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Abstract

Most attributes in transportation studies, such as the travel time and
the travel cost of a travel mode or road alternative, have a clear rank
order in their attribute levels. Therefore one option in a choice set of an
experimental design can dominate the other alternatives in the set. This
research finds Bayesian D-efficient designs for a specific setup in the trans-
portation field. It is shown that with a proper choice of prior information
which adequately incorporates the dominance of lower attribute levels, no
choice sets with a dominant alternative will be included in the efficient
designs.

Keywords: Stated preference data · Conditional logit model · Nested logit
model · Bayesian D-efficient designs · Dominant alternative · Prior infor-
mation

1 Introduction

Among many other fields of application, choice-based conjoint choice experi-
ments are frequently applied and highly valued in transportation studies (Bliemer
et al. 2009; Rose and Bliemer 2009). The majority of these studies aims at in-
vestigating and quantifying the travelers’ valuation of travel time savings in a
mode choice or road choice experiment (Hensher 2001; Hess et al. 2005; Ax-
hausen et al. 2008). How much are travelers willing to pay to save a unit of
travel time? The stated preference experiment discussed in this research deals
with the attractiveness and profitability of a new and speedy toll road in com-
parison to existing toll-free but slower alternatives (Hess and Adler 2010). More
specifically, one wants to find out if, and if so how much, travelers are willing
to pay for a more expensive, yet faster road option.

In the experiment travelers are presented with a list of choice sets which
comprise multiple road options for a specific trip each defined by the travel
time and the travel cost, i.e. the toll price of the alternative. Both attributes
can take on four levels. For the tolled options the travel time and the toll price
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levels respectively equal 29, 32, 35 or 38 minutes and 1, 2, 3 or 4 dollar. To
bring in a trade-off between travel time and travel cost, the travel time levels
for the toll-free road options are chosen to be higher and equal 40, 44, 48 or 52
minutes.

For the toll road problem in this study a specific setup is considered for
the choice sets in the experimental design, i.e. each choice set in the design
consists of one toll-free option and two toll road options. To start, the more
simple setup of a design including choice sets with two tolled road options only
will be discussed in the following section. Toll-free alternatives are discarded in
the design of this paired comparison experiment. The third section deals with
the main experimental setup of choice sets with one toll-free and two toll road
options.

Since both attributes of the road options, i.e. the travel time and the toll
price, have a clear rank order in their levels (travelers generally prefer a shorter
travel time and a lower travel cost), it is possible for one toll road option in a
choice set to dominate the other tolled alternative in the set. As lower attribute
levels are more attractive, a cheaper and at the same time faster option would
for instance dominate a more expensive and slower option. An example of a
choice set with a dominant tolled alternative is given in Table 1.

Alternative I Alternative II Alternative III
(toll-free) (tolled) (tolled)

Travel time 40 minutes 32 minutes 38 minutes
Toll price $0 $2 $3

Table 1: Choice set with dominant toll road option

It is clear that for the choice set in Table 1, the first tolled option (Alter-
native II) dominates the second tolled option (Alternative III). The first toll
road option is faster without being more expensive. Such choice sets are not
valuable in travel time savings estimation, as each rational participant would
choose Alternative II from the two toll road options. Moreover, the presence
of such non-sense choice sets in a questionnaire puts the quality and credibility
of the research on the line. Respondents could loose their interest and will for
cooperation, potentially resulting in reduced response quality and finally in esti-
mation bias. Therefore it is very important to avoid choice sets with a dominant
alternative in the design of the experiment.

To model the travelers’ choices from the experiment, two well-known dis-
crete choice models are considered. For the first setup, in which the choice sets
comprise only two tolled road options, the conditional logit model (Train 2003)
is used to model the choice data. To analyze the data from the second setup,
in which, besides two toll roads, an additional toll-free alternative is included
in each choice set, the nested logit model (Train 2003) is applied as the condi-
tional logit model will prove to be inappropriate for choice sets with three such
alternatives.
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To attain choice data that yield accurate estimates of the model parameters,
i.e. the travel time and the travel cost coefficient, D-efficient designs (Atkinson
et al. 2007) can be used. In this study D-efficient designs will be constructed
for both the conditional logit and the nested logit model. These efficient designs
are obtained through the maximization of the D-optimality criterion, which is
the determinant of the Fisher information matrix. As the conditional logit as
well as the nested logit model are nonlinear in the parameters, the D-optimality
criterion depends on the unknown model parameters in both cases. So, one
needs to assume prior values (local D-efficient designs) or a prior distribution
(Bayesian D-efficient designs) for the model coefficients in order to compute
D-efficient designs. Unfortunately, without carefully chosen prior values or dis-
tributions, the designs can include choice sets with a dominant toll road option.

This research advocates an appropriate choice of prior information to avoid
the presence of choice sets with a dominant alternative in D-efficient designs.
By incorporating the dominance of lower attribute levels in an adequate way in
the prior information, these choice sets are excluded from the efficient designs.

2 Choice sets with two tolled alternatives

Before we turn to the main setup of the experimental design, in which each
choice set comprises one toll-free and two toll road options, a more straight-
forward setup is considered first. In this section, the toll-free alternatives are
discarded and the choice sets in the design include two toll road options only.
As these options are defined by two attributes, i.e. travel time and toll price,
the random utility a traveler receives from tolled alternative j (j = 1 or 2) in
choice set s (s = 1, ..., S) equals

Ujs = (βTT × TTjs) + (βTC × TCjs) + εjs,

with βTT and βTC the model partworths for respectively the travel time and
the travel cost attribute.

In the conditional logit model, the error terms εjs are assumed to be inde-
pendently and identically extreme value distributed. Therefore, a closed form
solution for the probability that a person chooses the tolled road option j in
choice set s is found

pjs =
e(βT T×TTjs)+(βT C×TCjs)∑2
t=1 e(βT T×TTts)+(βT C×TCts)

.

To construct efficient choice designs for the conditional logit model, the
D-optimality criterion is used in this study. This criterion outperforms other
design criteria with respect to accuracy, predictive validity and computational
effectiveness (Kessels et al. 2006a). D-efficient designs are obtained by the
minimization of the D-error, i.e. the inverse of the determinant of the Fisher

3



information matrix which for the conditional logit model is given by

I(X, β) = N
S∑

s=1

X′
s(Ps − psp′s)Xs,

with Xs = [x′1s,x
′
2s]

′ the design matrix for choice set s and xts = [TTts, TCts]′,
ps = [p1s, p2s]′ and Ps = diag[p1s, p2s].

We will compute Bayesian D-efficient designs (Sándor and Wedel 2001) by
minimizing the expectation of the D-error over a prior distribution π0(β) of the
model parameters

DB − error = Eβ

[
det[I(X, β)]−1/2

]
=

∫
R2

det[I(X, β)]−1/2 π0(β) dβ.

Note that the D-criterion is taken to the power 1/2 to obtain independence from
the dimensionality of the vector of model parameters. For practical purposes,
the Bayesian D-error is approximated by the average D-error over R draws βr

from the prior distribution

D̃B − error =
1
R

R∑
r=1

det[I(X, βr)]−1/2.

The choice of the prior distribution π0(β) for the model parameters is an
important aspect in the computation of Bayesian efficient designs. Specifically,
we show that the presence of dominant alternatives in the choice sets of D-
efficient designs is due to the (incorrect) choice of prior information. If one
adequately incorporates the dominance of lower attribute levels in the prior
information, choice sets with dominant alternatives will not appear in the D-
efficient designs. For the travel time and the travel cost partworth in the model,
a multivariate normal prior distribution will be assumed.(

βTT

βTC

)
∼ MV N

((
β̄TT

β̄TC

)
,

(
σ2

TT σTT,TC

σTT,TC σ2
TC

))

To verify whether the prior information indeed has an effect on the number
of choice sets with a dominant alternative, two different vectors of prior means
are considered, i.e.

1. (β̄TT , β̄TC) = (−0.2,−1),

2. (β̄TT , β̄TC) = (−0.4,−2).

The two prior mean vectors correspond to a value of travel time savings of $12
per hour. More specifically, travelers are willing to pay $12 in order to save
one hour of travel time, a realistic and frequently observed value of travel time
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savings (Hess et al. 2008). The variances σ2
TT and σ2

TC are fixed to 0.001 and
0.01 respectively and the covariance σTT,TC equals 0 in each case.

In the following we claim that only the second prior specification adequately
specifies the dominance structure in the experiment and therefore choice sets
with dominant alternatives will not appear in the D-efficient designs obtained
with this prior information. Based on the ideas of Kessels et al. (2006b), the
appropriateness of the prior information is evaluated by considering the choice
set with the most attractive and the least attractive toll road option (Table 2).

Travel time Toll price
Most attractive 29 min $1
Least attractive 38 min $4

Table 2: Choice set with the most attractive and the least attractive toll road
option

As the least attractive road alternative corresponds to the longest travel
time and the highest travel cost, obviously, the probability of choosing the most
attractive option, i.e. the fastest and the cheapest alternative, should be ap-
proximately 100% in this choice set. The most attractive option should clearly
dominate the least attractive one.

In Table 3 the probabilities for choosing the two most extreme alternatives
are given for the two sets of prior means considered. For prior means (−0.2,−1),
a very high probability of choosing the dominant alternative is observed, yet ap-
proximately 0.82% of the travelers would still prefer the least attractive option
over the most attractive one. As for the other prior mean specification, the prob-
ability for choosing the dominant alternative is higher, approximately 100%, and
thus more realistic. By taking the prior means further away from the zero vec-
tor, the dominance of lower attribute levels is more adequately incorporated in
the prior information. Therefore one can expect D-efficient designs constructed
with the first prior to include choice sets with a dominant alternative, whereas
such choice sets would be excluded from the designs when making use of the
latter prior specification.

For each prior a Bayesian D-efficient design was computed by means of a
Bayesian modification of the modified Fedorov choice algorithm (Kessels et al.
2006b). Three hundred random start designs are updated using 1000 random
draws from the prior distribution. As there are only two model parameters to
estimate, i.e. βTT and βTC , designs with eight choice sets are constructed. The
designs are given in Appendix A. For each prior specification the fraction of
choice sets in the D-efficient design with a dominant alternative is given at the
bottom of Table 3. Indeed, a well-considered choice of prior information, which
accurately expresses the dominance structure in the experiment, has a benefi-
cial effect on the suitability of the D-efficient design as there are no choice sets
with a dominant toll road option in the design corresponding to the latter prior
specification. Note that different prior covariance structures were considered
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(βTT , βTC)
(-0.2, -1) (-0.4, -2)

Most attractive 29 min - $1 99.18% 99.99%
Least attractive 38 min - $4 0.82% 0.01%
Fraction of sets in the design with
a dominant toll road option 4/8 0/8

Table 3: Probabilities of choosing the most attractive and the least attractive
toll road option

and that with respect to the fraction of choice sets with a dominant alternative
in the design identical results were obtained.

3 Choice sets with one toll-free and two tolled
alternatives

In the second stage of this research, the main design setup for the toll road
experiment is studied. Now, the choice sets in the design comprise not only two
tolled roads but also one toll-free road option. The addition of a toll-free alter-
native in the choice sets makes it possible to investigate whether travelers are at
all interested in a new toll road or whether, if possible, they would continue to
use the existing road options which are slower but free of charge. Analogous to
the preceding setup, we search for Bayesian D-efficient designs. With respect to
the D-optimality criterion, we optimize designs including choice sets with three
alternatives, the first a toll-free option and the final two toll roads.

To obtain the D-efficient designs, we first considered the conditional logit
model to analyze the choice data and used the two prior specifications intro-
duced in the previous section. To verify the appropriateness of the prior in-
formation, two choice sets with three alternatives are considered. The first set
includes the toll-free option with the shortest travel time, i.e. 40 minutes, and
the two most extreme toll road options, the second set includes the toll-free
option with the longest travel time, i.e. 52 minutes, and the two most extreme
toll road options. The probabilities of choosing these alternatives in the choice
sets are given in Table 4 for the two sets of prior means.

One can conclude that the prior mean values (−0.4,−2), in contrast to the
values (−0.2,−1), adequately incorporate the dominance of lower attribute lev-
els as approximately 0% of the travelers would choose the dominated alternative.
Yet, when this prior information is used to compute Bayesian D-efficient designs
of choice sets with three alternatives for the conditional logit model, the designs
include choice sets with a dominant toll road option. When specifying the prior
means even further away from the zero vector, the designs still include nonsense
choice sets such as sets with a dominant toll road option or sets with two equal
toll road options.
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(βTT , βTC)
(-0.2, -1) (-0.4, -2)

40 min - $0 23.00% 8.31%
29 min - $1 76.37% 91.68%
38 min - $4 0.63% 0.01%
52 min - $0 2.64% 0.07%
29 min - $1 96.57% 99.92%
38 min - $4 0.79% 0.01%

Table 4: Probabilities of choosing a toll-free option and the two most extreme
toll road options

The conditional logit model assumes that the error terms in the utilities
are independently and identically extreme value distributed. This independence
assumption is better known as the property of independence from irrelevant al-
ternatives (IIA). As it seems obvious that the unobserved utility of the two toll
road options in the choice sets considered here are correlated, the application
of the conditional logit model to analyze the choice data at hand is no longer
appropriate. The use of this improper model can explain why, even with correct
prior information, the D-efficient designs still include choice sets with a domi-
nant alternative. When it makes sense to divide the alternatives in the choice
sets of a design into meaningful subsets of similar alternatives, the nested logit
model should be used instead.

Based on the ideas of Goos et al. (2010), the nested logit model is applied to
the specific choice data considered in this section, i.e. choices between one toll-
free and two toll road options. Two nests are considered, the first nest contains
the toll-free road option and the second nest includes the two tolled alternatives.
As such, the probabilities of choosing the toll-free nest (F ), or equivalently the
toll-free road option, and the toll nest (T ) in choice set s respectively equal

pF,s =
eλF VF,s

eλT VT,s + eλF VF,s

and

pT,s =
eλT VT,s

eλT VT,s + eλF VF,s
,

with λ and V respectively the dissimilarity parameter and the intrinsic value of
the nest. The dissimilarity parameter of a nest is an index for the correlation
between the alternatives in the nest, more specifically the correlation between
the unobserved utility of the alternatives. The smaller the parameter value, the
higher the correlation. Generally, all dissimilarity parameters in the model lie
between zero and one. The intrinsic value of a nest captures the utility of the
nest.

As the toll-free nest includes only one alternative, its dissimilarity parameter

7



λF is set equal to one and its intrinsic value VF,s simplifies to

VF,s = log
[
e(βT T×TTF,s)+(βT C×TCF,s)

]
= βTT × TTF,s,

with TTF,s the travel time of the toll-free alternative in choice set s. Obviously
TCF,s equals zero. To facilitate notation, the dissimilarity parameter of the nest
with the two toll road options λT is denoted by λ. Consequently,

pF,s =
eβT T×TTF,s

eλVT,s + eβT T×TTF,s

and

pT,s =
eλVT,s

eλVT,s + eβT T×TTF,s
.

In these expressions the intrinsic value of the toll nest VT,s is

VT,s = log
[
e(βT T×TT1s)+(βT C×TC1s) + e(βT T×TT2s)+(βT C×TC2s)

]
,

with TT1s, TT2s and TC1s, TC2s respectively the travel times and the toll prices
for the two toll road options in choice set s. Finally, the probability that the
jth tolled alternative is chosen in choice set s equals

pjs = pT,s
e(βT T×TTjs)+(βT C×TCjs)

e(βT T×TT1s)+(βT C×TC1s) + e(βT T×TT2s)+(βT C×TC2s)
.

As in the preceding section, we will show that the choice of prior information
affects the presence of choice sets with a dominant alternative in the Bayesian
D-efficient designs. The information matrix for the nested logit model equals

I(X, β) =
S∑

s=1

Is(Xs, β)

=
S∑

s=1

 T′
sDsTs + i1 T′

sDsCs + i2 pF,sλVT,s(T′
sps) + i3

C′
sDsTs + i2 C′

sDsCs pF,sλVT,s(C′
sps)

pF,sλVT,s(T′
sps) + i3 pF,sλVT,s(C′

sps) pF,spT,sV
2
T,s

 ,

with

i1 = pF,spT,sTT 2
F,s − 2λpF,sTTF,s(T′

sps)
i2 = −λpF,sTTF,s(C′

sps)
i3 = −pF,spT,sTTF,sVT,s

and

Ds = Ps + p−1
T,s(λ

2pF,s − 1)psp′s
Ts = [TT1s, TT2s]′

Cs = [TC1s, TC2s]′

Xs = {TTF,s,Ts,Cs}.
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The derivations for obtaining these expressions are given in Appendix B. Since
we are only interested in accurately estimating the model partworths βTT and
βTC , and not the dissimilarity parameter λ, Ds-efficient designs (Atkinson et al.
2007; Goos 2002) are obtained instead. The optimal design for the nested logit
model with respect to the Ds-optimality criterion is the design that maximizes

det[I(X, β)]∑S
s=1 pF,spT,sV 2

T,s

.

Here also, Bayesian Ds-efficient designs are obtained by minimizing an approx-
imation of the Bayesian Ds-error

D̃sB
− error =

1
R

R∑
r=1

[
det[I(X, βr)]∑S
s=1 pF,spT,sV 2

T,s

]−1/2

.

To examine the effect of the prior information on the number of choice sets
with a dominant alternative in the Ds-efficient designs, we compare the two sets
of prior means introduced in the previous section. Consider again the choice
sets from Table 4. The probabilities of choosing the alternatives in these choice
sets according to the nested logit model are given in Table 5 and Table 6 for
the prior mean values (−0.2,−1) and (−0.4,−2) respectively. The dissimilarity
parameter λ is respectively set equal to 0, 0.25, 0.5, 0.75 and 1. Similar as for
the conditional logit model, the prior means (−0.4,−2) express the dominance
structure in the experiment better than the prior values (−0.2,−1). Therefore
we expect the Bayesian Ds-efficient designs for the nested logit model obtained
with this prior information to exclude choice sets with a dominant toll road
option.

(βTT , βTC) = (−0.2,−1) λ
0 0.25 0.5 0.75 1

40 min - $0 0.03% 0.18% 0.99% 5.19% 23.00%
29 min - $1 99.15% 99.00% 98.20% 94.04% 76.37%
38 min - $4 0.82% 0.82% 0.81% 0.77% 0.63%
52 min - $0 ±0% 0.01% 0.09% 0.49% 2.64%
29 min - $1 99.18% 99.17% 99.09% 98.69% 96.57%
38 min - $4 0.82% 0.82% 0.82% 0.82% 0.79%

Table 5: Probabilities of choosing a toll-free option and the two most extreme
toll road options for prior values (−0.2,−1)
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(βTT , βTC) = (−0.4,−2) λ
0 0.25 0.5 0.75 1

40 min - $0 ±0% ±0% 0.01% 0.30% 8.32%
29 min - $1 99.99% 99.99% 99.98% 99.69% 91.67%
38 min - $4 0.01% 0.01% 0.01% 0.01% 0.01%
52 min - $0 ±0% ±0% ±0% ±0% 0.07%
29 min - $1 99.99% 99.99% 99.99% 99.99% 99.92%
38 min - $4 0.01% 0.01% 0.01% 0.01% 0.01%

Table 6: Probabilities of choosing a toll-free option and the two most extreme
toll road options for prior values (−0.4,−2)

The two multivariate normal distributions from the previous section are used
as priors for the model partworths. For the dissimilarity parameter λ, a U [0, 1]
prior is assumed first. Also, a U [0, 0.5] prior is assumed as we believe that
the unobserved utility of the two toll road options in the choice sets is highly
correlated. Bayesian Ds-efficient designs with eight choice sets are computed
(Appendix C). Three hundred random start designs are updated making use
of 1000 random draws from the prior distributions with the modified Fedorov
algorithm. The fractions of choice sets with a dominant toll road alternative
in the efficient designs are given in Table 7. Again it can be concluded that
a proper choice of prior information positively influences the suitability of the
efficient design as nonsense choice sets are excluded from the designs.

(βTT , βTC)
(-0.2, -1) (-0.4, -2)

λ ∼ U [0, 0.5] 4/8 0/8
λ ∼ U [0, 1] 4/8 0/8

Table 7: Fraction of choice sets with a dominant toll road option in the Bayesian
Ds-efficient designs

4 Conclusion

Choice-based conjoint choice experiments are an excellent tool to elicit infor-
mation about consumers’ product or service attribute preferences (Sawtooth
2008). Managers and policy makers frequently rely on such discrete choice data
to make marketing decisions or to define a policy plan. Obviously, the response
data are only reliable and useful for decision taking if they result from realistic
choice situations. Therefore the quality of the data is a major concern and well-
chosen designs should be used to obtain consumers’ choice data. Firstly, the
design must be efficient with respect to model parameter estimation. D-efficient
designs are constructed, as we wish to obtain accurate estimates. Moreover, the
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design must be meaningful in the way that no nonsense choice sets, including
a dominant alternative or including two equal alternatives, should be presented
to the respondents.

This research focussed on a specific problem from the transportation field.
Based on stated preference data from travelers, policy makers will decide on the
profitability of a new toll road, as an alternative to existing and slower toll-free
road options. To obtain information about the travelers’ willingness to pay, effi-
cient designs with two different types of choice sets were computed. First choice
sets including only two toll road options, with different travel time and travel
cost levels, were considered. These choice data were analyzed with the condi-
tional logit model. Second, the choice data from sets with three alternatives, i.e.
two toll road options and an additional toll-free alternative, was modeled with
the nested logit model. The aim of the study was to find Bayesian D-efficient
designs that didn’t include choice sets with a dominant alternative. It is shown
that with an adequate choice of prior information, this goal can be achieved.

Assuming a multivariate normal prior distribution for the two model part-
worths, two different prior mean vectors were compared to study the effect of
the prior information. One can conclude from the design results that when
the dominance structure is integrated in the prior in an appropriate way, the
D-efficient designs will not bring in choice sets with a dominant alternative.
Choosing the prior means further away from the zero vector expresses more
adequately that a road option with longer travel time and higher toll price is
dominated by faster and cheaper options. This research advocates a proper
choice of prior information to eliminate impractical and useless choice sets from
D-efficient designs, instead of computing efficient designs with improper prior
information and deleting nonsense choice sets from these designs afterwards.
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Appendix A. D-efficient designs with choice sets
including two toll road options

Choice Alt Attr
set TT TC
1 I 29 4

II 38 1
2 I 38 2

II 29 2
3 I 29 2

II 38 2
4 I 29 4

II 38 1
5 I 29 4

II 38 1
6 I 38 2

II 29 2
7 I 29 4

II 38 1
8 I 29 2

II 38 2

Table 8: D-efficient design for prior
mean values (−0.2,−1)

Choice Alt Attr
set TT TC
1 I 29 4

II 38 1
2 I 29 4

II 38 2
3 I 38 1

II 29 2
4 I 29 4

II 38 1
5 I 29 2

II 38 1
6 I 38 1

II 29 4
7 I 29 2

II 38 1
8 I 29 3

II 38 2

Table 9: D-efficient design for prior
mean values (−0.4,−2)

Appendix B. Information matrix for the nested
logit model

Fix yF,s and yT,s to one if respectively a toll-free or a toll road option is chosen
in choice set s. Similarly, yjs equals one if the jth tolled alternative is chosen in
choice set s. As such

∑2
j=1 yjs = yT,s and yF,s +

∑2
j=1 yjs = 1 . The likelihood
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function and the loglikelihood function for choice set s now respectively equal

Ls = p
yF,s

F,s

2∏
j=1

p
yjs

js

=

(
eβT T TTF,s

eλVT,s + eβT T TTF,s

)yF,s 2∏
j=1

(
eλVT,s

eλVT,s + eβT T TTF,s

ex′
jsβ∑2

k=1 ex′
ksβ

)yjs

=
(eβT T TTF,s)yF,seλVT,s

∑2
j=1 yjs

(eλVT,s + eβT T TTF,s)yF,s+
∑2

j=1 yjs(
∑2

k=1 ex′
ksβ)

∑2
j=1 yjs

2∏
j=1

eyjsx
′
jsβ

=
(eβT T TTF,s)yF,seyT,sλVT,s

(eλVT,s + eβT T TTF,s)(
∑2

k=1 ex′
ksβ)yT,s

2∏
j=1

eyjsx
′
jsβ ,

ls = yF,sβTT TTF,s + yT,sλVT,s − log(eλVT,s + eβT T TTF,s)− yT,slog
( 2∑

j=1

ex′
jsβ
)

+
2∑

j=1

yjsx′jsβ

= yT,s(λ− 1)VT,s − log(eλVT,s + eβT T TTF,s) + yF,sβTT TTF,s +
2∑

j=1

yjsx′jsβ.

For choice set s, the information matrix is computed as

Is = E




∂ls
∂βT T

∂ls
∂βT C

∂ls
∂λ




∂ls
∂βT T

∂ls
∂βT C

∂ls
∂λ


′  = E



(
∂ls

∂βT T

)(
∂ls

∂βT T

)′ (
∂ls

∂βT T

)(
∂ls

∂βT C

)′ (
∂ls

∂βT T

)(
∂ls
∂λ

)′
(

∂ls
∂βT C

)(
∂ls

∂βT T

)′ (
∂ls

∂βT C

)(
∂ls

∂βT C

)′ (
∂ls

∂βT C

)(
∂ls
∂λ

)′
(

∂ls
∂λ

)(
∂ls

∂βT T

)′ (
∂ls
∂λ

)(
∂ls

∂βT C

)′ (
∂ls
∂λ

)(
∂ls
∂λ

)′


.

Because
∂VT,s

∂βTT
=

∑2
j=1 ex′

jsβTTjs∑2
j=1 ex′

jsβ
= p−1

T,s

2∑
j=1

pjsTTjs

and
∂VT,s

∂βTC
=

∑2
j=1 ex′

jsβTCjs∑2
j=1 ex′

jsβ
= p−1

T,s

2∑
j=1

pjsTCjs,

we find that

∂ls
∂βTT

= yT,sp
−1
T,s(λ− 1)

2∑
j=1

pjsTTjs +
2∑

j=1

yjsTTjs − λ
2∑

j=1

pjsTTjs + (yF,s − pF,s)TTF,s,

13



∂ls
∂βTC

= yT,sp
−1
T,s(λ− 1)

2∑
j=1

pjsTCjs +
2∑

j=1

yjsTCjs − λ
2∑

j=1

pjsTCjs.

We also find that

∂ls
∂λ

= yT,sVT,s −
eλVT,sVT,s

eλVT,s + eβT T TTF,s
= (yT,s − pT,s)VT,s.

Since y2
T,s = yT,s and yT,syjs = yjs, we have that(

∂ls
∂λ

)(
∂ls
∂λ

)′
= (yT,s − 2yT,spT,s + p2

T,s)V
2
T,s,

(
∂ls

∂βTT

)(
∂ls
∂λ

)′
= (yT,sp

−1
T,s − yT,s)(λ− 1)VT,s

2∑
j=1

pjsTTjs + (1− pT,s)VT,s

2∑
j=1

yjsTTjs −

(yT,s − pT,s)VT,sλ

2∑
j=1

pjsTTjs + TTF,sVT,s(yT,s − pT,s)(yF,s − pF,s)

and(
∂ls

∂βTC

)(
∂ls
∂λ

)′
= (yT,sp

−1
T,s − yT,s)(λ− 1)VT,s

2∑
j=1

pjsTCjs + (1− pT,s)VT,s

2∑
j=1

yjsTCjs −

(yT,s − pT,s)VT,sλ

2∑
j=1

pjsTCjs.

Consequently,

E

{(
∂ls
∂λ

)(
∂ls
∂λ

)′}
= (pT,s − p2

T,s)V
2
T,s = pF,spT,sV

2
T,s,

E

{(
∂ls

∂βTT

)(
∂ls
∂λ

)′}
= pF,sλVT,s

2∑
j=1

pjsTTjs − pF,spT,sTTF,sVT,s

= pF,sλVT,s(T′
sps)− pF,spT,sTTF,sVT,s

and

E

{(
∂ls

∂βTC

)(
∂ls
∂λ

)′}
= pF,sλVT,s

2∑
j=1

pjsTCjs

= pF,sλVT,s(C′
sps).

14



Further, we find that(
∂ls

∂βTT

)(
∂ls

∂βTT

)′
= [yT,sp

−2
T,s(λ− 1)2 − 2yT,sp

−1
T,sλ(λ− 1) + λ2]

(
2∑

j=1

pjsTTjs

)(
2∑

j=1

pjsTTjs

)′
+

(
2∑

j=1

yjsTTjs

)(
2∑

j=1

yjsTTjs

)′
+ [p−1

T,s(λ− 1)− λ]

(
2∑

j=1

pjsTTjs

)(
2∑

j=1

yjsTTjs

)′

+[p−1
T,s(λ− 1)− λ]

(
2∑

j=1

yjsTTjs

)(
2∑

j=1

pjsTTjs

)′
+

2(yF,s − pF,s)TTF,s[yT,sp
−1
T,s(λ− 1)− λ]

(
2∑

j=1

pjsTTjs

)
+

2(yF,s − pF,s)TTF,s

(
2∑

j=1

yjsTTjs

)
+ (yF,s − pF,s)2TT 2

F,s,

(
∂ls

∂βTC

)(
∂ls

∂βTC

)′
= [yT,sp

−2
T,s(λ− 1)2 − 2yT,sp

−1
T,sλ(λ− 1) + λ2]

(
2∑

j=1

pjsTCjs

)(
2∑

j=1

pjsTCjs

)′
+

(
2∑

j=1

yjsTCjs

)(
2∑

j=1

yjsTCjs

)′
+ [p−1

T,s(λ− 1)− λ]

(
2∑

j=1

pjsTCjs

)(
2∑

j=1

yjsTCjs

)′

+[p−1
T,s(λ− 1)− λ]

(
2∑

j=1

yjsTCjs

)(
2∑

j=1

pjsTCjs

)′

and(
∂ls

∂βTC

)(
∂ls

∂βTT

)′
= [yT,sp

−2
T,s(λ− 1)2 − 2yT,sp

−1
T,sλ(λ− 1) + λ2]

(
2∑

j=1

pjsTCjs

)(
2∑

j=1

pjsTTjs

)′
+

(
2∑

j=1

yjsTCjs

)(
2∑

j=1

yjsTTjs

)′
+ [p−1

T,s(λ− 1)− λ]

(
2∑

j=1

pjsTCjs

)(
2∑

j=1

yjsTTjs

)′

+[p−1
T,s(λ− 1)− λ]

(
2∑

j=1

yjsTCjs

)(
2∑

j=1

pjsTTjs

)′
+

(yF,s − pF,s)TTF,s[yT,sp
−1
T,s(λ− 1)− λ]

(
2∑

j=1

pjsTCjs

)
+

(yF,s − pF,s)TTF,s

(
2∑

j=1

yjsTCjs

)
.
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As E(yjs) = pjs and E(yT,s) = pT,s,

E

{(
∂ls

∂βTT

)(
∂ls

∂βTT

)′}
= T′

s[Ps + p−1
T,s(λ

2pF,s − 1)psp′s]Ts + pF,spT,sTT 2
F,s − 2λpF,sTTF,s(T′

sps),

E

{(
∂ls

∂βTC

)(
∂ls

∂βTC

)′}
= C′

s[Ps + p−1
T,s(λ

2pF,s − 1)psp′s]Cs

and

E

{(
∂ls

∂βTC

)(
∂ls

∂βTT

)′}
= C′

s[Ps + p−1
T,s(λ

2pF,s − 1)psp′s]Ts − λpF,sTTF,s(C′
sps).
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Appendix C. Ds-efficient designs with choice sets
including one toll-free and two toll road options

Choice Alt Attr
set TT TC
1 I 52 0

II 38 1
III 29 4

2 I 52 0
II 38 1
III 29 4

3 I 44 0
II 29 1
III 38 1

4 I 44 0
II 29 1
III 38 1

5 I 44 0
II 29 1
III 38 1

6 I 40 0
II 38 4
III 29 4

7 I 52 0
II 29 4
III 38 1

8 I 52 0
II 29 4
III 38 1

Table 10: Ds-efficient design for prior
mean values (−0.2,−1) and prior dis-
tribution U [0, 0.5] for λ

Choice Alt Attr
set TT TC
1 I 44 0

II 29 4
III 38 1

2 I 44 0
II 38 1
III 29 4

3 I 40 0
II 29 2
III 38 1

4 I 40 0
II 29 2
III 38 1

5 I 40 0
II 38 3
III 29 4

6 I 44 0
II 29 3
III 38 1

7 I 44 0
II 29 4
III 38 1

8 I 44 0
II 29 3
III 38 2

Table 11: Ds-efficient design for prior
mean values (−0.4,−2) and prior dis-
tribution U [0, 0.5] for λ
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Choice Alt Attr
set TT TC
1 I 48 0

II 29 1
III 38 1

2 I 52 0
II 38 1
III 29 4

3 I 48 0
II 29 1
III 38 1

4 I 52 0
II 29 4
III 38 1

5 I 48 0
II 38 1
III 29 1

6 I 40 0
II 38 4
III 29 4

7 I 52 0
II 29 4
III 38 1

8 I 52 0
II 29 4
III 38 1

Table 12: Ds-efficient design for prior
mean values (−0.2,−1) and prior dis-
tribution U [0, 1] for λ

Choice Alt Attr
set TT TC
1 I 52 0

II 38 2
III 29 4

2 I 48 0
II 29 3
III 38 1

3 I 40 0
II 29 4
III 38 1

4 I 52 0
II 38 3
III 29 4

5 I 48 0
II 29 4
III 38 1

6 I 40 0
II 29 4
III 38 3

7 I 52 0
II 29 4
III 38 3

8 I 48 0
II 38 1
III 29 4

Table 13: Ds-efficient design for prior
mean values (−0.4,−2) and prior dis-
tribution U [0, 1] for λ
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