero, the VER does not change the exporting firm’s profit. To

sum, Mai and Hwang (1988) reveal that the sign of conjectural variations plays a relevant

role for voluntariness of VERs (See Figure 1).

(Figure 1 around here)

Nevertheless, as Mai and Hwang (1988) admit, the conjectural variations approach

contains no dynamic foundation, which is criticized in other literature as well, e.g. Eaton

and Grossman (1986). The purpose of this paper is to overcome this difficulty by devel-

oping a differential game model.

There are two predecessors that share the same objective as ours. Applying a dynamic

duopoly model developed by Simaan and Takayama (1978) and Fershtman and Kamien

(1987), Dockner and Haug (1991) establish the following result.2 A VER at the free trade

level increases the exporting firm’s profit, i.e. it is voluntary if the home and foreign firms

choose a linear feedback strategy in free trade. The reasoning behind their finding is as

follows. As shown by Fershtman and Kamien (1987), the Nash equilibrium under the
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linear feedback strategy is more competitive than the static Cournot outcome.3 Hence,

relating Mai and Hwang’s (1988) observation to this feature of linear feedback Nash

equilibrium, a VER will raise the foreign firm’s profit.

Constructing a capital accumulation model of duopoly, Calzolari and Lambertini

(2007, p. 3836) show that ‘with substitute goods and quantity-setting firms, any VER

hurts the firm employing this policy. Hence, contrary to the conclusions reached by Dock-

ner and Haug (1991), VERs are not ‘voluntarily’ employed by Cournot firms.’ What

deserves attention in their finding is that open-loop and closed-loop solutions coincide so

that the pre-commitment does not matter in their result. This paper returns to Dockner

and Haug (1991) and fulfills a gap they leave. While they focus on linear feedback Nash

equilibrium, we allow for other equilibria: open-loop and non-linear feedback Nash equi-

libria. We show that a VER has no effect in the open-loop Nash equilibrium and that

it decreases the foreign firm’s profit in one of the non-linear feedback Nash equilibria.4

Moreover, we prove the validity of Dockner and Haug’s (1991) proposition for an arbi-

trary rate of price adjustment and discount.5 In short, there is a one-to-one relationship

between the strategy in the differential game and the sign of conjectural variation. (See

Figure 1) Our result, together with Dockner and Haug’s (1991), will be useful since it

provides Mai and Hwang (1988) with a dynamic foundation.

The rest of this paper is structured follows. Section II develops a basic model and

derives the open-loop and non-linear feedback Nash equilibria in free trade. Section III

characterizes the post-VER equilibrium and re-examines the effects of VERs. Section

IV concludes. Appendix proves that the Dockner-Haug (1991) proposition assuming an

infinite price adjustment survives arbitrary stickiness of prices.

II. A FREE TRADE EQUILIBRIUM

Consider a homogeneous product market of a country, say Home. The market is duopolized

by one Home firm and one Foreign firm both of which compete in quantities. All the

Foreign variables are asterisked. The inverse demand function is linear:

a− x− x∗, a > 0, (1)
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where x is the Home firm’s output and x∗ is the Foreign firm’s output. Each firm has

an identical cost function, which is specified by cx + x2/2, a > c > 0 and maximizes the

discounted sum of profits by choosing the time profile of outputs. In the present setting,

the current price p is a state variable. Given these specifications, the Home firm’s profit

maximization problem is formulated by

max
x

∫ ∞
0

e−rt
(
px− cx− x2

2

)
dt, r > 0

s.t. ṗ = s(a− x− x∗ − p), s > 0, (2)

where r and s are the constant rate of discount and the speed of price adjustment,

respectively. Eq. (2) means that the price is sticky and rises (resp. declines) when the

price implied by the demand is larger (resp. smaller) than the current price. In the rest

of this section, we seek two solutions of this game.6

a) Open-loop Nash equilibrium

Let us begin with the open-loop Nash equilibrium. To this end, set up the Home firm’s

current value Hamiltonian:

H = px− cx− x2

2
+ λs(a− x− x∗ − p),

where λ is the costate variable. Then, the first-order necessary conditions are (2) and

0 = p− c− x− λs (3)

λ̇ = λ(r + s)− x, (4)

together with the transversality condition: limt→∞ e−rtλp = 0. Solving (3) for x yields

x = p− c− λs. (5)

Substituting (5) into (4), we have

λ̇ = λ(r + 2s)− p+ c. (6)

Letting λ∗ be the Foreign firm’s costate variable, an equation similar to (6) holds:

λ̇∗ = λ∗(r + 2s)− p+ c. (7)
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Furthermore, substituting (5) and the Foreign firm’s counterpart into (2), the price dy-

namics is rewritten by

ṗ = s(sλ+ sλ∗ − 3p+ a+ 2c). (8)

The open-loop Nash equilibrium is characterized by (6)-(8). One can easily prove that

the steady state in this system is saddle point stable since we have two positive and one

negative eigenvalues. As in Dockner and Haug (1991), let us focus on the steady state in

which λ̇ = λ̇∗ = ṗ = 0. Then, the price and output of each firm are obtained as follows.

pO =
(r + 2s)a+ 2(r + s)c

3r + 4s
(9)

xO =
(r + s)(a− c)

3r + 4s
, (10)

where superscript O stands for the open-loop Nash equilibrium.

b) non-linear feedback Nash equilibrium

While the open-loop strategy requires a pre-commitment, the feedback strategy does

not. We derive feedback Nash equilibria by resorting to the technique developed by

Tsutsui and Mino (1990) and Shimomura (1991).7 It begins by defining the Home firm’s

Hamilton-Jacobi-Bellmann equation:

rV (p) = max
x

{
px− cx− x2

2
+ V ′(p)s [a− x− x∗(p)− p]

}
, (11)

where V (·) is the Home firm’s value function:

V (p) ≡ max
x

{∫ ∞
t

e−r(s−t)
(
px− cx− x2

2

)
ds
∣∣∣ ṗ = s [a− x− x∗(p)− p]

}
.

Maximizing the right-hand side in (11), the first-order condition for interior maximum

is sV ′(p) = p− c− x(p). Substituting this into (11) and using the symmetry assumption

that x = x∗ = x(p) , we have an identity in p:

rV (p) = (p− c)x(p)− [x(p)]2

2
+ [p− c− x(p)][a− 2x(p)− p]. (12)

Differentiating both sides in (12) with respect to p and rearranging terms, the feedback

strategy satisfies the following differential equation.

x′(p) =
−rx(p) + (r + 2s)p− sa− (r + s)c

s[3x(p)− a+ c]
. (13)
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Eq. (13) gives a number of candidates for feedback strategies. While (13) is extremely

difficult to explicitly solve, it can be analyzed with the help of a diagram.

From (13) and (2), we have the following information.

x′(p) = 0 ⇐⇒ x(p) =
(r + s)p− sa− (r + s)c

r

x′(p) =∞ ⇐⇒ x(p) =
a− c

3

ṗ = 0 ⇐⇒ x(p) =
a− p

2
.

Each of these relationships is depicted as a locus of x′(p) = 0, x′(p) = ∞ and ṗ = 0 in

Figure 2.

(Figure 2 around here)

In the figure, there are two linear strategies xL1 and xL2 , only the former of which is

asymptotically stable.

In what follows, let us focus on one non-linear feedback strategy xN in the figure.8

Someone may wonder why we focus on only xN . While we have no compelling reason,

the steady state supported xN can be analytically characterized and its implication is

often striking as shown in the literature, e.g. Tsutsui and Mino (1990) and Dockner and

Long (1993). This strategy asymptotically converges to the steady state N at which xN

is tangent to the ṗ = 0 line. Note that x = (a− p)/2 holds in the steady state. Making

use of this tangency condition and substituting x = (a− p)/2 into (13), we have

−1

2
=
−r · a−p

2
+ (r + 2s)p− sa− (r + s)c

s
(
3 · a−c

2
− a+ c

) ,

where the left-hand side is the slope of the ṗ = 0 line, and the right-hand side the slope

of the strategy xN evaluated at x = (a − p)/2. Solving this equation for p, the steady

state price reached by xN becomes

pN =
(2r + 3s)a+ 2(2r + s)c

6r + 5s
, (14)

where superscript N denotes the non-linear feedback Nash equilibrium. Substituting (14)

into x = (a− p)/2, the steady state output xN is

xN =
(2r + s)(a− c)

6r + 5s
. (15)
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This completes describing the free trade equilibrium. The subsequent section considers

the effect of a VER set at the free trade level under each of the strategies addressed above.

III. EFFECTS OF A VER

Suppose that the Home government imposes a VER, whereby the Foreign firm’s export

is fixed to xO in the open-loop case and xN in the non-linear feedback case. Taking these

into account, the Home firm solves the following problem:

max
x

∫ ∞
0

e−rt
(
px− cx− x2

2

)
dt

subject to ṗ = s(a− x− xi − p), i = O,N.

Since this is a single agent’s optimal control problem, one can solve it with the maximum

principle. Let us set up the current value Home firm’s Hamiltonian:

H = px− cx− x2

2
+ λs(a− x− xi − p).

The resulting optimality conditions are

0 = p− c− x− λs (16)

λ̇ = λ(r + s)− x (17)

ṗ = s(a− x− xi − p) (18)

0 = lim
t→∞ e

−rtλp.

Solving (16) for x yields

x = p− c− λs. (19)

Substituting (19) into (17) and (18), the reduced system becomes

[
λ̇
ṗ

]
=

[
r + 2s −1
s2 −2s

] [
λ
p

]
+

[
c

s(a+ c− xi)
]
.

The steady state proves saddle-point stable since the determinant of the coefficient matrix

is negative, i.e. we have one positive and one negative eigenvalues. In the steady state,
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the endogenous variables are obtained as follows.

piV ER =
(r + 2s)(a+ c− xi)− sc

2r + 3s
(20)

xiV ER =
(r + s)(a− c− xi)

2r + 3s
, (21)

where subscript V ER refers to the VER equilibrium.

Noting that since the Foreign firm’s output must be fixed to the free trade level, its

post-VER profit exceeds the free trade profit if and only if the post-VER price is larger

than the free trade price. That is, we have only to check whether the imposition of a

VER raises the price.

Let us begin by examining voluntariness of VER in the open-loop equilibrium. This

is stated in:

Proposition 1 When the open-loop strategy is chosen in the free trade equilibrium, a

VER has no effect on the equilibrium.

Proof: Substituting (10) into (20), the post-VER price is

pOV ER =
(r + 2s)a+ 2(r + s)c

3r + 4s
,

which coincides with the free trade price given by (9). Accordingly, the Foreign firm

makes the same profits under free trade and a VER. Q.E.D.

In contrast, when feedback strategies are allowed for, the impacts of a VER will prove

to depend on whether the strategy is linear in the state variable or not. Before proceeding

to the non-linear feedback strategy, let us restate Dockner and Haug’ (1991) proposition

which is based on the linear feedback strategy:9

Proposition 2 (Dockner and Haug, 1991) When the linear feedback strategy is chosen

in the free trade equilibrium, a VER raises the Foreign firm’s profit.

At this stage, the voluntariness of a VER always follows as long as feedback strategies

chosen, i.e. pre-commitment is ruled out. However, the above result highly depends on
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the linearity of the feedback strategy and exactly the opposite result can be established if

we consider the non-linear feedback strategy given by xN in Figure 2. This is summarized

in:

Proposition 3 When the non-linear feedback strategy given by xN in Figure 1 is chosen

in the free trade equilibrium, a VER lowers the Foreign firm’s profit.

Proof: Substituting (15) into (20), the post-VER price associated with strategy xN be-

comes

pNV ER =
4(r + s)(r + 2s)a+ (8r2 + 16rs+ 7s2)c

(6r + 5s)(2r + 3s)
.

Then, comparing this price with the free trade price pN in (14), we see that

pNV ER
pN

=
4(r + s)(r + 2s)a+ (8r2 + 16rs+ 7s2)c

(2r + 3s)[(2r + 3s)a+ 2(2r + s)c]
< 1,

that is, imposing a VER lowers the price and the Foreign firm’s profit. Q.E.D.

Propositions 1-3 provide a simple classification on the voluntariness of a VER as

summarized in Figure 1. The upper region collects the result of Mai and Hwang (1988)

based on the conjectural variations approach. The lower region corresponds to our results.

Making use of this figure, there is a one-to-one relationship between the sign of conjectural

variations and the strategy considered in differential games.

We now seem the reason for the above one-to-one relationship. As Fershtman and

Kamien (1987) point out, the linear feedback strategy induces each firm to produce

more than Cournot. Hence, this case corresponds to negative conjectural variations.

In contrast, the non-linear feedback strategy xN is known to approximate the collusive

solution as Tsutsui and Mino (1990) illustrate. The intuition behind this outcome is

substantially the same as the Folk Theorem in repeated games; strategy xN has a role

similar to the trigger strategy in repeated games. As a result, the equilibrium supported

by this strategy is more collusive than Cournot and corresponds to positive conjectural

variations. Finally, the open-loop strategy mimics the static Cournot solution as shown
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in Fershtman and Kamien (1987) and thus the VER has no effect in the open-loop case.

IV. FINAL REMARKS

We have developed a differential game model to explore when a VER is voluntarily

accepted by the foreign firm. As we have identified, whether a VER raises the exporting

firm’s profit crucially depends on the strategy chosen in free trade. When the open-loop

strategy is taken, a VER has no effect on equilibrium. In contrast, if one particular

non-linear feedback strategy is considered, a VER lowers the exporter’s profit, namely, a

VER is involuntary. Recalling Dockner and Haug’s (1991) result that the linear feedback

strategy leads to voluntariness of a VER, Mai and Hwang’s (1988) insightful finding with

conjectural variations survives a model with a dynamic foundation based on dynamic

games.

We have admittedly left much unexplored. First, we have assumed away any trade

barrier such as transport costs and import tariffs for a technical reason. Incorporating

these may make the result richer. Second, it is worth reconsidering Syropoulos’ (1996)

result of Pareto-improving VERs, which is based on a static setting. Given our arguments,

his result is guessed to survive open-loop strategies while the robustness will be unclear

under feedback strategies. These studies are left as our future research agenda.

APPENDIX: PROOF OF THE EXTENDED DOCKNER-HAUG (1991)

PROPOSITION

Dockner and Haug (1991), who show voluntariness of VERs under the linear feedback

strategy, confine attention to a special case with s → ∞, which is later criticized by

Calzolaria and Lambertini (2007).10 In response to their critique, this appendix proves

the validity of the Dockner-Haug proposition for an arbitrary s.

Supposing a linear feedback strategy such that x(p) = αp + β where α and β are

undetermined coefficients, the auxiliary equation (13) becomes

α =
−r(αp+ β) + (r + 2s)p− sa− (r + s)c

s[3(αp+ β)− a+ c]
,
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which has an alternative expression:

[
3sα2 + rα− (r + 2s)

]
p+ (3sα + r)β + sa+ (r + s)c− sα(a− c) = 0.

α is determined so that the quadratic equation multiplied by p is zero. Then, we have11

α =
−r +

√
∆

6s
(22)

∆ ≡ r2 + 12s(r + 2s) > 0.

On the other hand, β is determined by setting the other terms to zero as follows.

β =
sα(a− c)− sa− (r + s)c

3sα + r
. (23)

Substituting (22) and (23) into x(p) = αp+β yields the closed form of the asymptotically

stable feedback strategy. In the steady state where ṗ = a− p− 2(αp+ β) = 0 holds, the

pre-VER price is

pL =
a− 2β

2α + 1

=

(√
∆ + 5r + 12s

)
a+ 2

(√
∆ + 5r + 6s

)
c

3
(√

∆ + 5r + 8s
) , (24)

where superscript L refers to the linear feedback Nash equilibrium.

Moreover, the steady state output before a VER is obtained by substituting (22)-(24)

into αp+ β:

xL =

(√
∆ + 5r + 6s

)
(a− c)

3
(√

∆ + 5r + 8s
) . (25)

As noted in the main text, it suffices to check whether the price increases before and

after a VER in order to examine whether a VER raises the Foreign firm’s profit. To this

end, taking the ratio between pLV ER in (20) evaluated at xL (post-VER price) and pL

(pre-VER price), we have

pLV ER
pL

=
3
(√

∆ + 5r + 8s
) [

(r + 2s)
(
a+ c− xL

)
− sc

]

(2r + 3s)
[(√

∆ + 5r + 12s
)
a+ 2

(√
∆ + 5r + 6s

)
c
]

=
2(r + 2s)

[(√
∆ + 5r + 9s

)
a+

(
2
√

∆ + 10r + 15s
)
c
]
− 3s

(√
∆ + 5r + 8s

)
c

(2r + 3s)
[(√

∆ + 5r + 12s
)
a+ 2

(√
∆ + 5r + 6s

)
c
] .
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Subtracting the denominator from the numerator and rearranging terms yield

(numerator)− (denominator) = s
(√

∆− r
)

(a− c) > 0,

which allows us to conclude that pLV ER > pL and that the VER under the linear feedback

strategy raises the Foreign firm’s profit. This completes the proof of the Dockner-Haug

proposition extended to an arbitrary s.
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Footnotes

1. Harris (1985) assumes Bertrand competition, which is implied by a negative conjec-

tural variation.

2. Allowing for an arbitrary number of firms in the Fershtman-Kamien (1987) model,

Cellini and Lambertini (2004) compare the open-loop, closed-loop memoryless and feed-

back equilibria.

3. For the equilibrium concepts in differential games, see Kamien and Schwartz (1991)

and Dockner et al. (2000).

4. non-linear feedback strategies are known to yield a drastic difference in implications.

Examples include Tsutsui and Mino (1990) in industrial organization, Dockner and Long

(1993) in environmental economics and Wirl (1996) and Itaya and Shimomura (2001) in

public economics.

5. The result Dockner and Haug (1991) prove rests on the assumption that the price

adjustment speed is infinity or the discount rate is zero, which is severely criticized by

Calzolari and Lambertini (2007).

6. The below subsections admittedly contain nothing new since Fershtman and Kamien

(1987), Tsutsui and Mino (1990), and Dockner et al. (2000) have already developed these

arguments. Hence, only the minimum essence is sketched.

7. As long as one focuses on linear feedback strategies, the familiar method of guessing a

value function is also used. However, this method is not applicable to non-linear strate-

gies.

8. Itaya and Shimomura (2001), Rubio and Casino (2002), and Rowat (2007) identify

the conditions for xN to be chosen.

9. Dockner and Haug (1991) prove this result by setting s→∞ on which leads Calzolari
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and Lambertini (2007, p. 3836) to claim that ‘restricting the analysis to the case of

instantaneous price adjustment prevents Dockner and Haug from producing a general as-

sessment of the feasibility of VERs for the general case where prices are sticky’. However,

Appendix shows the validity of Dockner and Haug’s (1991) result for an arbitrary s.

10. See footnote 5.

11. The negative candidate for α is eliminated since it violates asymptotic stability, which

is confirmed from Figure 1. Only xL1 which corresponds a linear feedback strategy with

a positive α converges to the steady state whereas xL2 with a negative α diverges. More

detailed arguments are found in Fershtman and Kamien (1987).
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negative conjectural variation positive conjectural variation

linear feedback nonlinear feedback

open-loop

Cournot-Nash

(VERs are voluntary) (VERs are involuntary)

(competitive) (collusive)

Figure 1: Strategies in a differential game and conjectural variations
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3

Figure 2: Equilibrium strategies
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