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Abstract

Finding the minimum of an objective function, such as a least squares or neg-

ative log-likelihood function, with respect to the unknown model parameters

is a problem often encountered in econometrics. Consequently, students of

econometrics and applied econometricians are usually well-grounded in the

broad differences between the numerical procedures employed to solve these

problems. Often, however, relatively little time is given to understanding

the practical subtleties of implementing these schemes when faced with ill-

behaved problems. This paper addresses some of the details involved in

practical optimisation, such as dealing with constraints on the parameters,

specifying starting values, termination criteria and analytical gradients, and

illustrates some of the general ideas with several instructive examples.
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1 Introduction

An important class of problem in econometric modelling is the unconstrained minimisation

problem

min
θ

f(x, θ) , (1)

where x is the observed data and θ is a vector of model parameters to be chosen to minimise

the objective function f(x, θ). Typically, f(x, θ), the function to be minimised, will be either

a (weighted) sum of squares or a negative log-likelihood function. In most realistic scenarios

no closed-form expression for f(x, θ) (or its partial derivatives) can be constructed and so the

minimisation process is almost invariably achieved by numerical methods. There are two broad

flavours of minimisation algorithm, namely, procedures which rely on function values alone and

algorithms that use the derivatives of the function. As the problems typically encountered in

econometrics leads to objective functions that are at least twice differentiable, this paper will

focus only on gradient-based algorithms.

At a superficial level, solving the minimisation problem is straightforward, usually involving

only the choice of preferred econometric programming language like MATLAB, GAUSS, OX or RATS,

or more interactive software packages like EViews. These packages usually provide reliable

default settings for the user-supplied information required by a minimisation routine. It is

therefore possible to solve advanced problems without ever inquiring into the meaning of many

of the concepts involved in the minimisation process. An undesirable side effect of this is

that the details of numerical optimisation are very often not included in introductory or even

advanced courses in econometrics. Consequently, econometricians are adept at describing the

similarities and differences of the typical iteration of variants of Newton-type algorithms, but

are less proficient in navigating the murky waters of the subtle differences between truncation

and rounding error, the extent of the loss of accuracy when computing numerical derivatives as

opposed to using analytical derivatives and how to choose termination criteria optimally.

The aim of this paper, therefore, is to elucidate some of the devil in the detail lurking behind

successful practical optimisation by emphasising that numerical minimsation requires a sequence

of many floating-point operations performed with finite precision. To understand under what

conditions an algorithm can fail and assess whether or not its final output represents an accept-

able solution, it is desirable to have at least some appreciation of the more intricate aspects of

the steps in the optimisation process.

The rest of the paper is structured as follows. Section 2 provides a brief summary of the basic

structure of a gradient algorithm. Sections 3 to 6 describe many of the decisions that need to be

made in any minimisation procedure and the criteria that have to be set to regulate the quality of

the output. A practical example, based on Generalised Method of Moments (GMM) estimation

is given in Section 7. The appendix describes two commonly used test problems that are also

used in some of the examples in the paper. All the computation in the paper is done using

MATLAB and all relevant code and data may be downloaded at http://www.ncer.edu.au/data

or http://www.eap-journal.com.



2 A Quick Recap on Gradient Algorithms

As noted earlier, the decision to minimise the objective function f(x, θ) using an algorithm

based on gradients assumes a priori that all its first and second derivatives exist. The gradient

vector G(θ) and Hessian matrix H(θ) of the function f(x, θ) are defined respectively by

G(θ) =
∂f(x, θ)

∂θ
, H(θ) =

∂2f(x, θ)

∂θ∂θ′
. (2)

Minima of the objective function occur at parameter values for which the gradient is zero and

the associated Hessian matrix is positive definite. The estimator, θ̂, of the parameter vector θ

therefore satisfies the condition

G(θ̂) = 0 . (3)

Given a guess θ̂k which is assumed to be near the optimal value θ at which a minimum is

attained, the Taylor series expansion of G(θ̂) about θ̂k is

G(θ̂) = G(θ̂k + (θ̂ − θ̂k)) = G(θ̂k) + H(θ̂k)(θ̂ − θ̂k) + O(θ̂ − θ̂k)
2 .

By replacing G(θ̂) in equation (3) by the previous expression and ignoring all terms of order

two and above, it follows that

θ̂ ≃ θ̂k − H(θ̂k)
−1G(θ̂k) .

Based on this result, the next guess for θ̂ is

θ̂k+1 = θ̂k − H(θ̂k)
−1G(θ̂k) . (4)

The term −H(θ̂k)
−1G(θ̂k) is usually referred to as a “full Newton step” which would normally

be taken in the close vicinity of the minimum. Further away from the minimum, the full Newton

step is not guaranteed to reduce the value of the function and a smaller step may be required

and therefore the convention is to use the adjusted update scheme

θ̂k+1 = θ̂k − αkH(θ̂k)
−1G(θ̂k) , (5)

where αk controls the step size and is chosen to ensure that the function is reduced at each

iteration. The value of αk is chosen by a one-dimensional minimisation procedure, known as

line-searching, which is embedded in each iteration of the outer algorithm.1

Once the minimum has been located and parameter values determined, the standard errors

of these parameters are usually found by taking the square root of the main diagonal of the

inverse of the estimated Hessian matrix. Assuming that the shape of the objective function in

the vicinity of the minimum is approximately parabolic, the Hessian matrix at the minimum is

guaranteed to be a positive definite matrix and its value gives the curvature of the objective

function at the minimum. Larger Hessian matrices correspond to sharper curvatures of the

1Line-searching is an important topic in its own right, but will not be examined in detail in this paper. It is

important to note, however, that the efficacy of line-searching depends on the accuracy with which the objective

function can be resolved in the direction of the line-search. If it is impossible to resolve the function to the

requested accuracy, then the minimisation algorithm will fail in the line search and return an appropriate error

flag.
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objective function at the minimum, and consequently more precise estimates of the values of

the optimal parameters.

All gradient-based algorithms employ the general iterative scheme in equation (5) and differ only

in respect of their approximation of the Hessian matrix at each iteration. A Newton-Raphson

algorithm computes the Hessian matrix directly, the Method of Scoring uses the Information

matrix (negative of the expected value of the Hessian matrix) and the Berndt, Hall, Hall and

Hausman (BHHH) algorithm (Berndt et al., 1974) approximates the Hessian by the outer prod-

uct of the gradient vector. Another important class of gradient methods are the quasi-Newton

algorithms. Instead of computing the Hessian matrix these algorithms build up an approxima-

tion of it from successive iterations.

In theory there is little to choose between these algorithms because in the vicinity of a minimum

each should enjoy quadratic convergence, which means that

‖θ̂k+1 − θ‖ < κ‖θ̂k − θ‖2 κ > 0 .

In other words, if θ̂k is accurate to 2 decimal places, then it is anticipated that θ̂k+1 will be

accurate to 4 decimal places and that θ̂k+2 will be accurate to 8 decimal places and so on. In

choosing an algorithm, however, there are a few practical considerations to bear in mind.

(1) Because the Information matrix is the expected value of the negative Hessian matrix, it

is problem specific and typically is not easy to compute. Consequently, the Method of

Scoring is largely of theoretical interest.

(2) Close to the minimum Newton-Raphson converges quadratically but further away from

the minimum, the Hessian matrix may not be positive definite and this may cause the

algorithm to become unstable. This has led to a strategy in which the the starting values

are refined by means of an algorithm based solely on function evaluations, such as the

simplex algorithm (Nelder and Mead, 1965), before switching into the Newton-Raphson

procedure.

(3) BHHH provides an estimate of the Hessian that is guaranteed to be positive definite and

is therefore a popular choice in econometrics.

(4) The current consensus is that quasi-Newton algorithms that construct approximations

to the Hessian matrix over successive iterations are the preferred choice. Specifically,

the Hessian update of the BFGS algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb,

1970; Shanno, 1970) is particularly robust and therefore most optimisation toolboxes will

provide BFGS as an option, very often as the default choice.

3 Imposing Constraints

Although the minimisation problem formulated in equation (1) is an unconstrained one, few

problems in econometrics are truly unconstrained, since often the specification of the problem

dictates that certain parameters are required to lie within certain intervals. For example, the
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parameters of autoregressive or moving-average time-series models must lie within the unit

interval for the processes to be stationary. The parameters in an unconstrained minimisation

algorithm, however, must be able to take all possible values. Once iteration commences, the

user cannot control the values the algorithm selects for parameters. Thus if an unconstrained

algorithm is used in the minimisation of an objective function for which the parameters are

necessarily constrained, there is no mechanism to prevent the algorithm attempting to calculate

the objective function for values of parameters which fail to satisfy the constraint conditions

even although the true minimum is attained for values of the parameters for which all constraints

are satisfied.

One approach is to abandon unconstrained optimisation and adopt the formal framework of

constrained optimisation. Constrained minimisation procedures, however, are often difficult to

formulate and to implement, and also suffer from slower convergence. In short, constrained min-

imisation algorithms are less robust than unconstrained algorithms. Another approach, often

easy to implement, is for the user to specify the problem in such a way that an unconstrained al-

gorithm will nevertheless choose model parameters that always satisfy the constraint conditions.

This outcome can be accomplished by means of a bijective mapping from the true parameter

space of the model into a user-defined unconstrained parameter space. The choice of mapping

function will inevitably be nonlinear, because its role is to transform a finite or semi-infinite

interval into an infinite interval.

Consider the case of estimating a single parameter θ where θ ∈ (a, b). The key idea is to

transform the parameter θ by means of a non-linear bijective mapping, φ = g(θ), between

the constrained interval (a, b) and the real line. Thus each and every value of φ corresponds

to a unique value of θ satisfying the desired constraint, and obtained by applying the inverse

transform θ = g−1(φ). In other words, when the minimsation algorithm returns φ̂, the value of φ

that minimises the objective function, the associated estimate of θ is given by θ̂ = g−1(φ̂). Some

useful one-dimensional transformations, their associated inverse functions and the gradients of

the transformations are presented in Table 1. Note, however, that the application of the bijective

mapping alters the scale of the variable being transformed and therefore its gradient. This has

important implications for the minimisation algorithm if analytical derivatives are to be used,

a point taken up in Section 6.
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Constraint Transform Inverse Transform Jacobian

φ = g(θ) θ = g−1(φ) dφ/dθ

(0,∞) φ = log θ θ = eφ dg

dθ
=

1

θ

(−∞, 0) φ = log(−θ) θ = −eφ dg

dθ
=

1

θ

(0, 1) φ = log
( θ

1 − θ

)
θ =

1

1 + e−φ

dg

dθ
=

1

θ(1 − θ)

(0, π) φ = log
( θ

π − θ

)
θ =

π

1 + e−φ

dg

dθ
=

π

θ(π − θ)

(a, b) φ = log
(θ − a

b − θ

)
θ =

b + ae−φ

1 + e−φ

dg

dθ
=

b − a

(θ − a)(b − θ)

(−1, 1) φ = atanh(θ) θ = tanh(φ)
dg

dθ
=

1

1 − θ2

(−1, 1) φ =
θ

1 − |θ| θ =
φ

1 + |φ|
dg

dθ
=

1

(1 − |θ|)2

(−1, 1) φ = tan
(πθ

2

)
θ =

2

π
tan−1 φ

dg

dθ
=

π

2
sec2

(πθ

2

)

Table 1: Some useful transformations for imposing constraints on θ.

Self-evidently the choice of mapping used will be problem specific, but it is useful to note the

following.

(1) The log transform is particularly useful in problems where the parameters are required to

be positive, as will become clear in Section 7. Note that in many cases not only dφ/dθ

is required but also dθ/dφ and in the case of the log transform, the latter is simply the

parameter θ itself.

(2) A popular mapping used to constrain a parameter to the interval (−1, 1) is

φ =
θ

1 − |θ| .

This is fundamentally different to all of the other mappings listed in Table 1 in the respect

that its second derivative is not defined at θ = 0.

The price to be paid for the convenience of using an unconstrained minimisation algorithm on

what is essentially a constrained problem is that the Hessian matrix returned by the algorithm

cannot be used immediately to obtain the standard errors of the model parameters simply by

taking the square roots of the diagonal elements of the inverse Hessian matrix. In this situation,

there are two ways of obtaining standard errors for the parameters.

(1) A straightforward way to compute standard errors is to express the objective function

in terms of the true parameters θ. The gradient vector and Hessian matrix can then

be computed numerically at the minimum using the estimated values of the parameters.

Because no searching is involved and the perturbation of the optimal parameters used in

the computation of the finite differences is small, the probability of numerical instability

is much reduced.
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(2) Alternatively, the relationship between Hθ, the Hessian matrix with respect to the param-

eters of the model and Hφ, the Hessian matrix evaluated at the mapped parameters, can

be constructed using the chain rule

∂2f

∂θ∂θ′
=

n∑

i=1

∂f

∂φi

∂2φi

∂θ∂θ′
+

n∑

i=1

n∑

r=1

∂φi

∂θ

∂2f

∂φi∂φr

∂φr

∂θ′
. (6)

At the minimum, the first term on the right hand side of this identity is zero because the

gradient of the objective function with respect to the parameters φ is zero. It therefore

follows from the identity (6) that

Hθ = J ′HφJ ,

where

J =





∂φ1

∂θ1

∂φ1

∂θ2

∂φ1

∂θ3
· · · ∂φ1

∂θn

∂φ2

∂θ1

∂φ2

∂θ2

∂φ2

∂θ3
· · · ∂φ2

∂θn

∂φ3

∂θ1

∂φ3

∂θ2

∂φ3

∂θ3
· · · ∂φ3

∂θn
...

...
...

. . .
...

∂φn

∂θ1

∂φn

∂θ2

∂φn

∂θ3
· · · ∂φn

∂θn





,

is the Jacobian matrix of the transformation from θ to φ, in this instance evaluated at

the minimum of the objective function. In the particular case in which each constrained

parameter is transformed individually, the Jacobian is a diagonal matrix. Computing

standard errors by scaling the Hessian in this way is known as the Delta Method.

4 Starting Values

All numerical algorithms require a starting value, θ̂0, for the parameter vector. If the objective

function is globally concave, that is every chord of the objective function lies above the function,

then there is a unique global minimum and the algorithm will converge to this global minimum

for any initial choice of values for the parameters.

It is usually a good idea to check the computation of the objective function at the proposed

starting values as this can be a useful diagnostic device. Two different types of error can occur.

The first error is a failure to compute the objective function resulting in “NaN” being returned.

Errors of this type usually occur as the result of a request to either divide by zero, compute

the logarithm of zero or compute the exponential of a very large positive/negative number

resulting in overflow/underflow. The second type of error occurs when the objective function

has a complex value when computed at the initial point (or any other point). This happens

because programs such as MATLAB and GAUSS do not fail when asked to take the logarithm or

power of a negative number, but instead return a complex number. In these situations it is

likely that a programming error has occurred in which a logarithm of a negative number has

been taken or a negative number has been raised to a non-integer power.
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If the computation of the objective function is well behaved for the chosen starting values, but

fails as soon as minimisation algorithm is called, then is is likely that there has been a violation

of an overlooked parameter constraint. As pointed out in Section 3, this is likely to occur if an

unconstrained algorithm is used to minimise an objective function for which the parameters are

constrained.

Previous empirical work of a similar nature may provide reasonable starting values for the

model parameters, but it is not wise to assume that the convergence of the algorithm for a

single choice of starting values provides a reliable indicator that a global minimum has been

obtained. Consider for example the Judge model, described in the Appendix, in which the

parameters are to be estimated by a simple nonlinear least squares fit. For a random choice

of starting locations (β1, β2) chosen in the square [−4, 4] × [−4, 4] the global minimum of the

Judge function will be identified approximately 55% − 60% of the time.2 At the very least

this observation suggests that the algorithm must be run for more than one choice of starting

parameters to help guard against the isolation of a local as opposed to a global minimum.

Starting values of β1
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Figure 1: The pattern of convergence for different combinations of starting values for

the parameters of the Judge model. The darker regions correspond to starting values

that converged to the global minimum (lower white dot) whereas the lighter regions

correspond to starting values that converged to the local minimum (upper white dot).

Figure 1 illustrates the convergence pattern for the Judge function for a grid of starting points

(β1, β2) in the square [−4, 4] × [−4, 4]. The result of this experiment indicates that it may

sometimes be insufficient to make minor changes to starting values in order to test the robustness

of a minimum. For example, starting points (β1, β2) with β1 < −1 almost always converge to

the local minimum irrespective of the choice of starting value for β2. The reason for this stems

from the behaviour of the surface of the function as can be seen in Figure 4 in the Appendix.

There is a ridge approximate lying along the line β1 = −1 and negative starting values for this

parameter will mean that there is a strong probability that the algorithm will slide down the

ridge in the direction of local minimum. The lesson to be learned here is that repeated starting

values chosen at random offer a better chance of avoiding convergence to a local minimum than

2The BFGS algorithm was run 100 times with all the user specified parameters taking their default values.
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a strategy which tests robustness of a proposed global minimum by simply making small changes

to the original starting values of the parameter vector.

Counter intuitively, Figure 1 indicates that starting parameters close to the local minimum also

appear to converge to the global minimum. The reason for this relates to the tolerance set on

the gradient, a topic which is explored in the next section.3

5 Termination Criteria

All minimisation algorithms that revolve around an iterative procedure require stopping or

termination criteria that will cause the algorithm will stop when one or more of these criteria

are satisfied. Two straightforward termination criteria impose a maximum number of iterations

or a maximum number of function evaluations and require no further explanation. More tricky

to deal with are stopping criteria based on the change of the value of the objective function, the

absolute value of its gradient and the change in the parameter values generated by an iteration.

These criteria are specified in terms of user-supplied tolerances. An iterative algorithm will

terminate when any one of these stopping criteria is satisfied. In order to set meaningful values

for these user-specified tolerances it is first necessary to explore their meaning in more detail.

5.1 Tolerances

Tolerance defined on function value

Let f(θ̂k) and f(θ̂k+1) denote the values of the function at iterations k and (k +1). The change

in the value of the function as the result of performing the (k + 1)th iteration is regarded as

small when

|f(θ̂k+1) − f(θ̂k)| < τF

(
1 + |f(θ̂k)|

)
, (7)

where τF is a user-supplied error tolerance for measuring changes in the value of the objective

function. If |f(θ̂k)| is less than one, then τF behaves as an absolute error for changes in the

value of the function. On the other hand, if |f(θ̂k)| is large, then τF behaves as a relative

error, comparing changes in the value of the function with the value of the function itself. For

this reason, τF is called a mixed-error tolerance and the algorithm will terminate whenever a

condition like equation (7) is satisfied.

Tolerance defined on the gradient

The notion of a tolerance is more difficult to define in the context of vector-valued functions

such as the gradient of a function with respect to its parameters. In this case, size is measured

by means of a norm. In minimisation algorithms there are two popular choices of norm; the

Infinity norm and the L2 norm.

3Setting an undemanding tolerance for convergence on the gradient will result in the algorithm converging to

the local minimum for starting values close to it.
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Infinity norm: The infinity norm of the gradient vector is defined to be the maximum absolute

value of the components of the gradient vector and is given by

∥∥G(θ)
∥∥
∞

= max
i

∣∣∣
∂f(x, θ)

∂θi

∣∣∣ . (8)

L2 norm: The L2 norm corresponds to the conventional definition for the length of a vector

and for the gradient vector is given by

∥∥ G(θ)
∥∥

2
=

√
G(θ) ′ G(θ) . (9)

Since a smooth function achieves a minimum where the gradient of the function with respect to

its parameters is zero, a gradient-based stopping condition will therefore require that a norm of

the gradient vector is suitably small, that is

∥∥ G(θ̂k+1)
∥∥ < τG , (10)

where τG is a user-supplied tolerance for the gradient.

Tolerance on change in parameters

Suppose the minimisation algorithm has reached a point for which each iteration changes the

values of the parameters by an insignificant amount. When this situation occurs, the convention

is to accept that the algorithm has converged to a local or global minimum. Let τX be a user-

supplied tolerance for the change in values of the parameters over an iteration. A change in the

value of the parameters is usually regarded as insignificant whenever

‖ θ̂k+1 − θ̂k ‖ < τX(1 + ‖ θ̂k ‖ ) , (11)

where ‖ · ‖ is either the infinity or L2 norm.

5.2 Choice of values for tolerances

The arithmetic used by computers has finite precision. Most econometric packages implemented

on a desktop PC usually attain a maximum precision of 16 decimal places in their specification

of real numbers. Press et al. (1992, p410) argue that τF can be set at machine precision or

slightly above, while τX should not be set smaller than the square root of machine precision,

that is, approximately 8 decimal places.

The basis for this argument stems from the fact that in the vicinity of a minimum the objective

function exhibits parabolic behaviour. For example, in one dimension in the vicinity of a

minimum at θ = 0 the function value behaves approximately like

f − fmin = aθ2 a > 0 . (12)

It is clear therefore that resolution of the function to tolerance τF is associated with a resolution

of θ to order
√

τF . Furthermore, equation (12) may be interpreted as a forward difference
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approximation to the gradient of the function and this suggests that the gradient of the function

can also only be resolved to accuracy
√

τF . In Section 6, however, the point will be made that

a different way of computing numerical derivatives, namely, central differences, allows greater

resolution of the gradients.

Setting τF to machine precision presupposes that the function can be computed to machine

accuracy. This is only likely to be the case if the function is given by a closed form expression,

such as the Rosenbrock function, described in the Appendix. By contrast, the Judge nonlinear

regression model has an objective function defined as a sum of squares which is more computa-

tionally intensive and therefore likely to be less accurate. In most practical situations machine

precision is unlikely be achieved in the computation of the objective function and the choice of

tolerance will be more problem dependent and is therefore more subjective than the Press et al.

(1992) rules of thumb suggest.

5.3 Implementation

Note that individual software packages use different variants of the termination conditions out-

lined previously thereby obscuring the meaning of some tolerances. For example, the optimisa-

tion toolbox in MATLAB provides the function fminunc for unconstrained minimisation problems

in which the user supplies the tolerances TolFun and TolX. The sequence of tests for convergence

is as follows.

(1) The infinity norm of the gradient is tested at the initial parameter values and the algorithm

terminates if

‖G(θ̂0)‖∞ < TolFun .

(2) At each iteration, the algorithm tests for convergence on the gradient and terminates if

‖G(θ̂k)‖∞ < TolFun(1 + ‖G(θ̂0)‖∞) .

(3) At each iteration, the algorithm tests for convergence on the change in parameters and

terminates if ∥∥∥∥∥
θ̂k+1 − θ̂k

1 + ‖ θ̂k ‖

∥∥∥∥∥ < TolX .

(4) Finally, at each iteration the number of iterations and number of function evaluations are

tested against the set maxima.4

However, it would seem that MATLAB’s fminunc function treats TolFun as a tolerance on the

gradient and not as a true tolerance on the function. This must be kept in mind, when choosing

its value, an issue which is returned to later.

An empirical example illustrating the effects of changing the tolerances on the results reported

by fminunc for the Rosenbrock function are given in Table 2. For each choice of tolerances, the

4In general, the number of function evaluations will exceed the number of iterations due to line searching and

the computation of gradients.
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function is minimised for random starting values for (β1, β2) ∈ [−2, 2] × [−2, 2]. Note that the

seed of the random number generator is set so that the same starting values are used for each

set of tolerances.

Table 2: Convergence results using the BFGS algorithm to minimise the

Rosenbrock Function with derivatives calculated numerically.

β̂1 β̂2 Function Exit Number of Function
Value Flag Iterations Evaluations

Tolerances:- τX = 0.5 × 10−4 and τF = 0.5 × 10−4

0.9288 0.8628 0.0051 1 17 66
0.9914 0.9831 0.0001 1 23 96
0.9119 0.8315 0.0078 1 18 84
0.9834 0.9674 0.0003 1 4 15
0.9992 0.9984 0.0000 1 19 78

Tolerances:- τX = 0.5 × 10−6 and τF = 0.5 × 10−6

1.0000 1.0000 0.0000 1 23 87
0.9993 0.9986 0.0000 1 25 102
0.9999 0.9998 0.0000 1 24 105
1.0001 1.0002 0.0000 1 13 45
1.0000 1.0000 0.0000 1 21 84

Tolerances:- τX = 0.5 × 10−8 and τF = 0.5 × 10−8

1.0000 1.0000 0.0000 1 24 90
1.0000 1.0000 0.0000 1 28 111
1.0000 1.0000 0.0000 1 26 111
1.0000 1.0000 0.0000 1 15 51
1.0000 1.0000 0.0000 1 22 87

Tolerances:- τX = 0.5 × 10−8 and τF = 0.5 × 10−12

1.0000 1.0000 0.0000 1 26 96
1.0000 1.0000 0.0000 -2 29 120
1.0000 1.0000 0.0000 2 27 114
1.0000 1.0000 0.0000 -2 16 72
1.0000 1.0000 0.0000 -2 23 90

Values of exit flag:

1 – Magnitude of gradient smaller than the specified tolerance
2 – Change in parameter was smaller than the specified tolerance

−2 – Line search cannot find an acceptable point in the current search direction

A number of interesting conclusions emerge from this simple illustration.

(1) When the tolerances TolFun and TolX take the relatively non-exacting values of 0.5×10−4,

the algorithm indicates successful convergence on the gradient but it is clear that iteration

has ended prematurely. Neither the estimated parameters nor the function values are

near their optimal values in any of the 5 repetitions of the experiment. The fact that

the minimum of the Rosenbrock function lies in a fairly flat valley (see Figure 3 in the

Appendix) means that the gradient criterion imposed by an inexacting specification of
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TolFun can be satisfied for values of the parameters not close to those at which the actual

minimum is attained.

(2) For tolerances that are almost identical to the MATLAB default tolerances of 1 × 10−6 the

algorithm performs much better, but there are still discrepancies from the true values of

the parameters in some repetitions of the experiment.

(3) For tolerances of 0.5 × 10−8 the true minimum is found with good accuracy on each

occasion. At this point TolX is at the maximum value recommended by Press et al.

(1992) but TolFun is still significantly greater than machine precision.

(4) When TolFun is increased to 0.5 × 10−12 the algorithm is seen not to converge on the

gradient condition. This supports the previous contention that TolFun is in fact a gradient

tolerance and should therefore be of the same order as the square root of machine precision.

Note that the algorithm fails in the line search on three occasions returning a flag value

of −2. This failure occurs because there is a conflict between TolFun and TolX. On the

one hand the gradient condition cannot be met with any reliability since it demands too

much accuracy, while on the other hand TolX is also at the limit of what can reasonably

be achieved. The line search algorithm is being called under circumstances in which the

function cannot be resolved accurately enough for regular termination of the line search

algorithm. Simply specifying a less demanding value of TolX will result in a regular

termination with an exit flag of 2.

To conclude, setting TolX at the square root of machine precision is probably too demanding

for most problems and the MATLAB default value of 1.0×10−6 seems a reasonable starting point.

It is clear from these experiments, that TolFun is not a tolerance defined on the value of the

function but rather on value of its gradient. A useful strategy may be to decrease the value

of TolFun until the algorithm is terminated by satisfying the TolX criterion. In this way both

criteria are potentially achievable at the optimum.

6 Derivatives

If an analytical expression for the gradient of the objective function is available, then the

gradient may be computed to the same accuracy as the function. Unfortunately most objective

functions encountered in applications do not have a closed form expression for the gradient

of the objective function and therefore all derivatives required by the minimisation algorithm

must be calculated numerically, and very often numerical derivatives are the default option

in minimisation routines. Whenever an analytical derivative can be computed, however, it is

beneficial to do so both in terms of speed and accuracy.

6.1 Numerical derivatives

A numerical derivative is obtained by approximating the derivative of the objective function by

the slope of a chord in the vicinity of the point. For example, a Taylor series expansion of the
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function f(x) about the point x = a gives

f(a + h) − f(a − h)

2h
= f ′(a) + O(h2) (13)

for suitably small values of h. The central difference approximation of f ′(a) is obtained from

(13) by ignoring the terms represented by O(h2) to obtain

f ′(a) ≈ f(a + h) − f(a − h)

2h
, (14)

where the right hand side of equation (14) is the difference between the values of the function

at x = a + h and x = a− h divided by the change in x, that is, the gradient of the chord of the

function centred at x = a. Computation of the derivative of a function by numerical differencing

unavoidably introduces two sources of error.

(1) The error introduced by approximating a derivative by the gradient of a chord is called

truncation error simply because the error arises as a result of terminating or truncating

the infinite Taylor series expansion of (f(a + h) − f(a − h))/2h at its first term, namely

f ′(a). Expression (14) most accurately mimics the value of f ′(a) when h is close to zero

and least accurately approximates f ′(a) when h is large. In particular, the size of this

discrepancy is O(h2), that is, it grows like a quadratic function of h.

(2) Finite precision arithmetic means that all computations of the value of a function are sub-

ject to rounding error. If f can be computed to machine precision, ǫ, then the contribution

of rounding error when estimating f ′(a) using formula (14) is O(ǫ/h).

Without providing explicit details of the analysis, it can be demonstrated that the sum of

the truncation error and rounding error arising in the central difference approximation to the

derivative of a function is minimised when h = O(ǫ1/3) and the associated minimum error is

O(ǫ2/3). This is to be compared to order ǫ when the derivative can be computed analytically.

We remark that when f ′(a) is estimated by a forward difference approximation, the estimate

of the gradient is accurate to O(ǫ1/2) which is significantly larger that the comparable error

arising in the use of the central approximation, but of course, the forward difference scheme

does involve one less function evaluation.5

Consider the numerical computation of the derivative of f(x) =
√

x at the point x = 1. Table

3 demonstrates the error in computing the derivative for various choices of h. It is clear that

both large and small values of h give inferior estimates than intermediate values but that the

central difference is everywhere superior. Notably, the best estimate for the forward difference

scheme gives 8 decimal places of accuracy (≈ ǫ1/2), while the central difference approximation

gives 11 decimal places of accuracy (≈ ǫ2/3).

5It should be noted that the current version of fiminunc uses forward differences only.
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Table 3: Rounding and truncation error arising in the computation of the derivative of

f(x) =
√

x at x = 1 by numerical differentiation using forward and central differences.

h Error (Forward Difference) Error (Central Difference)

1.0e − 002 −0.001243788791105 0.000006250273449

1.0e − 003 −0.000124937539036 0.000000062500006

1.0e − 004 −0.000012499376034 0.000000000624445

1.0e − 005 −0.000001249996828 0.000000000003276

1.0e − 006 −0.000000124941224 0.000000000014378

1.0e − 007 −0.000000011920520 0.000000000291934

1.0e − 008 −0.000000003038735 0.000000002512380

1.0e − 009 0.000000041370185 0.000000041370185

1.0e − 010 0.000000041370185 0.000000041370185

1.0e − 011 0.000000041370185 0.000000041370185

1.0e − 012 0.000044450291171 0.000044450291171

1.0e − 013 −0.000399638918680 0.000155472593633

1.0e − 014 −0.011501869164931 −0.005950754041805

1.0e − 015 −0.055910790149937 −0.000399638918680

6.2 Implementation

Consider again the empirical example involving the use of MATLAB’s function fminunc to min-

imise the Rosenbrock function. In this case, the analytical derivatives given in equation (23) are

used in the minimisation. The same simulation exercise as reported in Table 2 is now repeated

using analytical gradients and the results reported in Table 4. There are three observations to

be made.

(1) The number of function evaluations required to achieve convergence is significantly reduced

because it is no longer necessary to compute the derivatives of the function numerically.

This also significantly speeds up the computation.

(2) The increased accuracy of the gradient computation allows the tolerance TolFun to be

significantly increased without compromising the convergence of the algorithm.

(3) In this particular example, TolFun can actually be set at machine precision without an

error flag being returned, indicating that the gradient is being computed to machine

precision.

The robust conclusion is therefore that if at all possible, analytical gradients should be used in

function minisation.
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Table 4: Convergence results using the BFGS algorithm to minimise

the Rosenbrock Function with derivatives calculated analytically.

β̂1 β̂2 Function Exit Number of Function
Value Flag Iterations Evaluations

Tolerances:- τX = 0.5 × 10−4 and τF = 0.5 × 10−4

0.9287 0.8625 0.0051 1 17 22
0.9914 0.9831 0.0001 1 23 32
0.9119 0.8315 0.0078 1 18 28
0.9834 0.9674 0.0003 1 4 5
0.9991 0.9984 0.0000 1 19 26

Tolerances:- τX = 0.5 × 10−6 and τF = 0.5 × 10−6

1.0000 1.0000 0.0000 1 23 29
0.9993 0.9987 0.0000 1 25 34
0.9999 0.9998 0.0000 1 24 35
1.0001 1.0002 0.0000 1 13 15
1.0000 1.0000 0.0000 1 21 28

Tolerances:- τX = 0.5 × 10−8 and τF = 0.5 × 10−8

1.0000 1.0000 0.0000 1 24 30
1.0000 1.0000 0.0000 1 28 37
1.0000 1.0000 0.0000 1 26 37
1.0000 1.0000 0.0000 1 15 17
1.0000 1.0000 0.0000 1 22 29

Tolerances:- τX = 0.5 × 10−12 and τF = 0.5 × 10−12

1.0000 1.0000 0.0000 1 26 32
1.0000 1.0000 0.0000 1 30 39
1.0000 1.0000 0.0000 1 28 39
1.0000 1.0000 0.0000 1 18 20
1.0000 1.0000 0.0000 1 24 31

Values of exit flag:

1 – Magnitude of gradient smaller than the specified tolerance.

7 Putting Theory into Practice: GMM Estimation

The Cox-Ingersoll-Ross (1985) model for the short term interest rate X(t) at time t is

dX = α(β − X) dt + σXγ dW (15)

where dW is an increment of the standard Wiener process so dW ∼ N(0, dt). The parameters

θ = {α, β, σ, γ} are interpreted as follows: β is the level to which the rate reverts; α controls the

speed of mean reversion, σ is a volatility parameter and γ is the so-called levels-effect parameter.6

There are many techniques to estimate the parameters of this model and of stochastic differential

6Note that by specifying the model in this fashion these parameters must be non-negative to have a meaningful

interpretation.
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equations in general (see, for example, Hurn et al., 2007). The technique used to estimate the

CIR model (15) in this instance is Generalised Method of Moments (Hansen, 1982).
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Figure 2: Artificial interest rate data generated from the CKLS model with pa-

rameters α = 0.05, β = 0.05, σ = 0.02 and γ = 0.75.

7.1 Specification

Consider a sample of size T + 1, denoted X1,X2, . . . ,XT+1. Moment conditions based on the

discretisation of (15) following Chan et al. (1992) are

d
(1)
t (θ) = Xt+1 − Xt − α(β − Xt)∆

d
(2)
t (θ) =

(
d
(1)
t (θ)

)2 − σ2X2γ
t ∆

d
(3)
t (θ) = d

(1)
t (θ)Xt

d
(4)
t (θ) = d

(2)
t (θ)Xt ,

(16)

where ∆ represents the duration of the time interval at which X is sampled, here taken to have

value 1 without any loss of generality.

GMM estimation is based on the fact that each moment condition has expectation zero.7 When

the expectation is replaced by the sample average of each moment condition, namely,

M(θ) =





M1

M2

M3

M4




=





1
T

∑T
t=1 d

(1)
t

1
T

∑T
t=1 d

(2)
t

1
T

∑T
t=1 d

(3)
t

1
T

∑T
t=1 d

(4)
t




,

the GMM estimator of θ is given by

θ̂ = argmin
θ

M ′(θ)Ω(θ)M(θ) , (17)

7In this particular example, the number of moment conditions is equal to the number of parameters, so that

the parameters are just identified. In general, this is not always the case and GMM also provides a way of testing

any over identifying restrictions. This facet of estimation and testing is not pursued in this example.
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where Ω(θ) is a positive-definite weighting matrix. When Ω = I, the identity matrix, the

estimation will yield consistent, but not efficient, estimates of θ. To obtain both consistent and

efficient estimates, Hansen (1982) suggests using the weighting matrix

Ω(θ) =

[
1

T
D(θ)′D(θ)

]
−1

, (18)

where

D(θ) =





d
(1)
1 d

(2)
1 d

(3)
1 d

(4)
1

d
(1)
2 d

(2)
2 d

(3)
2 d

(4)
2

...
...

...
...

d
(1)
T d

(2)
T d

(3)
T d

(4)
T





. (19)

Equations (17) and (18) can be used to estimate θ without any further input. An often over-

looked fact, however, is that analytical derivatives are available for this particular problem. The

matrix of derivatives of equations (16) with respect to the parameters α, β, σ and γ, in that

order, is

−





(β − Xt) 2(βd
(1)
t − d

(3)
t ) (βXt − X2

t ) 2(βd
(3)
t − d

(3)
t Xt)

α 2αd
(1)
t αXt 2αd

(3)
t

0 2σX2γ
t 0 2σX2γ+1

t

0 2σ2X2γ
t log Xt 0 2σ2X2γ+1

t log Xt





. (20)

Taking expectations of the matrix in expression (20) gives

Jθ = −





β − E[Xt] 2(βM1 − M3) βE[Xt] − E[X2
t ] 2(βM3 − E[d

(3)
t Xt])

α 2αM1 αE[Xt] 2αM3

0 2σE[X2γ
t ] 0 2σE[X2γ+1

t ]

0 2σ2E[X2γ
t log Xt] 0 2σ2E[X2γ+1

t log Xt]





, (21)

where the expectations are understood to be replaced by sample averages in the computation.

There are two cases to consider in computing the analytic derivatives of the GMM objective

function.

Identity weighting matrix In this case the gradient vector of the objective function is the

(4 × 1) vector 2Jθ M .

Hansen weighting matrix In using the weighting matrix in equation (18), a choice must be

made as to whether to iterate the weighting matrix or to set it at some constant value

evaluated at the consistent parameter estimates obtained from an estimation based on

the identity matrix. In this latter case, where Ω is constant, the gradient vector of the

objective function is 2Jθ Ω M .
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7.2 Estimation

Prior to simply estimating the parameters of the interest rate model, the issues dealt with in

Sections 3 to 6 are now addressed in a systematic way.

Constraints As the model is specified in equation (15), all the parameters must be positive

in order for the model to have any meaning. Strictly speaking σ is the ‘size’ of the volatility and

is normally required to be positive. In any analysis, σ will always occur as σ2 or the volatility.

At the outset, therefore a choice needs to be made as to whether to attempt to estimate the raw

parameters or to enforce these constraints by means of the mapping strategy outlined earlier.

For this example the mapping φ = log θ will be used.

Starting values Estimation results for the CKLS model will use two sets of starting values.

The first set of starting values are the true parameters used to generate the simulated interest

rate data, namely α = 0.05, β = 0.05, σ = 0.02 and γ = 0.75. This, however, is artificial in

the sense that starting values in a realistic problem require a little more work. In this instance,

reasonable starting values could be those reported by Chan et al. (1992) for monthly data. As

no guidance is available to aide in the choice of the starting value for the levels-effect parameter,

γ, a sound option is to opt for the value 0.5 representing the well-known CIR model (Cox et al.

1985). The second set of starting values is therefore α = 0.02, β = 0.08, σ = 0.02 and γ = 0.50.

Tolerances Because the MATLAB function fiminunc is used to estimate the parameters of the

model, values for TolFun and TolX must be provided. To illustrate the effect of simply adopting

the default values of these tolerances, estimation using numerical derivatives will use the value

1 × 10−6 for both. Estimation using analytical derivatives will set TolFun to be 1 × 10−16

(approximately machine accuracy) and TolX we be set at 1 × 10−8 reflecting the Press et al.

(1992) rule of thumb.

Derivatives For this particular problem, analytical derivatives are available. Note however

that when the minimisation is performed with scaled variables, the gradient of the objective

function must be provided with respect to the scaled variables φ and not the model parameters

θ. In other words, although Jθ is provided above and is easy to compute, it is Jφ that is required

by the algorithm. In all cases, Jφ may be computed from Jθ by simply scaling the latter by the

gradient of the mapping with respect to φ. In practice, this means post-multiplying Jθ by a

matrix of gradients. The desirable characteristic of the logarithmic mapping is that the scaling

matrix is diagonal and its elements are either 1 if no scaling has taken place, or the model

parameter itself.

Table 5 reports the estimates of model parameters obtained when the identity matrix is used as

the weighting matrix in the GMM objective function. Various combinations of untransformed

(U) and transformed (T) parameters in combination with numerical (N) and analytical (A)

derivatives are given.
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Table 5: Parameter estimates of the CKLS model using simulated interest rate data for

differing start values, tolerances and derivative computation. The true of the parameters

are α = 0.05, β = 0.05, σ = 0.01 and γ = 0.75. In panels 3 and 4 TolFun is 10−11 when

numerical gradients are used and 10−16 when analytical gradients are used.

Protocol α̂ β̂ σ̂ γ̂ Iters Fcn Evals Flag

Start values:- True, TolFun = 10−6, TolX = 10−6

U/N 0.049995 0.050768 0.019999 0.750000 2 25 1

U/A 0.049995 0.050768 0.019999 0.750000 2 5 1

T/N 0.050000 0.050000 0.020000 0.750000 0 5 1

T/A 0.050000 0.050000 0.020000 0.750000 0 1 1

Start values:- CKLS, TolFun = 10−6, TolX = 10−6

U/N 0.000875 0.071863 0.019857 0.500009 4 35 1

U/A 0.000875 0.071863 0.019857 0.500009 4 7 1

T/N 0.018552 0.060642 0.019991 0.500328 2 40 1

T/A 0.018552 0.060642 0.019991 0.500328 2 8 1

Start values:- True, TolFun = 10−11/10−16, TolX = 10−8

U/N 0.049995 0.050768 0.009844 0.750605 17 105 1

U/A 0.063250 0.050768 0.009837 0.750605 42 46 2

T/N 0.049991 0.050768 0.017967 0.952874 18 125 1

T/A 0.063250 0.050768 0.017966 0.952961 43 50 1

Start values:- CKLS, TolFun = 10−11/10−16, TolX = 10−8

U/N 0.000006 0.071608 0.004753 0.500896 21 120 1

U/A 0.000006 0.071608 0.004753 0.500896 24 27 2

T/N 0.018292 0.050773 0.013877 0.863655 23 145 1

T/A 0.063250 0.050768 0.013871 0.866027 53 61 1

Protocol key:

U = untransformed parameters used in optimisation.
T = mapped parameters used in optimisation.
N = numerical derivatives used in optimisation.
A = analytical derivatives used in optimisation.

A number of conclusion emerge from consideration of these results.

(1) Constraints: It appears that the transformed parameter estimates are better behaved

than the untransformed parameter estimates.

(i) The drift parameter α in the untransformed specification is driven to zero if it is not

started at the optimal value. This effect is more pronounced at higher tolerances

when it might realistically be expected that higher accuracy is achieved.

(ii) In the untransformed specification, the parameter γ is never significantly altered from

its starting value, irrespective of the choice of starting value, tolerance or choice of

derivative.

(iii) For the parameter β, which is known to be relatively easy to estimate, poor estimates

are obtained for the untransformed specification even at demanding tolerances.
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A tentative conclusion is that the transformed specification of the problem is to be pre-

ferred.

(2) Tolerances: Simply accepting the MATLAB default tolerances causes fminunc to converge

too quickly with parameter estimates that are little changed (if at all) from their starting

values. In the extreme case, the transformed specification of the model terminates without

iteration if the true parameter values are used as starting values. For tolerances set using

the guidelines established in Section 5, the results are improved in the sense that the

algorithm performs a number of iterations and is seen to change the parameters from

their intial values.

(3) Gradients: It is clear that most of function evaluations in the minimisation are used

in the computation of gradients and there are significant savings to be made by provid-

ing analytical gradients. When more demanding tolerances are used, the transformed

specification in conjunction with analytical gradients provides solid estimates of all the

parameters except perhaps γ. The explanation for this is probably that the value of γ

is an order of magnitude larger than any of the other parameters, indicating that the

inefficiency of using the identity matrix for weighting.

Table 6 reports the estimates of model parameters obtained when the Hansen (1982) weighting

matrix is used in the GMM objective function.

Table 6: Parameter estimates of the CKLS model using simulated interest rate data

for differing start values, tolerances and derivative computation. The true values of the

parameters are α = 0.05, β = 0.05, σ = 0.01 and γ = 0.75. In panels 3 and 4 TolFun is

10−11 when numerical gradients are used and 10−16 when analytical gradients are used.

Protocol α̂ β̂ σ̂ γ̂ Iters Fcn Evals Flag

Start values:- True, TolFun = 10−6, TolX = 10−6

N 0.063250 0.050768 0.010346 0.767549 43 285 1

A 0.063250 0.050768 0.010342 0.767416 42 55 1

Start values:- CKLS, TolFun = 10−6, TolX = 10−6

N 0.063229 0.050769 0.011821 0.812266 27 180 1

A 0.063229 0.050769 0.011821 0.812266 27 36 1

Start values:- True, TolFun = 10−11/10−16, TolX = 10−8

N 0.063250 0.050768 0.010346 0.767536 34 225 -2

A 0.063250 0.050768 0.010345 0.767498 36 43 2

Start values:- CKLS, TolFun = 10−11/10−16, TolX = 10−8

N 0.063250 0.050773 0.010346 0.767543 39 235 2

A 0.063250 0.050768 0.010345 0.767498 35 38 2

Protocol key:

N = numerical derivatives used in optimisation.
A = analytical derivatives used in optimisation.
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In each instance the weighting matrix is computed at the parameter estimates of the model

obtained using the GMM objective function with the identity weighting matrix. In this experi-

ment, only transformed parameters are used in combination with numerical (N) and analytical

(A) derivatives. The parameter estimates obtained from the GMM objective function using the

Hansen weighting matrix are significantly better than those obtained previously. There is also

now little to choose between the accuracy of the parameter estimates provided by numerical

as opposed to analytical derivatives, but the significant gain in terms of function evaluations

remains. What is readily apparent, however, is the danger of simply accepting default toler-

ances in a minimisation problem. Starting with the true parameters all the parameters are well

estimated, but in the more realistic scenario of using the CKLS starting values, it is clear that

γ is very badly estimated. An unsuspecting user could easily be duped in accepting this value

as the optimal estimate. With more demanding tolerances, however, all minimisations converge

to the same parameter estimates independently of initial values and choice of derivative com-

putation. Note, however, that the value of the flag indicates that convergence is now driven by

TolX indicating that the more demanding tolerance on the gradients has not been met.

8 Conclusion

It has been argued here that nitty-gritty practical considerations, such as the treatment of

constraints on parameters, choice of starting values, specification of termination criteria and

the influence of analytical versus numerical gradients, can materially alter the final output of

a minimisation algorithm. Self-evidently, these choices will also affect the computational effort

required to achieve this final output. This paper has attempted to shed some light on these

often overlooked but nonetheless important aspects of a numerical minimisation scheme.
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Appendix: Test problems

Rosenbrock function The Rosenbrock function

f(β1, β2) = 100(β2 − β2
1)2 + (1 − β1)

2 (22)

is an artificial function that is often used to test the performance of numerical optimisation

algorithms. The gradient of the function is given by

G(β) =
∂f(β)

∂β
=

[
−400β1(β2 − β2

1) − 2(1 − β1)

200(β2 − β2
1)

]

, (23)

and the Hessian matrix is

H(β) =
∂2f(β)

∂β∂β′
=

[
1200β2

1 − 400β2 + 2 −400β1

−400β1 200

]
.

The Rosenbrock function, which is plotted in Figure 3, contains a long, curved valley with

global minimum value zero at the point (1, 1). It is clear from Figure 3 that the valley floor is

almost flat and so gradient-based algorithms experience difficulty in isolating the minimum of

the Rosenbrock function in the respect that they exhibit a tendency to stop prematurely if the

termination conditions are not chosen appropriately.
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Figure 3: Surface of the Rosenbrock Test Function.

Judge model A useful test of a minisation routine is that provided by Judge et al. (1985,

pp956-958) in the context of the nonlinear regression model

Yt = β1 + β2X1 + β2
2X2 + ǫt (24)

where Yt, X1t and X2t are given in Table 7 and β1 and β2 are parameters to be estimated by a

least squares fit.
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N Y X1 X2 N Y X1 X2

1 4.284 0.286 0.645 11 2.106 0.936 0.142

2 4.149 0.973 0.585 12 1.428 0.889 0.296

3 3.877 0.384 0.310 13 1.011 0.006 0.175

4 0.533 0.276 0.058 14 2.179 0.828 0.180

5 2.211 0.973 0.455 15 2.858 0.399 0.842

6 2.389 0.543 0.779 16 1.388 0.617 0.039

7 2.145 0.957 0.259 17 1.651 0.939 0.103

8 3.231 0.948 0.202 18 1.593 0.784 0.620

9 1.998 0.543 0.028 19 1.046 0.072 0.158

10 1.379 0.797 0.099 20 2.152 0.889 0.704

Table 7: Data for the Judge et al. (1985) test function.

Figure 4 illustrates the resulting objective function which contains a local minimum at the

point (2.4986,−0.9826) with approximate function value 20.48234 and the global minimum at

(0.8648, 1.2357) with approximate function value 16.0817.
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Figure 4: Surface of the Judge Test Function.
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