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Abstract

The geographical distribution and persistence of regional/local unemployment rates in het-

erogeneous economies (such as Germany) have been, in recent years, the subject of

various theoretical and empirical studies. Several researchers have shown an interest in

analysing the dynamic adjustment processes of unemployment and the average degree of

dependence of the current unemployment rates or gross domestic product from the ones

observed in the past. In this paper, we present a new econometric approach to the study

of regional unemployment persistence, in order to account for spatial heterogeneity and/or

spatial autocorrelation in both the levels and the dynamics of unemployment. First, we

propose an econometric procedure suggesting the use of spatial filtering techniques as

a substitute for fixed effects in a panel estimation framework. The spatial filter computed

here is a proxy for spatially distributed region-specific information (e.g., the endowment of

natural resources, or the size of the ‘home market’) that is usually incorporated in the fixed

effects parameters. The same argument applies for the spatial filter modelling of the het-

erogenous dynamics. The advantages of our proposed procedure are that the spatial filter,

by incorporating region-specific information that generates spatial autocorrelation, frees

up degrees of freedom, simultaneously corrects for time-stable spatial autocorrelation in

the residuals, and provides insights about the spatial patterns in regional adjustment pro-

cesses. We present several experiments in order to investigate the spatial pattern of the

heterogeneous autoregressive parameters estimated for unemployment data for German

NUTS-3 regions. We find widely heterogeneous but generally high persistence in regional

unemployment rates.
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Zusammenfassung

Die geographische Verteilung und die Persistenz (das Beharrungsvermögen von Schocks)

von regionalen bzw. lokalen Arbeitslosenquoten in heterogenen Volkswirtschaften (wie

bspw. Deutschland) war in den vergangenen Jahren Gegenstand zahlreicher theoretischer

und empirischer Studien. Besonderer Augenmerk lag auf den dynamischen Anpassungs-

prozessen der Arbeitslosigkeit und am durchschnittlichen Grad der Abhängigkeit der ge-

genwärtigen Arbeitslosigkeit (alternativ auch des GDP) von ihrer Verteilung in der Ver-

gangenheit. Hier präsentieren wir einen neuen ökonometrischen Ansatz zur Analyse der

Persistenz der Arbeitslosigkeit, welcher der regionalen Heterogenität und der räumlichen

Autokorrelation in den Niveaus und der Dynamik Rechnung trägt. Zunächst diskutieren

wir die Verwendung eines räumlichen Filters als Substitut für Fixe Effekte in einem Panel-

Schätzansatz. Der räumliche Filter dient als Proxy für regionsspezifische Information (z.B.

bzgl. der Ausstattung an natürlichen Ressourcen oder bzgl. der Größe des Marktes im

Einzugsgebiet), die üblicherweise in fixen Effekten aufgefangen werden; analoges gilt für

die Filtermodellierung der heterogenen Dynamik. Das vorgestellte Verfahren bietet den

Vorteil, dass der räumliche Filter – durch parameter-sparsames Auffangen der Informati-

on, die räumliche Korrelation erzeugt – die Zahl der Freiheitsgrade erhöht, gleichzeitig auf

zeitkonstante räumliche Korrelation in den Residuen kontrolliert und Einsicht gibt in die

räumlichen Muster der regionalen Anpassungsprozesse. Es werden verschiedene Unter-

suchungen bzgl. der regionalen Muster in den heterogenen autoregressiven Parametern

dargestellt, die mit Arbeitslosigkeitsdaten für die deutschen Kreise geschätzt werden. In der

regionalen Arbeitslosigkeit finden wir einen allgemein hohen, dennoch recht heterogenen

Grad an Persistenz.

JEL classification: C 31 ; E 24 ; E 27 ; R 11

Keywords: unemployment persistence; dynamic panel; hysteresis; spatial filtering; fixed

effects
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1 Introduction

Regional labour market developments mirror the spatial socio-economic dynamics of the

economy. Therefore, timely information on the functioning of these markets is of critical

importance for regional policy. In particular, panel-type information on the social economic

labour markets may be an important sign post for effective policy, as the spatial-temporal

evolution of these markets is critical for understanding the emergency and persistence

of spatial disparities among regions. Disparities in economic development and welfare

within countries (at the regional level) are often bigger than between countries (Elhorst,

1995; Ertur/Le Gallo, 2003; Patuelli, 2007; Taylor/Bradley, 1997; see, for example, the

cases of Germany and Italy), and they often show typical geographical/spatial structures.

Consequently, spatial disparities have for decades been a source of policy concern and

applied research (for a recent overview of this field, see Kochendörfer-Lucius/Pleskovic,

2009). Spatial disparities occur in both developed and developing countries; their genesis

may date back far in history, while their removal may take generations.

For example, Germany faced, in the first semi-decade after reunification, an increase in

unemployment, from 2.6 million people in 1991 to 4.3 million people in 1997 – or, including

the hidden reserve, from 3 millions to 5.6 millions (Fuchs et al., 2010). Unemployment

remained, with only slight movements, at the same level for roughly 10 years, until the rapid

decline after the 2005 reforms. In the period from 2006 to 2010 unemployment dropped

again to the level of the early 1990s, despite the credit crunch. Throughout the high-

unemployment period from 1995 to 2005, the unemployment rate in East Germany was 9

to 11 percentage points higher than the unemployment rate in West Germany; however, as

we show later in the paper, there were large disparities within West German unemployment

rates as well. In particular, in the two most recent years, the East-West disparities in the

unemployment rates have diminished.

Underperforming regions imply, for a (redistributive) state, the need to allocate a higher

share of public spending to those regions, eventually creating distortions in the redistribu-

tion of tax revenues and increasing conflicts with local policy makers and the public. Ad-

ditionally, high unemployment has historically been linked to a number of socioeconomic

problems, such as single-parent households, underperformance of students in school, tru-

ancy rates, and more (Armstrong/Taylor, 2000). Persistently high unemployment rates have

been shown to be correlated with high shares of long-term unemployment and outmigration

(for example, recent data for Southern Italy show an increase in the outmigration – toward

the North – of the top university graduates; see SVIMEZ, 2009).

With regard to regional unemployment disparities, policy makers need, in order to correctly

target their actions and policies, to understand two aspects of such disparities: (a) the

determinants of ’equilibrium’ unemployment and its variation; and, (b) the region-specific

and the cross-regional dynamics of unemployment. The determinants of unemployment

have been studied extensively in the regional economic literature (Aragon et al., 2003;

Badinger/Url, 2002; Basile/De Benedictis, 2008; Elhorst, 2003; Moretti, 2010; Niebuhr,

2003; Nijkamp, 2009; Oud et al., forthcoming; Taylor/Bradley, 1997; Zenou, 2009). Some

attention has been as well devoted to the internal dynamics of regional unemployment, and
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to each region’s sensitivity to shocks, seasonal factors, and persistence of unemployment.

The available literature is mostly focusing on a macroeconomic setting, such as in a ’non-

accelerating inflation rate of unemployment (NAIRU)’ or in a (conditional/unconditional)

’convergence towards a natural rate of unemployment’ perspective (following the approach

of Blanchard/Summers, 1986; see, for example, Bayer/Juessen, 2007; Decressin/Fatás,

1995; Gracia-del Barrio/Gil-Alana, 2009; Song/Wu, 1997; Tyrowicz/Wójcik, 2010a,b, forth-

coming). From a technical perspective, these studies generally test for unit roots in the

unemployment series.1 However, they suffer from the major drawbacks of treating regions

as homogeneous and/or cross-sectionally independent: they consider neither spatial cor-

relation of shocks nor spatially structured heterogeneity in the adjustment process.

Similarly, the correlation of unemployment rates in space – that is, between neighbouring

regions – has been studied both in an exploratory/descriptive fashion

(Cracolici/Cuffaro/Nijkamp, 2007; López-Bazo/del Barrio/Artis, 2002; Mayor/López, 2008;

Molho, 1995; Patuelli et al., 2010), and with regard to the determinants of unemploy-

ment (Aldashev, 2009; Elhorst, 1995; Kosfeld/Dreger, 2006; Mitchell/Bill, 2004; Patac-

chini/Zenou, 2007), using spatial-econometric techniques. However, little effort has been

made, aside from in a time series/forecasting context (Schanne/Wapler/Weyh, 2010), to

decompose the spatial dynamics of unemployment, so that region-specific autoregressive

processes (responses to shocks), or region-specific seasonal characteristics can be traced.

However, besides the old and general story that regions are not isolated islands, some

specific arguments – such as commuting and internal migration, the spatial diffusion of

information on vacancies, the (limited) search radius of unemployed persons, which affect

the duration (and persistence) of individual unemployment – exist for spatially structured

regional interdependence in the development of aggregate unemployment. In other words,

regions are expected to differ in their degree of persistence, and this heterogeneity is likely

to show a spatial pattern.

Policy makers who understand the specific characteristics of a region and of interregional

dependencies are able to tackle problems more effectively and to anticipate more accu-

rately necessary responses to aggregate and local shocks. Likewise, a group of (contigu-

ous) regions that share common characteristics has the opportunity to develop common

strategies (for example, within a single macro-region, such as a German Bundesland).

We stress the need to investigate (break down) the components of region-specific dynam-

ics, from an autoregressive/reaction-to-shocks viewpoint, so as to identify spatial patterns

of common characteristics. A similar view was recently expressed by Partridge/Rickman

(2010) in their review and discussion of (desirable) developments in CGE modelling.

The empirical research in our study will address the development of regional labour mar-

kets over a longer period in Germany. This country offers a unique natural experiment for

our purposes, as – in addition to the regular spatial dynamics of an advanced industrial

economy – the post-reunification effects appear to play a prominent role in the initial distri-

1 Stationarity implies that a series has a distribution with finite variance and that it converges towards its
long-run expectation. Convergence between the regions arises only if the regional series have the same
long-run expectation. In contrast, non-stationary regional series imply that shocks persist and that in the
long-run the cross-regional distribution depends completely on accumulated (random) events.
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bution of unemployment and the subsequent evolution of spatial disparities in the country,

generating a certain amount of regional dynamics. Nevertheless, since unit-root tests are

sensitive to structural breaks, it is important to deal properly with the direct impact of re-

unification. This paper aims to develop a number of autoregressive models for analysing

regional unemployment between 1996 and 2004, that is, the period after the direct effect

of reunification has fully realized, and before the major labour market reforms, in the 439

German NUTS-3 regions (Kreise). These administrative regions can be considered an

ideal unit of analysis, because they directly relate to local policy-making choices, for exam-

ple in public welfare2, in terms of attracting capital- or labour-intensive industries through

the provision of a productive environment, infrastructure, enterprise zones, or by subsidiz-

ing desired economic activities.3 We estimate autoregressive effects specific to both each

administrative region and different urbanization and agglomeration degrees of regions. In

addition to a standard fixed effects (FE)/individual slopes estimation, we propose an econo-

metric procedure suggesting the use of spatial filtering (SF) techniques as a substitute for

region-specific parameters in a panel estimation framework. The spatial filter is a proxy for

spatially distributed region-specific information (e.g., the endowment of natural resources

or the size of the ’home market’) that is usually incorporated in the FE or in region-specific

slope parameters. The approach presented here is beneficial, because it allows consider-

able savings in terms of degrees of freedom. Most importantly, the spatial filter provides a

straightforward interpretation – as the linear combination of orthogonal spatial patterns –

of the FE components surrogate. By incorporating region-specific information that gener-

ates spatial autocorrelation and dynamics, our procedure provides new insights about the

spatial patterns that make it interesting to adopt the approach also for the analysis of other

spatiotemporal processes, such as GDP growth/convergence, house price diffusion, and

spread of diseases.

In this paper, we present several experiments investigating the spatial patterns of autore-

gressive parameters estimated for the unemployment rates of German NUTS-3 regions.

Our findings show that – on average – unemployment rates are rather persistent and that

the levels of persistence have an identifiable spatial structure. The proposed methodologi-

cal approach also shows to be a promising tool for the analysis of regional dynamics. Addi-

tionally, we propose a model based on spatial regimes, which allows to decompose the dy-

namic processes of regional unemployment rates according to agglomeration/urbanization

criteria, rather than to the well-known – but oversimplifying – East-West Germany division.

The remaining part of the paper is structured as follows. Section 2 describes the analytical

design of the model used in our study. Sections 3 and 4 present the dataset used and

the results obtained, respectively. Finally, Section 5 provides a rejoinder and conclusive

remarks.

2 Until 2004, two parallel benefit systems for long-term unemployed coexisted. The ‘Arbeitslosenhilfe’ was
administered by the local departments of the Federal Employment Agency, while the ‘Sozialhilfe’ was under
the responsibility of the NUTS-3 authorities (Kreise).

3 Although the major part of subsidies is distributed by the federal states, the national government or the
European Union, many programmes require co-funding from the local authorities, and availability depends
on criteria often calculated at the NUTS-3 level.
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2 Analytical Design of the Model

2.1 The Traditional Approach

The current standard approach to analyse the persistence of unemployment or, in a multi-

region context, its convergence speed (see, for a recent overview, Lee/Chang, 2008) is

to estimate a system of AR(1) processes, and to test each single equation as well as the

entire system of equations for unit roots. Here, the basic equation for unemployment u in

region i is given by Equation (1):

ui,t = αiui,t−1 + µi + si,t + εi,t (1)

where µi denotes the average unemployment4, si,t its seasonal component, and εi,t an

i.i.d. mean-zero random disturbance. Stacked over all regions, this set can be written as

the following system of equations:

Utιn = Ut−1An + Mn + St + εt (2)

where Ut = diagNi=1ui,t is the n × n diagonal matrix of unemployment rates at time t,

An = (α1, . . . , αN )′ and Mn = (µ1, . . . , µN )′ are n×1 column vectors of parameters, St =

(s1,t, . . . , sN,t)
′ is an n × 1 column vector (generated from the n × 3 matrix of parameters

corresponding to the seasonal dummies, multiplied by the 3 × 1 matrix containing the

seasonal dummies), ιn = (1, . . . , 1)′ is a unit vector of length n, and εt = (ε1,t, . . . , εN,t)
′

is the n × 1 vector of residuals. The subscript n in An and Mn denotes the length of the

parameter vectors. Vectors and matrices with subscript t always have length n. Mn is

equivalent to FE in a panel framework.5

If the autoregressive parameter αi is smaller than 1 in absolute value, the impact of a

“shock” εi,t will vanish over time, and the series will converge to its long-run expectation. In

contrast, if αi equals one, the process in region i has a unit root. A single equation is tested

for stationarity by augmented Dickey-Fuller (ADF) tests, or by Phillips-Perron (PP) tests;

likewise, various tests derived for panels or systems that rely as well on subtracting lagged

unemployment from both sides of Equation (2) require the following form of Equation (2):

(Ut −Ut−1) ιn = Ut−1 (An − ιn) + Mn + St + εt (3)

Next, we may test if the elements of (An − ιn) are, individually or jointly, significantly

less than zero.6 Some procedures test the entire set of parameters directly (for example,

Sarno/Taylor, 1998), whereas others combine the individual t-statistics to form a joint test

statistic (see Maddala/Wu, 1999 or Im/Pesaran/Shin, 2003). As an alternative, restrictions

4 We assume that unemployment does not have a deterministic trend.
5 For small time dimensions, the estimates of the autoregressive parameters are typically downward biased.

With individual parameters, the Hurwicz bias is α̂i − αi = −(1+3αi)
T

. The Nickell bias, α̂ − α = −(1+α)
T−1

,
for a common parameter across the regions α1 = . . . = αN = α has a smaller size than the Hurwicz bias
(Nickell, 1981). However, it can be seen that both converge towards zero when T goes to infinity.

6 The parameters (αi − 1) follow, under the null hypothesis of a non-stationary process, a non-normal de-
generate distribution, typically a Wiener process (also denoted as Brownian motion).

IAB-Discussion Paper 3/2011 9



may be imposed on the parameter, enabling a test only for stationarity of the average au-

toregressive process, as in Levin/Lin/Chu (2002), or for the stationarity of a limited number

of regime-specific processes (also referred to as the ’convergence clubs’ hypothesis).

Regarding the validity of panel unit-root tests, most of these procedures require the time

dimension to be sufficiently large in order to converge and not to be plagued by the so-

called Nickell bias arising in panels with a small time dimension (Nickell, 1981) or by the

Hurvicz bias in short times series. Moreover, Equations (2) and (3) are only estimable in

a seemingly unrelated regression (SURE) form (that is, in a specification that allows for

simultaneously correlated errors) when the number of regions is small. Else one has to

assume independence of the regions, resulting in equation-wise unit-root tests with low

efficiency/power. Nonetheless, cross-sectional correlation seems rather plausible, in par-

ticular when considering small spatial units, and therefore taking this structure into account

in the error term εt is preferable.

Cross-sectional (spatial) correlation arises not only in contemporaneous shocks, but also

in levels and trends (see Table 1), in seasonal patterns, or in the adjustment speed. On

the one hand, these spatial patterns or correlations could likewise be utilized to get better

– more efficient, more powerful, less demanding in terms of degrees of freedom, and

large-N , small-T consistent – estimates of the average convergence speed. On the other

hand, knowledge about spatial interdependence between the structures of a time-series –

average/trend, seasonality, autoregressive properties – may be of direct interest as well.

Table 1: Descriptive Statistics of Regional Unemployment

Unemployment Rates (Levels), in percentage points
Region Mean St.Dev. 1st quartile Median 3rd quartile Moran’s I
Germany 11.8 5.5 7.6 10.1 15.4 0.903
East 19.4 3.5 17.0 19.3 21.8
North 11.1 2.8 9.0 10.7 13.0
South 8.1 2.5 6.2 7.7 9.5

First Differences (in percentage points)
Region Mean St.Dev. 1st quartile Median 3rd quartile Moran’s I
Germany 0.01 1.21 -0.43 0.11 0.59 0.623
East 0.06 1.76 -0.88 0.30 1.22
North -0.01 0.89 -0.34 0.06 0.40
South -0.06 0.88 -0.72 -0.07 0.60

In the following subsection, we propose an alternative approach to estimating Equation (2),

which decomposes the autoregressive processes according to exogenous spatial patterns

that are representative of accessibility/contiguity relations between the regions studied.

The benefit is twofold: (a) we obtain an explicit model of the spatial patterns in unem-

ployment without being over-restrictive by imposing (probably erroneous) regime-specific

constraints; and, (b) we are able to estimate more parsimoniously while covering the most

relevant spatial structures.7

7 This claim clearly needs to be further explored by simulation evidence showing that SF is a suitable sub-
stitute/approximation of the fixed effects. Preliminary simulation results by the authors suggest that the SF
and SFGWR are fully competitive – unless N or T tend to infinite – with mainstream econometrics methods
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2.2 Spatial Filtering

A wide array of methods, as well as several dedicated ‘spatial’ econometric procedures, for

the statistical analysis of georeferenced data is available in the literature. Most commonly

employed, spatial autoregressive techniques (see, for example, Anselin, 1988) model inter-

regional dependence explicitly by means of spatial weights matrices that provide measures

of the spatial linkages between values of georeferenced variables, with a structure similar

to serial correlation in time-series econometrics.

An alternative approach to spatial autoregression, modelling spatial autocorrelation in the

mean response rather than in the variance, is the use of spatial filtering (SF) techniques

(Getis/Griffith, 2002). Their advantage is that the studied variables (which are initially spa-

tially correlated) are split into spatial and non-spatial components. Then these components

can be employed in a linear regression framework. This conversion procedure requires the

computation of a ‘spatial filter’.

The SF technique introduced by Griffith (2003) is based on the computational formula of

Moran’s I (MI) statistic.8This eigenvector decomposition technique extracts n orthogonal,

as well as uncorrelated, numerical components from the n × n modified spatial weights

matrix:

Wn = (In −
1

n
ιnι
′
n)Cn(In −

1

n
ιnι
′
n) (4)

where In is an identity matrix of dimension n, ιn is an n× 1 unit vector, and Cn is a spatial

weights matrix representing the spatial relation between each pair of regions; here we use

a binary first-order contiguity (C-coding rook) matrix9 where element cij equals 1 if regions

i and j have a common border, and 0 otherwise. Matrix (In − 1
n ιnι

′
n) is the standard

projection matrix found in the multivariate statistics and regression literature. Because

matrix Cn is pre- and post-multiplied by the projection matrix [see Equation (4)], these

eigenvectors are centred at zero. The eigenvectors extracted are in a decreasing order of

spatial autocorrelation, and the first corresponds to the largest eigenvalue of Wn. Thus,

the first two eigenvectors computed (E1 and E2) often identify map patterns along the

such as bias-corrected LSDV (Bun/Carree, 2005) or Blundell/Bond (1998) in terms of parameter estimate
bias.

8 Moran’s I is calculated as follows:

I =
N
∑N
i=1

∑N
j=1 wit(xi − x̄)(xj − x̄)(∑N

i=1

∑N
j=1 wij

)∑N
i=1(xi − x̄)2

where, in the case of a set of n regions, xi is the value of the generic variable x in region i, and wij is the
cell (i, j) of a spatial weights matrix W, indicating the proximity of each pair of regions i and j.

9 For a discussion of coding schemes and proximity definitions, see, with regard to the German NUTS-3 case,
Patuelli et al. (2010), and more generally Griffith/Peres-Neto (2006). However, across most definitions for
spatial weights matrices, the weights corresponding to element (i, j) are highly positively correlated. The
results in spatial filtering hardly depend on the matrix from which the eigenvectors are extracted, thus the
choice of the weights matrix is of little importance (see Getis/Griffith, 2002, Griffith, 2000). This is due to
the fact that eigenvectors extracted from one (geographical) matrix can almost surely be generated by a
linear combination of eigenvectors extracted from any other (geographical) matrix. For example, the matrix
In − ρ 1

2
(Wn + W′

n) and its inverse
[
In − ρ 1

2
(Wn + W′

n)
]−1

have the same eigenvectors, although the
first may represent just a weighted average across the direct neighbours, whereas the latter represents an
(infinite) distance-decay scheme.
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cardinal points (that is, some rotated version of the major North-South and East-West pat-

terns). Eigenvectors with intermediate values of MI display regional map patterns, whereas

eigenvectors with smaller values of MI display local map patterns. The set of relevant

eigenvectors – those explaining the spatial pattern in the variable of interest – can be found

by regressing the dependent variable on the eigenvectors in a stepwise fashion, retaining

the significant eigenvectors (or eliminating the insignificant ones). The linear combination

of selected eigenvectors and their corresponding parameter estimates define the spatial

filter for the variable of interest. In an autoregressive setting (where no covariates are em-

ployed), residuals obtained with stepwise regression constitute the spatially filtered com-

ponent of the georeferenced variable examined (see Griffith, 2000). The eigenvectors can

be seen as independent map patterns that coincide with the latent spatial autocorrelation

of a given georeferenced variable, according to a given spatial weights matrix. Moreover,

they can work as proxies for omitted variables that show a certain coincidence or similarity

regarding their spatial distribution.

In this regard, Griffith’s SF approach works differently from Getis (1990, 1995), which de-

composes each involved variable into a spatial and a nonspatial component, and requires

the use of non-negative variables. Moreover, differently from mainstream spatial econo-

metric models, such as spatial lag or spatial error models, which are developed mostly in

a linear estimation framework, the SF approach can be applied to any functional form. Ad-

ditionally, the tools necessary for implementing the technique – eigenvector decomposition

and stepwise regression – are available in all statistical software packages.

Griffith (2008) shows that SF not only refers to the unobserved spatial correlation of a vari-

able, but also contributes to the explanation of spatial heterogeneity in the parameters.

An equivalent to the parameters of a geographically weighted regression (GWR, Bruns-

don/Fotheringham/Charlton, 1998) can be computed by introducing interaction terms be-

tween the exogenous variables of an equation and the eigenvectors extracted from a spatial

weights matrix into a model specification. The possibility to combine the SF approach with

a panel estimation framework and with geographically heterogeneous regression parame-

ters (SFGWR) constitutes an additional advantage over existing methods. The next section

details the functioning of the SFGWR approach.

2.3 An Adjustment-Process Spatial Filter

The parameters αi and µi in Equations (2) and (3) can be expected to show spatial hetero-

geneity,10 that is, a pattern in space that may be related to the structure of a spatial weights

matrix, and for which they could be tested, for example, by computing these parameters’

MI. These spatial patterns can be and preferably should be considered explicitly instead of

10 By the term spatial heterogeneity we refer to spatial structure in the parameters (i.e., the effects of vari-
ables), and by the term spatial correlation to spatial structure in variables. However, these terms are insofar
related, as on the one hand, spatial correlation (e.g., in a spatial lag or spatial Durbin model) results in
spatially heterogeneous marginal impacts (e.g., see LeSage/Pace, 2009, Chapter 2.7), and on the other
hand, regression parameters can be considered as moments of (multivariate) distributions (in our case, the
parameters µi represent the region-specific in-sample expectations of the unemployment rate) which may
themselves be used as variables.
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in the parameter-intensive formulation of heterogeneity given in Equations (2) and (3). We

introduce spatial patterns by decomposing the terms An and/or Mn into a spatial and a

non-spatial part, setting An = ωÃk + ηn and Mn = ωM̃k + νn where ω is an n× k matrix

of eigenvectors Ek extracted from the normalized spatial weights matrix given in Equation

(4) (Griffith, 2003). ω collects the constant (that is, ιn) as well, because 1√
n
ιn is also an

eigenvector of matrix Wn. ηn and νn contain only non-spatial patterns within the individual

parameters – hence they have zero mean and are orthogonal to the spatial process – and

can thus move to the residuals. As we can substitute both the level and the dynamic adjust-

ment in a process by their spatial counterparts, three alternative specifications to Equation

(2) yield:

Utιn = Ut−1An + ωM̃k + νn + St + εt (5)

Utιn = (Ut−1ω)Ãk + Ut−1ηn + Mn + St + εt (6)

Utιn = (Ut−1ω)Ãk + Ut−1ηn + ωM̃k + νn + St + εt (7)

Equation (5) is the SF equivalent to the FE panel estimation [see Equation (2)]. In contrast,

Equations (6) and (7) show similarities with the SF representation of GWR (Griffith, 2008).

α̃1, the first element of the parameters vector Ãk, and the one linked to the constant,

estimates the average adjustment speed. The further autoregressive parameters specify

regional patterns in the adjustment speed: for example, the parameters for the interaction

terms between lagged unemployment and eigenvectors E1 and E2 reflect regional devia-

tions from the average adjustment speed along the cardinal coordinates, similarly to the

patterns that the eigenvectors themselves represent for the levels. Similarly, the parame-

ters for the subsequent eigenvector interactions reflect how the above deviations can be

attributed to more composite spatial patterns: first global, then regional, and finally local.

The new residuals vector – for example, defined as ζt = Ut−1ηn + νn + εt in Equation

(7) – may exhibit either a panel-specific mean-zero component (a random effect, when

σ2ν > 0, or panel-specific serial correlation in the residuals (when σ2η > 0). Nonetheless,

the orthogonality between the spatial eigenvectors and the non-spatial time-constant com-

ponent suffices to guarantee orthogonality between the regressors Ut−1ω,Ut−1 and ζt;

that is, consistency of the estimation of Equations (5), (6) and (7). However, the overall

variance of these equations is inflated by the variance of νn and/or Ut−1ηn with respect to

Equation (2).

2.4 Spatial Regimes

An alternative approach to studying spatial heterogeneity in parameters is the introduc-

tion of explicit spatial regimes that, for example, distinguish between urban and rural

economies, or to have one regime for each federal state (covering all districts within a

single state). Because discrete schemes – in contrast to continuous parameter hetero-

geneity – allow results to be interpreted as a structural break (Anselin, 1990), a common

choice in applied work is to use just two regimes: typically, North versus South for Europe

(Ertur/Le Gallo/Baumont, 2006), or East versus West for Germany. In this paper, we apply

a classification of regions by the German Federal Institute for Research on Building, Urban
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Affairs and Regional Development (Bundesinstitut für Bau-, Stadt- und Raumforschung,

BBSR), which identifies nine different degrees of urbanization and agglomeration.11 The

number of spatial regimes to use is rather heuristic, since the classification of districts is

due to population density, and is not directly linked to labour market considerations. The

intuition is that cities or agglomerations – which have a different industrial and firm struc-

ture, different information channels, and populations with different preferences than rural

areas – adjust to shocks differently.

In our analysis, we differentiate the (serial) autoregressive parameters (and seasonal ef-

fects) according to r = 9 discrete spatial regimes, and follow the previous estimation ap-

proaches for the region-specific levels (by FE or SF). Thus, let Dclass denote the n × r

matrix that assigns a certain urbanization/agglomeration class to each region. In order

to avoid perfect multicollinearity, there is no average autoregressive effect included in the

equation system. ξn is the part of spatial heterogeneity in the autoregressive process that

is not covered by the regimes, and that is considered unobservable. Then, the two spatial-

regimes specifications are given by:

Utιn = Ut−1DclassĂr + Ut−1ξn + Mn + St + εt (8)

Utιn = Ut−1DclassĂr + Ut−1ξn + ωM̃k + νn + St + εt (9)

In summary, we present three different approaches to model spatially heterogeneous au-

toregressive processes: by individual, spatial-filtering, and spatial-regimes parameters.

In addition, we can estimate a homogeneous parameter as well, as in a standard dy-

namic panel. The length of the parameter vector Ãk in the SF autoregressive model is

1 < k ≤ n; that is, more parameters need to be estimated than in the homogeneous model

(with αi = α) and, typically, much less than in the heterogeneous model of Equation (2).

Likewise, the number of spatial-regimes autoregressive parameters is 1 < r ≤ n. Thus,

both the SF and the spatial-regimes autoregressive models are more parsimonious than

the individual model.

Theoretically, all other model components are possible to modulate – deterministic mean

and seasonal effects – according to the same four schemes. Instead of considering all

64 possible models, in this paper we analyse only specifications where the deterministic

mean is represented by FE or the spatial filter, and with homogeneous versus individual

(region-specific) autoregressive and seasonal effects.

3 Data

Germany has shown in the past two decades the emergence of interesting dynamics on its

regional labour markets and is therefore, for our purposes, a good case study. Analyses

11 The nine classes are: (1) central cities in regions with urban agglomerations; (2) highly-urbanized districts
in regions with urban agglomerations; (3) urbanized districts in regions with urban agglomerations; (4) rural
districts in regions with urban agglomerations; (5) central cities in regions with tendencies towards agglom-
eration; (6) highly-urbanized districts in regions with tendencies towards agglomeration; (7) rural districts in
regions with tendencies towards agglomeration; (8) urbanized districts in regions with rural features; and
(9) rural districts in regions with rural features.
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in this paper employ data about German regional unemployment rates, at the NUTS-3

level of geographical aggregation (Kreise, denominated ’districts’ hereforth). The data are

available for all 439 districts, on a quarterly basis, for the years 1996 to 2004.12

Summary statistics for the data at hand are presented in Table 1. The table results confirm

that high and low (regional) unemployment rates are not randomly distributed across Ger-

many. A first examination of the data suggests an asymmetric distribution, which is skewed

toward high unemployment rates (the difference between the median and the third quartile

is almost one standard deviation). When inspected spatially, the data show marked spatial

autocorrelation (Moran’s I (MI) for the districts’ average unemployment is 0.878), which is

further confirmed by descriptive statistics calculated for macro-regional subsets, and by the

map in Figure 1a. While the former East Germany shows persistently high unemployment

rates (averaging 19.4 per cent) with (apparently) little variation (the first quartile is 17 per

cent), the former West Germany shows low-to-moderate rates in the North (Northrhine-

Westfalia, Lower Saxony, Schleswig-Holstein, and the city-states of Bremen and Ham-

burg) and in the South (Bavaria, Baden-Wurttemberg, Hesse, Rhineland-Palatinate, and

the Saarland). When differencing the data, one can note that a certain amount of spatial

autocorrelation remains (MI = 0.531), suggesting that not only the levels of unemployment,

but also the dynamics, are spatially correlated. Again, this feature is evident in Figure 1b.

This first finding implies that, when estimating a simple AR(1) panel model, one should

expect spatial autocorrelation, as well as group-specific serial correlation, in the residuals.

(a) (b)

Figure 1: Quantile maps of average unemployment rates: in levels (a) and in one-year
differences (b)

A further visualization of the data, following Peng (2008), allows a plot of all data (15,804

records) simultaneously, providing a bird’s eye view over regional disparities and trends.

Figure 2a shows the unemployment rates of all German districts, by using a common

colour scheme, where the different shadings are based on quantiles of the pooled data,

12 The recently formed East German district of Eisenach (ID 16056) belonged to the Wartburgkreis district (ID
16063) until the end of 1997. Thus, unemployment rates for Eisenach before 1998 are not available, and
we set them equal to the ones of Wartburgkreis. Also, in the first quarter of 1996, labour force figures are
not available for five East German regions. In order to compute unemployment rates, we set the labour
force (the denominator of the rate) equal to the labour force reported in the subsequent four quarters (as it
is determined only once per year by micro-census data).
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and darker shades indicate higher unemployment. The graph (and the accompanying

box plots) clearly shows that East German districts (in the bottom rows of each graph)

have significantly higher unemployment. Seasonal effects are visible in the background,

as the winter quarters show consistently higher unemployment (regularly occurring darker

columns). It is also possible to identify some lightly coloured rows among the West Ger-

man districts (in the left panel roughly at the top quarter, shortly below the first half of the

rows for West Germany and little above the thick line separating East and West German

districts; these rows indicate heterogeneity in the time-series characteristics within West

German local unemployment rates, suggesting the inappropriateness of a homogeneous

estimation approach.

(a) (b)

Figure 2: Visual representation of German regional unemployment rates
In the left graph, the colour scheme is common, in right graphs it is region-specific. The thick line
separates West German (above) and East German (below) districts. The right margin shows box plots
for each district’s time series. The bottom margin shows median features.

Assigning to each district its own colour scheme (based on each time series’ quantiles),

renders Figure 2b. Although most West German districts appear to have had their best

performance (that is, lowest unemployment rates) between 2000 and 2002, this is not the

case for the East German districts. Instead, they seem to have had lower unemployment

in 1996.13

4 Empirical Application

4.1 Fixed Effects and Spatial Filter Estimation

In the preceding discussion, we presented a class of dynamic panel models, ranging from

standard FE estimation [Equation (2)] to an alternative approach based on surrogating the

FE by means of a spatial filter [Equation (5)], to GWR-type spatial filter and spatial regimes

models. This subsection presents and compares results obtained for the first (FE and SF)

approaches mentioned for a class of models with homogeneous and/or heterogeneous es-

timates of AR(1) parameters and seasonal effects. In particular, in Table 2, we compare

13 In this regard, it should be recalled that no NUTS-3-level unemployment data are available for East Germany
before 1996.
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summary results such as measures of fit (R2 and RMSE), (average) autoregressive param-

eters estimated by the two approaches, and spatial autocorrelation in regression residuals.

The top left panel of Table 2 compares the most basic model specifications in terms of au-

toregressive parameters, in which just one (homogeneous) AR(1) parameter is estimated,

assuming α1 = α2 = . . . = αN . The FE and SF approaches are then compared. We

find that the computed AR(1) parameters differ between the two approaches. The FE esti-

mation with common seasonal dummies yields a homogeneous AR(1) parameter of 0.766,

and with region-specific seasonal dummies an AR(1) parameter of 0.901. The correspond-

ing (not reported) bias-adjusted parameters – obtained applying a correction according to

the formula for the Nickell bias (see Footnote 5) – would be approximately 0.815 (and 0.955

in case of heterogeneous seasonality). The SF estimations give slightly higher parameters

of 0.945 and 0.957, respectively. In anticipation of our further results, the two (corrected)

parameter estimates from the FE specifications with homogeneous AR terms are insofar

interesting, that they define (approximately) the range in which all other estimates for the

average AR parameter fall, that is, the interval running from 0.81 to 0.96. The difference

between the parameters does not seem to be high at first glance. However, the degree of

persistence – measured as the half-life of a shock given by
ln 1

2
lnαi

– varies from 3.25 quar-

ters (corresponding to an AR parameter of 0.81) to approximately 17 quarters for an AR

parameter of 0.96.

Table 2: Selected results for the homogeneous and heterogeneous AR process models14

Level Homogeneous seasonality Heterogeneous seasonal ef-
fects

FE SF FE SF
Homogeneous AR(1) process: αi = α

AR(1) coeff. 0.766 0.945 0.901 0.957
Av. residuals MI 0.489 0.482 0.357 0.317
Min. residuals MI 0.195 0.204 0.142 0.038
Max residuals MI 0.775 0.734 0.754 0.767
R2 0.977 0.975 0.992 0.991
RMSE 0.827 0.872 0.504 0.530
Res. Dfs 14,922 15,321 13,608 13,979

Heterogeneous AR(1) process: αi = Ani

Av. AR(1) coeff. 0.833 0.823 0.906 0.914
Min. AR(1) coeff. 0.135 (3462) 0.113 (9271) 0.485 (14181) 0.594 (14188)
Max. AR(1) coeff. 1.120 (5382) 1.275 (5162) 1.035 (5711) 1.137 (9677)
No. of AR(1) ≥ 1 72/439 79/439 6/439 48/439
No. of AR(1) < 1 156/439 284/439 97/439 264/439

(ADF, 5% sign.)
Av. residuals MI 0.486 0.478 0.369 0.365
Min. residuals MI 0.169 0.094 0.143 0.128
Max residuals MI 0.787 0.804 0.782 0.805
R2 0.981 0.980 0.992 0.992
RMSE 0.753 0.777 0.493 0.500
Res. Dfs 14,484 14,865 13,170 13,564

14 The (upward biased) autoregressive parameter estimated with a pooled OLS and homogeneous seasonal
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In terms of model fit, the SF estimate provides a fit to the data – in terms of R2 – very sim-

ilar to the one for the FE estimate (0.975 versus 0.977), while saving about 400 degrees

of freedom. As stated in Section 2.3, the variance of the SF estimation is deemed to be

(slightly) inflated with respect to the FE variance, which is also suggested by the computa-

tion of the RMSE (this is true for all estimations presented in Table 2). Meanwhile, in Figure

3 we can see how the SF computed (as the linear combination of the 39 eigenvectors se-

lected) approximates the spatial patterns shown in the FE parameters. The spatial patterns

shown in the two maps may be expected to include both region-specific variations from the

average (homogeneous) AR(1) parameter and seasonal effects, as well as unobserved

variables (such as, for example, other lags of the unemployment rate). Not surprisingly,

the eigenvector contributing most to the SF is E2, which shows a clear NE-SW pattern,

although it should be kept in mind that the amount of variance explained by this top eigen-

vector, in this dynamic panel framework, is less than 0.7 per cent of the one explained, for

example, by the seasonal dummies. Subsequent eigenvectors are at least three times less

informative than E2.

(a) (b)

Figure 3: Quantile maps of the FE (a) and SF (b) computed for the homogeneous AR(1)
process.

Finally, the levels of residual spatial autocorrelation appear to be similar for the FE and SF

approaches, with a tendency for the SF approach to obtain residuals slightly less correlated

in space. The time-averaged residual per region is zero or very close to zero, and spatial

autocorrelation is absent. Consequently, quarter-specific spatial autocorrelation can be

related directly to each quarter’s specific shocks or unobserved characteristics (beyond

direct seasonal effects, which are included in the model), and no recurring pattern exists

over time.

Subsequently, the bottom left panel of Table 2 provides summary results for estimation of

the models presented in Equations (2) and (5), estimating heterogeneous AR(1) param-

eters according to the FE and SF approaches, respectively. In contrast with the homo-

geneous case, where the estimated AR(1) parameter differed markedly between the two

models, the estimates obtained here are rather similar on average, although the number

dummies is 0.993 (with a regionally clustered standard error of 0.0014), the asymptotically consistent
Blundell-Bond estimator with homogeneous seasonal dummies is 0.902 (with a standard error of 0.0028).
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of estimated parameters greater than or equal to 1 is slightly different: 72 and 79 for the

FE and SF approaches, respectively. However, tests on the Dickey-Fuller transformation

of the system suggest that unit roots can be excluded (at the 95 per cent critical value of

a student-t distribution) for 156 districts in the FE approach and for 284 districts in the SF

approach.

Once again, eigenvector E2 is the most informative one, but in this occasion also eigen-

vector E1 emerges amongst the main ones. The quantity of variance explained by the top

eigenvector (E2) is now greater in relative terms, for example if compared to the one of the

seasonal dummies (4 per cent rather than the previous 0.7 per cent).

A certain level of numerical differences may be expected between the two vectors of AR(1)

parameters (given in Figure 4). Indeed, the number of eigenvectors selected is distinct

between a direct extraction of the SF (the procedure followed in this paper) and an indirect

procedure, where FE are computed first, and an SF is extracted from the FE parameters

vector. In the former case, fewer eigenvectors are selected, most likely because of the

error component εt [see Equation (2)] not being considered in the indirect procedure. In

contrast, a number of eigenvectors are selected only in the direct procedure, suggesting

a correlation between these eigenvectors and the covariates (for example, Ut−1 is not

assumed to be orthogonal to the eigenvectors). Consequently, possible differences exist

between the AR(1) vectors of parameters for Equations (2) and (5). The extent of these dif-

ferences depends on each specific case, and their direction remains to be fully inspected

with a simulation experiment. With regard to the present analysis, clear differences ap-

pear to be mostly in the extremes, as shown by the similar quantiles and geographical

patterns appearing in Figure 4. Both maps indicate higher first-quarter autoregressive ef-

fects in the western urbanized areas going (South to North) from Munich to the Stuttgart

and Mannheim areas, to the Ruhr and Rhine areas, to Bremen, patterns that generally

resemble the spatial distribution of population density in Germany.

(a) (b)

Figure 4: Quantile maps of estimated heterogeneous AR(1) parameters: FE (a) and SF (b)
approaches [parameters αi according to Equations (2) and (5)]

Conceivably, once we let the autoregressive parameter vary over the cross-section of dis-

tricts, the measures of fit of the models (R2 and RMSE) improve, while 438 (that is, n− 1)

additional degrees of freedom are consumed. Again, the SF estimation allows us to save
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about 420 degrees of freedom, while approximating closely the spatial patterns included

in the FE parameters (Figure 5). Finally, residual spatial autocorrelation is the same – on

average – in both the homogeneous and heterogeneous AR(1) parameter estimates, with

the SF exhibiting lower minima in this regard.

(a) (b)

Figure 5: Quantile maps of the FE (a) and SF (b) computed for the heterogeneous AR(1)
process [levels in Equations (2) and (5)]

Finally, the right-hand panels of Table 2 provide additional empirical results, as the above

models are extended to include individual (heterogeneous) seasonal effects. This exten-

sion implies computing (439 * 3 =) 1,317 regression parameters rather than the three previ-

ously computed seasonal parameters (for spring, summer and fall, while winter is used as

the reference category). In the case in which both the autoregressive and seasonal effects

are computed for each district, which we use as our example in the following discussion,

(439 * 4 + 1 =) 1,757 parameters are computed, which increase to (439 * 5 =) 2,195 in the

FE case.15 As a result, an improved fit (higher R2 and lower RMSE) as well as a dimin-

ished spatial autocorrelation in the residuals may be expected, which is confirmed by the

summary statistics reported in Table 2. In addition, higher average AR(1) parameters are

found, though with comparable results in terms of unit roots, as suggested by the ADF test

results. Noteworthy are the changes in the spatial distribution of the AR(1) parameters and

of the FE estimates, as shown in Figure 6. Figure 6a, referring to the AR(1) parameters,

portrays patterns appearing in Figure 4 that are more sparse, as the result of individual

seasonal effects having been filtered out. Meanwhile, Figure 6b, appears more similar to

Figure 5, although it is slightly smoother.

The analyses presented above suggest that SF may be used to approximate the standard

FE estimation for the study of unemployment persistence. Each of the two approaches

appears to have specific advantages, allowing a researcher to choose freely between them

on the basis of his/her needs. However, further approaches to decomposing region-specific

autoregressive effects can be employed, as suggested in Sections 2.3 and 2.4. Results

obtained for these additional classes of models are presented next.

15 Needless to say, the increase in computational load leads to a much slower stepwise selection of the SF,
which on the other hand may be improved by the use of faster CPUs, by implementing stepwise solutions
suitable for multi-core computers or clusters, or by resorting to different types of model selection procedures
(see, for example, Miller, 2002).
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4.2 Spatial Filter/Fixed Effects in the Autoregressive Component

The maps of the AR(1) parameters appearing in Figure 4 and the related MI scores high-

light that autoregressive parameters are indeed strongly spatially correlated. As proposed

in Section 2.3, the spatial patterns obtained according to Equation (5), by computing n au-

toregressive parameters, may be approximated by parameter expansion in a spatial-filter

GWR-fashion. Equations (6) and (7) give the FE and SF specifications, respectively, im-

plying that, for the latter, two spatial filters are computed (or, more generally, one for each

SFGWR-type regressor, plus the SF substituting the FE). In our specific case, substitut-

ing An by its SF representation implies saving 392 degrees of freedom (47 versus 439

AR-related regressors), while extending the SFGWR-type approach to seasonal effects

allows us to save 1,602 degrees of freedom (154 versus 1,756 = 439 * 4), although at

the (opportunity) cost of running extensive stepwise regression in order to select the rele-

vant eigenvectors.16 The relevance of such a huge saving in terms of degrees of freedom

becomes evident when considering panels with large N and small T. In addition, the com-

putational intensity of the spatial filter construction only applies to the first estimation of the

model, while subsequent estimations – for example, for forecasting purposes – are faster

than in the respective cases of Equations (2) and (5), because the relevant eigenvectors

already have been selected.

Table 3 reports summary statistics for the aforementioned model specifications. The mean,

minimum and maximum AR(1) parameters reported for the SFGWR model (left panel) ap-

pear to provide a picture similar to the one found in Table 2 for the case of the heteroge-

neous AR(1) process, with the exception of a higher average parameter in the SF case.

The inferential advantage with regard to unit root testing becomes evident: while above the

SF model with heterogeneous AR(1) process allows to reject – at a 5 per cent significance

level – 264 to 284 unit roots and the FE model with heterogeneous seasonality and AR(1)

process has a unit-root rejection rate of less than one quarter of the regions, the SFGWR

(a) (b)

Figure 6: Quantile maps of the AR(1) (a) and FE (b) parameters computed for the hetero-
geneous AR(1) and seasonal process (FE estimation)

16 Given our starting set of 98 candidate eigenvectors, a backward stepwise regression identifying a SFGWR
representation of both the AR(1) parameters and the seasonal effects evaluates, in the first step, (98 * 4 =)
392 models in the FE case, and (98 * 5 =) 490 models in the SF case.
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model leads to a further increase of the rejection rate, reaching 337 unit root rejections

for the SFGWR model with heterogeneous seasonality and fixed effects (third column of

Table 3).17 Additionally, we can observe that the GWR models using FEs have roughly the

same rejection frequency as the models using SF for the levels (274 vs 270, 337 vs 317)

although the estimated average adjustment parameters are smaller in value – that is, the

models using SF for the levels seem to be more efficient.

Table 3: Selected results for the spatial-filter-GWR (SFGWR) AR process models

Level Heterogeneous AR(1) pro-
cess

Heterogeneous AR(1) pro-
cess & seasonal effects

FE SF FE SF
Spatial filter AR(1) process: αi =

∑
k EkiÃk

Av. AR(1) coeff. 0.853 0.935 0.882 0.961
Min. AR(1) coeff. 0.162 (9276) 0.276 (9271) 0.530 (14188) 0.697 (9271)
Max. AR(1) coeff. 1.238 (7338) 1.211 (5374) 1.163 (9274) 1.140 (5374)
No. of AR(1) ≥ 1 94/439 136/439 44/439 94/439
No. of AR(1) < 1 274/439 270/439 337/439 317/439

(ADF, 5% sign.)
Av. residuals MI 0.481 0.440 0.333 0.176
Min. residuals MI 0.139 0.129 0.012 -0.016
Max residuals MI 0.817 0.730 0.803 0.704
R2 0.980 0.978 0.985 0.986
RMSE 0.776 0.824 0.666 0.650
Res. Dfs 14,876 15,227 14,772 15,064
Selected eigenvecs
for SFGWR-AR(1)

46 64 27 46

Once again, the levels of spatial autocorrelation in the residuals vary greatly, depending on

quarter-specific noise, and are comparable but slightly lower than the earlier ones. RMSE

increases moderately, as expected, but is being balanced out by the aforementioned huge

savings in terms of degrees of freedom. These results are confirmed by extending the

SFGWR specification to seasonal effects (right panel).

In terms of the spatial autocorrelation observed in the AR(1) parameters resulting from

Equations (6) and (7), Figure 7 confirms the similarities with the spatial distribution of pop-

ulation density. The spatial distribution of the estimated FE and SF (plotted in Figure 8)

again is consistent pairwise, showing higher unexplained variation in the levels for East

German districts. Not surprisingly, the light-shaded areas of Figure 7 appear to match the

dark-shaded areas of Figure 8, as greater relative stability in the East German unemploy-

ment rates due to time-constant unobserved regional characteristics (or just lower depen-

dence from their one-quarter lag) is reflected in the FE or in the SF. Similar observations

can be made by comparing Figure 4 and 5, or the two maps in Figure 66.

17 For the GWR-type models, the vector of AR(1) parameters is obtained as the linear combination of the
related eigenvectors, using as weights the regression parameters computed for the interactions terms be-
tween the lagged unemployment rates and the eigenvectors themselves αi = ωiÃk. Seasonal parameters
for each season, when included, are computed in a similar fashion. Because of this construction, unit root
tests are computed as t-tests, where the variance of each region’s autoregressive parameter αi is computed
as V ar(αi) =

∑
k ω

2
kiσ

2
k and σ2

k is the kth diagonal element of the variance-covariance (sub)matrix of the
K eigenvectors selected.
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(a) (b)

Figure 7: Quantile maps of estimated spatial-filter-GWR (SFGWR) AR(1) parameters: FE
(a) and SF(b) approaches

(a) (b)

Figure 8: Quantile maps of the FE (a) and SF (b) computed for the spatial filter AR(1)
process
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As we already noted, the spatial-filter GWR surrogate for the region-specific autoregressive

parameters allows identification of the spatial structure underlying the heterogeneity of the

dynamic labour market process. Amongst the selected eigenvectors in the SFGWR spec-

ification with a spatial filter for the level component and homogeneous seasonal figures

(Figure 7b and Figure 8b), there are four (of the five) eigenvectors associated with global

patterns – that is, eigenvectors which, when the values are plotted into a map, show one or

two large ’peaks’ and one or two big ’valleys’ spreading out over a large areas. 40 selected

eigenvectors can be associated with regional, and 20 with local patterns.18 Since all eigen-

vectors have the same scale (their values have an identical standard deviation), the partial

contribution of each eigenvector to the overall autoregressive process is sized proportion-

ately to the absolute value of the corresponding parameter. However, amongst the 15

eigenvectors with the highest parameter in absolute value, only two are global and two are

local (the first local is at position 13), but 11 eigenvectors reflect regional patterns. In the

other specifications, we find a similar selection of eigenvectors (the same four global, and

roughly twice as many regional as local). However, in the corresponding SFGWR estima-

tion using fixed effects (i.e., when the levels are forced to show maximum heterogeneity),

all four global eigenvectors are amongst the 15 most influential eigenvectors.

More interestingly, there is a negative relation between the parameters associated with the

(common) eigenvectors selected for modelling serial dependence and for the levels, as

suggested by Figure 9. Additionally, eigenvectors which are selected only in one case (for

which we include a value of zero in case of non-selection) have parameter values closer

to zero even when significant, showing that the common eigenvectors are the ones with

the greatest importance in both filters. On the other hand, the negative Pearson correlation

of -0.89 (-0.93 for the common subset) between the two sets of parameters suggests that

the SF in the levels behaves in the opposite way than the SF for the AR(1) parameters.19

This indicates a trade-off between the level of persistence (i.e., serial dependence) and

the influence of the (deterministic) level showing the spatial pattern modelled by the filter:

unemployment is then represented as a weighted average of (more or less) persistent ran-

dom elements (with a set of weight a) and deterministic elements [with weights (1−a)] The

more unemployment in a certain number of contingent regions (described by the mapping

pattern of the eigenvectors) is driven by persistent shocks, the less important are the deter-

ministic components in these regions – and vice versa, the lower the persistence, the faster

regions adjust towards their initial (or natural) levels which become more important. This

finding calls for further analytical investigation, which goes beyond this paper’s objective.

Finally, the residual variance and the number of parameters of the models presented above

can be combined to compute various information criteria (see TABLE 5, in the Annex). The

Akaike information criterion (AIC) suggests that the SFGWR specification for the autore-

gressive process uses the information best, when compared to other model specifications,

18 The classification of global, regional and local eigenvectors is according to the table for 98 candidate eigen-
vectors extracted from a rook C-coding matrix given by Patuelli et al. (forthcoming). Eigenvectors 1 to 5 are
considered global, 6 to 66 regional and 67 to 98 local.

19 A similar finding is obtained when both the AR(1) and the seasonal parameters are computed by means of
the GWR-SF approximation. A Pearson correlation of -0.83 is obtained the two sets, and -0.91 is found for
the common sets.
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and that FE in the levels are superior to the SF. However, the AIC is often considered

not adequate (or weak) for finite samples, and other criteria may be more reliable. The

Schwartz Bayesian information criterion (BIC), which is often found to be over-selective, in-

dicates superiority of the SF in the levels compared to the FE, and superiority of the SF AR

process as well, because of the greater importance given to the degrees of freedom saved.

The advantage of spatial filters in modelling both levels and autoregressive processes is

confirmed by the Hannan-Quinn information criterion (HQ).

4.3 Adjustment to Shocks According to the Spatial Regimes

In our final analysis, we present, in Table 4, summary statistics for the spatial regimes spec-

ification introduced in Equations (8) and (9). In these specifications, heterogeneity of the

autoregressive parameters is introduced by distinguishing between districts with different

levels of agglomeration and urbanization. Consequently, instead of n AR(1) parameters,

only nine are computed, corresponding to the specific classes introduced in Section 2.4.

This approach makes identification of (average) autoregressive (and seasonal) effects pos-

sible for classes such as city-districts in agglomerated areas, or rural districts belonging to

rural areas. The results obtained by applying the spatial regimes decomposition to the

AR(1) process alone are shown in the left panel of Table 4.

Table 4: Selected results for the spatial-regimes AR(1) process models

Level Heterogeneous AR(1) pro-
cess

Heterogeneous AR(1) pro-
cess & seasonal effects

FE SF FE SF
Spatial-regimes AR(1) process: αi = Dclass(i ∈ r)Ăr

Av. AR(1) coeff. 0.808 0.937 0.812 0.946
Min. AR(1) coeff. 0.613 (type 9) 0.927 (type 9) 0.670 (type 3) 0.916 (type 2)
Max. AR(1) coeff. 0.984 (type 1) 0.949 (type 5) 0.934 (type 1) 0.960 (type 9)
No. of AR(1) ≥ 1 0/9 0/9 0/9 0/9
No. of AR(1) < 1 8/9 9/9 9/9 9/9

(ADF, 5% sign.)
Av. residuals MI 0.485 0.476 0.425 0.417
Min. residuals MI 0.195 0.198 0.167 0.178
Max residuals MI 0.769 0.746 0.747 0.729
R2 0.978 0.975 0.981 0.979
RMSE 0.810 0.869 0.754 0.798
Res. Dfs 14,914 15,306 14,890 15,291

We obtain nine AR(1) parameters ranging from 0.613 to 0.984 in the FE case, and from

0.927 to 0.949 in the SF case. These results are consistent with our previous findings (see

Table 2). It turns out that the average AR parameters are higher for the SF approach, but

when employing ADF tests only the FE case presents a unit root. This single unit root

(which is not confirmed when decomposing seasonal effects as well) is found for districts

of type 1 (that is, ’central cities in regions with urban agglomerations’). Our findings con-

firm the tendency of the AR(1) parameters to resemble the spatial distribution of population

density, and of the central business districts (CBDs) of dense regions to show the highest

parameters. Figure 10 maps the values found for the spatial regimes AR(1) parameters
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Figure 9: Correlation between the parameters of the eigenvectors selected for the SFGWR
AR interpolation and for the levels (with homogeneous seasonal effects)

Figure 10: Map of estimated spatial-regimes AR(1) parameters: SF approach [parameters
ᾰr according to Equation (9)]
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(SF estimation with homogeneous seasonal effects), and clearly shows that this approach

provides a rough approximation of the parameter estimates obtained above, while show-

ing – within a general picture of high persistence – some core-periphery patterns between

the ’central cities’ (type 1 and 5 districts, with higher persistence) and their surroundings;

equality of all nine AR parameters is rejected both in the FE estimations and in the SF

estimations. However, the regimes approach associates also a high degree of persistence

to agglomerated areas in Eastern Germany (e.g., Dresden, Berlin or Chemnitz) which has

not been found when using individual parameters (see Figure 4), that is, this rough approx-

imation may indeed be missing some pattern. There are pros and cons to using spatial

regimes, and this preliminary finding may deserve further investigation in the future re-

search.

4.4 Concluding Remarks: Persistence of Unemployment

The empirical findings presented in this section give a clear picture of unemployment per-

sistence in Germany. We find the adjustment speed of regional unemployment to shocks

to be extremely heterogeneous, which makes estimation of a single AR-parameter look

unreasonable and supports our call for regionally disaggregated estimations. Modelling

the heterogeneity by SF-GWR seems to capture most of this heterogeneity, but spatial

regimes do surprisingly well too. The averages over the AR parameters – and the majority

of them – throughout the various specifications lie between 0.76 and 0.96, that is, close to

1. Thus, shocks to unemployment may be expected to be persistent, or at least to have

a long half-life in most regions. For example, an AR parameter of 0.8 is equivalent to a

half-life of more than three quarters, or the effect of the shock vanishing after eight years

(10 times the half-life); an AR parameter of 0.9 corresponds to a half-life of 6.6 quarters,

and a parameter of 0.95 to a half-life of 13.5 quarters. When using Dickey-Fuller equivalent

transformations of the models, we can reject the hypothesis that the difference of the aver-

age autoregressive parameter minus one – the average of this distance is between -0.24

and -0.04 – is greater than or equal to zero. At least on average, unemployment is sta-

tionary – a necessary condition for the existence of (conditional) convergence – although

non-stationarity can hardly be rejected for a large fraction of regions. Thus, unemployment

adjusts very slowly – if ever – toward a kind of natural rate; it behaves (in particular in the

agglomerated districts along the river Rhine) more like a random walk. Saying that there

is clear evidence of (cross-sectional) convergence among the rates would be an excessive

statement.

Our findings are particularly significant with regard to exogenous shocks: positive, in

the case of active labour market policy interventions; negative, as in the case of the re-

cent global economic crisis. Strong persistence of the regional unemployment rates sug-

gests that a negative shock, due for example to a sudden increase in labour supply, to

not-anticipated deflation, or to economic catastrophes, would take a rather long time to

be absorbed. We can think, for example, of new labour regulations for foreign workers

(the enlargement of the European Union from EU-15 to EU-25), of the collapse of the

states/markets belonging to the socialist Council for Mutual Economic Aid (Comecon) in

the late 1980s/early 1990s (affecting the former German Democratic Republic), or of po-
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litical events as in Card (1990). In this regard, there is potential in expanding the above

analyses to the analysis of relative unemployment, which appears to have different per-

sistence dynamics than the absolute levels [see, e.g., Jimeno/Bentolila, 1998, where the

determinants of unemployment persistence are also discussed].

5 Conclusions

Studies about the convergence or persistence of unemployment typically employ univariate

autoregressive equations and test them for stationarity. This procedure is straightforward

and computationally simple, but can hardly account for cross-sectional heterogeneity and

dependence – thus, in the best case, it is statistically inefficient (imprecise) or, in the worst

case, mispecified. Derived conclusions may then be misleading.

In this paper, we have focused on two questions. First, starting with a system of AR(1)

equations, we aimed to show the substitutability of fixed effects (FE) and spatial filters and,

analogously for autoregressive processes, the one between individual autoregressive pa-

rameters and SF GWR-type estimation. The SF surrogates [which allow to decompose

the FE into a spatially structured and a spatially unstructured (random) part] are more par-

simonious with regard to the number of parameters, and use, instead of region-specific

parameters, a set of parameters defined and computed over all regions. Second, we ap-

plied SF methods when analysing the dynamics of quarterly regional unemployment rates

for Germany from 1996 to 2004. Because the eigenvectors employed in an SF represent

map patterns, one advantage of this approach is that the heterogeneous autoregressive

adjustment parameters of the GWR-type models have a geographical interpretation. For

comparison, we also provided estimates of a homogeneous autoregressive process, and

of one approach differentiated according to nine urbanization/agglomeration regimes.

Indeed, when comparing pairwise the individual and SF specifications for the process com-

ponent (AR or level), keeping everything else equal, we found that the SF approach pro-

vides a gain in residual degrees of freedom, without losing much estimation accuracy, mea-

sured, for example, in terms of goodness-of-fit (R2) or root mean squared error (RMSE).

We found, for the SF AR specification, some gain in precision when compared with the

homogeneous and spatial regime specifications. Summary diagnostics for all models,

based on information criteria, provided a confirmation of the potential of the proposed

SF-based models. The residuals from individually-specified models and of their corre-

sponding SF equivalents are highly correlated, and the error distributions are quite simi-

lar pairwise. The estimates for the average autoregressive parameter vary, in particular,

between the FE estimation with homogeneous seasonal effects (0.76 – 0.85) and the re-

maining level/seasonality combinations (0.90 – 0.96). Consequently, a potential bias in the

autoregressive parameter does not seem to depend on the way in which the autoregres-

sive process is specified. However, obtaining exact evidence about the consistency of the

AR estimates is only possible by means of Monte Carlo simulation. This aspect will be

the subject of future research, since here we limit ourselves to showcasing the practical

relevance of the proposed approaches. A further aspect that may be expected to be in-

vestigated in future research is the extension of the proposed models to the estimation of
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nonlinear regression models (e.g., in the case of unemployment rates, the logistic regres-

sion), for which panel models are generally less popular in the econometric literature and

competition with other applied statistics fields is stronger (e.g., generalized linear mixed

models).
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A Comparative Model Overview and Further Statistics

Table 5: Information criteria results
AR process Levels Seasonality Av.AR R2 RMSE Res. Dfs. Nr. Coefficients AIC BIC HQ
Homogenous FE Homogenous 0.766 0.996 0.827 14922 443 -0.321 -0.095 -0.246
Homogenous SF Homogenous 0.945 0.975 0.872 15321 44 -0.268 -0.246 -0.261
Homogenous FE Heterogeneous 0.901 0.992 0.504 13608 1757 -1.112 -0.141 -0.789
Homogenous SF Heterogeneous 0.957 0.991 0.530 13979 1386 -1.071 -0.323 -0.822
Heterogeneous FE Homogenous 0.833 0.981 0.753 14484 881 -0.446 0.015 -0.292
Heterogeneous SF Homogenous 0.823 0.980 0.777 14865 500 -0.437 -0.181 -0.352
Heterogeneous FE Heterogeneous 0.906 0.992 0.493 13170 2195 -1.081 0.166 -0.665
Heterogeneous SF Heterogeneous 0.914 0.992 0.500 13564 1801 -1.121 -0.123 -0.788
SFGWR FE Homogenous 0.853 0.980 0.849 14876 489 -0.262 -0.012 -0.179
SFGWR SF Homogenous 0.935 0.978 0.824 15227 138 -0.369 -0.300 -0.346
SFGWR FE Heterogeneous 0.882 0.985 0.666 14772 593 -0.733 -0.428 -0.631
SFGWR SF Heterogeneous 0.961 0.986 0.650 15064 301 -0.822 -0.669 -0.771
Spatial regimes FE Homogenous 0.808 0.978 0.810 14914 451 -0.361 -0.131 -0.285
Spatial regimes SF Homogenous 0.937 0.975 0.869 15306 59 -0.273 -0.244 -0.263
Spatial regimes FE Heterogeneous 0.812 0.714 0.754 14890 475 -0.501 -0.258 -0.420
Spatial regimes SF Heterogeneous 0.946 0.979 0.798 15291 74 -0.442 -0.405 -0.429
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