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Abstract

We study joint nonparametric estimators of the mean and the dispersion function
in extended double exponential family models. The starting point is the exponen-
tial family and the generalized linear models setting. The extended models allow
for both overdispersion and underdispersion, or even a combination of both. We
simultaneously estimate the dispersion function and the mean function by using
P-splines with a difference type of penalty to avoid overfitting. Special attention
is given to the smoothing parameter selection as well as to implementation issues.
The performance of the method is investigated via simulations. A comparison with
other available methods is made. We provide applications to several sets of data,
including continuous data, counts and proportions.

Keywords and phrases: Double exponential family; Extended quasi-likelihood; Non-
parametric regression; Overdispersion; P-splines; Variance estimation; Underdispersion.

1 Introduction

The aim of this work is to provide tools to nonparametrically estimate mean and dispersion

functions. In a specific generalized linear model a fixed relationship exists between the

mean and the variance. For example, for the Poisson distribution the mean is equal to

the variance. Real data often show a larger variability than what we would expect from

the theoretical model. This phenomenon is referred to as overdispersion. The opposite

situation of less variability occurs less frequently and is called underdispersion. Our

approach can deal with both overdispersed and underdispersed data, coming from different

distributions originating from the exponential family. As such it is a unified approach not

requesting special models for overdispersion such as a beta-binomial for proportion data

or a negative binomial for count data. We start from a double exponential family (Efron
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(1986)), and model both the mean and the dispersion function as smooth functions of

the covariate through P-splines (Eilers and Marx (1996)). The flexible modeling even

allows for dispersion functions that might reveal underdispersion in one region of the

covariate-domain and overdispersion in other regions.

Hinde and Demétrio (1998) give an overview of estimation methods for overdispersed

data. Parametric models for the dispersion as a function of one or more covariates include

extended quasi-likelihood (Nelder and Pregibon (1987); McCullagh and Nelder (1989)),

the double exponential regression models (see Efron (1986); Galfand and Dalal (1990);

Dey et al. (1997)), and the pseudo-likelihood approach proposed by Davidian and Carroll

(1987), among others. All these approaches have their advantages and disadvantages.

See for example Nelder and Lee (1992), Lee and Nelder (2000) and Davidian and Carroll

(1988) for a comparison of methods. They all share the common feature of being based

on parametric modeling. Some work has been done on flexible modeling of overdisper-

sion, see for example Aerts and Claeskens (1997), Chapter 14 in Ruppert et al. (2003)

and Nott (2006). The latter uses a mixed model representation of splines in the double

exponential family framework to get to a Bayesian estimation of both the mean and the

variance function. Rigby and Stasinopoulos (2005) propose generalized additive models

for location, scale and shape, in which they nonparametrically estimate different parame-

ters of a distribution using a mixed model approach and concepts of hierarchical modeling.

Earlier references on hierarchical modeling include Lee and Nelder (1996, 2001).

Estimating the unknown variance/dispersion is of interest to improve the estimation

of the mean and can, in different contexts, be an issue of importance on its own. See for

example Carroll and Ruppert (1988), for the importance and utility of estimating variance

functions in the linear regression context.

In Section 2 we briefly discuss the framework for the estimation procedure. The

nonparametric procedure for estimating mean and dispersion function using penalized

regression techniques is presented in Section 3 including a discussion on practical choices

of smoothing parameters. A simulation study investigating the performance of the esti-

mation procedure is provided in Section 4, which also includes a comparison with other

existing methods. Section 5 contains illustrations with real data examples. In Section 6

we provide some further discussions.
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2 The double exponential family for joint modeling

of mean and dispersion function

Efron (1986) introduced the double exponential family of distributions. This is a general-

ization of the exponential family in which an extra parameter controlling the variance is

added.

In a one-parameter exponential family, denoted by (Y |X = x) ∼ EF(b(θ(x)), φ), the

conditional density of the response variable Y given the covariate X = x, is of the form

eY (y; θ(x), φ) = exp

{

yθ(x) − b(θ(x))

φ
+ c(y, φ)

}

. (2.1)

Here b(·) and c(·) are known functions, identifying specific distributions (including the

normal, the Poisson and the binomial distribution). The natural location parameter is

θ and φ is the scale parameter. The moments for the exponential family correspond to

µ(x) = E[Y |X = x] = b′(θ(x)) and Var[Y |X = x] = φb′′(θ(x)). It is assumed throughout

that (b′)−1 exists and that b′′(·) 6= 0.

The double exponential family

For simplicity of presentation we introduce this family in a non-regression setup, as in

Efron (1986). The density of a variable Y coming from the double exponential family

Y ∼ DEF(b(θ), φ, γ)) is

f̃Y (y; θ, φ, γ) = c(θ, γ)γ− 1
2 eY (y; θ, φ)

1
γ eY (y; θS, φ)1− 1

γ , (2.2)

where θS is the choice of θ corresponding to the saturated one-parameter exponential

model Y ∼ EF(b(θ), φ), namely θS = (b′)−1(y), which maximizes eY (y; θ, φ) over all

possible values of θ and c(θ, γ) is a normalizing constant, such that
∫∞

−∞
f̃Y (y; θ, φ, γ)dy =

1. Efron (1986) shows that the constant c(θ, γ) in (2.2) can be (first order) approximated

by 1, so that an approximation of (2.2) is

fY (y; θ, φ, γ) = γ− 1
2 eY (y; θ, φ)

1
γ eY (y; θS, φ)1− 1

γ . (2.3)

This approximation works quite well overall, but might be poorer for extremely overdis-

persed and underdispersed cases with a small mean. For a detailed study on the use of

the unnormalized form (2.3) of the density for inference see Lee and Nelder (2000). As

suggested and motivated in Efron (1986) we use this approximated formulation of the
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double exponential family, which leads to a convenient implementation of the inference

procedure.

It can be shown that for Y ∼ DEF(b(θ), φ, γ) we approximately have that E(Y ) = µ =

b′(θ) and Var[Y ] = γφb′′(θ) (see Formula (3.21) in Efron (1986)), and clearly when γ = 1

the double exponential family reduces to Y ∼ EF(b(θ), φ) in (2.1), while for γ > 1(< 1)

we have overdispersion (underdispersion). In other words, γ is the parameter describing

the dispersion.

For the one-parameter exponential family (2.1), the deviance is defined as

d(y, θ) = 2[log(eY (y; θS, φ)) − log(eY (y; θ, φ))] = 2

(

yθS − b(θS)

φ
−

yθ − b(θ)

φ

)

. (2.4)

Therefore we can rewrite (2.3) as

fY (y; θ, φ, γ) = γ− 1
2

{

exp

[

1

2
d(y, θ)

]}− 1
γ

eY (y; θS, φ).

This is helpful in getting an elegant expression of the log-likelihood when considering the

regression case.

When using double exponential families in a regression context one is interested in

studying how the expected value and the dispersion of Y depend on a covariate X. It

is assumed that (Y |X = x) ∼ DEF(b(θ(x)), φ, γ(x)), with φ a known constant, not

dependent on X. Similarly as in the one-parameter exponential family we introduce a

link function g and consider η(x) = g(µ(x)), with µ(x) = E[Y |X = x]. In parametric

models we might fit a linear function of the covariate, η(x) = β0+β1x, with β = (β0 , β1)
T

the vector of unknown parameters. Here the superscript T denotes the transposed of a

vector (or matrix). For the canonical link η(x) = g(b′(θ(x))) = θ(x). From now on, unless

otherwise mentioned, we will always use canonical link functions.

When working within the double exponential family we also use a regression model

for the dispersion function. In a parametric (linear) setting this would mean that we

model a transformation of the dispersion function as a linear combination of the covariate:

γ(x) = h(ξ(x)), ξ(x) = δ0 + δ1x, with δ = (δ0 , δ1)
T the vector of unknown parameters.

Note that the function h(·) needs to be chosen with care since a dispersion function should

always be nonnegative (h ≥ 0). In addition we assume that h is such that h−1 exists and

h′(·) 6= 0.

Throughout the remainder of this work we model the mean and the dispersion function

in a double exponential family framework. Note that such a direct modeling of the
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dispersion function, can handle both overdispersed and underdispersed data or even data

where the appearance of overdispersion or underdispersion depends on the range of values

of the covariate. The double exponential family provides a unified framework for different

types of data (counts, proportions, etc.), where we can directly model the dispersion

function γ(x) that can take values either larger or smaller than 1.

3 Nonparametric estimation of mean and dispersion

3.1 Estimation procedure

The goal of this work is to obtain nonparametric estimators for both the mean and

the dispersion function combining the parametric approach of the double exponential

family where (Y |X = x) ∼ DEF(b(θ(x)), φ, γ(x)), as discussed in Section 2, with the

nonparametric P-splines technique of Eilers and Marx (1996).

Via η(x) = g(µ(x)) and ξ(x) = h−1(γ(x)) we model each of these functions as a linear

combination of B-spline basis functions (possible different sets for each) and use difference

type of penalties to prevent overfitting. For the mean function, for a given set of knots

{κ1, . . . , κkµ
}, B-spline basis functions of degree pµ are composed of polynomial pieces

of degree pµ, joined together in an appropriate way at each knot κj. This results into

a B-spline basis of dimension Kµ = pµ + 1 + kµ, denoted by Bµ,1(·), Bµ,2(·), . . . Bµ,Kµ
(·).

For details, see de Boor (2001). The unknown function η(·) is then modeled as η(x) =
∑Kµ

j=1 αµ,jBµ,j(x) = BT
µ (x)αµ where we denote Bµ(x) = (Bµ,1(x), . . . , Bµ,Kµ

(x))T , a vec-

tor of dimension Kµ×1, and αµ = (αµ,1, . . . , αµ,Kµ
)T , the unknown vector of spline coeffi-

cients for the mean function. Similarly, the dispersion function γ(·) is modeled in a flexible

way via a set of knots {ν1, . . . , νkγ
} and B-splines of degree pγ, leading to ξ(x) = BT

γ (x)αγ,

where Bγ(x) has dimension Kγ × 1 with Kγ = pγ + 1 + kγ , and αγ = (αγ,1, . . . , αγ,Kγ
)T .

Large values of Kµ and Kγ might lead to overfitting. This is avoided by introducing

penalty terms on the spline coefficients in the log-likelihood function. P-splines regression

uses penalties based on higher order differences of the coefficients. For the mean estimation

this leads to a penalty term
∑Kµ

j=m+1(∆
mαµ,j)

2, where m is the order of the difference

operator: ∆αµ,j = αµ,j − αµ,j−1, ∆2αµ,j = ∆∆αµ,j = αµ,j − 2αµ,j−1 + αµ,j−2 and so on.

We consider relatively large numbers of knots Kµ and Kγ, which cover the range of

observed values of X in the sample (x,y) from (X,Y ). Based on the two sets of B-spline

basis functions and the observed sample, we then define the matrix Bµ of dimension
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n×Kµ, with i-th row BT
µ,i = Bµ(xi) = (Bµ,1(xi), . . . , Bµ,Kµ

(xi)). In a similar manner the

matrix Bγ of dimension n × Kγ is obtained.

Maximum penalized likelihood inference for µ(x) and γ(x) follows from maximization

with respect to αµ and αγ of the penalized log-likelihood

l(αµ,αγ; x,y, λµ, λγ) =
n
∑

i=1

{

log(h(BT
γ,iαγ)) +

1

h(BT
γ,iαγ)

d(yi,B
T
µ,iαµ)

}

−
1

2
λµα

T
µDT

mDmαµ −
1

2
λγα

T
γ DT

ℓ Dℓαγ,

(3.1)

where Dm and Dℓ are the matrix representations of the m-th and ℓ-th order difference

operators, and with λµ > 0 and λγ > 0 the two smoothing parameters which penalize

respectively the estimation for the mean and the dispersion function. The choice of the

parameters λµ and λγ is discussed in Section 3.2.

Maximization of (3.1) is done via an iterative two-step procedure. At each iteration i

we have the following steps:

Step (a): for a given γ(i−1)(x), choose an optimal value of λµ, obtain the maximizer of

(3.1) with respect to αµ denoted by α̂(i)
µ , and get an estimate µ̂(i)(x) for µ(x).

Step (b): for the given µ̂(i)(x), choose an optimal value of λγ, obtain the maximizer of

(3.1) with respect to αγ, denoted by α̂(i)
γ and, get an estimate γ̂(i)(x) for γ(x).

The iteration stops when, for a chosen small 0 < ǫ < 1, we have that

1 − ǫ < max
1≤j≤n

(∣

∣

∣

∣

∣

BT
µ,jα

(i)
µ

BT
µ,jα

(i−1)
µ

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

BT
γ,jα

(i)
γ

BT
γ,jα

(i−1)
γ

∣

∣

∣

∣

∣

)

< 1 + ǫ ,

where BT
µ,jα

(i)
µ (respectively BT

γ,jα
(i)
γ ) is the estimator for µ(xj) (respectively γ(xj)) at

the i-th iteration.

We now provide more details on the procedure.

• Step 0: initial values

Some appropriate initial values αµ
(0) and αγ

(0) are needed to start the iterative procedure.

In our implementation we have taken constant initial values µ̂(0) = n−1
∑n

i=1 yi = y and

γ̂(0) = φn where φn is either the known value for φ in the considered exponential model

(see Table 2.1 on page 30 of McCullagh and Nelder (1989)) or an estimator for it. For

example, for the normal model φ = σ2, and in this case γ̂(0) = (n − 1)−1
∑n

i=1 (yi − y)2,
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the empirical variance. For a Poisson model φ = 1 and for a binomial model φ = 1/N ,

where N is the number of trials.

With these initial values the iterative procedure is started and alternates between steps

(a) and (b). Within a given iteration i two sub-steps are distinguished: the choice of an

optimal smoothing parameter and maximization of (3.1). Details on the optimal choice

of λµ and λγ are in Section 3.2, and more explanation on the maximization of (3.1) with

respect to αµ and αγ is provided here.

• Step (a): estimation of αµ.

To find the maximum likelihood estimator for αµ we rewrite (3.1) as a function of αµ for

a given γ(x):

l(αµ; x,y, λµ) =
n
∑

i=1

{

1

φ γ(xi)
(yi BT

µ,iαµ − b(BT
µ,iαµ))

}

−
1

2
λµα

T
µDT

mDmαµ. (3.2)

As in the generalized linear models setting of Eilers and Marx (1996) this system can-

not be solved analytically, and an iterative Fisher scoring method is needed for maximizing

(3.2), or equivalently for solving

u =

(

1

φ

n
∑

i=1

1

γ(xi)
Bµ,i(yi − b′(BT

µ,iαµ))

)

− λµD
T
mDmαµ = 0 ,

where 0 is the null vector of dimension Kµ × 1.

The Fisher information matrix F µ resulting from (3.2) is defined as

F µ = BT
µW µBµ + λµD

T
mDm ,

where W µ is the diagonal matrix with elements {φγ(xi)}
−1 b′′(BT

µ,iαµ). The updating

rule for αµ is then αµ = α̃µ + F̃ µ

−1
ũ, where α̃µ is the current approximation for αµ, and

similarly for F̃ µ and ũ (the updated score vector).

Given the current estimate α̃µ, we obtain the update

αµ = (BT
µW̃ µBµ + λµD

T
mDm)−1BT

µW̃ µz̃,

with z̃ = (z̃1, . . . , z̃n)T the vector of working variables, whose elements are

z̃i =

(

BT
µ,iα̃µ + (yi − b′(BT

µ,iα̃µ))
1

b′′(BT
µ,iα̃µ)

)
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and the diagonal matrix of weights W̃ µ with elements

w̃µ,ii =
1

φ γ(xi)
b′′(BT

µ,iα̃µ).

This differs from the weight matrix that is used in Fisher scoring methods for the usual

estimation of the mean function (see e.g. Eilers and Marx (1996)) in having γ(xi) in the

denominator. The weight of each observation is thus defined through both the mean and

the dispersion value.

Once convergence is reached, for a given λµ, we obtain the vector of estimated coeffi-

cients α̂µ(λµ), and (µ̂λµ
(x1), . . . , µ̂λµ

(xn))T = Hµ(λµ)ẑ, with Hµ(λµ) = Bµ(BT
µŴ µBµ +

λµD
T
mDm)−1BT

µŴ µ. For more details see Eilers and Marx (1996).

• Step (b): estimation of αγ.

Similar to step (a), the maximum likelihood estimate for αγ is found by rewriting (3.1),

for a given θ(x), as a function of αγ :

l(αγ; x,y, λγ) = −
1

2

n
∑

i=1

{

log h(BT
γ,iαγ) +

1

h(BT
γ,iαγ)

d(yi, θ(xi))

}

−
1

2
λγα

T
γ DT

ℓ Dℓαγ.

(3.3)

To maximize (3.3) with respect to αγ we need to solve the following system of Kγ equa-

tions:

v = −
1

2

n
∑

i=1

Bγ,i

{

h′(BT
γ,iαγ)

h(BT
γ,iαγ)

−
h′(BT

γ,iαγ)

h2(BT
γ,iαγ)

d(yi, θ(xi))

}

− λγD
T
ℓ Dℓαγ = 0,

which needs to be solved iteratively through Fisher scoring.

The Fisher information matrix for (3.3) is a matrix F γ

F γ = BT
γ W γBγ + λγD

T
ℓ Dℓ ,

where W γ is the diagonal matrix with elements 2−1 (h′(BT
γ,iαγ)/h(Bγ,iαγ))

2.

After some algebra we find that the updating rule αγ = α̃γ + F̃
−1

γ ṽ results into

αγ =
(

BT
γ W̃ γBγ + λγD

T
ℓ Dℓ

)−1

BT
γ W̃ γq̃ ,

with α̃γ the current estimate, W̃ γ the diagonal matrix of current weights

w̃γ,ii =
1

2

(

h′(BT
γ,iα̃γ)

h(Bγ,iα̃γ)

)2

,
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and q̃ = (q̃1, . . . , q̃n)T the current working variable vector with components

q̃i =

(

BT
γ,iα̃γ +

(

d(yi, θ(xi)) − h(BT
γ,iα̃γ)

) 1

h′(BT
γ,iα̃γ)

)

.

Once convergence is reached we obtain, similar as for the mean function, a final parameter

estimate α̂γ(λγ), and we build a hat matrix Hγ(λγ) = Bγ(B
T
γ Ŵ γBγ+λγD

T
ℓ Dℓ)

−1BT
γ Ŵ γ

such that (γ̂λγ
(x1), . . . , γ̂λγ

(xn))T = Hγ(λγ)q̂.

3.2 The choice of the smoothing parameters

The two smoothing parameters λµ and λγ are selected (within the iteration steps) via

generalized cross validation. See Wahba (1990) for a standard reference. A value for λµ

is obtained by minimizing

GCV(λµ) =
n
∑

i=1

d(yi, θ̂λµ
(xi))/γ(xi)

(n − df(λµ))2
, with df(λµ) = tr(Hµ(λµ)) , (3.4)

where the numerator is based on the appropriate deviance.

For choosing λγ we mimic (3.4), recalling the expression for the log-likelihood in (3.3)

and writing down the appropriate deviance. Taking df(λγ) = tr(Hγ(λγ)) which can

be interpreted as the equivalent number of degrees of freedom needed when fitting the

dispersion function, we define

GCV(λγ) =
n
∑

i=1

log γ̂λγ
(xi) + d(yi, θ(xi))/γ̂λγ

(xi) − log d(yi, θ(xi)) − 1

(n − df(λγ))2
. (3.5)

We then select the value of λγ that minimizes GCV(λγ).

Practically, though, (3.4) and (3.5) cannot be minimized analytically, and we need to

use a recursive refinement method to find the optimal values for λµ and λγ. For brevity

we only discuss the search for λµ (the search for λγ goes along similar lines).

We specify a starting grid of λµ values and obtain, for each value of λµ, the different

estimates α̂µ(λµ), and consequently µ̂λµ
and df(λµ). We then find the value λ

(1)
µ that

minimizes GCV(λµ) over the grid of λµ-values. Subsequently we create a new grid, cen-

tered around λ
(1)
µ , with a smaller range than the previous one, and find the next value for

which the GCV value is minimal. We keep on refining more and more the grid around

the chosen value until we find a λ
(k)
µ such that: 1 − ǫλ < (λ

(k)
µ /λ

(k−1)
µ ) < 1 + ǫλ, with ǫλ a

chosen small value. In the numerical studies in Sections 4 and 5 we took ǫλ = 0.05.
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4 Simulation studies

The estimation procedure proposed in Section 3 provides a flexible tool for analyzing data

from distributions belonging to the double exponential family, allowing for overdispersion

and/or underdispersion to vary with a covariate. In this section we investigate the per-

formance of the method via a simulation study, involving data from a (double) normal

distribution, a double Poisson distribution and a double binomial distribution. In Section

4.4 we provide comparisons with other existing methods.

Throughout this and the next section we use the canonical link function for the es-

timation of the mean and for the dispersion function we take γ(x) = h(BT
γ (x)αγ) =

exp(BT
γ (x)αγ). We take m = ℓ = 2 for the order of the difference operators in the

penalty terms. The number of simulations is M = 1000. The number and locations of

knots are fixed throughout all simulations for a same model.

To evaluate the quality of the estimated functions, we calculate the approximate in-

tegrated squared error (AISE)

AISE(s) =

∑

xgrid

(

f̂ (s)(xgrid) − ftrue(xgrid)
)2

∑

xgrid
(ftrue(xgrid))

2 , for s = 1, . . . ,M,

for each of the M simulations (indexed by s). Herein xgrid is an appropriate grid of values,

ftrue(·) and f̂(·) are, respectively, the true and the estimated function (either the mean or

the dispersion function).

All computing has been done using the R-programming environment. Computer

source codes for the discussed statistical procedure are made available at the web page

http://wis.kuleuven.be/stat/codes.html

4.1 Normal data

In this model µ(x) = 8.2+45 sin(3x)(cos(7x))2 and γ(x) = 12+8 sin(−5x+0.1)(cos(8x+

0.1))2 +2 log(4.2x+0.1). See Figure 4.1. We apply the estimation method using B-splines

of degrees pµ = pγ = 3, with a set of equally-spaced knots of dimensions kµ = 40 and

kγ = 34. From 1000 simulated samples, we sort the 1000 AISE-values, and present in

Figure 4.1 the estimated mean and dispersion (variance) function corresponding to the

5th, the 50th and the 95th quantile of the AISE-values. From Figure 4.1 it can be seen

that the estimates catch quite well the shape of the true curves. The estimation of the

variance function is more difficult than that of the mean function, as expected.
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Figure 4.1: Normal model with n = 250. (a) a simulated dataset; (b) the true mean

function and (c) the true variance function, with representative estimates.
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Figure 4.2: Normal model with n = 80. (a) a simulated dataset; (b) the true mean function

and (c) the true variance function, with representative estimates.

Figure 4.2 depicts similar results as Figure 4.1, but now based on samples of size

n = 80. Here we took pµ = pγ = 3 with kµ = 20 and kγ = 18. We can see that, even for
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Figure 4.3: Normal model with n = 250. Estimated density for the GCV-selected λµ and

λγ parameters.

this smaller sample size, the estimation of the mean function is still very accurate. The

estimation of the variance function however is far less precise. Although, in general, the

estimate catches the trend in the function, it often misses the bumps.

In Figure 4.3 we present the density of the selected smoothing values λµ and λγ,

obtained via the GCV-criteria as described in Section 3.2, for the 1000 samples of size

n = 250. Note that the selected λγ-values are far larger in magnitude and more spread

out than the selected λµ-values.

Of interest is also to look for constructing approximate confidence intervals. A pos-

sibility is to rely on the Fisher information matrices derived in Section 3, and a large

sample approximation by a normal distribution with mean the estimated target function

and variance the generalization of the variance of a generalized linear model (as in formula

(7) of Marx and Eilers (1998)). Confidence intervals for the components η(·) and ξ(·) are

presented in Figure 4.4 as short-dashed curves. Plotted are also the true functions (as

solid curves) as well as the estimated curve corresponding to a median AISE performance

(dotted curve). From Figure 4.4 (b) it is again seen that estimation of the dispersion

function is a far more difficult problem than estimation of the mean function.
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Figure 4.4: Normal model with n = 250: the estimate of the linear components η(·) and

ξ(·) corresponding to the median AISE values (dotted curve) for the mean (a) and the

variance (b) function with 95% confidence intervals (short-dashed curves).

4.2 Poisson data

We now simulate from two different double Poisson models. For both models we take the

same dispersion function γ(x) = 1.7 − 0.3x2 + 0.4 sin(6x) but we consider two different

mean functions. The mean function for the setting of Figure 4.5 equals µ(x) = 26+40x+

48(x − 0.6)2 + 16 sin(6x) and is 25 times the mean function in the setting of Figure 4.6.

The true mean, dispersion and variance functions for both settings are depicted as solid

curves in panels (b)—(d) of Figures 4.5 and 4.6. Typical simulated datasets are in panels

(a) of Figures 4.5 and 4.6. We perform 1000 simulations of sample size n = 210. For the

estimation procedure we use B-spline basis functions of degree pµ = pγ = 3 and equally-

spaced knots with kµ = 45 and kγ = 30. For both models, the method gives satisfactory

results: the general shape of the functions is well described by their estimates.

In Figure 4.7 approximate confidence intervals for the Poisson model with high mean

function are presented. Note again the difference in width between the confidence intervals

for the function η(·) on the one hand and the function ξ(·) on the other hand.

4.3 Binomial data

We now consider two binomial models. In presenting (and in analyzing) the data we use

the proportion, rather than the actual number of successes over a certain number of trials

in each experiment. The mean function is µ(x) = exp(−2.5 + 7.5x2 + 3.3x2 sin(6x)/(1 +
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Figure 4.5: Poisson model with n = 210. (a) a simulated dataset, (b) the true (high)

mean function, (c) the true dispersion function and (d) the true variance function, with

representative estimates.
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Figure 4.6: Poisson model with n = 210. (a) a simulated dataset, (b) the true (low)

mean function, (c) the true dispersion function and (d) the true variance function, with

representative estimates.
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Figure 4.7: High mean Poisson model with n = 210: the estimate of the components η(·)

and ξ(·) corresponding to the median AISE values (dotted curve) for the mean (a) and

the dispersion (b) function with 95% confidence intervals (short-dashed curves).

exp(−2.5 + 7.5x2 + 3.3x2 sin(6x)) and the dispersion function equals γ(x) = exp(0.8 −

0.8 cos(4x+0.2) sin(6x)). The underlying mean, dispersion and variance function of a first

model are depicted as solid curves in panels (b)—(d) in Figure 4.8. In this first model

the constant number of trials is equal to 220. We draw 1000 samples of size n = 200 from

this model. A typical simulated dataset is depicted in Figure 4.8 (a). In the estimation

procedure we take B-spline basis functions with pµ = pγ = 3 and kµ = 45 and kγ = 38

knots. The estimated curves corresponding to the 5th, the 50th and the 95th AISE-

quantiles are presented in Figure 4.8. Again estimation of the mean is more precise than

estimation of the dispersion function, but nevertheless the results are quite satisfactory.

For a second binomial case we reduce the number of trials to 20. The results, obtained

with the same B-spline bases functions and the same choices of knots, are still encouraging

although less precise (see Figure 4.9).

Finally, confidence intervals for the function η(·) and ξ(·) are provided in Figure 4.10.

The conclusions are similar as for the previous models.

4.4 Comparison with other methods

The approach of tackling estimation of mean and dispersion via the double exponential

family and P-splines regression is quite appealing, since it allows for flexible modeling

and can handle overdispersion as well as underdispersion. In this section we compare the
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Figure 4.8: Binomial model with n = 200 and number of trials is 220. (a) a simulated

dataset, (b) the true mean function, (c) the true dispersion function and (d) the true

variance function, with representative estimates.
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Figure 4.9: Binomial model with n = 200 and number of trials is 20. (a) a simulated

dataset, (b) the true mean function, (c) the true dispersion function and (d) the true

variance function, with representative estimates.

proposed estimation method with other methods for variance or dispersion estimation

available in the literature.

A first question one might ask is what can be gained by allowing for a dispersion that

changes with the covariate value x, as opposed to just modeling an additional dispersion

parameter.

A second question is how the proposed method compares to other methods for esti-

mating a dispersion function (or a variance function in the normal model). In this section
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Figure 4.10: Binomial model with n = 200 and the number of trials is 220: the estimate

of η(·) and ξ(·) corresponding to the median AISE values (dotted curve) for the mean (a)

and the dispersion (b) function with 95% confidence intervals (short-dashed curves).

we compare our approach with the mixed model approach of Rigby and Stasinopoulos

(2005). For the normal model, when estimating a variance function, we also compare with

a difference type of variance estimation. See for example Hall et al. (1990).

In difference-based estimation of the variance function, one needs to choose a difference

sequence {dj}, which is a sequence of real numbers such that
∑

dj = 0 and
∑

d2
j = 1.

For a given strictly positive integer m, put dj = 0 for j > m, and calculate the sequence

of differences of subsequent Y -observations (v1, · · · , vn−m) where vi =
∑m

j=0 djyi+j for

i = 1, · · ·n − m. Variance estimators are then based on the sequence (v1, · · · , vn−m),

with the simplest example its empirical variance. In the comparison we use a P-spline to

estimate the variance from the sequence (v1, · · · , vn−m). This difference-based variance

estimation depends on the choice of the difference order m. We present results for the

method when fixing the order m = 3, but for comparison reasons also include results

obtained when choosing the optimal m from the set of values 1, 2, · · · , 6. More precisely,

for each sample we calculate the difference-based estimator for all values of m, and report

on the estimator for which the AISE value if minimal. Note that when doing so, we use

the information on the true function when selecting the optimal m for the sample at hand.

Rigby and Stasinopoulos’ (2005) GAMLSS framework also allows for estimation of the

mean and the variance/dispersion function. The gamlss function of the gamlss R package

(Stasinopoulos and Rigby (2007)) though uses by default smoothing splines with a fixed
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number of degrees of freedom. For comparison purpose we also use P-splines in the Rigby

and Stasinopoulos (2005) method applying the pb function, taking the same number of

knots, the same degree and the same order of difference operator in both methods.

When dealing with overdispersed data one possibility is to estimate the one-parameter

exponential family dispersion parameter φ as a constant via the deviance residuals. If the

interest instead is to estimate the dispersion as a function of the covariate, different meth-

ods can be used. A common approach is to make some distributional assumptions on the

location parameter so that the data are modeled via specific two-parameter distributions

which allow the dispersion to be non constant. In particular overdispersed count data

are modeled via a negative binomial distribution and overdispersed proportion data via

a beta-binomial distribution. These modeling approaches are also used by Rigby and

Stasinopoulos (2005). Although the double exponential family and the hierarchical mod-

els both allow to model the dispersion, the actual assumed distribution can be quite

different. For a full and fair comparison between the different methods, we therefore

present results when simulations are done under the two different schemes (double expo-

nential family and either a negative binomial or a beta-binomial) in such a way that the

mean and variance function would be the same.

To summarize, we present results on AISE values for the following methods:

Const.Var or Const.Disp: results obtained from the proposed method but assuming
the variance or dispersion to be a constant;

def: proposed estimation procedure, starting from a double exponential family;

rs: method of Rigby and Stasinopoulos (2005);

diffCh: difference-based estimation of the variance with optimal choice of the difference
order m in each simulated sample;

diff3: difference-based estimation of the variance with m = 3,

when either generating data from an double exponential family (DEF) model or from a

negative binomial or a beta-binomial (for the Poisson or binomial case respectively).

The boxplots reporting on the comparisons of the methods are given in Figures 4.11—

4.13. For the normal model, it can be seen from Figure 4.11 (a) that estimation of the mean

function is only slightly affected by the method. More differences can be noticed for the

variance estimation in Figure 4.11 (b): estimating the variance function as a constant gives

very high AISE values. Not surprising is also that the difference-based variance estimation
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(diffCH ) has lower AISE values. The other three estimationprocedures give com-

parable results, with the double normal method performing somewhat better than the

others.
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Figure 4.11: Normal model with n = 250: boxplots of the AISE values for the mean (a)

and the dispersion (b) for different variance estimation procedures.
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Figure 4.12: Low mean Poisson model with n = 210: boxplots of the AISE values for the

mean (a) and the dispersion (b) for different dispersion estimation procedures. Data are

generated either via a DEF (left group of boxplots) or a negative binomial (right group of

boxplots).

In Figure 4.12 results are presented for the Poisson model with low mean. First of all

we notice that the performance of the different methods is comparable whether the data

are generated via a DEF or a negative binomial. Also, not surprisingly, estimating the

dispersion as a constant always leads to higher AISE values for the dispersion, and in the
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case of higher mean (results not reported here) estimating the dispersion as a function

rather than as a constant, also leads to noticeably better performance in estimation of the

mean function. Comparing the hierarchical approach of Rigby and Stasinopoulos (2005)

with the proposed DEF approach we see that the performances are quite comparable with

a slight dominance of the proposed approach.
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Figure 4.13: Binomial model with n = 200 and number of trials is 20: boxplots of the

AISE values for the mean (a) and the dispersion (b) for different dispersion estimation

procedures. Data are generated either via a DEF (left group of boxplots) or a beta-binomial

(right group of boxplots).

As far as proportion data are concerned we can see in Figure 4.13 the effect of the

different dispersion estimation methods on data generated either via a DEF or a beta-

binomial with low number of trials. Here the DEF approach performs much better than

the beta-binomial approach for both simulation schemes. It should be mentioned that in

order to have a variance for the data corresponding to the true known function, the true

values for the scale parameter of a beta-binomial are very close to the limiting value and

vary very little. This for sure makes the estimation more complex and could partially

explain the poor performance. At the same time it also sheds some light on how different

the two approaches are. In particular values of γ close to 1 correspond to the limiting value

of the scale parameter of the beta-binomial distribution and in general the beta-binomial

approach would behave badly in cases in which part of the data would be underdispersed.

In contrast, the proposed approach can deal with underdispersion, overdispersion and

even a combination of these.
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5 Data examples

We now illustrate the proposed estimation procedure on several datasets. Again we

present results for continuous data, counts and proportions.
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Figure 5.1: The Italian induced abortions data: (a) mean and (b) dispersion function

estimation (kµ = 6 kγ = 5, pµ = 3 pγ = 3).

5.1 The Italian Induced Abortions data
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Figure 5.2: The Italian induced abortions data: (a) unstandardized and (b) standardized

deviance residuals.

The National Institute of Statistics in Italy (ISTAT) collects different information on

induced abortion in order to monitor the phenomenon. Among the collected information
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Figure 5.3: The Italian induced abortions data. The estimated functions (a) η(·) and (b)

ξ(·) (solid curves) with approximate confidence intervals (dashed curves).

is the total number of induced abortions on women of a specific age for each Italian region

in the year 2006. We present here data for the Veneto region standardized in such a way

that we have the counts of induced abortions per 1000 women as a dependent variable.

The data, with an estimate for the mean, and the calculated deviance residuals, with an

estimate of the dispersion function, are shown in Figure 5.1. When using a Poisson model

we expect the variance of the data to be the same as the mean, but here we notice that

the variance of the data is always considerably smaller than the mean (underdispersion).

From the dispersion function estimate in Figure 5.1 (b) it is seen that there is a quite

strong underdispersion over the whole covariate range. In Figure 5.2 we present the

unstandardized (considering the dispersion as constant) and the standardized residuals

(standardized using the estimated dispersion). Figure 5.2 (b) gives a clear indication that

the estimation of the dispersion function performed quite well.

In Figure 5.3 (a) the estimated function η̂(·) and its corresponding approximate confi-

dence intervals are given. Figure 5.3 (b) depicts the estimation for ξ(·) with approximate

confidence intervals.

5.2 The Fabric data

A classical dataset for overdispersed Poisson data is the fabric dataset, containing 32

observations of the number of faults in rolls of fabric, and the logarithm of the length of

each roll. See Hinde (1982). The data, with an estimate for the mean, and the calculated

deviance residuals, with an estimate of the dispersion function, are shown in Figure 5.4.
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The deviance residuals seem indeed to be dependent on the length of the roll. In Figure

5.5, we plot the unstandardized and standardized residuals. Figure 5.5 (b) shows no or

less dependence on the covariate. Note that in this data example, the estimated dispersion

function γ̂(x) goes from values less than one to values bigger than one, i.e. is crossing

over from underdispersion to overdispersion.
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Figure 5.4: The Fabric data: (a) mean and (b) dispersion function estimation (kµ = 7

kγ = 5, pµ = 3 pγ = 2).
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Figure 5.5: The Fabric data: (a) unstandardized and (b) standardized deviance residuals.

5.3 The Hospital stay data

The Hospital stay data concern a study at the Hospital del Mar in Barcelona during

the years 1988 and 1990. See Alonso et al. (1996). The data set contains, among
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other measurements, the number of inappropriate days spent out of the whole stay in the

hospital in the year 1988 (750 patients) and 1990 (633 patients). For this illustration we

focus our attention on the data concerning year 1988, and we are interested in studying

the relationship between the age of the patient and the proportion of inappropriate days

out of all days spent in the hospital. We model the data as a double binomial family. The

estimated mean and dispersion function are shown in Figure 5.6. Figure 5.7 (a) indicates

that the variance of the data increases with the age of the patients, while the standardized

residuals Figure 5.7 (b) no longer shows this dependence.

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Age

P
ro

po
rt

io
n 

of
 in

ap
po

pr
ia

te
 d

ay
s 

in
 h

os
pi

ta
l

20 40 60 80 100

0
50

10
0

15
0

(b)

Age

D
ev

ia
nc

e

Figure 5.6: The Hospital stay data: (a) mean and (b) dispersion function estimation

(kµ = 52 kγ = 44, pµ = 3 pγ = 2).
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Figure 5.7: The Hospital stay data: (a) unstandardized and (b) standardized deviance

residuals.
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5.4 The low iron rat data

A known dataset concerning overdispersed binomial data is the low iron rat data described

by Moore and Tsiatis (1991). An experiment is conducted to see whether the level of

hemoglobin in the blood has an effect on the number of dead fetus found in the litter. 58

rats are given an iron supplement, at different dose levels; after 3 weeks they are sacrificed

and the proportion of dead fetus on the total size of the litter is recorded. The data, with

an estimate for the mean and the dispersion functions are shown in Figure 5.8. The

decreasing shape of the deviance seems to be well captured by the estimated function.

The plots of the unstandardized and the standardized residuals, in Figure 5.9, convince

us of the necessity of modeling the dispersion function as a function of the covariate.

4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Hemoglobin

P
ro

po
rt

io
n 

of
 d

ea
d 

fo
et

us

4 6 8 10 12 14 16

0
5

10
15

20
(b)

Hemoglobin

D
ev

ia
nc

e

Figure 5.8: The low iron rat data: (a) mean and (b) dispersion function estimation (kµ =

kγ = 11, pµ = pγ = 2).

These data have been also analyzed by Aerts and Claeskens (1997) via a local beta-

binomial model and by Nott (2006), who used a DEF approach with Bayesian semipara-

metric fitting. The estimated mean and dispersion functions seen in Figure 5.8 are very

similar to the ones found by the other authors.

The estimated curves η(·) and ξ(·) together with their approximate confidence intervals

are depicted in respectively Figure 5.10 (a) and Figure 5.10 (b). Note that the pointwise

confidence intervals for η(·) are wider at the left end of the support (since there the

variability in the data is larger).
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Figure 5.9: The low iron rat data: (a) unstandardized and (b) standardized deviance

residuals.
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Figure 5.10: The low iron rat data. The estimated functions (a) η(·) and (b) ξ(·) (solid

curves) with approximate confidence intervals (dashed curves).

5.5 The Lidar data

An example of normal data is the Lidar dataset, which is discussed in Ruppert et al.

(2003), among others. Lidar (Light detection and ranging) is a technique to detect chem-

ical compounds in the atmosphere. The dataset contains the data coming from a Lidar

experiment: 221 observations of the distance the light traveled before being reflected back

to its source, and of the logarithm of the ratio of received light from two laser sources. In

Figure 5.11 we plot the data and the obtained estimates for the mean and the variance

function. The data show indeed a non-constant variance and the estimate seems to catch

the increasing shape of the function. Figure 5.12 gives a clear indication that the esti-
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mation of the variance function performed quite well. Ruppert et al. (2003) also find an

increasing shape for the variance function of these data.
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Figure 5.11: The Lidar data: (a) mean and (b) variance function estimation (kµ = 45

kγ = 35, pµ = pγ = 3).
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Figure 5.12: The Lidar data: (a) unstandardized and (b) standardized residuals.

Figures 5.13 (a) and (b) show the estimated functions η(·) and ξ(·) respectively, to-

gether with their approximate confidence intervals.

6 Further discussion

As was noted in Lee and Nelder (2000), the double exponential family leads to identical

inference as the extended quasi likelihood approach (see McCullagh and Nelder (1989)).

27



400 450 500 550 600 650 700

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

(a)

Range

Lo
gr

at
io

400 450 500 550 600 650 700

−
15

−
10

−
5

(b)

Range

lo
g(

S
qu

ar
ed

 r
es

id
ua

ls
)

Figure 5.13: The Lidar data. The estimated functions (a) η(·) and (b) ξ(·) (solid curves)

with approximate confidence intervals (dashed curves).

In a similar manner one can consider an extended quasi likelihood approach in the current

context. This has been done by the authors but for brevity we do not elaborate on this

in the paper.

One might wonder whether it is possible to select the two smoothing parameters λµ

and λγ simultaneously. A first task then is to define an appropriate type of bivariate GCV

criterion. Following the idea behind the univariate GCV criteria developed in Section 3

one needs to define the deviance of the model: start from the likelihood in (3.1) and take

θS = g−1(y) and γS = d(y, θ) to be the choice of θ and γ corresponding to the saturated

model. As the total number of degrees of freedom we take the sum of the equivalent

number of degrees of freedom needed when fitting the mean and the dispersion function.

This leads to

GCV(λµ, λγ) =

n
∑

i=1

(

log γ̂λγ
(xi) − log d(yi, θ̂λµ

(xi)) + d(yi, θ̂λµ
(xi))/γ̂λγ

(xi)
)

(n − df(λγ) − df(λµ))2
. (6.1)

Minimizing GCV(λµ, λγ) with respect to λµ and λγ simultaneously will then give

direct choices for both smoothing parameters. The optimization can be done numerically

using the optim function of R. Experiences show that optimization of GCV(λµ, λγ) is not

straightforward: the function often presents local minima in different directions, so that

the minimization process becomes difficult and strongly dependent on the provided initial

values. Alternatively, one can do a two-dimensional grid search, but this at the cost of

a considerable increase in computing time. A grid search also faces the same problem of
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several local minima.

As an illustration we present in Figure 6.1 boxplots of the AISE values for the mean and

the dispersion estimation in the normal model when choosing the smoothing parameters

either in separate steps (left-hand side boxplots) or via the bivariate criterion (right-hand

side boxplots). As can be seen there is no gain from considering the bivariate GCV

criterion. Similar results (not presented here) were obtained for the other simulation

models. Since the bivariate GCV criterion also seems to suffer from the above mentioned

drawbacks, we do not recommend its use.
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Figure 6.1: Normal model with n = 250: boxplots of the AISE-values for the mean (a)

and the variance (b) estimation when choosing the smoothing parameters in two different

steps (left boxplots) or simultaneously (right boxplots).

Other selection criteria for choosing λµ and λγ have been explored, among which

Akaike’s Information (AIC) criteria (univariate and bivariate). None of these however

outperformed the univariate GCV criteria of Section 3. Nevertheless, these criteria are

not without problems since the optimization problems can be hard, in particular with

respect to the smoothing parameter selection for the dispersion estimation. More research

is needed for developing better selection rules.

In this paper the mean and dispersion function are estimated nonparametrically using

P-spline techniques. Other smoothing techniques such as local polynomial fitting could

also serve as a basis here. So far no theoretical studies have been done for establishing the

rate of convergence of the dispersion function estimator. Concerning estimation of the

mean regression function using penalized splines techniques, there is recent work dealing

with asymptotic theory. This includes work by Li and Ruppert (2008) who establish the

asymptotic distribution of penalized mean regression estimators. Further, Kauermann

et al. (2009) consider generalized penalized spline smoothing, and adopt a mixed-model
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approach and Laplace approximations for their asymptotic study. Claeskens et al. (2009)

study asymptotic properties of a class of penalized spline regression estimators. Asymp-

totic results focusing on the choice of the difference type of penalty are provided in Gijbels

and Verhasselt (2010a,b). Some studies on rates of convergence for variance function es-

timation (in general) can be found in the literature, including the works by Hall and

Carroll (1989), Ruppert et al. (1997), Fan and Yao (1998) and Wang et al. (2008).

These papers in particular study the effect of mean estimation on variance estimation,

and reveal, for example, that the rate of convergence of the variance estimator is similar

to that of the mean estimator provided the mean function has some minimal degree of

smoothness. It would be interesting to investigate the effect of the mean estimation on

the dispersion function estimation, and to establish asymptotic theory for the dispersion

function estimate.

In Section 4 we provide approximate confidence intervals. Of interest would also be

to develop a method for constructing confidence bands. This is an open research issue.
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