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ABSTRACT

How much discretion should the monetary authority have in setting its policy? This question
is analyzed in an economy with an agreed-upon social welfare function that depends on the
randomly fluctuating state of the economy. The monetary authority has private informa-
tion about that state. In the model, well-designed rules trade off society’s desire to give
the monetary authority discretion to react to its private information against society’s need
to guard against the time inconsistency problem arising from the temptation to stimulate
the economy with unexpected inflation. Although this dynamic mechanism design problem
seems complex, society can implement the optimal policy simply by legislating an inflation
cap that specifies the highest allowable inflation rate. The more severe the time inconsis-
tency problem, the more tightly the cap constrains policy and the smaller is the degree of
discretion. As this problem becomes sufficiently severe, the optimal degree of discretion is
none.

JEL Numbers: E5, E6, E52, E58, E61

Key Words: Rules vs. discretion, time inconsistency, optimal monetary policy, inflation
targets, inflation caps
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Nontechnical Summary

Should central banks have discretion in setting their monetary policies? Most

theories say they should not. All policymakers say they should. Here by discretion

we do not mean opt out clauses for rare exotic events –everyone agrees on the need

for these. Rather, we mean the flexibility the central bank has to take actions at the

high percentage of times when such rare exotic events do not occur.

Can we rationalize some discretion for central banks? If the central bank has no

special knowledge, either about the current state of the economy or about how the

economy functions, then clearly we cannot. Under this scenario, given an agreed-

upon social welfare function, society can determine as easily as the central bank can

what is the best policy to pursue. Therefore, there are no gains in allowing the

central bank the flexibility to deviate from this agreed-upon best policy. There are

a whole variety of possible costs if the central bank has any incentive problem that

makes it desire a policy different from that of the rest of society. Thus, in such a

scenario it is optimal to give the central bank no discretion at all.

One way of approximating this outcome in practice might be to give the central

bank a simple rule which is a reasonable approximation to the optimal rule. If the

central bank wants to deviate from this rule by more than some prespecified amount,

it is allowed to, but at the cost that it must explain its rationale for so doing.

The paper focuses on the more interesting scenario in which the central bank

has some special knowledge about the economy. Here there is a clear tension between

discretion and the incentive problem of the central bank. For concreteness, we model

this incentive problem as a time inconsistency problem in which the central bank is

tempted to claim that the current state of the economy justifies a monetary stimulus

to output. Tight constraints on discretion mitigate the time inconsistency problem

but leave little room for the monetary authority to fine tune its policy to its private

information. Loose constraints allow the monetary authority to do that fine tuning,

but they also allow more room for the monetary authority to stimulate the economy

with a surprise inflation. These constraints may vary with observables, but the

relevant question is, how tight should they be? How much discretion should be

allowed?
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We find the optimal degree of discretion is bounded. Society can implement

optimal policy by instructing the central bank to keep its policies below an maximal

inflation rate referred to as an inflation cap. In this scenario, the central bank is

allowed to pursue any policy it wishes subject to the understanding the inflation not

exceed the inflation cap. This inflation cap will typically vary with observables. In

the equilibrium sometimes this cap will bind and other times it will not. As we vary

the underlying parameters so that the time inconsistency problem becomes more

severe, the optimal inflation cap drops and is more likely to bind.

It is immediate that we can equivalently implement the optimal policy by choos-

ing ranges on acceptable inflation rates. These ranges will decrease as the time in-

consistency problem becomes more severe. One interpretation of our work is that

we solve for the optimal inflation targets. As such, one interpretation of our work is

that it gives a rationale for inflation targeting.

At a deeper level our paper raises a challenge for those who think the following.

First, in most advanced countries the central banks have little special knowledge

about the economy. Second, in such economies it is optimal to give central banks

large amounts of discretion–and recall, by discretion we don’t mean opt out clauses

for exotic unforeseen events.

The discussions of discretion surrounding monetary policy are quite different

from those surrounding other areas of policy. For example, with environmental policy,

society legislates rules, in the form of authorizing legislation, and leaves the regulator

limited discretion to implement these rules. Why should we treat monetary policy

so different from environmental policy or any other area of policy?
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How much discretion should the monetary authority have in setting its pol-

icy? The conventional wisdom from policymakers is that optimal outcomes can

be achieved only if some discretion is left in the hands of the monetary authority.

Starting with Kydland and Prescott (1977), most of the academic literature has con-

tradicted that view. In summarizing this literature, Taylor (1983) and Canzoneri

(1985) argue that when the monetary authority does not have private information

about the state of the economy, the debate is settled: there should be no discre-

tion; that is, the best outcomes can be achieved by rules that specify the action of

the monetary authority as a function of observables. The unsettled question in this

debate is Canzoneri’s: What about when the monetary authority does have private

information? What, then, is the optimal degree of monetary policy discretion?

To answer this question, we use a model of monetary policy similar to that of

Kydland and Prescott (1977) and Barro and Gordon (1983). The model includes

an agreed-upon social welfare function that depends on the random state of the

economy. We begin with the assumption that the monetary authority observes the

state and individual agents do not. In the context of our model, we say that the

monetary authority has discretion if its policy varies with its private information.

The assumption of private information creates a tension between discretion and

time inconsistency.1 Tight constraints on discretion mitigate the time inconsistency

problem in which the monetary authority is tempted to claim repeatedly that the

current state of the economy justifies a monetary stimulus to output. However, tight

constraints leave little room for the monetary authority to fine tune its policy to its

private information. Loose constraints allow the monetary authority to do that fine

tuning, but they also allow more room for the monetary authority to stimulate the

economy with a surprise inflation. These constraints may vary with observables, but

the relevant question is, how tight should they be? How much discretion should be

allowed?

Our purpose here is to answer this question by finding the constraints on mone-

tary policy that, in the presence of private information, optimally resolve the tension

1For some potential empirical support for the idea that the Federal Reserve possesses some
nontrivial private information, see the work of Romer and Romer (2000).
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between discretion and time inconsistency. Formally, we cast this problem as a dy-

namic mechanism design problem. Canzoneri (1985) conjectures that because of the

dynamic nature of the problem, the resulting optimal social contract with regard

to monetary policy is likely to be quite complex. We find that, in fact, it is quite

simple. For a broad class of economies, the optimal social contract is static and can

be implemented by setting an inflation cap, an upper limit on the permitted inflation

rate.

More formally, our model can be described as follows. Each period, the mone-

tary authority observes one of a continuum of possible privately observed states of

the economy. These states are i.i.d. over time. In terms of current payoffs, the mon-

etary authority prefers to choose higher inflation when higher values of this state are

realized and lower inflation when lower values are realized. Here a mechanism spec-

ifies what monetary policy is chosen each period as a function of the history of the

monetary authority’s reports of its private information. We say that a mechanism is

static if policies depend only on the current report by the monetary authority and

dynamic if policies depend also on the history of past reports.

Our main technical result is that, as long as a monotone hazard condition is

satisfied, the optimal mechanism is static. We also give examples in which this

monotone hazard condition fails and the optimal mechanism is dynamic.

We then show that our result on the optimality of a static mechanism implies

that the optimal policy has one of two forms: either it has bounded discretion,

or it has no discretion. Under bounded discretion, there is a cutoff state: for any

state less than this, the monetary authority chooses its static best response, which

is an inflation rate that increases with the state, and for any state greater than this

cutoff state, the monetary authority chooses a constant inflation rate. Under no

discretion, the monetary authority chooses some constant inflation rate regardless of

its information.

We then show that we can implement the optimal policy as a repeated static

equilibrium of a game in which the monetary authority chooses its policy subject

to an inflation cap and in which individual agents’ expectations of future inflation
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do not vary with the monetary authority’s policy choice. In general, the inflation

cap would vary with observable states, but to keep the model simple, we abstract

from observable states, and the inflation cap is a single number. Depending on the

realization of the private information, sometimes the cap will bind, and sometimes

it will not.

These results imply that the optimal constraints on discretion take the form of

an inflation cap. The monetary authority is allowed to choose any inflation rate below

this cap but is constrained from choosing an inflation rate above it. As we vary the

underlying parameters so that the time inconsistency problem becomes more severe,

the optimal inflation cap drops and is more likely to bind. If the problem is sufficiently

severe, then the cap is set sufficiently low that it binds for all realizations of the private

information, and the resulting policy has no discretion. It is immediate that we can

equivalently implement the optimal policy by choosing ranges on acceptable inflation

rates. These ranges will decrease as the time inconsistency problem becomes more

severe.

One interpretation of our work is that we solve for the optimal inflation targets.

As such, our work is related to the burgeoning literature on inflation targeting.

(See the work of Cukierman and Meltzer (1986), Bernanke and Woodford (1997),

and Faust and Svensson (2001), among many others.) In terms of the practical

application of inflation targets, Bernanke and Mishkin (1997) discuss how inflation

targets often take the form of ranges or limits on acceptable inflation rates similar to

the ranges that we derive. Indeed, our work here provides one theoretical rationale

for the type of constrained discretion advocated by Bernanke and Mishkin.

Here we have assumed that the monetary authority maximizes the welfare of

society. As such, the monetary authority is viewed as the conduit through which

society exercises its will. An alternative approach is to view the monetary author-

ity as an individual or an organization motivated by concerns other than that of

society’s well-being. If, for example, the monetary authority is motivated in part

by its own wages, then, as Walsh (1995) has shown, it is possible to implement

the full-information, full-commitment solution. Hence, with such a setup, there are
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no binding incentive problems in monetary policy to begin with. As Persson and

Tabellini (1993) note, there are a host of reasons such contracts are either difficult

or impossible to implement, and the main issue for research following this approach

is why such contracts are, at best, rarely used.

Our work is related to several literatures. It is related to some work on private

information in monetary policy games. (See, for example, that of Backus and Drif-

fill (1985); Ireland (2000); Da Costa and Werning (2001); Sleet (2001); Angeletos,

Hellwig, and Pavan (2003); Sleet and Yeltekin (2003); and Stokey (2003).) The most

closely related of these is the work of Sleet (2001), who considers a dynamic general

equilibrium model in which the monetary authority sees a noisy signal about future

productivity before it sets the money growth rate. Sleet finds that, depending on

parameters, the optimal mechanism may be static, as we find here, or it may be

dynamic.

Our work is also related to a large literature on dynamic contracting. Our result

on the optimality of a static mechanism is quite different from what is typically

found in this literature, namely, that static mechanisms are not optimal. (See, for

example, Green (1987), Atkeson and Lucas (1992), and Kocherlakota (1996).) We

discuss the relation between our work and both of these literatures in more detail

after we present our results.

At a technical level, we draw heavily on the literature on recursive approaches

to dynamic games. We use the technique of Abreu, Pearce, and Stacchetti (1990),

which has been applied to monetary policy games by Chang (1998) and is related to

the policy games studied by Phelan and Stacchetti (2001), Albanesi and Sleet (2002),

and Albanesi, Chari, and Christiano (2003). The mechanism design problem that we

study, at an abstract level, is related to some work on supporting collusive outcomes

in cartels by Athey, Bagwell, and Sanchirico (forthcoming), some work on risk-sharing

with nonpecuniary penalties for default by Rampini (2003), and some work on the

tradeoff between flexibility and commitment in savings plans for consumers with

hyperbolic discounting by Amador, Angeletos, and Werning (2003).
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1. The Economy

A. The Model

Here we describe our simple model of monetary policy. The economy has a mon-

etary authority and a continuum of individual agents. The time horizon is infinite,

with periods indexed t = 0, 1, . . . .

At the beginning of each period, agents choose individual action zt from some

compact set. We interpret z as (the growth rate of) an individual’s nominal wage

and let xt denote the (growth of the) average nominal wage. Next, the monetary

authority observes the current realization of its private information about the state

of the economy. This private information θt is an i.i.d., mean 0 random variable with

support θ ∈ [θ, θ̄], with a strictly positive density p(θ) and a distribution function

P (θ). Given this private information, the monetary authority chooses money growth

µt in some large compact set [µ, µ̄].

The monetary authority maximizes a social welfare function R(xt, µt, θt) that

depends on the average nominal wage xt, the monetary growth rate µt, and a pri-

vately observed shock θt. We interpret θt to be private information of the monetary

authority regarding the impact of a monetary stimulus on social welfare in the current

period. Throughout, we assume that R is strictly concave in µ and twice continuously

differentiable.

As a benchmark example, we use this function:

R(xt, µt, θt) = −
1

2

h
(U + xt − µt)

2 + (µt − θt)
2
i
.(1)

We interpret (1) as the reduced form that results from a monetary authority which

maximizes a social welfare function that depends on unemployment, inflation, and

the monetary authority’s private information θ. Each period, inflation πt is equal

to the money growth rate µt chosen by the monetary authority. Unemployment is

determined by a Phillips curve. The unemployment rate is given by

ut = U + xt − µt(2)

where U is a positive constant, which we interpret as the natural rate of unemploy-

ment. Social welfare in period t is a function of ut and πt and the shock θt. Our
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benchmark example is derived from a quadratic objective function which has the

form

−u
2
t

2
− (πt − θt)

2

2
(3)

similar to that used by Kydland and Prescott (1977) and Barro and Gordon (1983).

Using (2) and πt = µt in (3), we obtain (1). Here the monetary authority’s private

information is about the social cost of inflation, but we develop our model for general

specifications of the social welfare functionR(xt, µt, θt)which subsume (1) as a special

case. Notice that in our general formulation we allow for the current payoff to vary

with expected inflation, through xt; actual inflation, through µt; and the state θt.

This formulation thus subsumes many other versions of the Kydland-Prescott and

Barro-Gordon models in the literature.2

Throughout, a policy for the monetary authority in any given period, denoted

µ(·), specifies the money growth rate µ(θ) for each level of the shock θ. For any x,

we define the static best response to be the policy µ∗(θ;x) that solves Rµ(x, µ(θ), θ)

= 0. We assume that if x =
R
µ(θ)p(θ) dθ, thenZ

Rx(x, µ(θ), θ)p(θ) dθ < 0.(4)

B. Two Ramsey Benchmarks

Before we analyze the economy in which the monetary authority has private

information, it is useful to consider two alternative economies. We think of the

optimal policies in these economies as benchmarks for that in the private information

economy.

One benchmark, the Ramsey policy, denoted µR(·), yields the highest payoff that
can be achieved in an economy with full information. The gap between that Ramsey

2Note that the inflation rate that enters the period t social welfare function is the current inflation
rate, that from period t− 1 to period t. As noted by a number of authors, this formulation captures
the distortions in a sticky price model with multiple sectors. As the current inflation rate rises
or falls, the prices of goods in sectors that can currently change prices rise or fall relative to the
prices in sectors that cannot. Movements in the current inflation rate thus create resource allocation
distortions.
Also, for simplicity, our formulation abstracts from direct costs due to future inflation. One

interpretation of this feature is that it captures what happens in the cashless limit of a sticky price
model.

12
ECB
Work ing Paper Ser ie s No . 338
April 2004



payoff and the payoff in the economy with private information measures the welfare

loss due to private information.

The other benchmark, the expected Ramsey policy, denoted µER, is the optimal

policy when the policy is restricted to not depend on private information. In our

environment, there is no publicly observed shock to the economy; hence, this policy

is a constant. The expected Ramsey policy is a useful benchmark because it is the

best policy that can be achieved by a rule which specifies policies as a function only

of observables. This policy is analogous to the strict targeting rule discussed by

Canzoneri (1985).

For the Ramsey policy benchmark, consider an economy with full information

with the following timing scheme. Before the shock θ is realized, the monetary

authority commits to a schedule for money growth rates µ(·). Next, individual

agents choose their nominal wages z with associated average nominal wages x. Then

the state θ is realized and the money growth rate µ(θ) is implemented. The optimal

allocations and policies in this economy solve the Ramsey problem:

max
x,µ(·)

Z
R(x, µ(θ), θ)p(θ) dθ

subject to x =
R
µ(θ)p(θ) dθ. For our example (1), the Ramsey policy is µR(θ) = θ/2.

Note that the Ramsey policy has the monetary authority choosing a money growth

rate which is increasing in its private information. Thus, with full information,

it is optimal to have the monetary authority fine tune its policy to the state. This

feature of the environment leads to a tension in the economy with private information

between allowing the monetary authority discretion for fine tuning and experiencing

the resulting time inconsistency problems.

For the other benchmark, consider an economy in which the monetary authority

is restricted to choosing money growth µ that does not vary with its private informa-

tion. The equilibrium allocations and policies in the economy with these constraints

solve the expected Ramsey problem:

max
x,µ

Z
R(x, µ, θ)p(θ) dθ(5)

subject to x = µ. For our example (1), the expected Ramsey policy is µER = 0.
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For our example (1), the Ramsey policy obviously yields strictly higher welfare

than does the expected Ramsey policy. More generally, when Rµθ(x, µ, θ) > 0, the

Ramsey policy µR(·) is strictly increasing in θ and yields strictly higher welfare than
does the expected Ramsey policy.

C. The Dynamic Mechanism Design Problem

To analyze the problem of finding the optimal degree of discretion, we use the

tools of dynamic mechanism design. Without loss of generality, we formulate the

problem as a direct revelation game. In this problem, society specifies a monetary

policy, the money growth rate as a function of the history of the monetary authority’s

reports of its private information. Given the specified monetary policy, the monetary

authority chooses a strategy for reporting its private information. Individual agents

choose their wages as functions of the history of reports of the monetary authority.

A monetary policy in this environment is a sequence of functionsn
µt

³
ht, θ̂t

´
| all ht, θ̂t

o∞
t=0
, where µt

³
ht, θ̂t

´
specifies the money growth rate that

will be chosen in period t following the history ht =
³
θ̂0, θ̂1, . . . , θ̂t−1

´
of past reports

together with the current report θ̂t. The monetary authority chooses a reporting

strategy {mt(ht, θt)| all ht, θt}∞t=0 in period 0, where θt is the current realization of
private information and mt(ht, θt) ∈ [θ, θ̄] is the reported private information in t.

As is standard, we restrict attention to public strategies, those that depend only on

public histories and the current private information, not on the history of private

information.3 Also, from the Revelation Principle, we need only restrict attention to

truth-telling equilibria in which mt(ht, θt) = θt for all ht and θt.

In each period, each agent chooses the action zt as a function of the history of

reports ht. Since agents are competitive, the history need not include either agents’

individual past actions or the aggregate of their past actions.4

Each agent chooses nominal wage growth equal to expected inflation. For each

history ht, with monetary policy µt(ht, ·) given, agents set zt(ht) equal to expected

3For a discussion of the large class of environments for which this restriction does not alter the
set of equilibrium payoffs, see Fudenberg and Tirole (1991).

4For details of why this is true, see the work of Chari and Kehoe (1990).
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inflation:

zt(ht) =

Z
µt(ht, θ)p(θ) dθ(6)

where we have used the fact that agents expect the monetary authority to report

truthfully, so that mt(ht, θt) = θt. Aggregate wages are defined by xt(ht) = zt(ht).

The optimal monetary policy maximizes the discounted sum of social welfare:

(1− β)
∞X
t=0

Z
βtR(xt(ht), µt(ht, θt), θt)p(θt) dθt(7)

where the future histories ht are recursively generated from the choice of monetary

policy µt(·, ·) in the natural way, starting from the null history. The term 1 − β

normalizes the discounted payoffs to be in the same units as the per-period payoffs.

A perfect Bayesian equilibrium of this revelation game is a monetary policy,

a reporting strategy, a strategy for wage-setting by agents {zt(·)}∞t=0 , and average
wages {xt (·)}∞t=0 such that (6) is satisfied in every period following every history
ht, average wages equal individual wages in that xt(ht) = zt(ht), and the monetary

policy is incentive-compatible in the standard sense that, in every period, following

every history ht and realization of the private information θt, the monetary authority

prefers to reportmt(ht, θt) = θt rather than any other value θ̂ ∈ [θ, θ̄]. Note that since
average wages xt(ht) always equal wages of individual agents zt(ht), we need only

record average wages from now on.

Note that this definition of a perfect Bayesian equilibrium includes no notion of

optimality for society. Instead, it simply requires that in response to a given monetary

policy, private agents respond optimally and truth-telling for the monetary authority

is incentive-compatible. The set of perfect Bayesian equilibria outcomes are the set

of incentive-compatible outcomes that are implementable by some monetary policy.

The mechanism design problem is to choose a monetary policy, a reporting

strategy, and a strategy for average wages the outcomes of which maximize social

welfare (7) subject to the constraint that these strategies are incentive-compatible.

D. A Recursive Formulation

Here we formulate the problem of characterizing the solution to this mechanism

design problem recursively. The repeated nature of the model implies that the set of
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incentive-compatible payoffs that can be obtained from any period t on is the same

that can be obtained from period 0. Thus, the payoff to any incentive-compatible

outcome for the repeated game can be broken down into payoffs from current ac-

tions for the players and continuation payoffs that are themselves drawn from the

set of incentive-compatible payoffs. Following this logic, Abreu, Pearce, and Stac-

chetti (1990) show that the set of incentive-compatible payoffs can be found using a

recursive method that we exploit here.

In our environment, this recursive method is as follows. Consider an operator

on sets of the following form. Let W be some compact subset of the real line, and let

w̄ be the largest element of W . The set W may be interpreted as a candidate set of

incentive-compatible levels of social welfare. In our recursive formulation, the current

actions are average wages x and a report θ̂ = m(θ) for every realized value of the state

θ. For each possible report θ̂, there is a corresponding continuation payoff w(θ̂) that

represents the discounted utility for the monetary authority from next period on.

Clearly, these continuation payoffs cannot vary directly with the privately observed

state θ.

We say that the actions x and µ(·) and the continuation payoff w(·) are enforce-
able by W if

w(θ̂) ∈W for all θ̂ ∈ [θ, θ̄](8)

x =

Z
µ(θ)p(θ) dθ(9)

and the incentive constraints

(1− β)R(x, µ(θ), θ)+ βw(θ) ≥ (1− β)R(x, µ(θ̂), θ)+ βw(θ̂)(10)

are satisfied for all θ and all θ̂, where µ(θ) ∈ [µ, µ̄]. Constraint (8) requires that each
continuation payoff w(θ̂) be drawn from the candidate set of incentive-compatible

payoffs W, while constraint (9) requires that average wages equal expected inflation.

Constraint (10) requires that for each privately observed state θ, the monetary au-

thority prefer to report the truth θ rather than any other message θ̂. That is, the

monetary authority prefers the money growth rate µ(θ) and the continuation value
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w(θ) rather than a money growth rate µ(θ̂) and its corresponding continuation value

w(θ̂).

The payoff corresponding to x, µ(·), and w(·) is

V (x, µ(·), w(·)) =
Z £
(1− β)R(x, µ(θ), θ)+ βw(θ)

¤
p(θ) dθ.(11)

Define the operator T that maps a set of payoffs W into a new set of payoffs

T (W ) = {v | there exist xv, µv(·), wv(·) enforceable by W(12)

s.t. v = V (xv, µv(·), wv(·))}.

As demonstrated by Abreu, Pearce, and Stacchetti (1990), the set of incentive-

compatible payoffs is the largest set W that is a fixed point of this operator:

W ∗ = T (W ∗).(13)

For any given candidate set of incentive-compatible payoffs W, we are interested

in finding the largest payoff that is enforceable by W, or the largest element v̄ ∈
T (W ). We find this payoff by solving the following problem, termed the best payoff

problem:

v̄ = max
x,µ(θ),w(θ)

Z £
(1− β)R(x, µ(θ), θ)+ βw(θ)

¤
p(θ) dθ(14)

subject to the constraint that x, µ(·), and w(·), are enforceable by W , in that they

satisfy (8)—(10). Throughout, we assume that µ(·) is a piecewise, continuously dif-
ferentiable function.

The best payoff problem is a mechanism design problem of choosing an incentive-

compatible allocation x, µ(·), w(·) which maximizes utility. Following the language
of mechanism design, we refer to θ as the type of the monetary authority, which

changes every period. When we solve this problem with W = W ∗, (13) implies

that the resulting payoff is the highest incentive-compatible payoff. We will prove

our main result in Proposition 1 for any W. Hence, we will not have to solve the

fixed-point problem of finding W ∗.

To prove our results, we need only focus on the best payoff problem, which gives

the highest payoff that can be obtained from period 0 onward. For completeness,
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notice that given some w0(θ) from the best payoff problem, a period 1 policy and

continuation value, µw0(θ)(·) and ww0(θ)(·), that satisfy

w0(θ) =
Z h
(1− β)R(xw0(θ), µw0(θ)(z), z)+ βww0(θ)(z)

i
p(z) dz(15)

exist by the definition of T. Equation (15) is sometimes referred to as a promise-

keeping constraint. Proceeding recursively, we can generate the whole sequence of

policies µt(ht, ·).

2. Characterizing the Optimal Mechanism

Now we solve the best payoff problem and use the solution to characterize the

optimal mechanism. Our main result here is that under two simple conditions, a

single-crossing condition and a monotone hazard condition, the optimal mechanism

is static. To highlight the importance of the monotone hazard condition for this

result, we give two examples which show that if the monotone hazard condition is

violated, the optimal mechanism is dynamic.

A. Preliminaries

We begin with some definitions. In our recursive formulation, we say that a

mechanism is static if the continuation value w(θ) = w̄ for (almost) all θ. We say

that a mechanism is dynamic if w(θ) < w̄ for some set of θ which is realized with

strictly positive probability.

Our characterization of the solution to the best payoff problem does not depend

on the exact value of β. Hence, to simplify the notation, we suppress explicit depen-

dence on β and think of the term β as being subsumed in the w function and 1− β

as being subsumed in the R function.

We assume that the preferences satisfy a standard single-crossing assumption,

that

Rµθ(x, µ, θ) > 0.(A1)

This implies that higher types have a stronger preference for current inflation. Notice

that the single-crossing assumption, together with the strict concavity of R, implies
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that the static best response is strictly increasing in θ, or that

∂µ∗(θ;x)
∂θ

= −Rµθ(x, µ(θ), θ)
Rµµ(x, µ(θ), θ)

> 0.(16)

Under the single-crossing assumption (A1), a standard lemma lets us replace

the global incentive constraints (10) with some local versions of them. We say that

an allocation is locally incentive-compatible if it satisfies three conditions: µ(·) is
nondecreasing in θ;

Rµ(x, µ(θ), θ)
dµ(θ)

dθ
+

dw(θ)

dθ
= 0(17)

wherever dµ(θ)/dθ and dw(θ)/dθ exist; and for any point θi at which these derivatives

do not exist,

lim
θ%θi

R(x, µ(θ), θi)+w(θ) = lim
θ&θi

R(x, µ(θ), θi)+w(θ).(18)

Standard arguments give the following result: under the single-crossing assumption

(A1), the allocation (x, µ(·), w(·)) satisfies the incentive constraints (10) if and only
if the allocation is locally incentive-compatible. (See, for example, Fudenberg and

Tirole’s (1991) text.)

Given any incentive-compatible allocation, we define the utility of the allocation

at θ to be

U(θ) = R(x, µ(θ), θ)+w(θ).

Local incentive-compatibility implies that U(·) is continuous and differentiable almost
everywhere, with derivative U 0(θ) = Rθ(x, µ(θ), θ). Integrating U 0(·) from θ up to θ

gives that

U(θ) = U(θ) +
Z θ

θ
Rθ(x, µ(z), z) dz(19)

while integrating U 0(·) from θ̄ down to θ gives that

U(θ) = U(θ̄)−
Z θ̄

θ
Rθ(x, µ(z), z) dz.(20)

With integration by parts, it is easy to show that for interval endpoints θ1 < θ2,Z θ2

θ1
U(θ)p(θ) dθ = P (θ2)U(θ2)− P (θ1)U(θ1)−

Z θ2

θ1
Rθ(x, µ(θ), θ)P (θ) dθ.(21)
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Using (19) and (21), we can write the value of the objective function
R θ̄
θ U(θ)p(θ) dθ

as

U(θ) +

Z θ̄

θ

1− P (θ)

p(θ)
Rθ(x, µ(θ), θ)p(θ) dθ or(22)

U(θ̄)−
Z θ̄

θ

P (θ)

p(θ)
Rθ(x, µ(θ), θ)p(θ) dθ.

Next we make some joint assumptions on the probability distribution and the

return function. Assume that, for any action profile x, µ(·) with µ(·) nondecreasing,
1− P (θ)

p(θ)
Rθµ(x, µ(θ), θ) is strictly decreasing in θ(A2a)

P (θ)

p(θ)
Rθµ(x, µ(θ), θ) is strictly increasing in θ.(A2b)

We refer to assumptions (A2a) and (A2b) together as (A2) and, in a slight abuse

of terminology, refer to them as the monotone hazard condition. In our benchmark

example (1), Rθµ(x, µ(θ), θ) = 1, so that (A2) reduces to the standard monotone

hazard condition familiar from the mechanism design literature, that [1−P (θ)]/p(θ)
be strictly decreasing and P (θ)/p(θ) be strictly increasing.

B. Showing That the Optimal Mechanism Is Static

Here we show that the optimal mechanism is static. In the next section, we

characterize the optimal static mechanism.

Proposition 1. Under assumptions (A1) and (A2), the optimal mechanism is

static.

The approach we take in proving Proposition 1 is different from the standard

approach used by Fudenberg and Tirole (1991, Chapter 7.3) for solving a mathemat-

ically related principal-agent problem. To motivate our approach, we first show why

the standard approach does not work for our problem.

The best payoff problem can be written as follows: Choose µ(θ) to maximize

social welfare

U(θ) +
Z θ̄

θ

1− P (θ)

p(θ)
Rθ(x, µ(θ), θ)p(θ) dθ
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subject to the constraints that (i) x =
R
µ(θ)p(θ) dθ, (ii) µ(θ) is nondecreasing, and

(iii) the continuation values defined by

w(θ) ≡ U(θ) +
Z θ

θ
Rθ(x, µ(z), z) dz −R(x, µ(θ), θ)

satisfy w(θ) ≤ w̄ for all θ. Alternatively, we can write the best payoff problem as

choosing µ(θ) to maximize

U(θ̄)−
Z θ̄

θ

P (θ)

p(θ)
Rθ(x, µ(θ), θ)p(θ) dθ

subject to the constraints (i), (ii), and (iii), the continuation values defined by

w(θ) ≡ U(θ̄)−
Z θ̄

θ
Rθ(x, µ(z), z) dz −R(x, µ(θ), θ)

satisfy w(θ) ≤ w̄ for all θ.

The standard approach to solving either version of this problem is to guess that

the analog of constraints (ii) and (iii) do not bind, take the corresponding first-order

conditions of either of these problems to find the implied µ(·), and then verify that
constraints (ii) and (iii) are in fact satisfied at that choice of µ(·). If we take that
approach here, we see that it fails. The first-order conditions with respect to µ(θ)

are

1− P (θ)

p(θ)
Rθµ(x, µ(θ), θ) = λ(23)

for the first version of the best payoff problem and

−P (θ)
p(θ)

Rθµ(x, µ(θ), θ) = λ(24)

for the second version of the best payoff problem, where λ is the Lagrange multiplier

on constraint (i). The solution to these first-order conditions (23) and (24), from

the relaxed problem in which we have dropped constraints (ii) and (iii), implies

a decreasing µ(·) schedule. To see why, note, for example, that the left side of

equation (23) is the increment to social welfare from marginally increasing µ(·) at
some particular θ and adjusting the continuation values w(·) for θ0 ≥ θ to preserve

incentive-compatibility, while the right side is the cost in terms of welfare from raising

expected inflation x. Under assumption (A2a), the benefits of raising µ(·) are higher
for low values of θ than for high values of θ. Thus, in the relaxed problem, it is optimal
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to have a downward-sloping µ(·) schedule. Similar logic applies to (24). Clearly, then,
the solution to the relaxed problem violates at least one of the dropped constraints

(ii) or (iii), and hence, we cannot use this standard approach.

We also cannot use the ironing approach designed to deal with cases in which the

monotonicity constraint (ii) binds, because in our problem, the constraint that binds

is constraint (iii), which is not dealt with in that approach. Instead, in the proof

of Proposition 1 that follows, we use a variational argument to show that constraint

(iii) binds for all θ at the solution to the best payoff problem.

The key feature of our problem that leads to the failure of the standard approach

is that the continuation value enters positively into the payoff of both society and

the monetary authority. Mathematically, these continuation values are analogous

to the transfers between the principal and the agent in the standard principal-agent

problem presented by Fudenberg and Tirole (1991, Chapter 7.3). In that problem, the

transfers enter positively into the agent’s problem but negatively into the principal’s

problem. This difference between our problem and the principal-agent problem is

the key reason the standard approach doesn’t work and, at some deep level, is the

whole reason we obtain our main result.

Before proving Proposition 1, we sketch our basic argument. Our discussion of

the first-order conditions of the relaxed problem (23) and (24) suggests that given any

strictly increasing µ(·) schedule, a variation that flattens this schedule will improve
welfare if it is feasible in the sense that the associated continuation value satisfies

constraint (iii). Our proof of Lemma 1 formalizes this logic.

Our objective is to show that the optimal continuation value w(·) is constant
at w̄. We prove this by contradiction. We start with the observation that w(·) is
piecewise-differentiable since µ(·) is piecewise-differentiable and (17) holds. We first
show that w(·) must be a step function. If not, there would be some interval over
which w0(θ) is nonzero, and hence, from local incentive-compatibility, µ(·) is strictly
increasing. In Lemma 2, we show that a variation that flattens µ(·) over that interval
is feasible. From Lemma 1, we know it is welfare-improving.
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must be constant. We prove this by showing that if w(·) is discontinuous at some
point θ, then (18) implies that µ(·) must be increasing in the sense that it jumps
up at that point. In Lemma 3, we show that a variation that flattens µ(·) in a
neighborhood of that point is feasible, and again from Lemma 1, we know that it is

welfare-improving.

It is convenient in the proof to use a definition of increasing on an interval which

covers the cases we deal with in Lemmas 2 and 3. This definition subsumes the case

of Lemma 2 in which dµ(θ)/dθ > 0 for some interval and the case of Lemma 3 in

which µ(·) jumps up at θ̃. We say that µ(·) is increasing on (θ1, θ2) if µ(·) is weakly
increasing on this interval and there is some θ̃ in this interval such that µ(θ) < µ̃

for θ < θ̃ and µ(θ) > µ̃ for θ > θ̃, where µ̃ is the conditional mean of µ(·) on this
interval, namely,

µ̃ =

R θ2
θ1

µ(θ)p(θ) dθ

P (θ2)− P (θ1)
.(25)

In words, on this interval, the function µ(·) is weakly increasing and is strictly below
its conditional mean µ̃ up to θ̃ and strictly above its conditional mean after θ̃.5

Throughout, we will also say that the policy µ(·) is flat at some particular point θ if
the derivative µ0(θ) exists and equals zero at that point.

Consider now some dynamic mechanism (x, µ(·), w(·)) in which the policy µ(·)
is increasing on some interval, say, (θ1, θ2). In our variation, we marginally move the

function µ(·) toward its conditional mean on this interval and adjust the continuation
values to preserve incentive-compatibility. In particular, our variation moves our

original policy µ(·) marginally toward a policy µ̃(·) defined by

µ̃(θ) =

 µ̃ if θ ∈ (θ1, θ2)
µ(θ) otherwise

 .(26)

This policy µ̃(·) differs from the original policy µ(·) only on the interval (θ1, θ2), and
there the original policy µ(·) is replaced by the conditional mean µ̃ of the original

5Observe that this definition of increasing is stronger than the definition of a function being
weakly increasing on an interval because our definition rules out a function that is constant over the
interval. But our definition is weaker than the definition of a function being strictly increasing over
an interval because ours allows for subintervals over which µ(·) is constant.

We next show that w(·) must be continuous, and since it is a step function, it
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policy over the interval. Clearly, the expected inflation under µ̃(·) is the same as the
expected inflation under the original policy.

We let (x(a), µ(·; a), w(·;a)) and U(·;a) denote our variation and the associated
utility. The policy µ(·;a) in our variation is a convex combination of the policy µ̃(·)
and the original policy µ(·) and is defined by

µ(θ;a) = aµ̃(θ) + (1− a)µ(θ)(27)

for a ∈ [0, 1] . (For a graph of µ(·; a), see Figure 1.) Clearly, the expected inflation in
our variation x̃(a) equals that of the original allocation x for all a ∈ [0, 1] .

The delicate part of the variation is to construct the continuation value w(·;a) so
as to satisfy the feasibility constraint w(θ;a) ≤ w̄ for all θ, in addition to incentive-

compatibility. It turns out that we can ensure feasibility if we use one of two ways

to adjust continuation values. In the up variation, we leave the continuation val-

ues unchanged below θ1 and pass up any changes induced by our variation in the

policy to higher types by suitably adjusting the continuation values to maintain

incentive-compatibility. In the down variation, we leave the continuation values un-

changed above θ2 and pass down any changes induced by our variation in the policy

to lower types by suitably adjusting the continuation values to maintain incentive-

compatibility.

In the up variation, we determine the continuation values by substituting U(θ;a)

= R(x, µ(θ; a), θ) + w(θ; a) into (19) to get that w(θ;a) is defined by

w(θ; a) = U(θ) +
Z θ

θ
Rθ(x, µ(z; a), z) dz −R(x, µ(θ; a), θ).(28)

In the down variation, we use (20) in a similar way to get that w(θ;a) is defined by

w(θ; a) = U(θ̄)−
Z θ̄

θ
Rθ(x, µ(z; a), z) dz −R(x, µ(θ; a), θ).(29)

By construction, these variations are incentive-compatible. In the following lemma,

we show that, if either variation is feasible, it improves welfare.

Lemma 1. Assume (A1) and (A2), and let (x, µ(·), w(·)) be an allocation in
which µ(·) is increasing on some interval (θ1, θ2). Then the up variation and the down
variation both increase the objective function (22).
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Proof. To see that the up variation improves welfare, use (22) to write the

value of the objective function under this variation as

V (a) = U(θ) +
Z θ̄

θ

1− P (θ)

p(θ)
Rθ(x, aµ̃(θ) + (1− a)µ(θ), θ)p(θ) dθ.(30)

To evaluate the effect on welfare of a marginal change of this type, take the derivative

of Ṽ (a) and evaluate it at a = 0 to get

dV (0)

da
=

Z θ̄

θ

1− P (θ)

p(θ)
Rθµ(x, µ(θ), θ) [µ̃(θ)− µ(θ)] p(θ) dθ(31)

which, with the form of µ̃(·), reduces to

dV (0)

da
=
Z θ2

θ1

1− P (θ)

p(θ)
Rθµ(x, µ(θ), θ) [µ̃− µ(θ)] p(θ) dθ.(32)

If we divide (32) by the positive constant P (θ2)− P (θ1), then we can interpret (32)

to be the expectation of the product of two functions f(θ) ≡ {[1 − P (θ)]/p(θ)} ×
Rθµ(x, µ(θ), θ) and g(θ) ≡ µ̃− µ(θ), where the density is p(θ)/[P (θ2)− P (θ1)].The

function f is strictly decreasing by assumption (A2a). Because the function µ(θ)

is increasing on the interval (θ1, θ2), the function g is decreasing on this interval in

the sense that g(θ) is weakly decreasing and lies strictly below its conditional mean

for θ < θ̃ and strictly above its conditional mean for θ > θ̃. By the definition of

a covariance, we know that Efg = cov(f, g) + (Ef)(Eg), where the expectation

is taken with respect to the density p(θ)/[P (θ2) − P (θ1)]. By the construction of µ̃

in (25), we know that Eg = 0, so that Efg = cov(f, g), which is clearly positive

because f is strictly decreasing and g is decreasing on the interval (θ1, θ2). Thus,

(32) is strictly positive, and the variation improves welfare.

The down variation also improves welfare. The value of the objective function

under this variation is

V (a) = U(θ̄)−
Z θ̄

θ

P (θ)

p(θ)
Rθ(x, aµ̃(θ) + (1− a)µ(θ), θ)p(θ) dθ.

Hence,

dV (0)

da
=

Z θ2

θ1

P (θ)

p(θ)
Rθµ(x, µ(θ), θ) [µ(θ)− µ̃] p(θ) dθ > 0(33)

by arguments similar to those given before. Q.E.D.
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To gain some intuition for how these variations improve welfare, consider the up

variation and the expression for the change in welfare (32). We show how the total

effect on welfare resulting from this flattening of the inflation schedule can be thought

of as arising from two effects: a positive effect that comes from raising inflation for

low types and a negative effect that comes from lowering inflation for high types.

Our assumption (A2a) ensures that the positive effect outweighs the negative effect.

For any type, the flattening affects both the current payoff R and the continua-

tion value w. The impact of increasing a on the current payoff for type θ is

Rµ(x, µ(θ), θ) [µ̃(θ)− µ(θ)] .

In the up variation, the impact of increasing a on the continuation value for this type

is

dw̃(θ; 0)

da
=

Z θ

θ
Rθµ(x, µ(z), z) [µ̃(z)− µ(z)] dz−Rµ(x, µ(θ), θ) [µ̃(θ)− µ(θ)] .(34)

Hence, the impact on the utility of type θ is simply the sum of these pieces and is

given by

dŨ(θ; 0)

da
=
Z θ

θ
Rθµ(x, µ(z), z) [µ̃(z)− µ(z)] dz.(35)

Notice from (35) that any change in the policy for some particular type z affects the

utility of all types θ above z. Thus, each term

[1− P (z)]Rθµ(x, µ(z), z) [µ̃(z)− µ(z)](36)

in the integral (31) can be thought of as the sum of the change in utility for all

types z and above resulting from the change in the inflation schedule for the type z.

Under our single-crossing assumption, Rθµ(x, µ(θ), θ) > 0, so the impact of changing

the policy at θ depends on the sign of µ̃(θ) − µ(θ). Recall that outside the interval

(θ1, θ2), µ̃(θ) = µ(θ), so that the value of (36) is zero. Inside the interval (θ1, θ2),

µ̃(θ) = µ̃, where µ̃ is the conditional mean on this interval. By definition of the type

θ̃, on the interval (θ1, θ̃), µ̃ − µ(θ) > 0, and on the interval (θ̃, θ2), µ̃ − µ(θ) < 0.

Therefore, our variation has both a positive effect and a negative effect on welfare.

The positive effect of flattening the inflation schedule comes from increasing the

policy of those types θ below θ̃ and then passing this change up to higher types.
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The negative effect of the flattening comes from decreasing the policy for those types

θ above θ̃. Under assumption (A2a), the positive effect outweighs the negative effect.

In the down variation, the intuition for the derivative (33) is the same as that

for (32), except that, in this variation, a change in the inflation rate chosen by type

θ affects the continuation value of all types below θ.

The following lemma proves that if w(·) is not a step function, then µ(·) is
increasing on some interval, and there is a feasible variation that flattens µ(·) and
improves welfare.

Lemma 2. Under (A1) and (A2), in the optimal mechanism, the continuation

value function w(·) is a step function.

Proof. Since by assumption µ(·) is piecewise-differentiable, we know from (17)

that w(·) is too. By way of contradiction, assume that w(·) is not a step function.
Hence, there is an interval over which w0(θ) exists and does not equal zero. Clearly,

then, there is a subinterval (θ1, θ2) over which w0(θ) is either strictly positive or

strictly negative, and w(θ) ≤ w̄−ε for some ε > 0. From local incentive-compatibility,
we know that

Rµ(x, µ(θ), θ)
dµ(θ)

dθ
+

dw(θ)

dθ
= 0

so that regardless of the sign of w0(θ), we have that µ0(θ) > 0 on this interval. Hence,

µ(·) is increasing on (θ1, θ2) in the sense defined above. From Lemma 1, we know

that, if the up and down variations are feasible, then they both improve welfare.

To complete the proof, we need to show that either the up variation or the down

variation is always feasible. Under the up variation, (27) and (28) imply that w(θ;a)

equals w(θ) for θ ≤ θ1 and

w(θ) +∆(a)

for θ ≥ θ2, where

∆(a) ≡
Z θ2

θ1
[Rθ(x, µ(z;a), z)−Rθ(x, µ(z), z)] dz.(37)

See Figure 2 for a graph of w(θ;a) in the up variation. This graph illustrates

several features of w(θ; a): it coincides with w(θ) for θ ≤ θ1, it differs from w(θ)
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by the constant ∆(a) for θ ≥ θ2, and it jumps at both θ1 and θ2. This last feature

follows from (18) and the fact that µ(θ;a) jumps at these points. Notice in the graph

that w(θ) ≤ w̄− ε for θ ∈ (θ1, θ2).
Under the down variation, (27) and (29) imply that w(θ; a) equals

w(θ)−∆(a)(38)

for θ ≤ θ1 and w(θ) for θ ≥ θ2. See Figure 3 for a graph of w(θ; a) in the down

variation.

To ensure that the continuation value satisfies feasibility, we do the following.

We use the up variation when term ∆(a) ≤ 0 and the down variation when that term
is positive. By doing so, we ensure that outside the interval (θ1, θ2) the continuation

value under this variation is no larger than the original continuation value w(θ),

which, by assumption, is feasible. We know that inside the interval (θ1, θ2), w(θ) ≤
w̄ − ε. Since R is continuous in µ, we can choose a small enough to ensure that

w(θ;a) ≤ w̄. Q.E.D.

In the next lemma, we show that the optimal policy w(θ) is continuous. Since we

know from Lemma 2 that w(·) is a step function, we conclude that w(·) is a constant.
Optimality implies that this constant is w̄.

Lemma 3. Under (A1) and (A2), w(θ) is continuous for all θ.

Proof. In Appendix A, we prove that w(·) is continuous by contradiction. We
show that if w(·) jumps at some point θ̃, then the same up variation and down
variation we used in Lemma 1 will improve welfare. The only difficult part of the

proof is showing that when the appropriate interval (θ1, θ2) is selected that contains

the jump point θ̃, the associated continuation values are feasible. Here it may turn

out that the feasibility constraint binds inside the interval (θ1, θ2), in that the original

allocation has w(θ) = w̄ for some θ in (θ1, θ2). Thus, we cannot simply shrink the

size of the weight a in the variation to ensure feasibility on (θ1, θ2), as we did in the

proof of Lemma 2. Instead we show that the variation is feasible inside the interval

(θ1, θ2) by direct calculations that we relegate to Appendix A. Q.E.D.
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Together Lemmas 2 and 3 establish Proposition 1, that under our assumptions,

the optimal mechanism is static. Our characterization of optimal policy relied on

the monotone hazard assumption (A2). Under this assumption, we showed that the

dynamic mechanism design problem has a static solution. In Appendix B, we give

two simple examples in which the monotone hazard condition is violated at only one

point, yet the dynamic mechanism design problem does not have a static solution.

3. The Optimal Degree of Discretion

So far we have demonstrated that the optimal mechanism is static. Now we

characterize the optimal static mechanism. We show three results: The optimal

policy has either bounded discretion or no discretion. A policy with either bounded

discretion or no discretion can be implemented by society setting an upper limit, or

cap, on the inflation rate which the monetary authority is allowed to choose. And

the optimal degree of discretion is decreasing in the severity of the time inconsistency

problem.

A. Characterizing the Optimal Policy

In the optimal static mechanism, the monetary policy µ(·) maximizesZ
R(x, µ(θ), θ)p(θ) dθ(39)

subject to the constraints that x =
R
µ(θ)p(θ) dθ and R(x, µ(θ), θ) ≥ R(x, µ(θ̂), θ)

for all θ, θ̂.

We say that a monetary policy µ(·) has bounded discretion if it takes the form

µ(θ) =

 µ∗(θ;x) if θ ∈ [θ, θ∗)
µ∗ = µ∗(θ∗, x) if θ ∈ [θ∗, θ̄]

(40)

where µ∗(θ;x) is the static best response given wages x =
R
µ(θ)p(θ) dθ. Thus, for

θ < θ∗, the monetary authority chooses the static best response, and for θ ≥ θ∗, the

monetary authority chooses the upper limit µ∗. A policy has no discretion if µ(θ) = µ

for some constant µ, so that regardless of θ, the monetary authority chooses the
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policy.6

We show that the optimal policy has either bounded discretion or no discretion.

Here, as before, we can replace the global incentive constraint in (39) with the local

incentive constraints, with the restriction that w(θ) = w̄. In particular, (18) implies

that µ(·) is continuous, while (17), namely, Rµdµ/dθ = 0, implies that for all θ, µ(θ)

is either flat or equal to the static best response. Clearly, if µ(·) is flat everywhere, it
is a constant; hence, it equals the expected Ramsey policy, which by definition is the

best constant policy. If µ(·) is not flat everywhere, then it must be of the following
form for some θ1 and θ2:

µ(θ) =


µ1 = µ∗(θ1;x) if θ ∈ [θ ,θ1)

µ∗(θ;x) if θ ∈ [θ1, θ2]
µ2 = µ∗(θ2;x) if θ ∈ (θ2, θ̄]

(41)

where x =
R
µ(θ)p(θ) dθ. In words, the policy must be constant up to some point

θ1 ≥ θ and equal to the static best response of type θ1; it must be equal to the static

best response of each type θ ∈ [θ1, θ2] with θ2 ≤ θ̄; and then it must be constant and

equal to the static best response of type θ2.

In the following proposition, we show that if the optimal policy is not the ex-

pected Ramsey policy, then it must be of the form (41) with θ1 equal to θ, so that

the policy’s form reduces to the bounded discretion form in (40).

Proposition 2. Under assumptions (A1) and (A2), the optimal policy µ(·) has
either bounded discretion or no discretion.

Proof. We have argued that if the optimal policy is constant, then it must

be an expected Ramsey policy, which has no discretion. If the optimal policy is

not constant, then it must be of the form (41). But µ(θ) having the form (41) with

θ1 > θ cannot be optimal. To see this, observe that an alternative policy µ̃(θ) of

the same form would exist with θ̃1 < θ1 and θ̃2 = θ2. We illustrate this alternative

6Note that the best policy with no discretion, the Ramsey policy, will not typically be a special
case of a policy with bounded discretion. Specifically, when θ∗ = θ, the form (40) yields one
particular policy with no discretion, namely, µ(θ) = µ∗(θ;x) for all θ. But this policy does not
typically coincide with the expected Ramsey policy µER since the best response of the lowest type
is not typically the expected Ramsey policy.

same growth rate. Clearly, the best policy with no discretion is the expected Ramsey
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policy in Figure 4. This alternative policy µ̃(θ) would be closer to µ∗(θ, x) wherever

it differs from µ(θ) and would satisfy
R
µ̃(θ)p(θ) dθ <

R
µ(θ)p(θ) dθ = x. Hence, this

alternative policy µ̃(θ) would be strictly preferred to µ(θ); the change from µ(θ) to

µ̃(θ) directly improves welfare for all types θ < θ1, with x held fixed. The change

also reduces x, which by (4) contributes to improving total welfare. More formally,

observe that the marginal impact on welfare of a marginal reduction in θ1 is given

by

dṼ =

Z θ1

θ

½
Rµ(x, µ

∗(θ1;x), θ)
∂µ∗(θ1;x)

∂θ
∆θ1

¾
p(θ) dθ

+
Z θ̄

θ

©
Rx(x, µ(θ), θ)∆x

ª
p(θ) dθ > 0

where the inequality follows from the facts that Rµ(x, µ∗(θ1;x), θ) < 0, ∂µ∗(θ1;x)/∂θ

> 0, ∆θ1 < 0, ∆x < 0, and (4). Q.E.D.

B. Implementing Optimal Policy with an Inflation Cap
or a Range of Inflation Rates

We have characterized the solution to a dynamic mechanism design problem. We

now imagine implementing the resulting outcome with an inflation cap, a highest level

of allowable inflation π̄.We imagine that society legislates this highest allowable level

and that doing so restricts the monetary authority’s choices to be µt ≤ π̄. If this cap

is appropriately set and agents simply play the repeated one-shot equilibrium of the

resulting game with this inflation cap, then the monetary authority will optimally

choose the outcome of the mechanism design problem. In this sense, the repeated

one-shot game with an inflation cap implements the policy that solves the best payoff

problem.

The intuition for this result–that a policy with either bounded discretion or

no discretion can be implemented by setting an upper limit on permissible inflation

rates–is simple. In our environment, the only potentially beneficial deviations from

either type of policy are ones that raise inflation. Under bounded discretion, the

types in [θ, θ∗) are choosing their static best response to wages and, hence, have

no incentive to deviate, whereas the types in (θ∗, θ̄] have an incentive to deviate to

a higher rate than π̄. Similarly, from Proposition 3 (stated and proved below), we
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know that if the expected Ramsey policy is optimal, then at this policy all types

have an incentive to deviate to higher rates of inflation. Hence, an inflation cap of

π̄ = µER implements such a policy. (For completeness, we formalize this argument

in Appendix C.)

Clearly, we can also implement the optimal policy with a range of inflation rates

denoted [π, π̄]. The top end of such a range is the inflation cap, π̄, discussed above.

The bottom end of the range, π, is simply the optimal policy chosen by the lowest

type θ in the optimal static mechanism. Under a policy of bounded discretion, π < π̄,

while under a policy of no discretion, π = π̄.

C. Linking Discretion and Time Inconsistency

So far we have shown that the optimal policy has either bounded discretion or no

discretion. Here we link the optimal degree of discretion to the severity of the time

inconsistency problem. We show that the more severe that problem is, the smaller

is the optimal degree of discretion.

The literature using general equilibrium models to study optimal monetary poli-

cies suggests a qualitative way to measure the severity of the time inconsistency

problem. In this literature, either the time inconsistency problem is so severe that

the static best response of the monetary authority is at the highest feasible inflation

rate µ̄ or the problem is less severe, so that the static best response is typically some

interior inflation rate. Examples of the models with the more severe problems in-

clude those of Ireland (1997); Chari, Christiano, and Eichenbaum (1998); and Sleet

(2001). In these models, while expected inflation has a cost, surprise inflation does

not; thus, the monetary authority is always tempted to generate a monetary surprise.

Examples of the models with the less severe problems include those of Chang (1998),

Nicolini (1998), and Albanesi, Chari, and Christiano (2003). In these models, sur-

prise inflation does have a cost, which leads the static best response of the monetary

authority to be interior.

In our reduced-form model, we can mimic the general equilibrium models with

the more severe problems by choosing a payoff function R for which the resulting

static best response is always the highest feasible inflation rate µ̄.We show that then
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the optimal policy has no discretion. We can mimic the general equilibrium models

with the less severe problems by choosing a payoff function for which the static best

response is typically interior. The optimal policy then depends on parameters. Here

we show one qualitative result and fully analyze the policy for our benchmark exam-

ple. Our qualitative result is that if the lowest type θ wants to lower inflation when x

equals the expected Ramsey inflation rate, then bounded discretion is optimal. At an

intuitive level, our condition on the lowest type captures the idea that the incentives

to generate surprise inflation are mild.

More formally, we have the following:

Proposition 3. Assume (A1) and (A2). If the static best response has

µ∗(θ, x) = µ̄ for all θ and x, then the optimal policy has no discretion. If the static

best response has µ∗(θ, µER) lower than the expected Ramsey policy µER, then the

optimal policy has bounded discretion.

Proof. Under (A1) and (A2), the optimal mechanism is static, and thus, from

local incentive-compatibility, for every θ, µ(θ) is either flat or equal to the static

best response. Under the assumption that µ∗(θ, x) = µ̄, the static best response is

itself flat. Thus, µ(θ) is flat everywhere and by optimality must equal the expected

Ramsey policy.

Assume next that µ∗(θ, µER) < µER, but that the optimal policy has no dis-

cretion. The variation used in Proposition 2 immediately implies that such a policy

cannot be optimal. Thus, the optimal policy must have bounded discretion. Q.E.D.

We now turn back to the benchmark example (1). Here we think of the nonneg-

ative parameter U as indexing the severity of the time inconsistency problem. When

U equals zero, there is no such problem, and as U increases from zero, the problem

gets worse. To see why, note that with this objective function, the static best re-

sponse is µ∗(θ;x) = (U + x+ θ)/2. Notice that for any given x and θ, increasing U

shifts out the static best response of that type θ. This measure of the severity of the

time inconsistency problem is also reflected in the difference between the expected

inflation rate in the static Nash equilibrium and that in the Ramsey equilibrium. To
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see this, note that the static Nash equilibrium inflation rate can be found by solving

for the fixed point in x from

x =

Z
µ∗(θ;x)p(θ) dθ =

U + x

2
+
1

2

Z
θp(θ) dθ.(42)

Since
R
θp(θ) dθ = 0, we have that the Nash inflation rate is xN = U , and the Nash

policies are µ∗(θ;U) = U + (θ/2). The Ramsey inflation rate is xR = 0, and the

Ramsey policies are µR(θ) = θ/2. Thus, for each type θ, the Nash policies are simply

the Ramsey policies shifted up by U. As U gets smaller, the Nash policies converge

to the Ramsey policies. When U is zero, the Nash and Ramsey policies coincide.

When the objective function satisfies (1), the condition µ∗(θ;µER) < µER in

Proposition 3 reduces to U < −θ, where θ is a negative number. Proposition 3 thus
implies that bounded discretion is optimal when the time inconsistency problem is

sufficiently small, in that the static best response for the low types is below the

expected Ramsey allocation. To get a more precise link between the severity of the

time inconsistency problem and the optimal degree of discretion, we characterize the

optimal mechanism more fully in this parametric case.

For policies of the bounded discretion form (40), we think of θ∗ as indexing the

degree of discretion. If θ∗ = θ̄, then all types θ are on their static best responses,

and, hence, we say there is complete discretion. As θ∗ decreases, fewer types are on

their static best responses, and, hence, we say there is less discretion. The following

proposition thus links the severity of the time inconsistency problem, indexed by U ,

and the degree of discretion, indexed by θ∗:

Proposition 4. Assume (1), (A1), and (A2a). If U = 0, then the optimal policy

has complete discretion. If U ∈ (0,−θ) , then that policy has bounded discretion with
θ∗ < θ̄. The optimal degree of discretion θ∗ is decreasing in U. As U approaches −θ,
the cutoff θ∗ approaches θ . If U ≥ −θ, then the optimal policy is the expected
Ramsey policy with no discretion.

We prove this proposition by direct calculations that we provide in Appendix

D. Figure 5 illustrates the proposition for two economies with different degrees of

severity of time inconsistency problems, UH > UL. In these two economies, we denote
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the optimal policies by µH(·) indexed by θ∗H and µL(·) indexed by θ∗L, along with the
inflation caps π̄H and π̄L.

4. Comparison to the Literature

Our result on the optimality of a static mechanism is quite different from what

is typically found in dynamic contracting problems, namely, that static mechanisms

are not optimal. Using a recursive approach, we have shown how our dynamic mech-

anism design problem reduces to a simple quasi-linear mechanism design problem.

Our results are thus also directly comparable to the large literature on mechanism

design with broad applications, including those in industrial organization, public fi-

nance, and auctions. (See Fudenberg and Tirole’s 1991 book for an introduction to

mechanism design and its applications.) In this comparison, the continuation values

in our framework correspond to the contractual compensation to the agent in the

mechanism design literature. Our result that the optimal mechanism is static, so

that the continuation values do not vary with type, stands in contrast to the stan-

dard result in the mechanism design literature that under the optimal contract, the

compensation to the agent varies with the agent’s type. In this sense, our result is

also quite different from what is found in the mechanism design literature as well.

One reason for the difference between our results and those in these literatures

is that in our model, the monetary authority maximizes the welfare of society, so

that there is no inherent conflict between the monetary authority and society except

for the time inconsistency problem. In contrast, in both the dynamic contracting

literature and the mechanism design literature, there is an inherent conflict between

the agents in the economy. For example, in a principal-agent model, higher payments

to the agents leave less money for the principal. Likewise, in a dynamic social

insurance problem, a higher continuation value for one type of agent implies, through

the resource constraint, a lower continuation value for some other agent. In either

of these literatures, incentives can be provided by redistributing resources among

agents. In our model, in order to provide dynamic incentives, the continuation payoffs

for all agents in the model must be lowered.
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essary for our result, but not sufficient, for at least two reasons. First, even in our

model, we have given examples in which the optimal mechanism is dynamic when

our monotone hazard condition is violated. Second, the information structure seems

important. In our model, private agents receive direct information about the state.

If private agents receive a noisy signal about the state before the monetary authority

takes its action, then our results go through pretty much unchanged; the noisy sig-

nal is just a publicly observed variable upon which the inflation cap is conditioned.

If, however, private agents receive a noisy signal about the information the mone-

tary authority received after the monetary authority takes its action, then dynamic

mechanisms in which continuation values vary with this signal may be optimal.

Sleet (2001) considers such an information structure and shows that the opti-

mality of the dynamic mechanism depends on the parameters governing the noise.

He finds that when the public signal about the monetary authority’s information is

sufficiently noisy, it is not optimal to have the monetary authority’s action depend

on its private information; hence, the optimal mechanism is static. In contrast, when

this public signal is sufficiently precise, the optimal mechanism is dynamic. The logic

of why a dynamic mechanism is optimal is roughly similar to that in the literature in

industrial organization following Green and Porter (1984) on optimal collusive agree-

ments that are supported by periodic reversion to price wars, even though these price

wars lower all firms’ profits.

Our work here is also related to some of the repeated game literature in industrial

organization about supporting collusion in oligopolies. Athey and Bagwell (2001) and

Athey, Bagwell, and Sanchirico (forthcoming) solve for the best trigger strategy-type

equilibria in games with hidden information about cost types. Athey and Bagwell

(2001) show that, in general, the best equilibrium is dynamic (nonstationary). In this

equilibrium, observable deviations by some firm from a prescribed path lead to that

firm getting a lower discounted value of profits from then on. Athey, Bagwell, and

Sanchirico (forthcoming) show that when strategies are restricted to treat deviators

symmetrically with nondeviators, a different result emerges. In particular, under

some conditions, the best equilibrium is stationary and entails pooling of all cost

This distinction about the nature of the conflict in the model seems to be nec-
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types. When those conditions fail, and when firms are sufficiently patient, there

may be a set of stationary and nonstationary equilibria that yield the same payoffs.

(The latter result relies heavily on the Revenue Equivalence Theorem from auction

theory.)

5. Conclusion

What is the optimal degree of discretion in monetary policy? For economies with

severe time inconsistency problems, it is zero. For economies with less severe time

inconsistency problems, it is not zero, but bounded. More generally, the optimal

degree of discretion is decreasing in the severity of the time inconsistency problem.

And whatever the severity of that problem, the optimal policy can be implemented

by enforcing a simple inflation cap.

In our simple model, the optimal inflation cap is a single number because there

is no publicly observed state. If the model were extended to have a publicly observed

state, then the optimal policy would respond to this state, but not to the private

information. To implement optimal policy, society would need to specify a rule

for setting the inflation cap, where the cap would vary with public information.

Equivalently, society could specify a rule for setting ranges for acceptable inflation,

where these ranges would vary with public information. We interpret these rules as

a type of inflation targeting that is broadly similar to the types actually practiced

by a fair number of countries. (For a discussion of inflation targeting in practice, see

Bernanke and Mishkin (1997).)

Here the rationale for discretion depends in a critical way on the monetary

authority having some private information that the other agents in the economy do

not have. One interpretation of this private information is that it is information

which takes resources to acquire, so that while agents in the economy feasibly can

acquire this information, the costs involved in doing so outweigh the benefits. Of

course, if the amount of such private information is thought to be very small in

actual economies, then our work argues that in such economies the logical case for

a sizable amount of discretion is weak, and the monetary authority should follow a

rather tightly specified rule.
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To keep our theoretical model simple, we have abstracted from exotic events

which are both unforeseen and unquantifiable. Anyone interpreting the implications

of our results for an actual society, therefore, should keep in mind that to handle

such exotic events, the optimal policy rule would need to be adapted to deal with

such events, perhaps by the addition of escape clauses.
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Appendix A: Proof of Lemma 3

Proof. By way of contradiction, suppose that w(·) jumps at some point θ̃. Since
w(·) is a step function, w0(θ) = 0 in some interval (θ1, θ2) containing θ̃. Clearly, this
implies that either w(θ) < w̄ for all θ in (θ1, θ̃) or w(θ) < w̄ for all θ in (θ̃, θ2).

We know from (17) that at any point θ in the intervals (θ1, θ̃) and (θ̃, θ2), either

µ0(θ) = 0, so that µ(·) is flat, or Rµ(x, µ(θ), θ) = 0, so that µ(θ) equals the static

best response. By continuity of the static best response, we can choose the points θ1

and θ2 to be close enough to θ̃ so that µ(·) either is constant on the interval (θ1, θ̃) or
equals the static best response on this interval, and similarly for the interval (θ̃, θ2).

Consider first the hard case, namely, when µ(·) is constant on both (θ1, θ̃) and
(θ̃, θ2). Let (µ1, w1) denote the allocation on (θ1, θ̃) and (µ2, w2) denote the allocation

on (θ̃, θ2). By the continuity of Rµ, we can choose this interval (θ1, θ2) small enough

so that if Rµ(x, µ1, θ̃) is strictly positive, then so is Rµ(x, µ1, θ1), and if Rµ(x, µ2, θ̃)

is strictly negative, then so is Rµ(x, µ2, θ2).

Suppose that for the chosen interval (θ1, θ2), the term ∆(a), defined in (37), is

negative for small a. If the up variation is feasible, then we know it improves welfare,

based on the same logic as in the proof of Lemma 2. By construction, the up variation

is incentive-compatible. This variation is feasible outside the interval (θ1, θ2), based

on the logic of the proof of Lemma 2. We complete the proof for this case by showing

that the variation is also feasible inside the interval (θ1, θ2).

Suppose, initially, that R(x, µ1, θ̃) > R(x, µ2, θ̃). From (18) we have that w1 <

w2, and from the feasibility of the original allocation that w2 ≤ w̄. This case is

illustrated in Figure 6a. For θ ∈ (θ1, θ̃), we thus know that w(θ;a) ≤ w̄ for sufficiently

small a.

For θ ∈ (θ̃, θ2), if w2 < w̄, then since a is sufficiently small, w(θ; a) ≤ w̄. If

w2 = w̄, we show that ∂w̃(θ; 0)/∂a is negative for θ ∈ (θ̃, θ2) as follows. Differentiate
(28) to obtain that ∂w̃(θ; 0)/∂a equals

(µ̃−µ1)
Z θ̃

θ1
Rθµ(x, µ1, z) dz+(µ̃−µ2)

Z θ2

θ̃
Rθµ(x, µ2, z) dz−Rµ(x, µ2θ)(µ̃−µ2).(43)

Using
R θ2
θ̃

Rθµ(x, µ2, z) dz = Rµ(x, µ2, θ2)−Rµ(x, µ2, θ̃) and an analogous expression

for
R θ̃
θ1
Rθµ(x, µ1, z) dz, we can write (43) as

[Rµ(x, µ1, θ̃)−Rµ(x, µ1, θ1)](µ̃− µ2)−Rµ(x, µ2, θ̃)(µ̃− µ2).(44)

We will show that (44) is negative. To do so, we begin by noting that ∆0(0) < 0.

This is true because ∆(0) = 0, and we have assumed that ∆(a) is negative for small

a. Using the form of µ(θ) on the interval (θ1, θ2), we have that

∆0(0) = (µ̃− µ1)
Z θ̃

θ1
Rθµ(x, µ1, θ) dθ + (µ̃− µ2)

Z θ2

θ̃
Rθµ(x, µ2, θ) dθ < 0.
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Substituting for the integrals, we can write this inequality as

[Rµ(x, µ1, θ̃)−Rµ(x, µ1, θ1)](µ̃−µ1)+[Rµ(x, µ2, θ2)−Rµ(x, µ2, θ̃)](µ̃−µ2) < 0.(45)

Comparing the inequality in (45) with the expression in (44), we can see that a

sufficient condition for (44) to be negative is that

Rµ(x, µ2, θ2)(µ̃− µ2) > 0.(46)

We now show that (46) holds. Note that since µ(·) is increasing on the interval
(θ1, θ2), it follows by definition that µ̃ < µ2, since, by construction, µ̃ is the condi-

tional mean of µ(θ) on this interval. Thus, (46) is positive if Rµ(x, µ2, θ2) is negative.

To see that Rµ(x, µ2, θ2) is negative, note that since w1 ≤ w̄ and w2 = w̄, the incen-

tive constraintR(x, µ1, θ̃)+w1 = R(x, µ2, θ̃)+w̄ implies thatR(x, µ1, θ̃) ≥ R(x, µ2, θ̃).

Since µ2 > µ1 and R is strictly concave, we know that Rµ(x, µ2, θ̃) < 0. By our con-

struction of the interval, since Rµ(x, µ2, θ̃) is strictly negative, so is Rµ(x, µ2, θ2).

Thus, for this case, the up variation is feasible, incentive-compatible, and welfare-

improving. An analogous argument holds when R(x, µ1, θ̃) < R(x, µ2, θ̃) and w̄ ≥
w1 > w2, as in Figure 6b.

So far we have considered the case when µ(·) is constant on both sides of θ̃ and
the term ∆(a) is negative for small a. In the case when µ(·) is constant on both sides
of θ̃ but the term ∆(a) is positive for small a, we use the down variation and an

analogous argument.

The case when µ(·) is constant on one side of θ̃ and equal to the static best
response on the other side of θ̃ is the easy case. Suppose, for example, that µ(·)
equals the static best response for θ on some interval (θ1, θ̃). Here we simply take

the relevant interval to be (θ1, θ̃), from some point θ1 just below the jump point θ̃

up to the jump point θ̃. Clearly, µ(·) is increasing on the interval (θ1, θ̃). We claim
that w(·) is uniformly bounded below w̄, and so Lemma 2 immediately applies.

We prove that w(·) is uniformly bounded below w̄ on (θ1, θ̃) as follows. Since µ(·)
jumps up at θ̃, it lies strictly above the static best response for some interval (θ̃, θ2),

so that limθ%θ̃ R(x, µ(θ), θ̃) > limθ&θ̃R(x, µ(θ), θ̃). Hence, from condition (18) in

local incentive-compatibility, we know that limθ%θ̃ w(θ) < limθ&θ̃ w(θ). Thus, for

θ ∈ (θ1, θ̃), w(θ) is uniformly bounded below w̄.

With an analogous argument, we can rule out the case in which µ(θ) equals the

static best response for θ on the other side of the jump point, on some interval (θ̃, θ2).

Q.E.D.
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Appendix B: Optimal Policy without Monotone Hazards

Here we give two examples in which our monotone hazard condition is violated

and in which the optimal mechanism is dynamic. In both examples, we assume that

the hazard [1−P (θ)]/p(θ) is decreasing in θ at all points except the point θ1, where

the hazard jumps up. We also assume that P (θ)/p(θ) is increasing throughout.

At the point θ1, we assume thatZ θ1

θ

1− P (θ)

P (θ1)
dθ <

Z θ̄

θ1

1− P (θ)

1− P (θ1)
dθ.(47)

To interpret this inequality, note that the left side is the conditional mean of the

function [1−P (θ)]/p(θ) over the interval [θ, θ1] while the right side is the conditional
mean of this function over the interval (θ1, θ̄]. Clearly, for any distribution for which

[1− P (θ)]/p(θ) is decreasing throughout [θ, θ̄], this inequality is reversed.

It is easy to show that a two-piece uniform distribution with p(θ) = ρ1 if θ ≤ θ1

and p(θ) = ρ2 if θ > θ1 will satisfy (47) if ρ2 is chosen to be sufficiently small relative

to ρ1. In this case, illustrated in Figure 7, the function [1 − P (θ)]/p(θ) will jump

up sufficiently at θ1 so that the conditional mean of this function over the higher

interval [θ1, θ̄] is larger than the conditional mean over the lower interval [θ, θ1).

In the first example, the linear example, we make the calculations trivial by

assuming that R(x, µ, θ) = (θ − θ)µ + r(x) with r(x) = −x2/2. In the second

example, which is the benchmark example of (1), we assume that

R(x, µ, θ) = −1
2

h
(U + x− µ)2 + (µ− θ)2

i
.(48)

Both of these examples satisfy the single-crossing property (A1). In both of

them, Rθµ = 1, so that the conditions (A2) reduce to the standard monotone haz-

ard conditions. Note that for either example, any distribution that satisfies (47) is

inconsistent with the monotone hazard condition (A2a).

The Linear Example

Notice that any solution to the mechanism design problem must have the two-

piece form

(µ(θ), w(θ)) =

 (µ1, w1) for θ ∈ [θ, θ1)
(µ2, w2) for θ ∈ [θ1, θ̄]

 .(49)

This follows because the arguments used in Lemmas 1 and 2 can be applied separately

to the intervals [θ, θ1) and (θ1, θ̄] and because for any θ > θ, the static best response

to any x in the interval [µ, µ̄] is a constant, namely, the upper limit µ̄. Since this

policy must satisfy the incentive constraint (θ1 − θ)µ1 + w1 = (θ1 − θ)µ2 + w2, the

monotonicity condition µ1 ≤ µ2 implies that w1 ≥ w2. Thus, we know that w1 = w̄
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and that the constraint w2 ≤ w̄ will be automatically satisfied by any monotonic

policy.

The mechanism design problem then reduces to the linear problem of choosing

µ1, µ2, and x to maximize

r(x) + w̄+ µ1

Z θ1

θ

1− P (θ)

p(θ)
p(θ) dθ + µ2

Z θ̄

θ2

1− P (θ)

p(θ)
p(θ) dθ

subject to the constraints that µ ≤ µ1 ≤ µ2 ≤ µ̄ and that x = P (θ1)µ1+[1−P (θ1)]µ2.
If (47) holds and if the lower and upper limits µ, µ̄ include the expected Ramsey

policy, then the optimal policy will have either µ = µ1 < µ2 or µ1 < µ2 = µ̄. To see

this, consider spreading out the policy by decreasing µ1 by ∆1 and increasing µ2 by

∆2 so that the change in expected inflation [1 − P (θ1)]∆2 − P (θ1)∆1 is zero. The

associated welfare change can be written as"
−
Z θ1

θ

1− P (θ)

P (θ1)
dθ +

Z θ̄

θ2

1− P (θ)

1− P (θ1)
dθ

#
P (θ1)∆1 > 0(50)

where the inequality follows from (47). Hence, the solution must have µ1 < µ2, and

from the incentive constraint, we then know that w2 < w1 = w̄. Thus, the solution

to the mechanism design problem is necessarily dynamic.

The Benchmark Example

Assume that the policy µ(·), which solves the static mechanism design problem,
has bounded discretion and that θ1 > θ∗, so that the jump point in the hazard

occurs on the flat portion of that policy. (We can construct a numerical example

in which this assumption holds.) We will show that there is a dynamic mechanism

that improves on the optimal static mechanism. The basic idea is to use a variation

that spreads out the policy as a function of type instead of flattens it as we did in

Lemmas 1 and 2.

This variation is similar to the one in the linear example. Consider an alternative

policy that lowers inflation for types at or below θ1, raises it for types above θ1, and

keeps expected inflation constant:

µ̃(θ) =

 µ(θ)−∆0 if θ ≤ θ1

µ(θ) +∆1 if θ > θ1


with ∆0,∆1 > 0 and [1 − P (θ1)]∆1 − P (θ1)∆0 = 0, so that expected inflation is

constant. Note that this alternative policy µ̃(·) is monotonically increasing since µ(·)
must be monotonically increasing. Our variation is a marginal shift from µ(·) toward
µ̃(·) defined as µ(θ;a) = aµ̃(θ) + (1− a)µ(θ) for each θ. Welfare is given by

V (a) = R(x, µ(θ;a), θ)+ w̄ +
Z θ̄

θ

1− P (θ)

p(θ)
Rθ(x, µ(θ; a), θ)p(θ) dθ.
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The impact of this variation on welfare is given by

∂V (0)

∂a
= −∆0Rµ(x, µ(θ), θ)−∆0

Z θ1

θ

1− P (z)

p(z)
Rθµ(x, µ(z), z)p(z) dz(51)

+ ∆1

Z θ̄

θ1

1− P (z)

p(z)
Rθµ(x, µ(z), z)p(z) dz.

Since µ(θ) has bounded discretion, Rµ(x, µ(θ), θ) = 0. In our quadratic example,

Rθµ(x, µ(z), z) = 1; hence, (51) reduces to (50), which we know from (47) is positive.

It is straightforward, but somewhat tedious, to show that the associated contin-

uation values w(θ; a) defined by

R(x, µ(θ;a), θ)+ w̄ +
Z θ

θ
Rθ(x, µ(z;a)) dz −R(x, µ(θ;a), θ)

have ∂w (θ; 0) /∂a ≤ 0 for all θ and ∂w (θ; 0) /∂a < 0 for θ > θ1. To do so, we use

the facts that Rµ(x, µ(θ), θ) = 0 and that θ1 > θ∗, so that µ(θ) = µ(θ1) for θ ≥ θ1.

These results imply that this variation both improves welfare and is feasible. Thus,

the optimal mechanism must be dynamic.

Note that if µ(·) has no discretion, then we need a different condition on the
distribution to show that the static mechanism is not optimal. This is because when

µ(·) has no discretion, we can have Rµ(x, µ(θ), θ) > 0, and the above argument that

∂w (θ; 0) /∂a ≤ 0 for all θ does not go through. When µ(·) has no discretion, the
analog of the condition (47) is that at x = µ = µER, there exists a θ1 such that

Rµ(µ
ER, µER, θ) +

Z θ1

θ

1− P (z)

P (θ1)
dz <

Z θ̄

θ1

1− P (z)

1− P (θ1)
dz.

With this condition, the optimal mechanism is dynamic rather than static. Note

that, in our linear example, this distinction did not come up because in the linear

example, our utility function is such that Rµ(x, µ(θ), θ) = 0 with no discretion.
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Appendix C: Implementation with an Inflation Cap

Here we prove that the equilibrium outcome in an economy with an inflation

cap is the optimal outcome of the mechanism design problem. We show this result

formally using the following one-shot game in which we drop time subscripts.

With an inflation cap of π̄ in the current period, the problem of the monetary

authority at a given θ is as follows: Given aggregate wages x, choose money growth

µ(θ) for this state θ to maximize R(x, µ, θ) subject to µ(θ) ≤ π̄. The private agents’

decisions on wages are summarized by x =
R
µ(θ)p(θ).

An equilibrium of this one-shot game consists of aggregate wages x and a money

growth policy µ(·) such that (i) with x given, µ(·) satisfies µ(θ) ≤ π̄, and (ii)

x =
R
µ(θ)p(θ).We denote the optimal choice of the monetary authority as µ∗(·;x, π̄).

This notation reflects the fact that the monetary authority is choosing a static best

response to x given that its choice set is restricted by π̄, which we call the inflation

cap.

To implement the best equilibrium in the dynamic game, we choose π̄ as follows.

Whenever the expected Ramsey policy is optimal, we choose the inflation cap to be

π̄ = µER.(52)

Whenever bounded discretion is optimal, we choose the cap π̄ to be the money growth

rate chosen by the cutoff type θ∗:

π̄ = µ∗(θ∗, x∗)(53)

where x∗ is the equilibrium inflation rate with this level of bounded discretion.

Proposition 5. Assume (A1), (A2), and that the inflation cap π̄ is set according

to (52) and (53). Then the equilibrium outcome of the one-shot game with the

inflation cap for each period coincides with the optimal equilibrium outcome of the

dynamic game.

Proof. To establish this result, we first show that the monetary authority will

choose the upper bound π̄ = µER when the expected Ramsey policy is optimal in the

dynamic game. Note that Proposition 3 implies that whenever the expected Ramsey

policy is optimal, µER ≤ µ∗(θ;µER). Also, recall that the single-crossing assumption

(A1) implies that the best response is strictly increasing in θ, so that (16) holds.

Thus, µ∗(θ;µER) ≤ µ∗(θ;µER) for all θ. Hence, at the expected Ramsey policies and

the associated inflation rate, all types want to deviate by increasing their inflation

above µER; hence, the constraint π̄ = µER binds, and all types choose the expected

Ramsey levels.
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We next show that if bounded discretion is optimal in the dynamic game, then

in the associated static game with the inflation cap, all types choose the bounded

discretion policies. For all types θ ≤ θ∗, the policies under bounded discretion are

simply the static best responses, and these clearly coincide with those in the static

game. For all types θ above θ∗, the policies under bounded discretion are the static

best responses of the θ∗ type, namely, µ∗(θ;x∗), where x∗ is the equilibrium expected

inflation rate under bounded discretion. Under assumption (A1), the static best

responses are increasing in the type, so that the best response of any type θ ≥ θ∗

is above µ∗(θ;x∗). Thus, in the one-shot game with the inflation cap, the constraint

(53) binds for such types. Thus, the equilibrium outcomes of the two games coincide.

Q.E.D.
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Appendix D: Proof of Proposition 4

We prove Proposition 4 by computing the optimal cutoff θ∗ under bounded

discretion as a function of the parameter U in the function (1). Under the bounded

discretion policy µ(θ) = µ∗(θ;x) for θ ≤ θ∗ and µ∗(θ∗;x) for θ > θ∗, welfare and

expected inflation equal

R(x, µ∗(θ;x), θ)+
Z θ∗

θ
Rθ(x, µ

∗(θ;x), θ)[1− P (θ)] dθ

+
Z θ̄

θ∗
Rθ(x, µ

∗(θ∗;x), θ)[1− P (θ)] dθ

x =

Z θ∗

θ
µ∗(θ, x)p(θ) dθ +

Z θ̄

θ∗
µ∗(θ∗;x)p(θ) dθ.(54)

Plugging in the form of the bounded discretion policy and simplifying gives us

x = U −
Z θ̄

θ∗
(θ − θ∗)p(θ) dθ.(55)

The first-order conditions for the problem of maximizing welfare with respect to θ∗

subject to (54) can be reduced to

−[1− P (θ∗)] (U + x) +
Z θ̄

θ∗
[1− P (θ)] dθ = 0.(56)

(We derive this first-order condition at the end of this appendix.) We can then use

(55) to rewrite the first-order condition (56) as

[1− P (θ∗)]
"
−2U +

Z θ̄

θ∗
(θ − θ∗)p(θ) dθ

#
+
Z θ̄

θ∗
[1− P (θ)] dθ = 0.(57)

For values of θ∗ < θ̄, 1− P (θ∗) > 0, so (57) is equivalent to

−2U +
Z θ̄

θ∗
(θ − θ∗)p(θ) dθ +

Z θ̄

θ∗

1− P (θ)

p(θ)

p(θ)

1− P (θ∗)
dθ = 0.(58)

There is at most one interior solution to (58) in θ∗. To see this, observe that

the second term of (58),
R θ̄
θ∗(θ − θ∗)p(θ) dθ, is strictly decreasing in θ∗. In addition,

the third term of this expression is the conditional mean of [1− P (θ)]/p(θ) over the

interval
£
θ∗, θ̄

¤
. Under (A2a), [1−P (θ)]/p(θ) is strictly decreasing, so its conditional

mean must also be strictly decreasing in θ∗. Hence, the expression in (58) is strictly

decreasing in θ∗.

These observations prove that (58), and hence (56), has at most one interior

solution. Moreover, the derivative of our objective with respect to θ∗ is positive for

θ∗ less than the solution to (58) and negative for θ∗ greater than this solution, so this

interior solution also satisfies the second-order conditions to be a local maximum.

Also note that this solution to (58), if it exists, is decreasing in U. This follows

immediately from the fact that the expression in (58) is declining in both U and θ∗.
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To show that an interior solution to (57) exists given U , we must show that this

expression is negative for θ∗ close to θ̄ and positive for θ∗ = θ. Note that as θ∗ → θ̄,

the term
R θ̄
θ∗(θ− θ∗)p(θ) dθ → 0 and, since we have assumed that p(θ) > 0 on

£
θ, θ̄

¤
,

[1− P (θ)]/p(θ)→ 0. Therefore,Z θ̄

θ∗

1− P (θ)

p(θ)

p(θ)

1− P (θ∗)
dθ→ 0.

These facts imply that for U > 0 and θ∗ close enough to θ̄, the expression in (58) is

strictly less than zero, and hence, the expression in (57) is too. In the limit, at θ∗ = θ̄,

the expression in (58) is no longer defined, but we do have that θ∗ = θ̄ is a solution to

(57). This solution to (57) does not characterize a local maximum, however, because

the expression in (57) is strictly negative for θ∗ < θ̄ in the neighborhood of θ̄.

Note that at θ∗ = θ, the expression in (57) reduces to −2U−2θ, which is greater
than or equal to zero for U ∈ (0,−θ) . This result follows from the fact that

Z θ̄

θ
[1− P (θ)] dθ =

Z θ̄

θ
d{θ[1− P (θ)]}−

Z θ̄

θ
θd[1− P (θ)](59)

= −θ +
Z θ̄

θ
θp(θ) dθ = −θ.

Hence, there must be an interior solution to (58) in this case. >From Proposition

3, we have that when µ∗(θ, µER) < µER, the optimal policy has bounded discretion.

In terms of our parametric example, this occurs when U + θ < 0, or when U < −θ.
Hence, the optimal policy has bounded discretion in this case, and, as we have shown

above, the optimal θ∗ is strictly decreasing in U. In contrast, when U > −θ, it is not
possible to have an interior solution to (58). Hence, no discretion must be optimal.

To complete the proof, observe that when U = 0, the Ramsey policy is incentive-

compatible and is, hence, the optimal policy.

Derivation of the First-Order Condition (56)

Here we derive (56). The first-order conditions determining the optimal choice

of θ∗ are given by the equalities that d
hR θ̄

θ U(θ)p(θ) dθ
i
/dθ∗ equals·

Rµ(x, µ
∗(θ;x), θ)

∂

∂x
µ∗(θ;x) +Rx(x, µ

∗(θ;x), θ)
¸
dx

dθ∗

+
Z θ∗

θ
Rθµ(x, µ

∗(θ;x), θ)[1− P (θ)]
∂

∂x
µ∗(θ;x)

dx

dθ∗
dθ

+

Z θ∗

θ
Rθx(x, µ

∗(θ;x), θ)[1− P (θ)]
dx

dθ∗
dθ

+

Z θ̄

θ∗
Rθµ(x, µ

∗(θ∗;x), θ)[1− P (θ)]

·
∂

∂x
µ∗(θ∗;x)

dx

dθ∗
+

∂

∂θ∗
µ∗(θ∗;x)

¸
dθ
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+

Z θ̄

θ∗
Rθx(x, µ

∗(θ∗;x), θ)[1− P (θ)]
dx

dθ∗
dθ

and

dx

dθ∗
=

Z θ∗

θ

∂

∂x
µ∗(θ, x)

dx

dθ∗
p(θ) dθ

+
Z θ̄

θ∗

·
∂

∂x
µ∗(θ∗, x)

dx

dθ∗
+

∂

∂θ∗
µ∗(θ∗, x)

¸
p(θ) dθ.

By the definition of µ∗, we have that Rµ(x, µ∗(θ;x), θ) = 0. From our quadratic

example, we know that µ∗(θ, x) = (U + x+ θ)/2. Therefore,

Rx(x, µ
∗(θ;x), θ) = −[U + x− µ∗(θ;x)] = −

µ
U + x− θ

2

¶
and ∂µ∗(θ, x)/∂x = 1/2 , ∂µ∗(θ∗, x)/∂θ∗ = 1/2, Rθµ(x, µ, θ) = 1, and Rθx(x, µ, θ)

= 0. Hence, our derivatives come down to

dx

dθ∗
=
1

2

Z θ∗

θ
p(θ) dθ

dx

dθ∗
+
1

2

µ
dx

dθ∗
+ 1

¶Z θ̄

θ∗
p(θ) dθ

or dx/dθ∗ = 1− P (θ∗). Also, d
hR θ̄

θ U(θ)p(θ) dθ
i
/dθ∗ equals

Rx(x, µ
∗(θ;x), θ)

dx

dθ∗
+
1

2

Z θ∗

θ
[1− P (θ)] dθ.

+

µ
1

2

dx

dθ∗
+
1

2

¶Z θ̄

θ∗
[1− P (θ)] dθ = 0.

This can be simplified to

[1− P (θ∗)]
"
Rx(x, µ

∗(θ;x), θ)+
1

2

Z θ̄

θ
[1− P (θ)] dθ

#

+
1

2

Z θ̄

θ∗
[1− P (θ)] dθ = 0.

Note that integration by parts gives thatZ θ̄

θ
[1− P (θ)] dθ =

Z θ̄

θ
d{θ[1− P (θ)]}−

Z θ̄

θ
θd[1− P (θ)]

= −θ +
Z θ̄

θ
θp(θ) dθ.

Hence, our first-order condition can be written as

−[1− P (θ∗)] (U + x) +

Z θ̄

θ∗
[1− P (θ)] dθ = 0

with x given as above. This is equation (56). Q.E.D.
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