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Abstract

We advance the proposal that DSGE models should not just be

estimated and evaluated with reference to full information methods.

These make strong assumptions and therefore there is uncertainty

about their impact upon results. Some limited information analysis

which can be used in a complementary way seems important. Because

it is sometimes difficult to implement limited information methods

when there are unobservable non-stationary variables in the system

we present a simple method of overcoming this that involves normal-

izing the non-stationary variables with their permanent components

and then estimating the estimating the resulting Euler equations. We

illustrate the interaction between full and limited information meth-

ods in the context of a well-known open economy model of Lubik and

Schorfheide. The transformation was effective in revealing possible

mis-specifications in the equations of LS’s system and the limited in-

formation analysis highlighted the role of priors in having a major

influence upon the estimates.
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1 Introduction

DSGE models are becoming widely used in both academic and central bank
research. In the case of the latter there is naturally great interest in the
ability of the models to adequately represent the data. The question of how
to do this engaged econometricians during the second half of the 20th century.
Initially emphasis was placed upon ways of summarizing system fit because
the recommended estimation method for the system parameters was FIML.
After 2SLS emerged as the estimator that was most widely used, largely
for computational reasons, more attention was paid to how the individual
equations of the system fitted the data. In the late 60s and early 70s however,
many model builders became dissatisfied with such an orientation, largely due
to their experience that, whilst the individual equations seemed to fit the data
closely, when combined into a system there were obvious deficiencies. This
led them to recommend that one should study the properties of complete
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models as part of the model development process - an attitude summed up
very well by the adage " Simulate early and simulate often".1 An important
part of this re-orientation was a focus upon seeing how well the complete
model tracked the data.

Within the DSGE tradition the emphasis on model evaluation seems to
have begun with a focus upon the moments of a small set of variables. More
recently, there has been an increasing use of system estimation and evalua-
tion methods that derive from FIML ( and Bayesian versions of it), probably
because of the improved computational facilities. It is arguable that this
approach is now the norm and single equation methods have been largely
ignored.2 There are some reasons for this shift involving a possible improved
estimator performance when a systems estimator is adopted, an argument
which needs more detailed analysis than is possible in this paper. But the
shift in emphasis has also meant that what evaluation has been done on
these models is largely from the system perspective, basically offering a com-
parison with a VAR, and rarely involves an examination of the individual
structural equations of the DSGE model i.e. of the Euler equations. This
seems unfortunate. The stimulus to system-wide measures of macroeconomic
model performance in the 1970s arose since the single equations of the mod-
els seemed to fit the data well, and therefore evaluation tools were needed
that treated the system as a whole. These were viewed as a complement
rather than a substitute to single equation methods. For this reason it seems
useful to examine the Euler equations of any DSGE model in order to deter-
mine the extent to which they fit the data as a supplement to any systems
tests. One advantage of this approach is that it is often easier to see where
the specification of the DSGE model is weak, and any such information can
suggest suitable re-specifications. Section 2 of the paper therefore sets out
the ways in which one might want to estimate and test the Euler equations
when these are taken individually, rather than as a complete system. To do
this we need to estimate the parameters of the individual equations. One
might use the FIML estimates of the complete system but it is more logical
to look at LIML estimates that only use the information contained in the
Euler equation under study, and we set out various ways in which this might

1We owe this quote to the late Chris Higgins.
2An exception is the literature on the small system known as the New Keynesian Policy

Model that incorporates a Phillips curve, an IS curve and an interest rate rule. Even there

however, although estimation has sometimes been by single equation methods, this has

not been true of evaluation.
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be done.
Performing evaluation at the level of the Euler equations may not be easy,

largely due to the presence of unobserved variables, and this is particularly
apparent when one has unobserved factors which are designed to account
for the fact that variables in a DGSE model ( and the data) are integrated.
In section 3 we outline a method to get around this problem. In doing
so we consider whether it is possible to utilize data in the Euler equations
from which a permanent component has been removed via some filtering
operation. We show that such a strategy can lead to inconsistent estimates
of the parameters of the Euler equations and that one needs to allow for the
nature of the filter that removed the permanent component in order to avoid
such biases. In section 4, we utilize the methods to study the adequacy of
a well known open-economy model used by Lubik and Schorfheide (2006).
Section 5 concludes.

2 DSGE Model Structure and Estimation

DSGE models have the following stylized representation

B0zt = B1zt−1 +Dxt + CEtzt+1 +Gut (1)

where zt is a vector of n × 1 variables, xt is a set of observable, and ut a
set of unobservable shocks. Generally zt will be the logs of variables. There
are p observable and less than or equal to n unobservable shocks. If there
were more than n of the latter we would be looking at factor models and
we side step that issue in this paper. By observable we will mean that the
shocks can be recovered from a statistical model of xt. By unobservable we
will mean that the shocks are defined by the economic model. The system
above consists of a set of Euler equations describing optimal choices and a
set of identities. The latter may be associated with income identities and the
equations describing the evolution of stocks. We ignore the latter although
these will of course be crucial to whether the complete system is able to
adequately match the data. The parameters in the DSGE model will be
designated as θ.

The solution to this system has the form

zt = Pzt−1 +
∞∑

j=0

Πj
1(Π2Etxt+j +Π3EtGut+j)
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where P satisfies B0P − B1 − CP 2 = 0,Π1 = (B0 − CP )−1C,Π2 = (B0 −
CP )−1D and Π3 = (B0−CP )−1G. In the case where the xt and ut are AR(1)
processes with matrices Φx and Φu this reduces to a Vector Autoregression
with Exogenous Variables (VARX) system for zt of the form

zt = Pyt−1 +Dxt +Gut, (2)

where D =
∑

Πj
1Π2Φ

j
x and G =

∑
Πj
1Π3Φ

j
u. Using (2) one can then find an

expression for Etzt+1

Et(zt+1) = Pzt +DEt(xt+1) +GEt(ut+1).

Hence one could solve for the conditional expectation of zt+1 once P,D and
G are known. Since these are functions of θ, once θ is estimated we can
construct the expectation in a way that is consistent with the DSGE model.
Alternatively, one could estimate these parameters in an unconstrained way
either by regressing zt+1 on zt and xt ( if ut was white noise) or zt against
zt−1, zt−2, xt and xt−1 ( if there was a VAR(1) in ut).

Instead of estimating the complete system we believe it is worthwhile
using only the information in the Euler equation of interest to produce esti-
mates of its parameters. We will focus upon a representative Euler equation
in the system of the form

z1t = B10zt +B11zt−1 +D1xt + C1Etzt+1 + ζ1t, (3)

where we have normalized on one of the endogenous variables in the equa-
tion, with others appearing on the RHS in B10zt. The unknown parameters
in B10, B11 etc. will be termed η. Now some of the DSGE parameters will
appear in this equation. These will be θ1. It may not be possible to es-
timate θ1 from η as the dim(θ1) may exceed dim(η). However, assuming
for the moment that it is possible, then the question arises of whether we
can identify and estimate η. Problems in estimating η will arise from the
presence of RHS endogenous variables and Etzt+1. In standard simultaneous
equation methods the first problem is effectively overcome by constructing
a synthetic system composed of the simultaneous equation whose parame-
ters are being estimated and auxiliary equations which determine any RHS
endogenous variables. Let the auxiliary equation parameters be φ. If η and
φ are estimated jointly one would be performing LIML. Pagan (1979) used
this idea to explore the relation of LIML and 2SLS. The latter is of course
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found by applying two-step maximum likelihood to the synthetic system but
with φ replaced by OLS estimates. The ideas above readily extend to the
Euler equation case - the auxiliary VARX system representing any RHS en-
dogenous variables is combined with the Euler equation to form estimates of
Etzt+1 and these are then effectively used as a regressor. One advantage of
constructing estimates in this way is that the same software can be utilized to
generate both full information and limited information estimates. Another
advantage is that one can generate limited information Bayesian estimates of
θ1, provided of course it is possible to recover these parameters using limited
information.

Once the η parameters have been estimated one can utilize them to ei-
ther test the consistency of the assumptions made in generating the systems
estimators or to examine the specification of the Euler equation. If it is pos-
sible to estimate θ1 one might construct a Hausman test based on comparing
the limited and full information estimates of θ1. If only a sub-set of the θ1
are identified using limited information then we could do such a comparison
with the remaining parameters in θ1 set to the full information estimates.
One might also perform specification tests on the Euler equation itself by
specifying a new form and re-estimating its parameters. It seems preferable
to do this with limited information methods so as to avoid the possibility
that the specification error may be elsewhere in the system and it is causing
biases in the estimates of the parameters of this Euler equation. By using the
sub-system estimator one avoids the problems of contamination caused by
specification errors in other equations. Finally, by using limited information
methods one can better break find which sets of information contribute most
to the parameter estimates. The precision of these estimates may be influ-
enced by the use of a systems estimator but it can also be a consequence of
the imposition of prior information if the data is not very informative about
the parameter. Separating these two influences on precision seems impor-
tant. By using a limited information estimator we can abstract from the the
first influence and can therefore study the impact of the prior much more
directly.
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3 Adapting Estimation to Handle I(1) Shocks

3.1 The Effects of Filtering

The discussion above has proceeded as if zt was a stationary random variable.
Where the situation becomes more complex is if the observed data is an I(1)
process and the factors driving it are unobservable. Recourse is often had to
first filtering the data to remove a permanent component and then working
with the filtered data in place of the original levels variables in the Euler
equations. But, since the basic Euler equations relate to the levels of the
variables, it is not clear that they will still hold once a permanent component
is filtered out. Indeed, as we will demonstrate, one normally needs to adjust
the Euler equations when one is using filtered variables. Failure to do so
introduces an omitted variable and this can cause inconsistent estimators of
the parameters of these equations.

To illustrate the argument we work with the Euler equation (3). For
convenience we will assume that there are no RHS endogenous variables en-
tering contemporaneously i.e. B10 = 0. Since the variables zt are in logs we
transform the I(1) variables to a new series zt = zt − zft , which are station-
ary, and where the vector of permanent components zft are constructed by
filtering the data zt. In doing this we assume that the permanent component
is unobservable. If it derived from xt filtering would not be needed as we
would utilize the relationship to remove the permanent component of zt.

The Euler equation is re-expressed in terms of transformed variables to
produce

z1t − zf1t = B11(zt−1 − zft−1) + C1Et+1(zt+1 − zft+1) +Dxt

+C1Et(z
f
t+1) +B11z

f
t−1 − zf1t + ζ1t,

where ζ1t = Gut. Therefore

z1t = C1Et(zt+1) +B11zt−1 + {C1Et(z
f
t+1) +B11z

f
t−1 − zf1t}

+Dxt + ζ1t (4)

It is clear from ( 4) that one cannot assume that the Euler equations will
apply to the transformed variables unless it can be verified that the term in
curly brackets is zero. In general this will not be true. To understand why this
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is so it is useful to consider the special case where z1t is the only I(1) variable,
so that we don’t need to transform any contemporaneous RHS endogenous
variables, C1Etzt+1 = Etz1t+1, and C1 + B11 = 1. The last restriction often
occurs with models such as this ( so called hybrid models). Putting these
features together makes the term under examination

{C1Et(z
f
1,t+1 − zft ) +B11(z

f
t−1 − zf1t}

= C1Et∆zft+1 −B11∆zft . (5)

Now suppose the Beveridge-Nelson (BN) decomposition is used for com-
puting zft . We know that, regardless of whether the filtered estimate is con-
structed from either multivariate or univariate data, and also regardless of
whether the variables are co-integrated or not, the BN estimate of zft has the
property that ∆zft is white noise, so that Et∆zft+1 = 0. Consequently, with

this filter only the term B11∆zft is left in (5). Whether this is uncorrelated
with ζ1t in (3) depends upon the specification of the DSGE model and we
will return to this in the next section. But we do know that Et∆zft+1 will
generally not be zero for other filters.

To analyze what happens if zft is formed using (say) the HP filter is
complicated by the fact that it is a two-sided filter with time varying weights.
There is however a version that has a "steady state" solution of the form

zft =
T∑

j=−T

ajzt−j.

Singleton (1988) gives the weights aj as (λ = 1600)

aj = 1− {.894j[.056 cos(.112j) + .0558 sin(.112j)}

If one looks at this expression for zft it is clear that, due to the terms∑T

k=0 a−jzt−j, Et(∆zft+1) will never be zero, even if ∆zt is white noise. Ig-

noring the fact that the term Et(∆zft+1) is not zero will generally bias any
estimators applied to the Euler equations. Moreover it can be seen that, in
the case of the HP filter, ∆zft has a unit root, so that the error term in the
transformed Euler equation will have a unit root, even though the original
shock in it may not have. This is a consequence of Harvey and Jaeger’s
(1993) demonstration that the underlying assumption about the DGP of zt
used in producing the HP filter is that zt is I(2). To illustrate the effect we
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simulated 500 observations from a DGP for zt of the form ∆zt = et, where
et is white noise, and then computed zft using the HP filter (λ = 1600). The
regression of the simulated ∆zft against ∆zft−1 gives an estimated coefficient
on the latter variable of 1.00. This may be a reason why one sees so many
shocks having roots that are very close to unity in estimated DSGE models
that have variables transformed using the HP filter.

3.2 The Single Permanent Component Case

We look at a case that is very common in DSGE models viz. when there is a
single permanent component driving the system. Generally this is the log of
technology, at. Often investigators transform the variables zt to z̃t = zt− iat,
where i is a unit vector, and then express the Euler equation in terms the
transformed variables. But, as z̃t is unobservable, it is hard to evaluate the
fit of such an equation. Consequently, we seek to replace z̃t by an observ-
able quantity. To see how this is done we start with the "common trends
representation", zt = Jτ t + νt = zpt + νt, where ∆τ t = εt are the common
trends of the system, εt is white noise, and νt is some I(0) component. Since
there is only one I(1) factor in the majority of DSGE models ( and this is
implicitly assumed in the discussion above), this must mean with τ t = apt ,
with apt being the permanent component of at and the latter will be measured
by the Beveridge-Nelson decomposition. Hence

z̃t = zt − iat = Japt + νt − iat

= Japt + νt − i(apt + ξt)

= (J − i)apt + νt − iξt

and, because νt − iξt is I(0), it must be that (J − i) = 0 if z̃t is to be I(0).
Hence, in this one factor model, the permanent component of all series are
the same. Note that zpt can be estimated with either a univariate or multi-
variate Beveridge-Nelson decomposition as in both cases εt would be white
noise.

Now defining zt = zt − zpt , it must be the case that zt and z̃t are related
in the following way

zt = zt − zpt = zt − iat + iat − zpt
= z̃t + i(at − apt ),
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and at − apt will be the transitory component of at. Once a process for at
is specified this can be calculated. If at is an AR(1) (the most common
assumption in DSGEmodels), with coefficient ρa and shock εt, the transitory
and permanent components of at have the properties

∆apt =
εt

1− ρa

(at − apt ) = −
ρa

1− ρa
∆at

leading to

∴ z̃t = zt + i
ρa

1− ρa
∆at

It is also often useful to note that

∆zpt = i∆apt = i
εt

1− ρa
= i

(1− ρaL)∆at
1− ρa

,

and therefore

∆at = (i′i)−1i
1− ρa
1− ρaL

∆zpt . (6)

so that we can write

z̃t = zt + i(i′i)−1i
ρa

1− ρaL
∆zpt , (7)

and the RHS variables are observable. Given the relation between zt and z̃t
we can replace z̃t in any Euler equation before estimation. We utilize this
method in the next section.

4 An Example

4.1 The Model

The model we utilize is in Lubik and Schorfheide (2005) (LS). It is a small
four equation model of an open economy. The IS curve describes output yt

and is specified in their paper in terms of the transformed variable ỹt = yt−at,
where at is the log level of technology. Technology has an I(1) structure
and is the single I(1) variable in the model. Hence it is a single permanent
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component model of the type described in the previous section. 3 The same
transform is applied to (unobservable) foreign output to produce ỹ∗

t
.

ỹt = Etỹt+1 − [τ + θ](Rt −Etπt+1)− α(τ + θ)Et∆qt+1

+ρA∆at + (θ/τ)Et∆ỹ∗t+1, (8)

0 < α < 1, τ−1 > 0

In the IS equation qt is the observable terms of trade, At is the log level
of (unobservable) technology, α is the import share, τ is the intertemporal
elasticity of substitution and θ = α(2− α)(1− τ ).

Their open economy Phillips curve is

πt = βEtπt+1 + αβEt∆qt+1 − α∆qt +
κ

τ + θ
ỹt

+
κθ

τ [τ + θ]
ỹ∗t , (9)

where πt is the domestic inflation rate, β is the discount factor and κ is a
"price stickiness" parameter.

The exchange rate equation is

∆et − πt = −(1− α)∆qt − π∗t , (10)

where et is the log of the exchange rate and π∗t is the (unobservable) foreign
inflation rate.

The policy rule for the nominal interest rate (Rt) is

Rt = ρRRt−1 + (1− ρR) [ψ1πt + ψ2ỹt + ψ3∆et] + εRt . (11)

Exogenous variables evolve as AR(1) processes where shocks εt are all
i.i.d.

∆qt = ρq∆qt−1 + εqt . (12)

∆at = ρa∆at−1 + εat (13)

ỹ∗t = ρy∗ ỹ
∗

t−1
+ εy

∗

t , (14)

π∗t = ρπ∗π
∗

t−1 + επ
∗

t , (15)

3In fact these are deviations from their steady state values but this would only introduce

intercepts into the equations so we ignore that in the exposition below.
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4.2 Transforming the Model

The Euler equations will now be transformed to be in terms of observables
yt = yt − ypt , where the "p" indicates the permanent component. Given the
nature of at, and using Et(∆y∗

t+1) = (ρy∗ − 1)y∗t−1 and Et(∆qt+1) = ρq∆qt,
the IS equation becomes

yt = Etyt+1 − [τ + θ](Rt − Etπt+1)− α(τ + θ)ρq∆qt

−
θ

τ
(1− ρy∗)ỹ

∗

t , (16)

Now the Euler equation only has one shock in it. This should not be surpris-
ing as this is a case where B11 = 0 in (5), and so no extra terms appear in
the Euler equation if one uses the Beveridge-Nelson permanent component as
the normalizing element. This would not be true if we had used HP filtered
data. The presence of the term ρa∆at is then seen to stem from the fact that
at �= apt whenever there is serial correlation in the growth rates of technology.
Hence the choice of normalizing factor at is not the best when there is serial
correlation in technology growth.

In a similar way we can re-write the Phillips curve and interest rate rules
as4

πt = βEtπt+1 − α(1− βρq)∆qt +
κ

(τ + θ)
yt

+
κρa

(τ + θ)(1− ρaL)
∆ypt +

κθ

τ [τ + θ]
ỹ∗t (17)

Rt = ρRRt−1 + (1− ρR) [(ψ1 + ψ3)πt + ψ2yt + ψ3(∆et − πt)]

+ψ2

(1− ρR)ρa∆ypt
(1− ρaL)

+ εRt (18)

It is worth noting that the move to yt means that the (17) and (18) need to
be adjusted to reflect this change and an additional variable ∆ypt appears in

4We can see some interesting features of this model. If ρ
a
= 0 then the structural errors

in the IS and Phillips curves are proportional to ỹ
∗

t
and so they are perfectly correlated.

This means that there may be singularity problems in the system and this would create

difficulties for MLE.
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them. Hence care has to be exercised when using filtered variables and the
appropriate adjustments made to ensure that these do not create estimation
biases.

For later reference we will want to consider a hybrid form of the curve.
Then the underlying Euler equation will be of the form

yt = cEtyt+1 + (1− c)yt−1 − [τ + θ](Rt − Etπt+1)− α(τ + θ)Et∆qt+1

−(θ/τ)Et∆ỹ∗
t+1. (19)

Consequently, if we normalize with at, the term ρa∆at in (8) will become
(c − 1 + cρa)∆at. Thereupon, when we use the IS equation expressed in
terms of yt, there will be an extra term −(1− c)∆ypt present in it.

4.3 Solving the Transformed Model

As discussed in section 2 the solution to the transformed model ( with a
hybrid IS curve) will have the form

zt = Γ1Rt−1 + Γ2∆qt + Γ3vt

where z′t =
[
yt πt ∆et − πt Rt

]
and v′t =

[
∆At ỹ∗t π∗

t εRt
]
. After

substituting
vt = Φvt−1 + εt

into this expression we have

zt = Γ1Rt−1 + Γ2∆qt + Γ3Φvt−1 + Γ3εt (20)

= Γ1Rt−1 + Γ2∆qt + Γ3ΦΓ
−1

3 (zt−1 − Γ1Rt−2 − Γ2∆qt−1) + Γ3εt (21)

DYNARE gives the solution (20). From that output one can determine Γ1,Γ2
and Γ3 and, with known Φ, it is possible to derive the equation (21), which,
apart from the white noise shocks, is expressed in terms of observables. Now
consider the equation for yt = Szt, where S =

[
1 0 0 0

]
. This will be

yt = w′

tδ + SΓ2∆qt + SΓ3εt

where w′

t =
[
Rt−1 yt−1 πt−1 ∆et−1 − πt−1 Rt−2 ∆qt−1

]
. Hence

Et(yt+1) = w′

t+1δ + SΓ2ρq∆qt,
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showing that the Et(yt+1) can be found once Γ1,Γ2 and Γ3 are computed. It
would also be possible to form an estimate of Et(yt+1), either by a regression
of yt+1 against wt+1 and ∆qt or by estimating the parameters in δ and Γ2ρq
freely. The same is true of Et(πt+1).

5 Analysis of the Equations of the LS Model

5.1 Full Information Estimation

Table 1 gives the Full Information Bayesian posterior estimates found after
applying the priors that LS used.5. We also present results that use a different
prior for ρq. As pointed out in Fukac and Pagan (2006) the OLS estimate
of ρq found by regressing ∆qt against ∆qt−1 is negative, but the prior used
by LS precludes negative values. Hence we have replaced that prior with a
normal density. However, this change only has minor effects. Later when
we perform model evaluation we use the original LS estimates. Table 1
estimation results come from applying Dynare Version 3.064. Table 2 shows
what happens when we move to a system transformed to observables i.e. with
the system expressed in terms of ỹt and also yt. There is no reason to think
that these will be the same unless the model is correctly specified, since the
ỹt equations contain a variable that depends on how at is generated, while
using yt makes no such assumption. There are some notable differences - the
influence of the exchange rate upon interest rate decisions that was the main
focus of attention in LS is markedly reduced and the estimates of α, τ and
κ are much less precise. This suggests that we need to look at the estimates
obtained when only limited information is used.

5.2 Limited Information Analysis

5.2.1 The Real Exchange Rate Equation

To begin the analysis of the LS system one should start with (10). Under the
assumptions made in this model∆qt and π∗

t are strongly exogenous processes,
and so (10) is actually a regression equation, with ∆et − πt as dependent
variable, ∆qt as the regressor and with first order serially correlated errors.

5We thank Thomas Lubik for providing the UK estimates.
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Table 1:

Prior LS’ original estimates Our estimates
ψ
1

gamma(1.5,0.25) 1.17 [0.92,1.41] 1.16 [0.97, 1.33]
ψ
2

gamma(0.25,0.13) 0.4 [0.15,0.63] 0.4 [0.18, 0.61]
ψ3 gamma(0.25,0.13) 0.12 [0.07,0.18] 0.12 [0.07, 0.17]
ρR beta(0.5,0.2) 0.68 [0.60, 0.77] 0.69 [0.63, 0.77]
α beta(0.2,0.05) 0.12 [ 0.06, 0.18] 0.12 [0.07, 0.18]
r 2.5 (calib.) 2.46 [ 0.90, 3.97] - -
κ gamma(0.5,0.1) 1.93 [ 1.21, 2.65] 1.97 [1.18, 2.67]
τ gamma(0.5,0.2) 0.52 [ 0.34, 0.69] 0.44 [0.6, 0.64]
ρq normal(-0.2,0.2) 0.09* [ 0.01, 0.16] -0.17 [-0.29, -0.05]
ρA beta(0.2,0.05) 0.2 [ 0.06, 0.33] 0.18 [0.11, 0.24]
ρy∗ beta(0.9,0.05) 0.97 [ 0.95, 0.99] 0.97 [0.96, 0.99]
ρπ∗ beta(0.8,0.1) 0.37 [ 0.27, 0.48] 0.39 [0.29, 0.50]
σR gamma−1(0.5,4) 0.36 [ 0.29, 0.43] 0.33 [0.26, 0.39]
σg gamma−1(1.5,4) 1.39 [ 1.21, 1.57] 1.33 [1.17, 1.50]
σA gamma−1(1,4) 0.67 [ 0.58, 0.77] 0.57 [0.48, 0.65]
σy∗ gamma−1(1.5,4) 1.18 [ 0.70, 1.65] 0.83 [0.32, 1.49]
σπ∗ gamma−1(0.55,4) 3.23 [ 2.81, 3.64] 3.31 [2.90, 3.73]

Note: * LS use different prior - beta(0.2,0.1)

We know therefore that one can estimate α, σπ∗ and ρπ∗ from this equation
without reference to the remainder of the system.

The exact MLE estimates of the parameters of (10) are found using Mi-
croFit Version 5 and are presented in Table 3. We will call this the LIML
estimator since it is a single equation estimator.

Now it is clear that these are very different to the Full Information
Bayesian estimates in Table 1. A negative value for α is certainly unattrac-
tive since it is meant to be an import share, but the implication of the MLE
estimates is more that one can’t estimate it with any precision. In times past
a "wrong sign" might well have suggested to an investigator that there are
specification problems with the equation. To look at what causes the dif-
ference between the Full Information Bayesian estimates and the LIML we
stand back from the system and simply estimate the exchange rate equation
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Table 2:

Original model Model with hybrid IS curve
ỹ ȳ ỹ ȳ

c* - - - - 0.92 [0.84, 1] 0.53 [0.46, 0.58]
ψ1 1.16 [0.97, 1.33] 1.35 [1.09, 1.59] 1.19 [0.95, 1.40] 1.20 [0.91, 1.45]
ψ2 0.4 [0.18, 0.61] 0.34 [0.15, 0.52] 0.51 [0.16, 0.76] 0.12 [0.05, 0.19]
ψ
3

0.12 [0.07, 0.17] 0.06 [0.01, 0.10] 0.13 [0.08, 0.19] 0.11 [0.05, 0.16]
ρR 0.69 [0.63, 0.77] 0.73 [0.66, 0.80] 0.70 [0.60, 0.78] 0.77 [0.71, 0.84]
α 0.12 [0.07, 0.18] 0.05 [0.02, 0.07] 0.13 [0.07, 0.17] 0.07 [0.04, 0.10]
κ 1.97 [1.18, 2.67] 0.72 [0.42, 0.99] 1.86 [1.05, 259] 0.32 [0.22, 0.44]
τ 0.44 [0.6, 0.64] 0.12 [0.07, 0.15] 0.39 [0.25, 0.52] 0.12 [0.07, 0.16]
ρq -0.17 [-0.29, -0.05] -0.18 [-0.28, -0.06] -0.19 [-0.31, -0.07] -0.19 [-0.31, -0.06]
ρA 0.18 [0.11, 0.24] 0.24 [0.14, 0.32] 0.21 [0.12, 0.28] 0.17 [0.10, 0.23]
ρy∗ 0.97 [0.96, 0.99] 0.97 [0.95, 0.98] 0.98 [0.95, 0.99] 0.84 [0.77, 0.89]
ρπ∗ 0.39 [0.29, 0.50] 0.29 [0.16, 0.43] 0.37 [0.25, 0.47] 0.30 [0.20, 0.40]
σR 0.33 [0.26, 0.39] 0.32 [0.26, 0.37] 0.34 [0.26, 0.42] 0.25 [0.21, 0.28]
σg 1.33 [1.17, 1.50] 1.33 [1.15, 1.49] 1.34 [1.16, 1.50] 1.35 [1.19, 1.56]
σA 0.57 [0.48, 0.65] 1.12 [0.33, 2.07] 0.58 [0.49, 0.67] 0.63 [0.26, 0.93]
σy∗ 0.83 [0.32, 1.49] 0.74 [0.33, 1.27] 0.58 [0.35, 0.83] 0.59 [0.35, 0.81]
σπ∗ 3.31 [2.90, 3.73] 3.22 [2.80, 3.57] 3.25 [2.84, 3.61] 3.24 [2.82, 3.65]
σεbn - - 0.67 [0.57, 0.75] - - 0.88 [0.71, 1.05]

Note: * We take the prior for the habit persistence parameter
c ∼beta(0.2,0.3).

using Limited Information Bayesian methods. Figure 1 then shows that there
is a large difference between the posteriors of the Full Information (system)
(FIBE) and Limited Information (single equation) (SIBE) Bayesian estima-
tors. The imprecision that is indicated by the MLE is present in the SIBE
results. Moreover the fact that the mean of the posterior for SIBE is vir-
tually the same as the prior reveals that there is very little information in
the sample about α. This point is made very clear when one looks at Figure
2, which shows how the likelihood changes with α, and what the criterion
being used to get the mode of the posterior is (the criterion being the sum
of the log likelihood plus the log of the prior). It’s evident that this criterion
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Table 3: LIML Estimates of the Parameters of (10)

est std dev t
α -.113 .26 .43
ρ
π∗

.073 .11 .65
σπ∗ 3.195 .36

is dominated by the prior component. Given this the Limited Information
modal estimates reflect the location of the prior mean. If it is centered on
zero one will get results very similar to the MLE. To show this we impose a
normal prior with a zero mean and the same standard deviation as for the
beta density. The results are in the bottom part of Figure 1.

Although there is nothing surprising in these findings, the point is that the
Bayesian systems estimates suggest the opposite i.e. that there is a good deal
of information in the sample. The implied standard deviation of the posterior
for α is .034 which would produce a t ratio of around 4, as contrasted with
the .43 of the single equation MLE. Now, given the exogeneity assumptions in
place, the extra information is clearly not from the data on the real exchange
rate but must arise from either the imposition of cross-equation restrictions
due to the presence in the system of forward expectations or the assumption
that the shocks in the LS model are uncorrelated. If these assumptions are
incorrect then there will be a bias introduced into the posterior of α. It seems
a big assumption to believe that these will be accurate and we will see later
that there is strong evidence against them. One wonders at the wisdom of
using the complete system to estimate parameters that can be estimated
without reference to it.

The same situation applies to ρ
π∗
. In this case however the divergence does

not come from the use of a Full Information estimator. Figure 3 shows that
the posterior we get is virtually the same for the Full and Limited Information
estimators. What accounts for the difference now is the nature of the prior
and its location. If we choose a uniform density that has the same mean and
variance as the beta density we basically get the MLE. Moreover, if we choose
a normal prior with the same standard deviation as the beta prior, and also
one that is five times higher, than we would again get the MLE evidence.
Thus the parameterization of a given prior is now the principal determinant
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of the modal estimates. The uncertainty, as judged by the posterior standard
deviation of .011, is the same as for the LIML estimator, so that it is the
location of the posterior that has been affected, and this is important if one
wished to decide if ρ

π∗
was zero. The data only has a limited influence

on the posterior location due to the strength of the prior. Exactly where
one gets the prior knowledge that the autoregressive parameter has a very
limited range of values is unknown. In this simple case one can discover these
difficulties but, in more complex applications, it seems unlikely. Thus one
has to be very wary of where the information supplied with systems Bayesian
estimators come from, and studying the limited information estimators as a
complement seems imperative.

5.2.2 The IS Curve

The IS equation has the form

y
t

= Etyt+1 + η1(Rt −Etπt+1) + η2∆qt + ỹ∗
t

ỹ∗
t

= η3ỹ
∗

t−1 + η4et. (22)

Now we need to decide which of the model assumptions we want to retain.
We have already done this implicitly by making the coefficient on Et(yt+1)
equal to one. Later we will review that choice. This means that there are
6 DSGE parameters that appear in (22), τ , α, ρỹ∗ , σỹ∗, ρq and σq, so that it
is impossible to estimate all six from this equation with limited information
methods. However, if an equation for the terms of trade, (12), is adjoined
then we will have a small system that incorporates the six parameters. To
estimate the parameters we need to complete the system with equations for
πt and Rt. We do that by adjoining unrestricted versions of VARX equations
in (21).

A second decision that is required is how we are to estimate this new syn-
thetic system. In order to retain comparability with LS’s values we decided
to use Bayesian methods i.e. we used the same priors as they did for τ ,α, ρỹ∗
and σỹ∗, while the priors for the ∆qt equation were those given in Table 1
earlier. The VARX parameters were set to the OLS values from fitting (21).6

Since ∆et−1 appears in the VARX equations for πt and Rt an equation to
generate it was needed. We decided to use (10) but with (1 − α) replaced

6The alternative was to jointly estimate these with the IS equation. Mostly this gives

similar results but the computational demands are much higher.
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by cq, so that the information in the exchange rate equation is not used for
estimating α except insofar as it affects expectations. An alternative would
be to use a VARX equation for ∆et but, in fact, the main determinants were
∆Rt and ∆qt. DYNARE was then used to estimate this system. Thus the
solutions for Et(yt+1) and Et(πt+1) are consistent with the synthetic system.
In order to generate yt for use in the system we need to compute ypt , and this
was done by applying the Beveridge-Nelson decomposition to data on yt. An
assumption was made that ∆yt was an AR(2), although the answers are not
sensitive to making it an AR(1) or higher order.

Finally, if we accept that there are likely to be specification problems
with the equation, what alternative forms suggest themselves? The most
likely mis-specification is that the equation is in fact a hybrid one i.e. it has
the form (19). The limited information (2SLS type) estimates of such an
equation were found and Table 4 presents these. For comparative purposes
Table 3 contains full information estimates of the hybrid curve using both
the ỹt and yt forms. It is interesting that there is strong evidence of a hybrid
form once we work with yt. Moreover, the coefficient of Etyt+1 is well away
from zero in the latter form, unlike the case with ỹt, which may be why LS
did not use such a form.

Examining the limited information results it is clear that the estimates of
α and τ become very imprecise when the mis-specification is corrected, and
ỹ∗t now seems to have unit root behaviour. This may be indicative of the fact
that the equation is still mis-specified. Returning to the non-hybrid model it
is interesting to observe that α and τ are estimated about as precisely with
limited information as with full information. This could be because the IS
equation is the dominant source of information about them. An alternative
however is that there is little information in the data about these parameters
and so the results we are getting just reflect the prior. To assess this we
computed the modes of these parameters for the non-hybrid model under
two scenarions - when the priors are those used by LS and when they are
normal with the same mean but with a large standard deviation. The LS-
modes were (.07,.08) and the normal-priors gave modes of (.003,.007). Hence
the prior seems to the dominant influence on the estimation of the coefficients
and the data embodies in the IS curve has little role.
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Table 4: LIBE (2SLS) of the IS Curve

Non-hybrid IS curve Hybrid IS curve
α 0.11 [0.05 0.21] 0.02 [0.01 0.02]
τ 0.12 [0.06 0.30] 0.01 [0.00 0.02]
ρy∗ 0.91 [0.86 0.93] 0.99 [0.98 0.99]
ρπ∗ 0.48 [0.32 0.63] 0.36 [0.26 0.48]
c - - 0.68 [0.66 0.69]
σy∗ 0.79 [0.41 1.11] 0.79 [0.44 1.17]
σπ∗ 3.39 [2.95 3.48] 3.51 [3.07 4.07]

5.2.3 The Phillips Curve

Limited Information estimates of the Phillips curve in (17) were found by
using the same strategy as for the IS curve. The DSGE model parameters
present in the equation are α,τ , κ, ρy∗ , σy∗, ρg, σq, ρA. Therefore one parame-
ter must be fixed and ρA was set to .2. Then equations for ∆qt,∆et were
adjoined along with VARX equations for yt and Rt. Prima facie it looks as
if there is useful information in the equation for α, τ although there is clearly
very little about κ (and this is the only equation κ appears in). Indeed,
combining the results from Table 2 about κ with these, it seems as if there
is only weak information in the sample and that the strength of the evidence
in Table 1 relies a great deal upon the normalization with respect to an un-
observable. As this parameter determines the effect of variations in demand
upon inflation, it is a crucial parameter in macroeconomic models, so that
one would need to be very cautious in adopting it.7 Regarding α, τ we again
allow the priors on α, τ to have the same mean as the LS versions but with a
substantial standard deviation. The modes are (.16,.22) and (.12,.14) respec-
tively, so it does appear as if the Phillips curve contains some evidence on
these parameters, and this is the source of the systems results. A check on the

7It is noticeable that there are differences between the estimates of κ found using the

ỹt and yt systems. One reason for this is that we are using the assumption in the DSGE

model that ∆at is uncorrelated with the other shocks. If true this means that ∆y
p

t is

uncorrelated with them. Later we will see that this may well be incorrect and that would

produce biases in the coefficient estimates of both formulations of the system, possibly in

different directions.
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specification once again involved estimating a hybrid model. This was done
by writing βEtπt+1 as βcEtπt+1 + (1 − c)βπt−1 and estimating c. As Table
5 shows there is clear evidence of this. Interestingly, unlike the IS equation,
the α and τ parameters are more precisely estimated than with full informa-
tion estimation which suggests that some of the mis-specifications that can
happen in the complete system have had an impact upon the estimation of
α and τ .

Table 5: LIBE (2SLS) of the Phillips Curve

Non-hybrid PC curve Hybrid PC curve
α 0.17 [0.11 0.23] 0.17 [0.12 0.22]
τ 0.22 [0.03 0.39] 0.24 [0.05 0.48]
κ 0.11 [0.03 0.19] 0.11 [0.04 0.19]
ρy∗ 0.37 [0.19 0.57] 0.08 [0.00 0.19]
ρπ∗ 0.23 [0.07 0.38] 0.24 [0.07 0.61]
c - - 0.70 [0.59 0.79]
σy∗ 2.92 [0.69 5.09] 3.72 [0.74 7.96]
σπ∗ 3.26 [2.88 3.72] 3.26 [3.82 3.74]

5.3 Some Residual and Tracking Diagnostics

A different perspective is to be had by using LS’s parameter estimates to
compute yt, Et(yt+1) and Et(πt+1). Once these quantities have been formed
ỹ∗t can be found from (16) and (17) and the interest rate shock εRt from (18).
Table 6 fits an AR(2) to these series. According to the LS full information
estimates the serial correlation in ỹ∗t should be .97 and the interest rate shock
should have none. Clearly the estimated model is inconsistent with these
predictions. Moreover, whilst the correlation between the two estimates of
ỹ∗t should be unity, it is actually .68. Worse is the fact that the correlation
between the interest rate shock and ỹ∗t is either -.35 (using the IS estimate of
ỹ∗t ) or -.7 (using the Phillips curve estimate) rather than zero, which was the
basis of the Bayesian estimates. It is also the case that ∆ypt from the model
is correlated with ỹ∗t with a correlation of .3, while ∆ypt using the Beveridge
Nelson decomposition is correlated with its estimate of ỹ∗t from the Phillips
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curve of .70 (non-hybrid IS model). This almost certainly accounts for the
differences in parameter estimates in Table 2 found with these different
measures of the permanent component. Neither should really be trusted
as all estimates are based on the assumption that ∆at is uncorrelated with
ỹ∗t . The latter seems to be an odd assumption to make as it implies that
the transitory component of world technology developments are uncorrelated
with domestic ones.

Table 6: AR(2) Models Fitted to Euler Equation Residuals

Eq AR(1) t AR(2) t
yt .32 3.0 .37 3.5
πt .17 1.6 .50 5.0
Rt -.33 -2.8 .17 1.5

A final diagnostic that is useful is a comparison of the expectations of
inflation provided by the estimated LS model with the actual inflation rate.
Fig 4 presents this. It is clear that, although expectations track the downward
movements to inflation that occurred over the 1990s, it overdoes this, with
deflation being a feature, particularly towards the end of the sample.

6 Conclusion

We have advanced the proposal that DSGE models should not just be es-
timated and evaluated with reference to full information methods. These
make strong assumptions and therefore there is uncertainty about their im-
pact upon results. Some limited information analysis which can be used in
a complementary way seems important. Because it is sometimes difficult to
implement limited information methods when there are unobservable non-
stationary variables in the system we present a simple method of overcoming
this that involves normalizing the non-stationary variables with their per-
manent components and then estimating the estimating the resulting Euler
equations. We illustrate the interaction between full and limited informa-
tion methods in the context of a well-known open economy model of Lubik
and Schorfheide. The transformation to observable variables that we employ
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was effective in revealing possible mis-specifications in the equations of LS’s
system and the limited information analysis highlighted the role of priors in
having a major influence upon the estimates. The major influence of pri-
ors seems to be one that needs attention, particularly if policy actions are
being recommended that depend upon parameter estimates that are largely
produced by the type of prior density used rather than the data.
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