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Abstract
The recent literature on the duration of trade has predominantly analyzed the

determinants of trade flow durations using Cox proportional hazards models. The
purpose of this paper is to show why it is inappropriate to analyze the duration of
trade with continuous-time models such as the Cox model, and to propose alternative
discrete-time models which are more suitable for estimation. Briefly, the Cox model
has three major drawbacks when applied to large trade data sets. First, it faces
problems in the presence of many tied duration times, leading to biased coefficient
estimates and standard errors. Second, it is difficult to properly control for unobserved
heterogeneity, which can result in spurious duration dependence and parameter bias.
Third, the Cox model imposes the restrictive and empirically questionable assumption
of proportional hazards. By contrast, with discrete-time models there is no problem
handling ties; unobserved heterogeneity can be controlled for without difficulty; and
the restrictive proportional hazards assumption can easily be bypassed. By replicating
an influential study by Besedeš and Prusa from 2006, but employing discrete-time
models as well as the original Cox model, we find empirical support for each of these
arguments against the Cox model. Moreover, when comparing estimation results
obtained from a Cox model and our preferred discrete-time specification, we find
significant differences in both the predicted hazard rates and the estimated effects
of explanatory variables on the hazard. In other words, the choice between models
affects the conclusions that can be drawn.
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1 Introduction

In recent years, a new literature focusing on the duration of international trade has
emerged. Based on the surprising finding in Besedeš and Prusa (2006a) that US import
flows have a remarkably short duration, the question asked is: “which factors determine
how long international trade relationships last?” From a policy-oriented point of view this
is indeed an important question to ask. Trade will not grow very much if new products stop
being exported after only a few years. Therefore, to better understand which factors may
help countries increase their trade, and thereby potentially improve economic development,
it is important to learn more about what determines the duration of trade flows.

The first paper to offer an answer to this question is Besedeš and Prusa (2006b). In
that article, the authors estimate a Cox proportional hazards model, as originally proposed
by Cox (1972), and conclude among other things that differentiated products have lower
hazard rates than homogeneous goods, and that within each product type, the larger the
value of the initial trade flow, the longer the duration. Following the example set by
Besedeš and Prusa (2006b), other authors have subsequently used similar Cox approaches
to analyze what determines the duration of trade. Papers in this tradition include Besedeš
(2008), Brenton, Pierola and von Uexküll (2009), Nitsch (2009), and Fugazza and Molina
(2009).

While the use of the Cox model may be a convenient way to analyze what determines
the duration of trade, there are some concerns with this approach from an econometric
point of view. Specifically, even though trade takes place in continuous time, data on the
duration of trade relationships is usually grouped into yearly intervals. Yet, the Cox model
is designed to deal with continuous duration times. The purpose of this paper is mainly to
show why it is inappropriate to analyze the duration of trade with continuous-time models
such as the Cox model, and to propose alternative discrete-time models which are more
suitable for estimation. By replicating the study in Besedeš and Prusa (2006b), but using
discrete-time models as well as the original Cox model, we also seek to investigate whether
the theoretical arguments that can be brought to bear against the Cox model matter in
practice.

Briefly, there are three major problems with continuous-time models, such as the Cox
model, in this context. First, the predominantly short-lived trade relations combined
with the coarse grouping of durations into yearly intervals result in a large number of
tied survival times, i.e. spells of trade with exactly the same duration. Continuous-
time methods face difficulties in the presence of heavy ties, leading to biased coefficient
estimates and standard errors. Second, it is difficult to properly control for unobserved
heterogeneity, which, if such heterogeneity is indeed important, will cause spurious negative
duration dependence of the estimated hazard function as well as parameter bias. Third, the
Cox model imposes the restrictive and empirically questionable assumption of proportional
hazards. There are two reasons why the proportional hazards assumption may fail to hold.
First, the effect of explanatory variables (covariates) on the hazard may be intrinsically
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non-proportional. Second, unobserved individual heterogeneity that is not accounted for
may cause the impact of observed regressors to depend on duration time, even if the
underlying model is of the proportional hazards form. Incorrectly imposing the assumption
of proportional hazards will lead to bias in the estimated covariate effects. By contrast,
with discrete-time models there is no problem handling ties; unobserved heterogeneity can
be controlled for without difficulty even when dealing with very large data sets; and the
restrictive proportional hazards assumption can easily be bypassed. In addition, these
theoretically more appropriate models are readily implemented using standard statistical
software. Typically, the researcher will be able to choose between at least three different
discrete-time model specifications: logit, probit, and complementary log-log (cloglog).

Replicating the study in Besedeš and Prusa (2006b), but using discrete-time models as
well as the original Cox model, we find empirical evidence in support of the arguments
against the Cox model. The large number of ties in the data set does indeed seem to
lead to biased estimation coefficients in the Cox model; unobserved heterogeneity plays
a significant role and has to be accounted for, and several different tests unambiguously
reject the proportional hazards assumption for our specific data set. Comparing the results
obtained from a discrete-time probit model with random effects and the Cox proportional
hazards model, we find significant differences in both the predicted hazard rates and the
estimated effects of covariates on the hazard. This suggests that the choice of hazard model
is not innocuous in this context and will have important implications for the conclusions
that can be drawn. Since we also find strong empirical evidence in favor of the probit
model, we conclude that the mentioned drawbacks of the Cox model are not just purely
theoretical issues that can safely be ignored by empirical researchers.

The remainder of the paper is organized as follows. Section 2 provides a brief survey
of the existing literature on trade survival from a methodological point of view. Section 3
contains an extensive discussion of the shortcomings of continuous-time models in this
context, and an outline of alternative, discrete-time models. Section 4 illustrates the
consequences of model selection by replicating the empirical work of Besedeš and Prusa
(2006b) with different models, and Section 5 concludes.

2 Previous Research

The literature on the duration of trade, which is still rather young, started with a series
of articles by Tibor Besedeš and Thomas Prusa. In Besedeš and Prusa (2006a), these
authors use detailed data on US imports for 1972-1988 to estimate descriptive Kaplan-
Meier survival functions. Their results, largely confirmed by using data for 1989-2001,
suggest that the duration of exports to the US is in general very short.1 Using the same
import data, Besedeš and Prusa (2006b) apply a Cox proportional hazards model, which,
unlike the Kaplan-Meier methodology, enables them to include independent explanatory

1A similar methodological approach for describing the duration of trade was taken by Besedeš and
Prusa (2007), who focus on the extensive and intensive margins of trade.
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variables in order to search for explanations for the short trade durations. Some interesting
findings include that differentiated products have lower hazard rates than homogeneous
goods, and that within each product type, the larger the value of the initial trade flow, the
longer the duration. A very similar methodological approach is taken by Besedeš (2008),
which, however, employs a stratified Cox approach. Using a stratified Cox model has
the advantage of making it possible to, at least to some extent, control for unobserved
heterogeneity by allowing for group-specific variation in the baseline hazard.

Following the example set by above all Besedeš and Prusa (2006b), other authors have
subsequently used similar Cox approaches to analyze what determines the duration of
trade. Brenton, Pierola and von Uexküll (2009) use a Cox model to estimate determinants
of trade in a data set with 44 exporters and 56 importers over a 21-year period. Nitsch
(2009) employs a stratified Cox model when examining the duration of German imports for
1995-2005. Fugazza and Molina (2009) use an extended version of the Cox model where the
estimation coefficients are allowed to vary over duration time, and estimate determinants
of trade duration among 96 trading countries for the period 1995-2004. Lastly, Brenton,
Saborowski and von Uexküll (2009) employ a discrete-time equivalent of the Cox model,
namely a cloglog model to look at the duration of export flows from 82 exporters to 53
importers over the period 1985-2005.2

3 Continuous-Time or Discrete-Time Methods?

As outlined above, the existing literature aimed at explaining the duration of bilateral
trade relationships has largely followed Besedeš and Prusa (2006b) and estimated various
versions of continuous-time Cox proportional hazards models. While this may seem to be
a good choice, particularly given that the Cox model can be estimated without having
to specify a functional form for the baseline hazard, we argue that certain problems arise
when the Cox model is applied to the particular area of trade durations. In this section
we provide an extensive discussion of these problems, and propose discrete-time duration
models that may be used as an alternative.

3.1 Why Cox Should Not Analyze Trade

There are three main reasons why it is inappropriate to apply the Cox model when ana-
lyzing the duration of trade relationships:

1. The Cox model is a continuous-time specification, whereas the duration of trade
relationships is observed in discrete units of yearly length. As a consequence, many

2These authors argue that in the presence of unobserved heterogeneity which is not properly controlled
for, the proportional hazards assumption implicitly made in a Cox model will not hold. They therefore
employ the discrete-time equivalent of a Cox model, i.e. a cloglog model, where unobserved heterogeneity
can much more easily be controlled for. However, as will be further discussed below, this is a risky choice,
because a cloglog model also assumes proportional hazards, so if that assumption is intrinsically invalid,
the cloglog model will also be a bad choice.
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trade relations are observed to be of equal length, and no “natural” way exists to
treat such tied duration times within the partial likelihood framework of the Cox
model. The presence of ties causes asymptotic bias in both the estimation of the
regression coefficients and in the estimation of the corresponding covariance matrix.

2. Unobserved heterogeneity cannot be included without the presence of multiple inte-
grals, which makes estimation difficult, if not impossible. Ignoring unobserved het-
erogeneity causes – if it is indeed important – parameter bias and spurious duration
dependence.

3. The Cox model imposes the rather restrictive assumption of proportional hazards.
In other words, the effects of explanatory variables on the hazard rate are assumed
to be constant across duration time. This is unlikely to hold for the regressors typ-
ically employed to analyze the duration of trade relationships. Incorrectly imposing
proportionality will produce misleading estimates of covariate effects.

In the following, these reasons for the inappropriateness of the Cox model are evaluated in
more detail.

3.1.1 Tied duration times

International trade is traditionally only observed once a year, even though the underlying
trade transactions may take place every day of the year, or, at the extreme, only once a
year. This implies that the observed durations of trade will be grouped into yearly intervals.
However, the Cox model is based on the assumption that duration times can take on any
value on the positive real line and that this value can be observed exactly. In order to carry
out the partial likelihood estimation procedure of the Cox model, the recorded duration
times need to be ordered chronologically. Then, in the case of intrinsically discrete or
grouped survival time data – such as the available data on trade durations – a substantial
complication may arise. If there are only a few time intervals or if the time units are large,
many trade flows are reported to cease at exactly the same time, and the number of ties
becomes high. Then, strictly speaking, continuous-time techniques are inappropriate (see
Cox and Oakes, 1984, p. 99). Kalbfleisch and Prentice (1980, p. 75) emphasize that the
presence of ties causes asymptotic bias in both the estimation of the regression coefficients
and in the estimation of the corresponding covariance matrix. This applies not only to the
Cox model but also to fully parameterized continuous-time models.

In the statistics literature, several different approaches to deal with tied survival times
in continuous-time hazard models have been developed. One of the most commonly applied
procedures of handling ties is a method proposed by Breslow (1974), which is based on
a rather simple approximation of the exact marginal likelihood. While computationally
undemanding, the Breslow method will be inaccurate if there are many ties in the data
set, leading to an increasing asymptotic bias of the parameter estimates as the grouping
of duration times becomes more coarse (see e.g. Prentice and Gloeckler, 1978, or Hsieh,
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1995). A more accurate approximation of the exact marginal likelihood was proposed by
Efron (1977), but this procedure of handling ties is computationally more cumbersome and
still inaccurate in the presence of heavy ties. Besides these two standard approaches there
are various so-called exact methods of dealing with ties. However, all these methods lead
to biased estimates when the true underlying model is in fact a Cox model (see Scheike
and Sun, 2007). Thus, to summarize, heavy ties will lead to biased parameter estimates
and standard errors, and there is no sufficient way to tackle this problem in a Cox model
framework. This issue therefore poses a problem for all the papers in the trade duration
literature that employ Cox models.

3.1.2 Unobserved heterogeneity

Accounting for unmeasured heterogeneity (also known as frailty in the biostatistics liter-
ature) within the partial likelihood framework of the Cox model is computationally bur-
densome, since it involves multidimensional integrals. In fact, when applying the software
package Stata, estimation becomes impossible as the number of frailty components exceeds
11 000. In our empirical analysis we outnumber this limit by a factor of almost three. Even
when using more advanced programs, it will be infeasible to estimate a Cox model with
random effects when faced with such a huge data set, since it would require the compu-
tation of an integral with several thousand dimensions at every iteration of the likelihood
maximization process.3

Nevertheless, individual heterogeneity cannot be ignored, since it will rarely be the case
in practice that all sources of individual variation in the hazard rate are exhausted by the
observed explanatory variables included in the model. The biases and spurious duration
dependencies caused by ignoring this variation in the hazard have long been known in the
literature (see e.g. Salant, 1977, Vaupel, Manton and Stallard, 1979, or Vaupel and Yashin,
1985, for early discussions of this phenomenon).

Most strikingly, the presence of unobserved heterogeneity can produce duration depen-
dence patterns for a population as a whole that are entirely different from the patterns of the
corresponding sub-populations or individual observations. The reason for this phenomenon
is simply a selection process. When investigating a heterogenous population sample over
a certain time period, the sample composition is likely to change over time, since the ob-

3It should be mentioned, though, that unobserved heterogeneity can be accounted for in the Cox model
by allowing the baseline hazard to vary between observations. The respective model can then be estimated
using a stratified partial likelihood approach. Encompassing unobserved variation only on a rather crude
level, this strategy also suffers from the drawback that the effects of explanatory variables that do not
exhibit within-stratum variation cannot be estimated. Stratified Cox models have been employed by
Besedeš (2008) and Nitsch (2009). To some extent, frailty can also be accounted for by including dummy
variables in the regression function. For example, individual effects that are specific to every exporting
country can be modelled in this fashion – this approach was chosen by Besedeš and Prusa (2006b). This,
however, is not sufficient if unobserved heterogeneity on a more detailed level (e.g. exporter-product level)
is present, and another drawback is that the effects of covariates that are specific to every export country
can no longer be estimated.
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servations with the highest hazard rates tend to exit first. Hence, the average duration
dependence for the whole population will change over time. This dynamic selection process
is frequently referred to as weeding out or sorting effect in the duration literature (see e.g.
van den Berg, 2001, for an extensive formal discussion of this mechanism).

Intuitively, one would assume that unobserved heterogeneity has a negative effect on
the hazard rate, since the fraction of observations with relatively low hazard rates in the
sample should tend to increase over time. And in fact, Heckman and Singer (1984a)
proved that ignoring unobserved heterogeneity will bias the estimated hazards towards
negative duration dependence, meaning that a decreasing hazard will appear more rapidly
decreasing, while an increasing hazard may appear more slowly increasing, constant, or
even decreasing.

Figure 1: Spurious Duration Dependence Resulting from Unobserved Heterogeneity
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An intuitive way of illustrating this effect of neglecting unobserved heterogeneity is to
consider a sample consisting in equal shares of two sub-samples that differ according to
some unobserved characteristic. If we further assume that each observation in the first
sub-sample has a constant hazard rate of 50 percent and that each observation in the
second sub-sample faces a constant hazard of 10 percent, the average hazard rate for the
whole sample will be 30 percent initially. However, as duration increases, observations
from the first sub-group will leave the sample at a higher rate than observations from
the second sub-group, thereby shifting the shares of the two groups in support of the
sub-sample facing the lower hazard rate. Then, as Figure 1 shows, the hazard rate for
the whole sample decreases over time. The observed negative duration dependence of the
hazard function, however, is merely an artefact of unobserved heterogeneity. Neglecting
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unobserved heterogeneity may also bias the coefficients of the explanatory variables in
the hazard model. In particular, omitting unobserved heterogeneity in continuous-time
(mixed) proportional hazards models, such as the Cox model, leads to an underestimation
of the proportionate effect of covariates on the hazard (see van den Berg, 2001, for a formal
proof).

To summarize, the inability to properly control for unobserved heterogeneity poses
another problem for the papers in the literature which use Cox models. While some
papers have gone some way toward mitigating the problem by employing stratified Cox
models or including country dummies, these solutions have their limitations.

3.1.3 Proportional hazards

Another drawback immanent to the Cox model is that it imposes the individual hazard
functions to be proportional. If the assumption of proportional hazards is incorrectly im-
posed, this will lead to bias in the estimated covariate effects. In Cox regression models the
analysis of trade survival is approached through the definition of a hazard function that
represents the instantaneous rate at which trade relationships cease, depending on their
elapsed duration and other explanatory factors. The impact of explanatory variables is
specified as shifting the baseline hazard, which depicts duration dependence, in a propor-
tional fashion. This proportional hazards assumption implies that the effect of covariates
on the hazard is restricted to be constant throughout the whole progression of a trade re-
lationship. The notion that the effect of explanatory variables may not be constant across
durations is well developed in the literature and several tests exist to examine the pro-
portionality assumption imposed by the Cox model (see e.g. McCall, 1994, and references
therein).

There are two reasons why the proportional hazards assumption may fail to hold. First,
the effect of explanatory variables on the hazard may be intrinsically non-proportional.
For example, the initial trade volume is unlikely to affect the probability that the trade
relationship ceases during the first year of service to the same extent as the probability that
it ends during the tenth year of service. Second, unobserved individual heterogeneity that
is not accounted for will cause the impact of observed regressors to depend on duration
time, even if the underlying model is of the proportional hazards form (see Lancaster and
Nickell, 1980).

To our knowledge, there is only one study on trade durations where the assumption
of proportional hazards is actually tested. For their data on developing countries’ export
flows, Brenton, Saborowski and von Uexküll (2009) find significant evidence against the va-
lidity of the proportional hazards assumption. Since incorrectly imposing the proportional
hazards assumption will cause bias in the estimated covariate effects, the authors employ
a discrete-time proportional hazards model incorporating random effects to account for
unobserved heterogeneity. However, while tackling the effect of omitted regressors, their
model does not allow for intrinsic non-proportionality. A different approach is chosen by
Fugazza and Molina (2009) who apply an extended version of the Cox model with time-
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varying coefficients, thereby allowing for intrinsically non-proportional covariate effects.
This approach, however, has the disadvantage that a large number of additional parame-
ters has to be estimated. Moreover, as discussed above, it is difficult to properly control
for unobserved heterogeneity in a Cox model when dealing with data sets as large as those
typically encountered in trade duration studies. Therefore, the other possible reason for
the proportional hazards assumption to fail is not taken into account. Hence, the two pa-
pers in the literature that have actually approached the issue of the proportional hazards
assumption have each only dealt with one of the potential reasons why the assumption
may not hold.

3.2 Discrete-Time Duration Models

As outlined above, the continuous-time Cox model is inappropriate to use when analyzing
trade data. Is there a better alternative available? We recommend that the researcher uses
discrete-time models. The very high proportion of ties, which is typically found at all dura-
tions when analyzing trade data, does not constitute a problem for discrete-time duration
models. Further, besides their ability to deal with tied failure times, discrete-time models
are also preferable for computational reasons. Hazard rate models for grouped duration
times can be estimated using conventional regression models for binary response panel
data, which are implemented in all common statistical software packages. These models
are computationally less demanding than the continuous-time Cox model, especially when
analyzing large samples containing heavy ties (which are typical characteristics of the data
sets under consideration in the trade duration literature). More importantly, discrete-time
duration models can easily be extended to account for unobserved individual heterogene-
ity, even if the number of observations is large. Finally, by applying discrete-time duration
models, we can easily circumvent the rather restrictive proportional hazards assumption.
We can choose from different model specifications, implying different degrees of proportion-
ality, while still being able to estimate duration dependence in a nonparametric fashion.

Standard statistical software packages such as Stata or LimDep usually provide three
different specifications: cloglog, logit, and probit. While it can be shown that the cloglog
model with period-specific intercepts represents the exact grouped-duration analogue of
the Cox proportional hazards model (see e.g. Kalbfleisch and Prentice, 1973, or Prentice
and Gloeckler, 1978), the logit and probit specifications do not impose this proportionality
assumption. The logit model is rather similar to the cloglog model and departs only slightly
from proportionality, whereas the probit specification is decidedly non-proportional.4

Having pointed out why it is preferable to apply discrete-time hazard models when
analyzing grouped duration data, we now introduce these methods in more detail. Let Ti

be a continuous, non-negative random variable measuring the survival time of a particular
trade relation. In a discrete-time framework, the core of duration analysis is formed by the
probability that a particular trade relation terminates in a given time interval [tk, tk+1),

4See Sueyoshi (1995) for an extensive discussion of these model specifications in a duration context.

9



k = 1, 2, . . ., kmax, and t1 = 0, conditional on its survival up to the beginning of the interval
and given the explanatory variables included in the regression model. This conditional
probability is termed the discrete-time hazard rate and formally defined as

hik := P (Ti < tk+1|Ti ≥ tk,xxxik) = F (xxx′ikβββ + γk), (1)

where xxxik is a vector of possibly time-varying covariates, γk is a function of (interval) time
that allows the hazard rate to vary across periods (somewhat loosely, we will refer to γk as
the grouped-duration baseline hazard, although this is not formally correct in all instances),
and F (·) is an appropriate distribution function ensuring that 0 ≤ hik ≤ 1 for all i, k. In
our case, the subscript i denotes separate spells of trade relationships (i = 1, . . . , n) for any
given exporter-product combination. Since the underlying baseline hazard is unknown in
practice, γk is usually incorporated in the model as a dummy variable marking the current
length of the spell. However, a functional form for γk can also be specified in order to
reduce the number of parameters in the model.

Working with trade data, the researcher typically observes the value of a country’s
imports from another country for each year of the observation period. Thus, the first year
of a consecutive period where a product is imported from a certain country can be regarded
as the starting year of the corresponding trade spell. Equivalently, the last year of this
period would be the terminating year of the spell. If a positive import value is observed
for the first year of the observation period, the corresponding spell might have started
prior to that date, and the exact spell length is unknown. In any empirical application,
these left-censored spells should be disregarded in order to avoid any restrictive a priori
assumptions about the duration dependence of the hazard rate. If a positive import value
is observed for the last year of the observation period, the corresponding spell length is
also unknown. Such right-censored spells, however, do not constitute any problems for the
derivation of the sample likelihood, and all right-censored spells can be included in the
analysis.

For each trade spell, the last year in which a positive trade volume was observed, can
be recorded. In the following, this terminal time period is denoted ki, the subscript i

indicating that it may differ across spells. Introducing a binary variable, yik, taking the
value one if spell i is observed to cease during the kth time interval, and zero otherwise,
the log-likelihood for the observed data is given by

lnL =
n∑

i=1

ki∑
k=1

[yik ln(hik) + (1− yik) ln(1− hik)]. (2)

This expression is structurally isomorphic to a standard log-likelihood function for a binary
panel regression model with dependent variable yik.5 To be able to estimate the model

5To obtain consistent parameter estimates from this log-likelihood, spells must be independent, cen-
soring must occur only at interval boundaries, and censoring must not provide any information about Ti

beyond that available in the covariates (see e.g. Allison, 1982, Singer and Willett, 1993, or Jenkins, 1995,
for excellent surveys on the derivation of the likelihood). To ensure conditional independence between
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parameters, a functional form for the hazard rate hik needs to be specified. The most
commonly encountered functional specifications are the normal, logistic, and extreme-value
minimum distribution, leading to a probit, logit, or cloglog model, respectively.

Unobserved heterogeneity can be accounted for by including random effects into the
binary choice model framework above. If a specific parametric distribution is assumed
for the random effects, calculating the marginal log-likelihood function involves only a
one-dimensional integral which can be computed numerically by using e.g. Gauss-Hermite
quadrature (see Butler and Moffitt, 1982) or simulation methods (see e.g. Train, 2003).
In continuous-time duration models, the heterogeneity distribution is often chosen to be
Gamma for analytical convenience (see Lancaster, 1979) and theoretical reasons (see Ab-
bring and van den Berg, 2007). In discrete-time duration analysis, instead, the assumption
of a Gaussian distribution may be computationally convenient. Under this assumption,
the hazard models can be estimated as binary choice models with normal random effects
using widely available software packages. In Stata this can be done using the commands
xtlogit, xtprobit, or xtcloglog for the logit, probit, or cloglog model, respectively.

The choice of heterogeneity distribution is a widely discussed issue in the duration lit-
erature (see e.g. Heckman and Singer, 1984b, for continuous time and Baker and Melino,
2000, for discrete time). In an extensive simulation study of the discrete-time logit model,
Baker and Melino (2000) find that misspecification of the heterogeneity distribution can
lead to substantial biases in the parameter estimates. However, the parameters in binary
choice models such as logit are only identified up to scale, and Mroz and Zayats (2008)
show that the biases reported by Baker and Melino (2000) are due to their neglect of this
issue. A recent simulation study by Nicoletti and Rondinelli (2009) suggests that choosing
a Gaussian heterogeneity distribution, when the true one is Gamma or discrete, does not
affect the parameter estimates. Their findings are supported by several empirical stud-
ies. Trussell and Richards (1985), Meyer (1990), and Dolton and van der Klaauw (1995)
find empirical evidence that the choice of heterogeneity distribution may be unimportant if
duration dependence is modelled in a flexible manner. This suggests that applying conven-
tional binary response panel data models with normal random effects is a sensible approach
when estimating discrete-time duration models.

4 Empirical Application: The Duration of US Imports

Having outlined the theoretical reasons for not using a Cox model when studying the
duration of trade, and described the discrete-time models that could be used as alternatives,
we now illustrate the implications of model choice by replicating the study by Besedeš and
Prusa (2006b), but adding several discrete-time estimation methods. We briefly present
the data used in our estimations, and then provide an extensive review of the results to

spells, in empirical analyses, special care should be taken to account for multiple spells and the dependen-
cies existing among imports of different products from the same country or imports of a particular product
from different countries.
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see whether or not the choice of estimation method actually matters for the conclusions
that can be drawn.

4.1 Data

We use the same data on US imports as was previously analyzed by Besedeš and Prusa
(2006b). The data, which was generously provided to us by the authors, record annual
US imports between 1972 and 1988 from virtually every trading partner and include infor-
mation on the value of imports, customs collected, and other relevant factors that might
affect the duration of trade. The traded products are classified according to the 7-digit
Tariff Schedule of the United States (TSUSA) which amounts to a total of some 20 000

products. A trade relationship is then defined as a certain product being imported from
one specific exporter. A trade spell is defined as a period of time with uninterrupted import
of a given product from one specific country. These spells of trade constitute the core units
of analysis in this paper, where the spell duration is simply calculated as the number of
consecutive years with non-zero imports. The number of spells differs from the number of
trade relationships (i.e. exporter-product combinations), since any of the trading parties
may choose to terminate the trade relationship and revive it at a later point in time. We
refer to such reoccurring trade relationships as multiple spells of service.

One peculiarity of duration data is the presence of censored survival times. Our annual
durations of trade are subject to two different kinds of censoring. First, trade relationships
persisting in 1988 have an uncertain end and are thus right-censored.6 However, since it
is known how long these spells have been in progress, right censoring does not impose any
problems to model estimation. Second, trade spells observed in 1972 have an unknown
starting date and are thus left-censored. This type of censoring is more problematic and
cannot be handled straightforwardly without imposing restrictive assumptions on the base-
line hazard. To see the difficulties arising in the presence of left censoring, consider the
following example. Assume we include left-censored spells in the analysis, then these ob-
servations will be assigned a duration of one year in 1972. Many of these spells, however,
will have started prior to 1972 and thus have a true duration which is greater than one year
at the beginning of our observation period. If there is true negative duration dependence,
trade relationships will, by definition, have a lower hazard rate the longer they have been
in progress. Thus, assigning duration times to spells that are lower than their true values
will lead to an underestimation of the hazard rate at all durations. This is illustrated in
Figure 2, which depicts the predicted baseline hazard functions obtained from our data
inclusive and exclusive of left-censored spells.

Clearly, left censoring is not innocuous for the purpose of making inference on the
baseline hazard. We have thus excluded all left-censored observations from our analysis.7

6Reclassification of product codes may also lead to right censoring at dates other than the final year of
the observation period.

7We note that Besedeš and Prusa (2006b) choose to include the left-censored observations in their
analysis, and therefore report results from both the original data and the data where the left-censored
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As Table 1 shows, these exclusions do not lead to a drastic decrease in the number of
spells contained in our data set. Table 1 provides some summary statistics for our data.

Figure 2: Bias in the Estimated Baseline Hazard Arising from Left Censoring
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The reduced data set which we use for the following econometric analysis consists of over
300 000 trade relationships accounting for more than 400 000 spells of trade. With 2.35
years, the observed length of trade spells is very short on average, but this is to some
extent a direct consequence of the large fraction of right-censored spells (54%). For further
details on the data, we refer the reader to Besedeš and Prusa (2006b).

Table 1: Summary Statistics

Observed spell Total Fraction of Total number Total number
length in years number spells of trade of product
Mean Median of spells right-censored relationships codes

Original data

2.79 1 444 378 0.57 335 253 20 351

Data exclusive of left-censored spells

2.35 1 414 227 0.54 312 685 20 282

observations have been excluded.
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4.2 Model Specifications

To be able to focus strictly on methodological differences, we use exactly the same set
of explanatory variables as Besedeš and Prusa (2006b). For a detailed discussion of the
explanatory variables included in the regression models, we refer the reader to that article.
Since our econometric analysis aims at illustrating the effects of model specification on
estimation results, we estimate various discrete-time hazard models (cloglog, logit, probit,
and Pareto) as well as a continuous-time Cox proportional hazards model.8 In all discrete-
time models, we specify the baseline hazard in the most flexible possible fashion by means
of dummy variables that enable the estimation of period-specific intercepts. This, in turn,
allows for unrestricted period-specific changes in the estimated hazard rates. Besides using
different hazard models, we also present results from models with and without frailty, i.e.
with and without Gaussian random effects for every exporter-product combination.9 As
mentioned previously, estimating the Cox model with random frailty is computationally
infeasible for the large data set under consideration, so this model is only included without
controls for unobserved heterogeneity.

The continuous-time Cox model as well as the discrete-time cloglog, logit, and probit
models are widely applied in duration analysis and do not require further elaboration.
The Pareto hazard model, however, deserves a somewhat closer look. In this model, the
discrete-time hazard rate – as defined in equation (1) – is parameterized as

hik = 1−
(
1 +

ξ

exp{−(xxx′ikβββ + γk)}

)−1/ξ

. (3)

The right-hand side of equation (3) describes the distribution function of the generalized
log-Burr distribution with shape parameter ξ ≥ 0 (see Burr, 1942, or Tadikamalla, 1980).
As opposed to the conventional cloglog, logit, and probit specifications, the Pareto hazard
rate contains a shape parameter, which makes the model considerably more flexible with
respect to the imposed effects of covariates on exit probabilities. A particular virtue of the
Pareto hazard model is that it contains the cloglog and logit specifications as special cases.
To see this, note that the cloglog hazard arises as the limiting case

lim
ξ→0

(
1−

(
1 +

ξ

exp{−(xxx′ikβββ + γk)}

)−1/ξ
)

= 1− exp{− exp{xxx′ikβββ + γk}},

which is then the definition of hik for ξ = 0. The case ξ = 1 yields the logistic hazard rate

1

1 + exp{−(xxx′ikβββ + γk)}
.

8Estimates obtained from the Cox model are reported both for the data with and without left-censored
spells. The estimates obtained from the complete data set (Cox1 ) correspond exactly to the results reported
by Besedeš and Prusa (2006b) in the first column of their Table 3. However, for reasons of comparability
with our discrete-time specifications, we report β-coefficients instead of hazard ratios. Hazard ratios can
be obtained from these values as ∆h = exp{β}.

9Using spell-specific effects instead of “individual”-specific effects has no impact on our results.
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In a binary response model context, the use of the generalized log-Burr distribution was
first proposed by Prentice (1975, 1976). He has shown that ξ can be consistently esti-
mated together with the other model parameters, which enables discrimination between
the cloglog and the logit specification. Hess (2009) has shown that this grouped-duration
hazard specification can be linked to the asymptotic distribution of threshold excesses for
the underlying continuous duration times.10 He also illustrates that a larger value of ξ

implies a higher degree of non-proportionality for the respective hazard model. Since the
Pareto model includes the discrete-time analogue of the Cox model as a special case, it can
also be used to test the validity of the Cox model even with coarsely grouped duration data.
This simply requires to test the null hypothesis ξ = 0 against the one-sided alternative
ξ > 0.

4.3 Estimation Results

The results obtained from all model specifications can be found in Table 2. Qualitatively,
the results are similar for the various estimation procedures, and none of the estimated
coefficients changes sign across model specifications. While higher transportation costs
increase the termination probability of a spell, a higher GDP of the trading partner, a
higher industry level tariff rate, a real depreciation of the exporting country’s currency,
and a larger coefficient of variation of unit values decrease the hazard. Higher order spells
have an increased failure probability and so do trade relationships involving agricultural
goods, reference priced products, and homogeneous goods. For a detailed discussion of the
estimation results, see Besedeš and Prusa (2006b).

To find the most suitable alternative to the Cox model for the data at hand, we note that
the Pareto hazard model and the probit model with frailty are the two model specifications
which yield the best fit in terms of log-likelihood values. In the following, when comparing
continuous-time and discrete-time models, we will use the probit model with frailty as
our preferred specification, in spite of the fact that the Pareto model achieves an even
better fit in log-likelihood terms. We focus on the probit model mainly because this makes
it possible to explicitly allow for unobserved heterogeneity in the hazard specification.11

Moreover, the (random-effects) probit model is implemented in many statistical software
packages and can be readily applied by the empirical researcher. We will, however, apply
the Pareto model as a tool for testing the proportional hazards assumption imposed by
the continuous-time Cox model.

10This threshold excess distribution is of the generalized Pareto form, whence the name Pareto hazard
model.

11Unfortunately, we were unable to incorporate random effects into the Pareto model. The reason for
this is that the variance of the idiosyncratic error term in a binary response panel data model needs to be
fixed in order for the random effects variance to be identified (see Lechner, Lollivier and Magnac, 2008, for
details on identification in binary response panel data models with random effects). While this condition
holds for the cloglog, logit, and probit specifications, it is not met by the Pareto hazard model.
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4.4 Does the Choice of Hazard Model Matter?

In Section 3 we have argued that applying the continuous-time Cox model when analyzing
the duration of trade may be inappropriate for various reasons. To illustrate this in the
context of US import durations, we have re-estimated the empirical model of Besedeš and
Prusa (2006b) using various discrete-time models, as well as the original continuous-time
Cox model. In the following, we will discuss in how far tied duration times, unobserved
heterogeneity, and the assumption of proportional hazards actually affect the estimation
results obtained from the Cox model.

4.4.1 Tied duration times

The first problem discussed was that the large number of ties, particularly at short spell
durations, will lead to bias in the Cox model estimates. In our data set, about one third
of the spells cease during the first year of service. In Section 3 we have argued that such
a large fraction of tied duration times should lead to biased coefficient estimates when
applying a Cox model. To see whether this is the case for our data, we can compare the
results obtained from the Cox and the cloglog model as reported in columns two and three
of Table 2. Since the cloglog model with period-specific intercepts is the exact grouped-
duration equivalent of the Cox model, coefficient estimates obtained from these two model
specifications should be identical, if the true underlying model were indeed a Cox model.
For our data, however, the estimates obtained from the Cox model are altogether smaller
in absolute value then their grouped-duration counterparts. Hence, applying a Cox model
to analyze the data at hand will lead to incorrectly estimated effects of covariates on spell
termination probabilities.12

4.4.2 Unobserved heterogeneity

As argued above, when studying such a large set of observations as we do, it will not be
possible to allow for random frailty when estimating a continuous-time Cox model. Is
this a problem in practice? We note that the likelihood-ratio tests strongly reject the null
hypothesis of no latent heterogeneity for all model specifications. Hence, it is not surprising
that accounting for unobserved heterogeneity by means of random effects at the exporter-
product level increases the respective log-likelihood values for all models where unobserved
heterogeneity could be incorporated. The relative importance of unobserved heterogeneity
for the different model specifications is indicated by the estimates for ρ given in Table 2.
Somewhat loosely, ρ can be interpreted as the fraction of individual variation in the hazard
rate that is due to variation in the unobserved factors. This fraction is around ten percent
for all model specifications including frailty. In other words, the results strongly suggest

12However, we would like to point out that it is likely that the bias results from both tied duration times
and the fact that the true underlying model is not a proportional hazards model. The latter issue will be
discussed in more detail below.
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that the inability to properly control for unobserved heterogeneity in the Cox model is
indeed a problem.

Given that there are strong indications that unobserved heterogeneity is present and
must be controlled for, can we find any evidence of the implications for the Cox model?
According to theory, the neglect of unobserved heterogeneity will lead to spurious negative
duration dependence of the estimated baseline hazard. Figure 3 depicts the (interval)
baseline hazard functions for both the probit model with frailty and the Cox model.13

Figure 3: A Comparison of Predicted Baseline Hazard Functions
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As Figure 3 shows, the estimated baseline hazard is about 50 percent in the first year,
no matter if we control for unobserved heterogeneity or not. During the following years
of service, the effects of the weeding out process – as described in Section 3 – become
noticeable, and the exit probability is underestimated if we do not account for unobserved
heterogeneity. For the fifth period, the estimated hazard rates are 10 percent for the Cox
model without frailty and 15 percent for the probit model including random effects. Due
to the weeding out mechanism, the relative differences between the predicted hazard rates
become larger as spell duration increases, and by period eleven the hazard rate estimate

13Since the probit specification does not imply the proportional hazards assumption, it does not – strictly
speaking – possess a baseline hazard. The term “baseline hazard rate” refers in this case to the probability
of failure in a given interval if the aggregator function, xxx′βββ, takes on the value zero. Although the baseline
hazard is not directly estimated in a Cox model, estimates of the baseline survivor function for different
duration times, S(tk), can be obtained ex post. These estimates can then be used to calculate the respective
interval baseline hazards as hk = 1− S(tk+1)/S(tk).
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from the frailty model is twice as large as the respective estimate from the conventional
Cox model (6 percent vs. 3 percent).

To summarize, our findings suggest that it is indeed important to control for unob-
served heterogeneity, implying that the inability to do so in the Cox model is a serious
setback that can generate misleading conclusions regarding the termination probabilities
of trade spells. Specifically, not only do the models with controls for unobserved hetero-
geneity have a better fit, but likelihood-ratio tests also clearly indicate that controlling for
unobserved heterogeneity is actually important, and we find direct evidence of spurious
negative duration dependence.

4.4.3 Proportional hazards

As argued above, there are two reasons why the proportional hazards assumption may fail
to hold. First, the effect of explanatory variables on the hazard may be intrinsically non-
proportional. Second, unobserved individual heterogeneity that is not accounted for will
cause the impact of observed regressors to depend on duration time, even if the underlying
model is of the proportional hazards form (see Lancaster and Nickell, 1980).

Before focusing on this issue in our own empirical application, we note that the only
existing study on trade durations where the assumption of proportional hazards is actu-
ally tested is Brenton, Saborowski and von Uexküll (2009). For their data on developing
countries’ export flows, they employ tests which are based on the results derived from a con-
ventional continuous-time Cox model. They argue that the neglect of unobserved hetero-
geneity in the Cox model causes their tests to reject the proportional hazards assumption,
which brings them to use a discrete-time proportional hazards model with spell-specific
random effects in their analysis. While this may remove one of the potential sources for the
proportional hazards assumption to fail, we note that their testing strategy does not allow
them to distinguish between intrinsic non-proportionality and non-proportionality caused
by the failure to control for unobserved heterogeneity. Therefore, it is possible that the
proportional hazards assumption may fail to hold even when controlling for unobserved
heterogeneity.

To remedy this, in the following, we will allow for unobserved heterogeneity when testing
the proportional hazards assumption. In doing so we are able to separate the effect of
unobserved heterogeneity from “true” non-proportionality. For the data at hand, we have
performed three different tests of the proportional hazards assumption. The results of
these tests are reported in Table 3.

First, we perform a test based on the Schoenfeld (1982) residuals derived from the
continuous-time Cox model with results given in the second column of Table 2. We test
the proportional hazards assumption for each explanatory variable individually and for the
model as a whole. The upper panel of Table 3 reports the respective test results, disre-
garding results on the effect of dummy variables. For all explanatory variables, except the
tariff rate, the null hypothesis of a constant effect on the hazard rate can be rejected on all
common significance levels. Thus, it is not surprising that the global test for proportional
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hazards also strongly rejects the null.
Second, we perform a global test for the validity of the Cox model based on the grouped-

duration Pareto specification. Since ξ = 0 corresponds to the grouped-duration Cox model,
the Pareto hazard model can be used to test the validity of the Cox model. This simply
requires to test the null hypothesis ξ = 0 against the one-sided alternative ξ > 0 by means
of a conventional Wald test. The result of this test is reported in the middle panel of
Table 3. Clearly, the test provides strong evidence against the validity of the Cox model.
As shown in the sixth column of Table 2, the estimated value of ξ is almost five for the
data at hand, which suggests that the effect of covariates on exit probabilities is decidedly
non-proportional (see Hess, 2009, for a detailed discussion of the proportionality effects
implied by this model specification).

Table 3: Tests of the Proportional Hazards Assumption

Test statistic t Distribution of t P -value

Tests based on Schoenfeld residuals from the continuous-time Cox model

Ad valorem transportation costs 84.64 χ2(1) 0.000

GDP 143.82 χ2(1) 0.000

Tariff rate, 4-digit SITC 4.59 χ2(1) 0.032

%∆ relative real exchange rate 359.13 χ2(1) 0.000

Coefficient of variation of unit values 18.20 χ2(1) 0.000

Global test 3422.14 χ2(102) 0.000

Wald test based on the shape parameter estimate from the Pareto model

Global test 43.51 Standard normal 0.000

Wald and LR tests based on the grouped-duration Cox model with frailty

Ad valorem transportation costs 13.78 Standard normal 0.000

GDP 2.43 Standard normal 0.015

Tariff rate, 4-digit SITC −9.51 Standard normal 0.000

%∆ relative real exchange rate −12.17 Standard normal 0.000

Coefficient of variation of unit values −1.83 Standard normal 0.067

Joint LR test 439.40 χ2(5) 0.000

Note: The null hypothesis for all tests is H0: Proportional hazards. For detailed information on these tests,
see Schoenfeld (1982), Hess (2009), and McCall (1994).

Third and last, we test the validity of the Cox model while at the same time allowing
for unobserved heterogeneity. For this purpose we have estimated a discrete-time cloglog
model with unobserved heterogeneity, where we have allowed the effects of explanatory
variables (except dummies) to vary over time. Specifically, we have specified βββk = βββ + δδδk,
where βββ and δδδ are five-dimensional vectors. Testing the proportional hazards assumption
in this case reduces to testing the hypothesis δδδ = 000.14 Such a test was first proposed by

14Note that, using this specification, we only allow the effect of covariates to vary linearly with time.
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Cox (1972) for continuous-time models ignoring unobserved heterogeneity. McCall (1994)
extended the test procedure to the grouped-duration case where unobserved heterogeneity
is explicitly allowed for. He also provides simulation results suggesting that the test is
insensitive to the specification of the frailty distribution. The results obtained from this
test are reported in the lower panel of Table 3. Looking at the individual test results, the
assumption of a proportional effect on the hazard can be rejected on the 1% significance
level for three out of five explanatory variables. The joint test for δδδ = 000 can be rejected on
all common significance levels.

Since all our tests reject the proportional hazards assumption for the data at hand, we
complete the discussion of proportional hazards by investigating the consequences of in-
correctly imposing proportionality. For this purpose we compare the coefficient estimates
obtained from the cloglog and probit models with frailty. These are reported in columns
seven and nine of Table 2. Since the parameters in these types of models are only iden-
tified up to a scale factor, the coefficient estimates obtained from these two models are
not directly comparable.15 However, if both models were equivalent with respect to the
estimated effects of covariates on the hazard, the ratio of any two corresponding coefficient
estimates should be a constant factor. Clearly, this is not the case for the two models con-
sidered here. The distortion becomes most obvious when comparing the estimated effects
of transportation costs and exchange rate obtained from the two different specifications.
While the coefficient on transportation costs obtained from the probit model is 0.0694, the
corresponding value for the cloglog model is 0.0881. The respective effects of the exchange
rate on the hazard are estimated to be −0.0694 and −0.1321. Thus, while transportation
costs and exchange rate alterations have an exactly identical effect (in absolute terms) in
the probit model, the impact of exchange rate movements is estimated to be 50% larger
in absolute terms than the effect of transportation costs when proportionality is imposed.
In general, when using a cloglog model instead of a probit model, the estimated covariate
effects are relatively larger for factors that decrease the hazard and relatively smaller for
factors that increase the hazard. The parameter ratios (βcloglog/βprobit) range from 1.42
to 1.90 in the former case and from 1.17 to 1.38 in the latter.

Thus, in summary, our tests reject the assumption of proportional hazards even when
unobserved heterogeneity is accounted for, implying that the effects of the included inde-
pendent variables are in themselves non-proportional. This implies that the use of a cloglog
model, where the assumption of proportional hazards is also made, is in fact not a solution
to the problem even though this enables the researcher to control for unobserved hetero-
geneity. Further, we find evidence that incorrectly making the assumption of proportional
hazards causes distortions in the estimated covariate effects.

This is convenient, since it keeps the number of additional parameters at a viable level. It also leads to
a very conservative test, since we only reject the proportional hazards assumption if we detect parameter
variation of a linear form.

15See Amemiya (1981) for a detailed discussion of this issue.
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5 Summary and Conclusions

This paper takes as its starting point the fact that – following the influential contributions
by Besedeš and Prusa (2006b) – the literature on the duration of trade has employed Cox
proportional hazards models to estimate the determinants of trade durations. The main
purpose of the paper is to show why it is inappropriate to analyze the duration of trade
with continuous-time models such as the Cox model, and to propose alternative discrete-
time models which are more suitable for estimation. By replicating the study in Besedeš
and Prusa (2006b), but using discrete-time models as well as the original Cox model, the
paper also seeks to investigate whether the theoretical arguments against the Cox model
matter in practice.

We have discussed three major problems with continuous-time models when applied
to large trade data sets. First, such models face problems in the presence of heavy ties,
leading to biased estimation coefficients and standard errors. Second, it is very difficult
to properly control for unobserved heterogeneity, which results in spurious negative dura-
tion dependence of the estimated hazard function, as well as biased estimation coefficients.
Third, the Cox model imposes the restrictive and empirically questionable assumption of
proportional hazards. Incorrectly imposing this assumption will cause biases in the esti-
mated covariate effects. There are two reasons why the proportional hazards assumption
may fail to hold. First, the effect of explanatory variables on the hazard may be intrinsi-
cally non-proportional. Second, unobserved individual heterogeneity that is not accounted
for will cause the impact of observed regressors to depend on duration time, even if the
underlying model is of the proportional hazards form.

By contrast, with discrete-time models there is no difficulty in dealing with ties; unob-
served heterogeneity can easily be controlled for; and one does not have to assume propor-
tional hazards, even though it is possible to do so. In addition, these theoretically more
appropriate models are readily implemented using standard statistical software packages.

Replicating the study by Besedeš and Prusa (2006b), applying discrete-time models in
addition to the original Cox model, we have found empirical evidence in support of all
the theoretical arguments raised against using the Cox model. We have shown that the
numerous ties in the trade duration data lead to incorrectly estimated effects of covariates
on spell termination probabilities when applying a Cox model. This is a potential problem
for all the surveyed papers in the literature that apply Cox models, i.e. all studies except
Brenton, Saborowski and von Uexküll (2009).

We have also found that it is indeed important to control for unobserved heterogeneity,
implying that the difficulties to do so in the Cox model is a serious setback that can generate
misleading conclusions regarding the termination probabilities of trade spells. Specifically,
not only do the models with controls for unobserved heterogeneity have a better fit, but
likelihood-ratio tests also clearly indicate that controlling for unobserved heterogeneity is
actually important, and we find direct evidence of spurious negative duration dependence.
Again, this issue poses problems for all the papers employing a Cox model, even though we
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note that some, such as Besedeš and Prusa (2006b), Besedeš (2008), and Nitsch (2009) have
taken steps to tackle the problem by either including exporter-specific dummy variables or
by employing a stratified Cox model.

We have, lastly, found that the assumption of proportional hazards is rejected even
when unobserved heterogeneity is accounted for. In addition, we find direct evidence that
incorrectly making the assumption of proportional hazards causes biases in the estimated
covariate effects. Two other papers in the literature have in some way approached the
issue of proportional hazards, but they have each only dealt with one of the two potential
reasons why the assumption may not hold. On the one hand, Brenton, Saborowski and
von Uexküll (2009) employ a discrete-time cloglog model incorporating random effects to
account for unobserved heterogeneity. While tackling the effect of omitted regressors, their
model does not allow for intrinsic non-proportionality. On the other hand, Fugazza and
Molina (2009) apply an extended version of the Cox model with time-varying coefficients,
thereby allowing for intrinsically non-proportional covariate effects. Solving the problem of
intrinsic non-proportionality, their approach does not allow them to control for unobserved
heterogeneity, so here the other reason for the proportional hazards assumption to fail is
not dealt with. Since our testing procedure clearly suggest that unobserved heterogeneity
should be controlled for and that the proportional hazards assumption still does not hold,
we argue that neither approach is recommendable.

Thus, considering each of the potential problems with the Cox model in our specific
empirical application, in all cases we find evidence in support of the arguments against the
Cox model. This implies that the problems discussed with continuous-time models are most
likely not just purely theoretical issues that can safely be ignored by empirical researchers.
Instead, researchers that choose to use a Cox model for their analysis of trade durations will
run a serious risk of reaching wrong conclusions regarding both the predicted termination
probabilities of trade relationships and the estimated effects of explanatory variables on
the hazard. Considering that the theoretically more appropriate discrete-time methods are
easily implemented using standard statistical software packages, there are good reasons to
use one of these models. Altogether, our findings suggest that non-proportional hazard
specifications – such as logit or probit – including random effects should be preferred over
the proportional Cox and cloglog specifications.
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